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Abstract. We consider some natural one-parameter unfoldings fμ9 of a unimodal
map /o whose periodic points are hyperbolic and whose critical point is non-
degenerate and eventually periodic. Among other facts, it follows from our
theorems that, if the Julia set of/0 does not contain intervals, the relative measure
of the bifurcation set is zero at zero.

Introduction

It is extremely surprising that in such a simple space as an interval, there should
exist important and rich dynamical systems. However many fascinating types of
interval dynamics have been discovered. They are of interest in their own right as
well as being useful mathematical models, and frequently as being part of higher
dimensional systems.

Informally, we think of a dynamical system as a "system in movement;" as time
goes by each point in a phase space evolves according to some deterministic law.
An important feature of a dynamical system is its limit set; the set where the orbits
accumulate. The dynamical behaviour inside the limit set can be "simple" or
"complex." The results of this article support the view that systems with "simple"
limit set are very frequent.

Here we deal with interval dynamics generated by iteration of unimodal maps.
One simple case, the axiom A case, is when the periodic points are hyperbolic and
the critical value lies inside the basin of a periodic sink. In this case we have a
hyperbolic dynamic which is structurally stable and can be reduced to the dynamic
of simpler symbolic models. There exist other cases in which the dynamics are
described by absolutely continuous ergodic invariant probability measures.

We consider some natural one-parameter unfoldings fμ (μ ̂  0), of a unimodal
map /o whose periodic points are hyperbolic and whose critical point is eventually
periodic. We have two cases depending on the topological structure of the Julia set
Σ0 of/o (the complement of the basin of the periodic sinks of/0): if Σ0 does not
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contain intervals, among other facts, it follows from our theorems that fμ is axiom
A with frequency one at μ = 0. If Σ0 contains intervals, it follows from Yakobson
[8] that fμ has an absolutely continuous ergodic invariant probability measure
with frequency one at μ = 0.

Assuming the property of negative Schwarzian, if Σ0 does not contain intervals
then it is a hyperbolic set and fμ is axiom A for all small μ. For us the interesting
case is when Σ0 is not a hyperbolic set and does not contain intervals. This
situation may appear for example when we unfold an axiom A map; without
destroying the periodic sinks we move the critical value out of the basin.

For a qualitative understanding of the dynamical complexity of interval maps,
it is important to know how frequent the axiom A case is among the members of an
one-parameter family. Many other similar questions have been asked and some of
them answered; we mention Yakobson [8], Collet and Eckmann [1], and
Guckenheimer [2]. Also, Newhouse and Palis [5] and Palis and Takens [6] have
answered similar questions in the context of diffeomorphisms of a compact surface.
The tools used in our case are completely different: in [5] and [6] the important
thing is the relative position of two "rigid" Cantor sets, for us what is important is
the relative position of the point fμ(0) and the Julia set Σμ of fμ. One of the
difficulties that we have is that the Julia set Σμ may contain intervals for many
values of the parameter.

1. Main Theorems and Basic Facts

Definition. A Cr (r^2) interval map /:[ — !,!] <p is called unimodal if /( — I)
=/(!)= —1 and / has only one critical point, zero.

Definition. The basin B of a unimodal map / is the interior of the set of points
whose forward orbit converges to a periodic point. The immediate basin B0 is the
union of the connected components of B which contain periodic points in their
closure. The Julia set Σ is the complement of B.

By the kneading theory of Milnor and Thurston [4], we know that the
topological structure of the dynamics generated by a unimodal map / is
determined by the forward orbit of the critical point. The complexity and stability
of the dynamics depends on the relative position of the critical value /(O) and the
basin B. When /(O) is in B the dynamic is well understood and much simpler. We
consider certain one parameter families fμ of unimodal maps, and estimate how
frequently fμ(0) is in the Julia set Σμ of fμ.

To state the theorems precisely we fix an arbitrary unimodal map / such that:
all the periodic points are hyperbolic and the critical point is non-degenerate (i.e.
/"(O) =t= 0) and eventually periodic. We choose the smallest k ̂  0 such that /fe(0) = p,
where p is a periodic repeller. We consider the set of Cr (r ̂  2) unimodal maps with
the C2 topology and denote by <$\f\ (s^ 1) the set of Cs families {fμ}μe[0> υ of <7
(r^2) unimodal maps, such that:

/o=/Λ/M(%=oΦθ and ^Λfc(0)|μ=0Φ^Λ=o;

where μ \-+pμ (small μ) is the function implicitly defined by fμ(pμ) = pμ (I is the period
of p) and PQ = P.

