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Abstract. Let ψt» V?» n^l, be solutions of Schrόdinger equations with potentials
form-bounded by -\Δ and initial data in H^QR*). Let P,P", n^l, be the
probability measures on the path space Ω = C(R + , Rd) given by the corresponding
Nelson diffusions. We show that if {ψ1}n^ i converges to ψt in //^(IR/*), uniformly in
£ over compact intervals, then {PjVj^i converges to P^t in total variation
Vί^O. Moreover, if the potentials are in the Kato class Kd9 we show that the
above result follows from Hl -convergence of initial data, and ^-convergence of
potentials.

1. Introduction

Stochastic Quantization is an algorithm which permits to associate a diffusion
process to a solution of the Schrόdinger equation in such a way that the density of
the process corresponds to the usual density of Quantum Mechanics (see [N] for a
thorough introduction to the subject). An unpleasant characteristic of these
diffusion processes is that their drift coefficients are too singular to be handled by
the traditional approaches. The problem of the existence of the stochastic
processes of Stochastic Mechanics was resolved by Carlen for potentials form-
bounded by -\A and initial data in H1^*) (see [Cl, C2, C3], and Sect. 2). His
existence theorem provides us a Borel probability measure on Ω = C(R+,IRd), the
space of the physical trajectories of the particles, such that the stochastic process
Xt(γ) : =y(ί) is a Markov process with density \ψt\

2, and is a weak solution of the
stochastic differential equation

with bt = (9l + 3)yiogψt9 as required by the stochastic quantization procedure.
Carlen's theorem provides a map from the space of solutions of the Schrόdinger
equation to the space Jί^Ω) of probability measures on Ω; it is then natural to
consider the following continuity problem: let {ψt}n^ i be a sequence of solutions
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of Schrόdinger equations, possibly with different potentials Vw and let {Pw}π^ι be
the corresponding sequence of probability measures given by Carlen's theorem;
which convergence of the φ"'s will give a convergence of the Pπ's? Obviously the
answer to this question depends on the choice of a topology on Jί^Q}. The most
used one is the metric topology given by the Prohorov metric p. This topology
is the topology of weak convergence on bounded continuous functions, i.e.

p(Pn,P}^o\fdPn->lfdP V/eQΩ).
Ω Ω

We will instead consider on Jί^Ω) the stronger topology induced by the metric

): = ||F-P||= sup

where the sup is taken over all measurable partitions of Ω. This is the topology mat
Jlι(Ω) inherits as subset of the Banach lattice of bounded signed measures on Ω,
normed with the total variation norm.

We will prove (Theorem 6.1) that if ψ" converges to ψt in ̂ (R*1), uniformly in ί
over compact intervals, then d(P"pt,P\p)-+Q Vί^O, and so p(P",P)-»0.
Moreover, in case the potentials are in the Kato class Kd, we will give a criterion
of convergence in terms of H1 -convergence of initial data, and ^-convergence of
potentials; since Cc°°(R

d) is dense in Kd, we can then approximate physics with
extremely nice potentials.

Notice that the drift coefficients bn are typically very singular (independently of
the regularity of the φ"'s, they are unbounded on the nodes), it is therefore not
possible to use the usual convergence theorems for diffusion processes (see [SV,
Chap. 11], [Z, Theorem 5], [JS, Chap. IX, Sect. 4a], for weak convergence, and
[JS, Chap. V, Sect. 4d], for convergence in variation). In fact these theorems
require bounded drifts and convergence in L^c(R<i+1). We overcome these
difficulties putting together the following facts:
1) By the finite energy condition (see Sect. 2), P\&τ ̂  W\^τ for all T, where Wis the
usual Wiener measure on Ω, and ̂ Ύ is the σ-algebra generated by trajectories up to
time Γ;
2) By 1), every subset of Rd with zero (Newtonian) capacity is polar for Xt with
respect to P. Moreover, introducing a suitable capacity Γτ on subsets of
[0, Γ] xRd, every set with zero capacity Γτ for all T is polar for Yt = (t,Xt) with
respect to P;
3) For every sequence {ψn}n^ i of function on R+ x Rd which are continuous from
R+ to Hl(R*)9 there exists a decreasing sequence of open sets {Dk}k^i9 with
Γτ(Dfcn[0, T]xRd)|0 for all T, such that all the ψ"s are continuous on
/)£ n [0, T] x Rd for all k and T. Moreover if sup || φ? -ψt\\Hι ^Q for all T, then

O^ί^Γ
there exists a subsequence such that i/Λ -*ψ pointwise and uniformly on
D£n[0, T] x Rd for all k and T;
4) If P and β are probability measures on Ω given by weak solutions of stochastic
differential equations with the same constant diffusion coefficient and equal initial
distribution, and with drifts bp and bQ such that

EP f \\bp\\2(s)ds< + oo , EQ f \\bQ\\2(s)ds< + oo ,
R+ ΪR +

then
J \\bP-bQ\\2(s)ds.
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2. Nelson Diffusion with Potentials Form-Bounded by -\Δ

Let K denote the self-adjoint representation of — \A on L2(Rd), and let V be a real-
valued measurable function on Rd such that V is K-form-bounded, with relative
bound smaller than one, i.e. 3#e[0, 1), 3b^.O such that

We shall discuss only the case of time-independent potentials. The extension to the
time-dependent case is immediate at the expense of heavier notation.

Let H be the unique self-adjoint operator associated to the sum of the quadratic
forms of K and V. Such H exists by the KLNM theorem (see [RS, Theorem X.I 7]).
Moreover one has

and

IMi2^(i-αΓH<tH#^
Let e~ltH be the one parameter unitary group generated by H. By the above
relation, it follows that e~~itH maps H^fJR?) into itself, with

Moreover, since

lim
r-+0 +

= lim
ί->0 +

e~itH is a continuous one parameter group of bounded linear operators on H1

By the above discussion, proceeding in the same way as in [Cl], we have the
following analogue of Theorem 2.1 in [Cl]:

Theorem 2.1. Let Vbea K-form-bounded potential, with relative bound smaller than
one, let tp0 be in H1^*), and let H = K+V be defined as a quadratic form. Then
1) e~ltH is a continuous one parameter group of bounded linear operators from
H1^) into H1^);
2) there are unique jointly measurable functions ψ(t, x) and Ftp(ί, x) such that \p(t, x)
= e~itHψ0(x\ and F\p(t,x)=Ve~itHψ0(x);
3) defining ρ(ί, x) : = ψ(t, x)ψ(t, x), and

v(t,x):=3(rψ(t,x)/ψ(t,x)),

if tp(ί, x) =j= 0, u(t, x) = v(t, x) = 0 otherwise, one has

J ί (\\u\\2 + \\v\\2)ρdxdt< +00 VT>0; (F.E.C.)
O R d

4) V/eCjJ(]Rd) the function f h-> J f(χ)ρ(t,x)dx is differentiate, and

- J f(x)ρ(t,x)dx= j v(t,x) rf(x)Q(t9x)dx.
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From Theorem 2.1 it follows that the hypotheses in Theorem 4.1 in [Cl] also
holds for K-form-bounded potentials (see also [C2], see [C3] for uniqueness). So
we have the following

Theorem 2.2. Consider the measurable space (Ω,̂ ), with Ω = C(R+,RJ), & the
Borel σ-algebra. Let u, v, and ρ be as in Theorem2.1, define b:=u + v, and let
(Ω, ̂ , &» Xt) be the evaluation stochastic process Xt(y): = y(t\ with ̂ t = σ(Xs, s^t)
the natural filtration. Then there exists a unique Borel probability measure P on Ω
such that:
1) (Ω,^,^t9Xt,P) is a Markov process;
2) the image of P under Xt has density ρ(ί,x);

3) Bt:=Xt-X0-lb(s,Xs)ds

is a P-Brownίan motion.

Remark 2.3. From 3), Theorem 2.1, and 2), Theorem 2.2, it follows

E$\\b(s)\\2ds<σo VΓ^O

(E denotes the expectation with respect to P), so that, by [Fδl, Proposition 2.11],
or [JS, Theorem 4.23, Chap. IV] (see also [E]),

where W: = J Wxρ(Q, x)dx, and Wx is standard Wiener measure supported on Ωx,

the space of continuous paths starting at x. Moreover, by [Fδl, Proposition 2.1 1],

where

is the relative entropy of P\&τ with respect to W\&τ (see [Fό2, Chap. I, Sect. 3.1]),
so that (F.E.C.) is a finite entropy condition. In the case of Nelson Diffusions it is
called finite energy condition, since it may be written as (see [Cl])