Given some family {/μ}μ6[0f n in ̂ 1(/) we denote the Julia set of fμ by Σμ. We
define the following set:
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For parameters μ in ^U the corresponding dynamic of fμ is "complex." It will be
easy to see that Ql contains almost all (in the Lebesgue sense) the bifurcation set of
the family, * contains almost all the set of parameters μ such that fμ has an
absolutely continuous invariant measure, and ̂  also contains almost all the
set of parameters such that fμ is not axiom A. Our theorems about the density
of W have immediate consequences about the density of these sets.

We would like to prove that ̂  is a small set but unfortunately sometimes this is
not the case. It follows from Yakobson [8] that, if Σ0 contains intervals, the
Lebesgue density of tyl is one at zero. We prove that, if Σ0 does not contain
intervals, the Lebesgue density of Φ is zero at zero.

We denote the Lebesgue measure of a Lebesgue measurable set A by \Λ\. Let us
state our theorems.

Theorem A. Let {fμ}μe[0t ^ be in ̂ 1(/) such that the Julia set Σ0 off0 = fdoes not
contain intervals. Then:

a) The Lebesgue density of W is smaller than one at zero I i.e. lim sup —

b) // the critical point off0 is not an accumulation point of Σ09 the Lebesgue density
of 4r is zero at zero (i.e. α = 0).

Theorem B. Let {fμ}μe[ofl] be in &2(f) such that fμ is C4 and the Julia set Σ0 of

/0 = / does not contain intervals. Then, the Lebesgue density of tfl is zero at zero ( i. e.

Theorem A is much simpler than Theorem B. The proof of Theorem B is by
induction, Theorem A being the first step. For this first step we need only that the
family is a C1 family of C2 unimodal maps, but for Theorem B we need a C2 family
of C4 unimodal maps fμ.

Now we introduce some notation and some preliminary facts. They will be
important in the study of the relative motion of the critical value fμ(0) and the Julia
set Σμ.

Notation. We consider a C2 unimodal map / all of whose periodic points are
hyperbolic, and whose critical point is non-degenerate and eventually periodic:

a) B0 denotes the immediate basin and Σ denotes the Julia set of /
b) J denotes a central interval, that is : an interval bounded by a point q and by the
unique point q* symmetric to q (i.e. f(q*) = f(q)) We consider only the points q

such that Jn I U fj(q) = 0, and for some w > 0, fm(q) is a periodic point. We will
V / = ι /

state explicitly, when necessary, whether J is open or closed.
c) £B: = {x6[-l,l];/

In fact we are not interested in considering the central intervals J and the sets En

for an individual map /; but for a family {fμ}μ€[oΛ] in 9\f).

Remark. Let {fμ}μe[Q,1} be in &(f).

a) Corresponding to the C1 variation fμ of /0 = /, we have the C1 variations Jμ and
B0μ of J and B0 respectively. They are C1 variations in the sense that the boundary
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points of Jμ and B0μ are C1 functions implicitly defined in some interval [0, <50] For
this, the hyperbolicity of the periodic points of /0=/ is important.
b) B0μ as defined above may be smaller than the immediate basin of fμ.
c) Enμ: = {xel-ί,ί];fJ(x)φB0μvJpj = 0,...9n-ί}9n^l. We remark that the
connected components of Enμ\E(n+ί)μ are mapped diffeomorphically by fμ onto
connected components QΪBQμnJμ. Therefore the boundary points of Enμ are also
C1 functions, defined in the same interval [0,(50].

Lemma (1.1). Let {fμ}μe[oti] be in ^\f\ Given an open central interval Jμ there
exist δ in (0, <50), Cl > 0, λ± > 1, and R1<oo such that; for allμ^δ and x in Enμ (n^
we have:

a) |3x/;(

c) The Lebesgue measure \Enμ\ converges exponentially fast to zero as n goes to
infinity.

Proof, a) First of all we observe that Enμ (n^\ and μ ̂  δ0) is a decreasing sequence
00

of compact sets, fμ(Enμ)CE(n-k}μ (0<k<ή) and f] Ejμ is a non-empty compact
QO J~l

invariant set of fμ. The set f) EJO does not contain attractive periodic points nor
.7=1

non-hyperbolic periodic points, nor critical points. From Mane [3] we conclude
00

that P| EJQ is a hyperbolic set for /0. Therefore we can choose some k and some
J~ 1 _ oo

J> 1 such that \dxfo(x)\^λ, for all x in f| EJ0. By continuity we can diminish la
> = 1 _ N

little and take N big enough to ensure |3x/0

kWI ̂  λ for all x in ENO = f| £yo. Now,
_ 7=1

if we diminish /I a little more, by remark (c) we can choose δ in (0, δ0) such that
N

\^xfί(
χ)\ = ̂ 9 f°r a^ x in ^Λrμ= Π 7̂> and M = ̂  Now, given n>AΓ we write

H _ jv =7/c + /, where 0 ̂  / < k. Therefore :

\dxfμ

n(x)\ = \dxfμ

N+l(f*(x))\ \dj*(x)\ .