0

i.e. quantum mechanical kinetic energy is integrable on [0, T]. Since

σ(\jy\=y (see [SV, Sect. 1.3]), by [JS, Theorem 4.23, and Corollary 2.8,

Chap. IV], if

£ J ||b(s)||2ds<oo,

then P<^ W, and, in this case,

H(P;W)= sup Hpτ(P;W)=$E f \\b(s)\\2ds.
R +
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Remark 2.4. Let B be a Borel (or analytic) set such that cap(5) = 0. Here cap
denotes the Choquet capacity defined for an open set B by

where χB is the characteristic function of J5, and by

cap(E):= inf cap (B)
fiopen,

for any set E. Since cap(B) = Q<z> Wx(τB< T) = 0 VT>0, VxεBc, where τB denotes
the first hitting time to the set B (see [Fu]), and cap(£) = 0 implies m(B) = 0 (m
denotes the Lebesgue measure), we have that cap(£) = 0 implies W(τB<T) = 0.
Since P( SFτ <^ W\&τ, capacity zero sets will be polar for the process Xt with respect
to the probability measure P. Moreover, since (see [Fu])

cap(Bk) = \\ek\\2

Hί , ek(x): =EWχ(e~^,

if {Bk}k^0 is a decreasing sequence of open subsets of Rd such that cap(£fe)|0, we
have W(τBk< Γ)|0 VT>0, and consequently P(τBk< T)JO VT>0.

3. A Criterion for Convergence of Probability Measures

As stated in the introduction, we will be interested in the continuity of the measure
P described in Theorem 2.2 with respect to the initial data and the potentials in the
Schrδdinger equation. Due to the singularity of the drift, we will consider first
processes stopped outside a suitable subset, and prove convergence of the
measures associated to the stopped processes; convergence of a subsequence

ι to P follow then by the following

Lemma 3.1. Let P,P", n^l, be probability measures on Ω, and let P = $Pxdμ(x),
Pn = $Pn

xdμn(x) be the disintegration of such measures with respect to X0,
μ = po χ~ ί

9 μn = pno χ~ *. Let {τk}k^ ^ be a non-decreasing sequence of ^-stopping

times, and let {P^}k^ ί? {P"'fc}fc^ i be sequences of probability measures such that, for

each fe>l, 1*,-=^,-, P"lk = P".^- ' X\<Sflf X\J"k? Λ| t/'J c Λ|«/r

Finally assume that, for each fc^l, there exist subsequences {Pn/'k}j^ι, {fe}j^i
such that

lira f \\P"/'k-Pk

x\\dμ^(X) = 0.
j-^ + 00 Rd 3

If
lim P(τk<t) = 0 Vt>0, and lim \\μn-μ\\=Q,

fe-^ + 00 /!->• + oo

then there exists a subsequence {Pnj}j^ι such that

l i m | | P - P | = 0 Vί^O.

Remark 3.2. The above lemma is similar to Lemma 11.1.1 in [SV], with weak
convergence replaced by convergence in variation. We don't need here any
hypothesis of lower semicontinuity for the stopping times. Moreover we remark



564 G. DelΓ Antonio and A. Posilicano

that the disintegration of measures assumed in Lemma 3.1 always exists since Ω is
a Polish space (see [DM, Chap. Ill, nos. 70-74]).

Proof of Lemma 3.1. Let v^ = vxn — vxn be the Jordan decomposition of the signed
measure v : = P1 — P . W e have

For each n, let {A"x, Bl}, Λ"uB" = Ω, be a Hahn decomposition of Ω for vxn. Then

\\Pn

x^c-Px^t\\=v:n(A"x) + vxn(B"x).

Since {τk<t}, and En{τt2;ί}, are ^-measurable for each J^-measurable E, and

^ \P»X\E)-PX(E}\ + \P"x>\En{τk < t})-P"x(En{τk < t})\

^Analogously we have

so that

^ \\P"x'
k-Pk

x\\

An analogous estimate holds for vxn(B"x). From

IIP--PII ̂  Jd \\P»X-Px\\dμn(x) + \\μn-μ\\,

one derives

||PV,-JVJI ̂ 6l \\P"x'
k-Pk

x\\dμn(x)