For x in Enμ, the first factor is uniformly bounded away from zero and the second is
bigger than (I)J. Part (a) now follows immediately.
b) We observe that:

sxxfμ"(χ)
βjϊw djr ι -j (/r 'w) (

o /*

and the factor ** ^2 is bounded in the complement of Jμ. Now part (b) follows
from part (a). (d**v
c) Let Knμ be a connected component of Enμ. We choose the smallest '^O such
that

j is uniformly bounded by some M < oo. Part (b) implies that fμ

+j restricted to Kn

is almost linear. It follows that the proportion of Knμ mapped by fμ

+j into B0μvJ
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is uniformly positive. It follows that \Enμ\ decreases exponentially with n and part
(c) follows. Π

Lemma (1.2). Let {/μ}μe[o,i] be in ^1(/) Given an open central interval Jμ there
exist R2<co and δ in (0, <50j such that; for all y in Jμ such that /μ([0, yj) C E(n _ 1)μ and
μ^δ we have:

a) \y\ ̂  \dxff(y)\^R2Siψ\y\ , where Snμ : = \dxxf
n

μ(G}\ Φθ .
K2

Proof. We omit this proof which is a straightforward consequence of Lemma (1.1)
and the non-degeneracy of the critical point. Π

2. Bifurcation Frequency

This section is dedicated to proving Theorem A. We will use the notation and
remarks of Sect. (1).

We recall that ^: = {μe[0,l];/μ(0)eZμ}, where Σμ is the Julia set of fμ.
Theorem A has immediate consequences about the bifurcation frequency at zero,
that is; about the Lebesgue density at zero of the bifurcation set of the family
considered. This is the reason for the title of this section.

The main idea in the proof of Theorem A is that we can decompose the phase
interval [—1,1] into two sets: For some special open central interval Jμ, we
consider the union of the pre-images of BQμ\jJμ and its complement. When the
critical value traverses the phase interval it meets the union of the pre-images of
B0μuJμ for almost all the parameters. We will choose some special Jμ which
contains a piece of basin attached to its boundary. This will force the critical value
to cross the basin every time it crosses some pre-image of B0μvJμ. One technical
fact that we will need is some control over the derivatives of the C1 functions of μ
defined by the boundary points oϊEnμ. This will control the relative motion of the
critical value and pre-images of B0μu Jμ, and is the central point of this section.
This is the role of the following lemma. To state the lemma we consider a general
open central interval Jμ and denote a boundary point of Enμ by xn

μ. We recall that pμ

denotes the periodic repeller of fμ such that /o(0)=p0 (
see Sect. 1). We also remark

once more that (by the hyperbolicity of the periodic points of/0) xn

μ and pμ are C1

functions defined for μ in some interval [0,(50].
Throughout this section and the following one a symbol like Bμfμ(pμ) means the

derivative of fμ with respect to μ at the point pμ. The argument of a function will
never be differentiated.

Fundamental Lemma (2.1). Given an open central interval Jμ there exists δ in (0, δ0)
such that, for all ξ>0 there exists ρ>0 such that: if μ^δ and \xn

μ — pμ\<Q, then
\dμx

n

μ-dμpμ\<ξ.

Proof. The strategy of the proof is simple. We calculate the derivatives dμpμ and
dμx

n

μ and afterwards we estimate the difference between them. One basic principle
d Γ

is that dμpμ and dμx
n

μ are related to J^.
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We recall that / is the period of the periodic repeller pμ. Then for any j ̂  1 we
have:

To calculate dμx"μ we observe that fμ(x"μ) is some point aμ in the forward orbit of
the boundary of B0μ*uJμ. Since this forward orbit is finite the derivative dμaμ is
bounded in [0,<5] for some δ in (0,<50). We have:

μ μ cί fn(xn} d fn(xn}'*JxJμ\ *'μ) uμJμ\ Λ'μ)

In order to compare dμpμ and dμx
n

μ we rewrite them as:

where i = n—j

I- 'w.

We observe that μ μ is bounded independently of x in Etμ, t ̂  1 and μ in

]; this fact is a consequence of Lemma (1.1) together with the boundedness of

outside Jμ, and the following formula:

d fΐ(~\ Li % fk(v\ % f ( fk/v\\ '
xJμ(X) k = 0 VχJμ(X) VχJμ(Jμ(X))

Now, given any ξ > 0 we choose ρ > 0 such that for all xμ such that \xμ—pμ\<Q
we have n very big. Then we can fix j big enough so thatj/^n and

and
dμfM,

<ξβ,

<ξβ.

Once j is fixed we diminish ρ > 0, if necessary, and by continuity we have

dμfj'(pμ) dμfμ

l(x»μ)

δJj'W)
The lemma follows. Π

Proof of Theorem (A). Given {fμ}μe[0, i] in ̂ 1(/), firstly we choose a special open
central interval Jμ. We have two cases: in the first case the Julia set ΣQ of/0 does not
accumulate at the critical point, and in the second case Σ0 accumulates at the
critical point.

If Σ0 does not accumulate at the critical point (zero), we choose the smallest j0
Jo

such that the closure of Bjo0:= [j /0

 l(JB00) contains zero. Bjo0 has two symmetric
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connected components attached to zero. We take their union with zero to define
our open central interval J0.

If Σ0 accumulates at zero, given somey0 we define the open central interval J0;
the smallest open central interval containing the two symmetric connected
components of Bjo0 which are the nearest to zero. We choose Ό big enough to have

oo

the distance between J0 and (J /o(0) positive.
i = l

Once BJOQ and J0 have been chosen, Bjoμ and Jμ (μ < δ0) are respectively the C1

variations of J0 and oϊBjo0 associated to the family considered. We remark that a
uniformly positive proportion of Jμ corresponds to the connected components of
the basin of fμ attached to the boundary of Jμ. In the first case this proportion tends
to one as μ goes to zero.

Now we define:

Though B0μ was replaced by Bjoμ in the definition of Enμ the facts and lemmas that
we proved are still true, for the same reason. We decompose the phase interval as:

\«=1 / \ j=l

and define the set

I/, := A* e [0,5] ;/#<)) 6 (Vλ/Π
(. n=l

where k is such that /O

k(0) is the periodic point p0.
Now we claim that for some δ, Uδ contains almost all ^n[0,<5]. In fact: by

Lemma (2.1) the boundary points of Enμnfμ~
n(Jμ) which are near to the periodic

point pμ (C
1 variation of p0) have almost the same μ-derivative as pμ, by hypothesis

we have that dμfμ(0)\μ=0 φ dμpμ\μ=o and by Lemma (1.1) \Enμ\ decreases exponenti-
ally as n goes to infinity. The claim follows.

Each connected component ofEnμnfμ~
n(Jμ) is mapped diffeomorphically by fμ

onto a connected component of BjoμvJμ. By Lemma (1.1) it follows that the
proportion ofEnμr\fμ~

n(Jμ) contained in the basin is comparable to the proportion
of Jμ contained in the basin. By Lemma (2.1) and the hypothesis that dμfμ(0)\μ=Q

=t= dμpμ\μ=Q, we can conclude that the proportion of parameters μ in [0, <5] such that
fμ (0) is in the basin of fμ is positive. When Σ0 does not accumulate at zero, the
proportion of such parameters in [0, ε] tends to one when ε tends to zero. The
theorem follows. Π

3. More About Bifurcation Frequency

This section is dedicated to proving Theorem B. As in Yakobson [8], Collet and
Eckmann [1], and Guckenheimer [2] we will define an inductive process. In
general it is necessary to eliminate parameters to assure metric control throughout
the induction. In our case we follow closely Guckenheimer [2] in the definition of
the inductive process, but we will exploit the existence of a persistent basin to
improve the process without elimination of parameters.

Theorem B is a direct consequence of Theorem A and Theorem C, stated
below.
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Theorem (C). Let {fμ}μe[0, u be in &2(f) such that each fμ is C4 and the Julia set Σ0

of f0=f does not contain intervals and accumulates at the critical point. Then the
Lebesgue density of W is zero at zero.

Poincare maps will be the main tool in the proof of Theorem C. To define the
inductive process referred to above, we will choose a special closed central interval
J° bounded by some connected components of the basin. The Poincare map έPμ of
Jμ will permit us to decompose the phase interval and afterwards the parameter
interval: we will choose the central connected component Jμ of the domain of &μ to
be a new closed central interval, and will consider the union of pre-images of Jμ

under 0>μ. For almost all μ in ̂ n[0, εt], some ε l5 we will have ̂ (0) in this union.
Each connected component of this union will have a definite proportion of basin
attached to its boundary. Then when (̂0) crosses such a component, the
proportion of parameters μ for which ̂ μ(0) lies in the basin is uniformly positive. In
a second induction step we will consider the Poincare map &μ of Jμ and the
analogous procedure. We will need metric control in the phase and parameter
intervals.