+ $^Px(τk<t)dμn(x)+\\μn-μ\\

This implies that P^t is a limit point of {P\&t}n^ι> and our thesis follows.
In order to apply the preceding lemma to our case we must verify that, given a

weak solution of a stochastic differential equation (s.d.e.), a random variable X,
and a stopping time, the probability measure associated to the disintegrated (with
respect to X) stopped process will be again a weak solution of a s.d.e. This is the
content of the following
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Lemma 3.3. Let (Ω, J ,̂ J ,̂ Bf, P) be a weak solution of the s.d.e.

and let P=$Pxdμ(x) be the disintegration of P with respect to the random variable
χ0y μ = poX~ι. Let τ be a ^-stopping time. Define Pτ

x: = PX°X~\ with

Xτ:Ω^Ω, Xτ(y)(t):=XtAτ(γ)(y).

Then
f Λτ

Bΐ>τ:=Xt-x- J b(s,Xs)ds
o

is a Pτ

x-Brownian motion for μ-a.e. xeRd.

Proof. By our hypotheses

M{:==f(Xt)-\Lsf(Xs)ds,

with Ls : =%Δ + bs V, is a P-martingale for each /e C2

c^
d\ so that

f M{(y)dP(y) = f M{(y)dP(y) VΛ e J%, Vs g t .
A A

From the definition of disintegration of a measure it follows that y \-+ PXo(y)( - ) is a
version of the conditional probability P( |σ(^0)) (see [DM, Chap. Ill, no. 70]), so
that,

B A
= J M{(y)dP(y]

= [[M{(y')dPXo(y)(y')dP(f)
B A

Since B e ̂  is arbitrary, and μ = P o X^ \ we have that M{ is a Px-martingale for
μ-a.G. xeRd. From this, and the definition of /*, we have that

is a P-martingale, and the lemma now follows from the equivalence between
existence of solutions of martingale problem and existence of weak solutions of
s.d.e.'s (see [St, Theorem 2.6, Chap. 3]).

Remark 3.4. Let

be the first hitting time to the measurable set DcR+ xRd. Suppose τ is a
^-stopping time, and let Pτ

x be defined as in Lemma 3.3. Let Q?(y)dy and ρt(y)dy be
the images of Px and P under Xt. Since Pl\*τ = Px\*τ, we have, for each function

^ J
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(here Eτ

x denotes expectation with respect to Pτ

x). Since J ρf (y)ρ0(x)dx = ρt(y\ it is
easy to prove that there exists a positive constant M such that ρf (y) ̂  Mρt(y) for
ρQ(x)dtdxdy-a.Q. (t,x,y)elSί+ xR2d. In conclusion we have

for
Dc

In particular this implies, by Remark 2.3, that, if P is the probability measure given
by Theorem 2.2, and if there exists a T< + oo such that DCC [0, Γ] x Rd, then

for ρ0(;x)d;c-a.e.

4. A Parabolic Capacity and Pointwise Behaviour of Solutions
of Schrδdinger Equations

As we have seen in Sect. 2, the natural space for solutions of the Schrόdinger
equation with K-form-bounded potentials and initial data in ̂ (R**) is the Banach
space (τTΓ, || ||̂ τ), where

],H1(Rd)) and \\u\\r τ: = sup ||Wί||Hl.

We will consider real-valued functions only; considering real and imaginary parts
separately, Theorem 4.3 below holds for complex-valued functions as well. We
need "good" pointwise properties of functions belonging to ϋ^τ. To this end we will
introduce a sort of parabolic capacity on subsets of [0, T] x Rd, and we will study
properties of elements of H^τ up to sets of arbitrary small capacity. Following the
general procedure in reference [AS], we define a set function on subsets of
[0,Γ]xRd,

ΓT(E):= inf

where, for an open set E

The set function Γτ has the following properties ([AS], p. 146):

P2:

P3: \k
P4 : Vε > 0 3δ > 0 such that δτ(E) ^δ^> ΓT(E) ^ ε .

From the above definition it is also obvious that there exists a relation between Γτ

and the Choquet capacity defined in Remark 2.4:

Lemma 4.1.

ΓΓ(£)^cap(Ef) Vί6[0,Γ],

where Et: = {xelRd: (ί, x) e E}.
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Proof. From the definitions of Γr, cap, and by countable subadditivity of cap (see
[Fu]), it follows

inf
' k

έ inf cap((j(Ek)t
{£k}keN» Efcopen, u JEj<O JB

k

^ inf cap(^4,) = cap(£,).