Given a family {fμ}μe[0ί ί} as in Theorem C we start our construction. We define
a closed central interval J%: it is the closed connected component of the

Jo

complement of Bjo0= (j f0

 l(B00) which contains zero. We choose j0 big enough
i = 0

oo

to have the distance between J° and (J /(j(0) positive. Now we consider J° and Bjoμ

(μ<<50), the C1 variation of JQ and Bjo0, respectively. We also define:

<: = {xe[-l,l];/^(x)iB^u^,; = 0,...,n-l},

Then we decompose the phase interval as:

\ n = l

As in the proof of Theorem A we define:

and for the same reason as in the proof of Theorem A there exists ε0 > 0 such that
C7eo contains almost all of ̂ n [0, ε0]. We will prove that the density of Uεo is zero at
zero.

For μ in Uεo we consider the Poincare map 0*μ of J°. Its domain is a countable
union of closed intervals. One of those intervals, J*, contains the critical point
(zero), we call it the central interval. The other intervals, L°, we call lateral intervals.

Fundamental Lemma (3.1). Given y>2 there exists a closed central interval j£, ε in
(0, ε0) and A, M< oo such that for all μ in Uε the Poincare map &μ of Jμ satisfies:

\dx0>μ(y)\^γ and xx μ

 2 ^M, if y belongs to any lateral interval L°.

b) "sΓ0μ(*\ IP & - '̂ for α^ z=t=0 in the central interval Jμ.

Proof, a) The proof has two parts: In the first part, we consider the individual map
/o and define a Poincare map ̂ 0 which satisfies part (a). It does not have central
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interval. In the second part we vary the parameter μ and prove part (a) for <Pμ.
When we vary the parameter some central intervals appear but condition (b) is
nevertheless satisfied.

Let JQ be the central interval defined before and ̂ 0 its Poincare map. Let L% be
a lateral interval where ^0= /O

m. We consider the maximal interval T which
contains L% and such that /O

m is monotone in T and /0

m(Γ)nB00 = 0. We observe
that /0

m(T) contains Jo and the two connected components of Bjo0 attached to the
m — 1

boundary of JQ. By Strien [7] £ l/oί^ll is uniformly bounded, therefore we can

use Kobe's lemma (see Strien [7]) to conclude that /O

m is almost linear in L& that is:
I d fm(x)\given x, y in LQ is uniformly bounded. Now we observe that for a small J&

the minimum possible m is big and consequently T is small. Then we must have a
point x in T such that \dxf™(x)\ is big. In fact by Kobe's lemma, x is in L° and we
conclude that \dx0*0\ can taken to be uniformly bigger than a given γ>2.

Now we consider (as before) ε0 > 0, J° and the Poincare map 0>μ of J° (μ ̂  ε0).
Let us prove part (a): Let y be in some lateral interval L° and 0>μ(y) = f™+*(y). Then
by Lemma (1.2) we have:

i^ωi^iδj^owΓ"'

For μ in l/eo the points fμ(y) and fμ(0) define an interval which contains connected
components of E^μr^f~ (Bjoμ). These components are mapped by /μ

m onto
connected components of Bjoμ9 by Lemma (1.1), with bounded distortion. There-
fore, there exists C>0 such that:

and if m is big we have \d^μ(y)\ ^ y as we want. We are left with finitely many lateral
intervals with small m. But as \dx^0\ is bigger than y, we can vary μ in a small
interval [0,ε] and maintain \dxέPμ\ bigger than y in those intervals.

3 &
To prove the boundedness of xx **2 in L° we observe that:

and, by the same argument as before, we have that |δx/μ

mo/μ| \Sxfμ\
2 is bounded

away from zero in L°μ. Then the first term in the above sum is uniformly bounded.
By Lemma (1.1) the second term is also uniformly bounded. Part (a) follows.
b) Let zφO be in the central interval Jμ where ̂  = fj+i. Then we have:

\dxxfμ(fμ(z)

+
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By the non-degeneracy of the critical point we can assume that fμ is symmetric (e.g.
fμ( — z)=fμ(z)\ and since fμ is C4 we can conclude that there exists d < oo such that:

1

\dxfμ(z)\ =

Part (b) follows from this and Lemma (1.1). Π

Besides the metric control in the phase interval obtained in Lemma (3.1) we
need metric control in the parameter interval. One important point is to estimate
how fast the critical value μ̂(0) crosses pre-images of the central interval Jμ. For

d &
this we need estimates for μ μ and dμ^μ. Before we state the lemmas concerning

these estimates, we introduce some notation:

Notation, a) Jμ and J* denote the maximal open central intervals such that Jμ\ Jμ

and Jμ\Jμ are contained in the basin of fμ.
b) yμ denotes a boundary point of Jμ. We remark that \dx^μ(yQ

μ)\ tends to infinity
when μ is in UB and tends to zero.

Lemma (3.2). There exist a closed central interval J°, ε in (0,ε0), T< oo and β>0
such that for all μ in a connected component U of Uε we have:

IjOi

b) \dμ0>μ\^β y^p in the central interval J£.

Proof, a) Let μ be in Uεo (ε0 as before) and L° be a lateral interval where 0*μ = f™ + k.
Since 5^/^(0)1^= 0 Φ 0 we can choose J° small enough to have \dμfμ\ bounded away
from zero in J. We know thatμ.

d f m o f k

and by the proof of Lemma (2.1), " "m ^ is uniformly bounded in L°. Therefore
„ OχJμ °Jμ

there exists T<oo such that:

By Lemma (2.1) and the hypothesis that dμfμ(0)\μ=0ή=dμpμ\μ=Q9 we know that
there exists ε in (0, ε0) such that: for all μ in a connected component U of C7e, \dμfμ\

\p I
in L°μ is comparable to — y-, where Γμ is the connected component of the pre-image

by fμ of Jμ which contains f£(Q).
\J°\

By Lemma (1.1) we also know that \Γμ\ is comparable to Λ, 0 . Now to

conclude part (a) we observe that, by the non-degeneracy of the critical point,
\dj£\ in L°μ is bigger than C \dxf£(y$\, for some C>0. Part (a) follows.
b) Let μ be in a connected component U of UE and 0>μ = fμ

+k in the central interval
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Jμ. Since \dμf*\ is bounded away from zero we have:

μμ xμ μ

If ε > 0 is small enough, μ £. * in J* is very near to dμpμ (see proof of Lemma
VxJμ °Jμ

(2.1)). By the hypothesis that Sμfμ(0)\μ=Q + dμpμ\μ=0 there exists α< 1 such that in
J we have:

or

therefore in J we have:

For the same reason as in part (a) we can conclude part (b). Π

We need one more technical lemma concerning mixed derivatives.

Lemma (3.3). There exist a closed central interval J°, ε in (0, ε0) and d3, d4, d5,
d6< oo such that, for all μ in a connected component U of Uε we have:

riV =^3 777Γ? in α lateral interval L°
l^jc^μl 1^1

b) T "̂ gd5life> in a lateral ίnterval Ll-

Sα6, in *

Proo/ The proof is straightforward and involves no new ideas. We therefore omit
it. D

Now, Lemmas (3.1), (3.2), and (3.3) provide all the information we need to start
our inductive process.

Induction (First Step). Given y > 2 there exist a closed central interval Jμ and εx > 0
such that, for all μ in a connected component U of l/El, the Poincare map 0*μ of J°
satisfies the following recursive properties:

RP1) In each lateral interval L° we have:

a) \dx^μ\^y and xx μ

2 ^ -~j-, for some D^oo,

-^^Do—TΓ and w* ^ </)s—^—, for some

RP2) In the central interval J^ we have:

a) —^——

IΛ <9\ n. IΛ ^ i π,
for some

1 ^D2 _ n . 7 1 χ Γ Λ ) ,
s -~Q-, tor all z in «/^\{Oj and some
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RP3)

a> s in each lateral interval L°" "" some

IjOl

b) \dμ0>μ\^β -r^- in the central interval J*9 for some j?>0.

These properties are the metric control that we need to make a first estimate of
the proportion of parameters in Uει for which the critical value 0*μ(Q) lies in the
basin. In the second inductive step we will make a second estimate and so on. We
will need this proportion to be positive independently of the inductive step.

Before making any estimate we define the second inductive step and prove that
the recursive properties in the first inductive step are preserved. Afterwards we will
prove that the proportion referred to above is positive independently of the
inductive step. In order for the induction to continue we need to consider
parameter intervals closer and closer to zero.

Remark, a) We remark that like Jμ the central interval, Jμ has two connected
components of the basin attached to its boundary. We have defined Jμ the
maximal open central interval such that Jμ\Jμ is contained in the basin.
b) Let Fμ be the set of points in Jμ where 0>μ is not defined. Fμ is the union of some
connected components of the basin and a set with null Lebesgue measure. We
define:

We denote a boundary point of Ejμr\έP~j(Jμ) by yj

μ,j^l. We remember that yQ

μ

denotes a boundary point of Jμ.
c) Given x9 y in the same connected component of E^μ it follows from (RP1 . a) that :

< 2^|in<*)-nωi
=

We will use many times this property of bounded distortion. One important point
is that the constant Dl grows during the induction, but the factor \^μ(x) — ̂ μ(y)\ is
smaller than \Jμ\ and guarantees the control of distortion as the induction goes
on.
d) Given z in the central interval Jμ we have from (RP2. a) that:

, -ωμ\z\e

where ωμ: = |9xje l̂(0)|. Hence

- - ' ^,

In the first inductive step the constant D2 may be big, and make it difficult to
estimate the size of the connected components of the basin, which are attached to
the boundary of Jμ. We will make this estimate using fμ directly and Lemma (1.1).
We will be able to choose this constant as small as we like from the second
inductive step onwards.

The following lemma is an obvious consequence of (RP3. a) and gives us control
of the relative motion of the pre-image ^μ

j(Jμ) and μ̂(0).
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Lemma (3.4). There exist ε in (0,^) j?>0 and H<\/2 such that, for all μ in a
connected component U of U& we have:

I Γθ|

a) >- \u\'
b) I

Proof. All the points yj (j ^ 1) are mapped by ̂  to some point y° in the boundary of
Jμ. The point^y° is mapped by ̂ μ (in fact by the extension of 0*μ to J*) to a boundary
point X oϊ J. Therefore we have:

but \d^μ(yμ)\ tends to infinity when μ is in Uε and tends to zero, and dμxμ is
bounded. We also have for ^l that:

Now the lemma follows immediatelly from the recursive property (RP3). Π

Lemma (3.4) together with the fact that the Lebesgue measure of E^μ decreases
exponentially, when n tends to infinity, imply that the set:

: = μ e 17£2; ̂ O) ̂ J^ \J (
I V / = ι

contains almost all of the set ^n[0,ε2]5 for some 0<ε2^ε1 (εi given by the first
induction step).

For μ in VE2 we consider the Poincare map &μ oίJμ. Its domain is a countable
union of closed intervals. One of those intervals, Jμ, contains the critical point
(zero). We call it the central interval. The other intervals, Lμ9 we call lateral
intervals.

We remark that Jμ has two connected components of basin attached to its
boundary. We define the central interval J^; the maximal open interval such that
Jμ\Jμ is contained in the basin. We denote by z° a boundary point of Jμ.

Now we state the second inductive step.

Induction (Second Step). Given γ > 2 and D2 > 0 there exists ε2_in (0, εx) such that
for all μ in a connected component V of Vε2, the Poincare map ̂ μ of J* satisfies the
following recursive properties:

RP1) In a lateral interval Lj we have:

a) Mg^y and ĵ ^-^- for somel^^μl \J μ\

I / 1 ! 1 / 5 ^ 1 I ί1!2and s D " ' ' forsome
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RP2) In the central interval Jμ we have:

dxx^μ(ω) 1
a) a Λ / - V I --

. 15̂ 1 ^D 6 -
and . /^ ̂  g -~τ- for some

RP3)

a) - in each lateral interval Li> for some τ< °°
-

b) \dμ0>μ\^β yr^ in the central interval J2, for some β>0.

Proof. Throughout this proof we will consider μ in a connected component V of Vει.

RP1. a): Let z be in a lateral interval Lj, where &μ = 0>μ

+1. From (RP2. a) we have
that:

where ωμ : = \dxx0>μ(Q)\. For μ in VΛl the points ^(z) and (̂0) define an interval
which contains a connected component of basin. This component is mapped by
OP™ with bounded distortion by (RPl.a), onto a connected component Cμ of
Jμ\Jμ. Then there exists C>0 such that:

Now we estimate ωJC^|: we observe that £Pμ maps Cμ onto a connected
component C°μ of J^\J^. Then there exists tμ in C\ such that \dx0>μ(tμ)\ \C*\ = \C°\
but if we take j such that ̂ ί = ///

+1 in J^ we have:

By Lemma (1.1) and the non-degeneracy of the critical point we conclude that
ωJC£| ̂  At I J^Γ 1

? for some ̂  > 0. It follows from (RP2. a) that there exists A2 > 0
such that:

since ωμ tends to infinity when μ tends to zero we can choose ε2 in (0, εx) such that
|δ^(z)|̂ y- for all /i in Vε2.

d 2P (z)
As for the boundedness of .,**, f..,, for z in Li we observe that:2

I

'

and by (RP2. a)
~

By the same argument as before there exists A3>0 such that
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1C1!
by the non-degeneracy of the critical point and Lemma (1.1) we know that -~ -̂ is

bounded away from zero. Now we can conclude that there exists d< oo such that:

Now we observe that -J^- tends to zero when μ tends to zero and there exists ε2 ir-~

,^) such that (RPΪ.a) is satisfied.

RP3.a): Let z be in a lateral interval Lμ9 where μ̂ = ̂ Jl+1,

^̂  I Ί _|_ .
•Λ SΓX I ' Λ /ΓΛ Λ sTXnt /

We recall that |5X̂ (̂ )| tends to infinity when μ tends to zero. Then by (RP3) it is
easy to see that there exist ε2 in (0, ε^ and H < 1/2 such that for all μ in VE2 we have:

^(1+fl)
IVx TμWl

By (RP2. b) dμ&μ(z) is comparable to dμ0>μ(Q). By Lemma (3.4), when μ crosses the
component V, the critical value (̂0) crosses a connected component Γμ of E J^

/*) and from (RP2. b) we conclude that there exists K<oo such that

~\V\'

By (RP1. a) we know that |Γμ| is comparable to | Jμ\ \dx^μ(^μ(zμ))\ ~{and by (RJ>2. a)
we also know that \dx0>μ(z)\^>\dx&μ(zμ)\e~2D2. It follows that there exists T<oo
such that:

for all z in a lateral interval Lμ and μ in VE2.

RP3.b). Let ω be in the central interval J J, where μ̂ = ̂ (+1,

For the same reason as in the proof of (RP3. a) we know that there exists ε2 in (0,
such that for all μ in VE2 we have:

15 Φ (ωM > 1I5l^μ ̂ μ^/l = 2 l^jc

and there exists β>0 such that:
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RP2.a). For ωφO in the central interval J2, where &μ = 0%+l we have:

4
dxx&^ω) 1

ω \d*Pji

The first term is bounded by -j§- and the second term is term by -~ r̂. Since -γg|
Kμl Kμl Kμl

tends to zero when μ tends to zero there exists ε2 in (O^) such that (RP2. a) is
satisfied.

RP2. b). We omit the proof which is straightforward.

RPl.b). In a lateral interval Lj, where 0*ί = 0JJl+1 we have:

dμ&μ i a^ i

We claim that the first term of this sum is bounded by some constant times -^-. To

g g>
prove the boundedness of the other terms and the boundedness of μμ- , the

argument is the same. Let us prove the claim. It follows from the proof of (RP3. a)
that there exists M< oo such that:

7 D, M \J\\

-l \J°μ\ \dx&μ(zl)\ \V\

We also know from (RP2. a) that:

and there exists qμ in J2 such that

fli ι72|>μl μl=

once \&μ(J2)\:>\Cμ\ and ωμ\Cμ\ is comparable to [J^"1 we conclude that there
exists C>0 such that:

C

Our claim and (RP1. b) follow. Π

Now before the proof of Theorem B we remark once again that the constants Dt

(i = 2,3,4,5,6) can be chosen to be arbitrarily small. In fact, reducing ε2 > 0 in the
second inductive step we can make the metric control as good as we want. The
Poincare map &μ can be made very expansive and linear in the lateral intervals and
very quadratic in the central interval. Another point that we want to make

IJ1! 1C1!
concerns the properties of ωμ\Cμ\,-^ and-^η-, that we have used during the proof

Kμl Kjul

of the second inductive step. It is easy to see that if C2 is one of the connected
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components of basin attached to the boundary of J2 and μ is in V we have that:
ιji| \c2\

ωμ\Cμ\ tends to infinity, -~f- tends to zero and -~f- is bounded away from zero when

V tends to zero. These facts guarantee that the induction does not stop.

Proof of Theorem C. We take a connected component U of Uξl (some ξ^ >0) and
make a first estimate of the proportion of parameters in 17, for which the critical
value lies in the basin.

By Lemma (3.4) there exists ξ1 >0 such that for μ in U the critical value (̂0)
traverses the interval Jμ very fast; at least twice as fast as the boundary points yj

μ of
Ejμn^μ

j(Jμ) with the relative speed of ,̂(0) and ^μ being almost linear, more
precisely:

and for μί9 μ2 in U we have:

Since \Ejμ\ decreases exponentially when; goes to infinity we conclude once again
that

Vξl:=

contains almost all the set ̂ n[0, ξ^].
Let us make a first estimate of the proportion of ̂  inside U. We prove that the

proportion — ξl is smaller than one. We recall that the connected components

Cμ oϊJμ\Jμ are contained in the basin. Then we consider connected componentsμ μ .
^O) of Vξί and the maximal open intervals Vβ such that for all μ in V^

have 0>μ(0) in E}μn»- *(J]\J$ if ^l, or in J^\J^ if; = 0. We have that:
r we

and we define

It follows that:

and from the non-degeneracy of the critical point and Lemma (1.1), there exists
1C1! ~ ~

α>0 such that mj7^α-γη-, for all μ in Vβ. We can assume that \J Vβ\ =\U\ and
Kμl j.ϊ I

therefore:
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from (RP2.a) we know that:

'

By (RP2. b) γt is an almost linear function in U and varies between one and its
μ μ

minimum. Then we conclude that

and for some ρ < 1 we have

The constants involved in the above estimates do not depend on the component 17
of Uξl. They depend only on the constants of the metric control in the first
inductive step. We conclude that

\Vξί\<Q\Uξl\.

One important fact that we have remarked upon is that the metric control
becomes better and better as the induction goes on, so that ρ is uniformly smaller
than one and the theorem follows. Π
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