Remark 4.2. Let D be an open subset of R+ xRd. Since D is open, and X(.} is
continuous, we have

where β is any dense denumerable subset of R. By Lemma 4.1 and Remark 2.4 it
follows that if Γτ(Z>n[0, T] xRd)=0 VΓ^O, then D is polar for the process
Yt: = (£, X,) with respect to P. Moreover, if {Dk}k ^ {is a decreasing sequence of open
subsets of R+ x Rd such that ΓΓ(Dkn[0, T] x Rd)JO VT;> 0, then, by Lemma 4.1,
capίΦjλHO Vί^O, and, by Remark2.4, W(τ(Dk}t<T)[0 VΓ>0, Vί^O. Therefore
W(τDh<T)lO VΓ>0, and P(τDk<T)jO VΓ>0, by Remark2.4.

We state now the main result of this paragraph. This result does not depend on
our particular definition of Γτ but holds for any capacity defined by means of a
"good" functional space (see [AS]).

Theorem 4.3.1) Let u be in 1^τ. Then there exists a decreasing sequence of open sets

such that ΓT(DT fc)|0, and the restriction of u to Dc

τ fcn[0, Γ] x Rd is continuous for
all k.
2) Let {un}n^ 1Cifr

τbea sequence such that i^τ- lim un = ue WΎ. Then there exist
«->• + oo

a decreasing sequence of open sets DTίkC[0, T~\ xRd such that ΓT(DT fc)JO, and a
subsequence [un }^ t converging pointwise and uniformly to u on D°τ fcn[0, T] x Rd

for all k.

Proof. 1) First of all we note that -?rrnC([0, T] x Rd) is dense in nrτ. This can be
seen considering, for each u e i^τ, the approximating sequence of continuous
functions un(t, x): = (J1/π * ut) (x), where

J1/neCc°°(Rd), supp(J1/n)c{x: | |x| |^l/w},

is a molliflier, and then proceeding in the same way as in [LSU, Lemma 4.8,
Chap. II].

From the definition of δτ we have

Now we proceed as in [AS, pp. 148-149] (see also [Fu, Theorem 3.1.3]): let

be a sequence such that ϋ^τ- lim un = ue i^τ. Since { un}n ̂  1 is a Cauchy sequence,
n-> + QO ~~

by (*) and P4, there exists a subsequence {wΠj.}j^ι such that
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where the sequence of open sets {A^^ is defined by

Aj : = {(ί, x) : \un j+ fa x) - un.(t, x)\ >2~j} .

If (t,x)e( U A,}', then V/^J, Vp we have
V*' /

j+p

so that {unj}j^ί uniformly converges on ί (J Aj\c. This implies the continuity of u

on ( (J Aj\c. By P3 we have ^-J ^
v^JF /

Since J is arbitrary, 1) is proven.
2) By 1), proceeding as in [Fu, Lemma 3.1.5], we have

so that, by our hypotheses, un converges to u in capacity, i.e.

lim

Then one proceeds in essentially the same way as in 1).

5. Stopping Times and Nonattainability

We now define the stopping times we will need for the proof of our main theorem.
Let φ,!//1, n^l, be functions belonging to *WT VT^O. Assume

lim \\ψn-Ψ\\^τ = 0 VΓ^O,
«->• -f oo

and define, Vfe^l ,

τi(γ):=M{t^O:(t,Xt(γ))eDί} 7 = 1,2,

where

and the Djfs are the open subsets of R+ xKΛ

^2:= U £r,*>
Γ6R +

where the sets DT k are given in Theorem 4.3. Define Dk : =D^uD^; by construc-
tion the following holds:
1) ΓΓ(D£n[0, Γ] xRd)jO VT^O;
2) ψ,\preL°(DQVfel9Vn^l 9

3) there exists a subsequence {t/Λ}^ such that

lim | | φ " ' - l l L - o D = 0
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We remark that, since || ||̂ τ ̂  || ||^τ/, if T^ T, the DTjfe's may be chosen in such a
way that DTtkgDT fc, if T<* T.

In order to apply Lemma 3.1 we need to prove that τ\, and τ^, are J^-stopping
times, and that P(τ\ Λ τ\ < T) JO. This is the content of the following two lemmas.

Lemma 5.1. τ\ ana τ\ are ^-stopping times.

Proof. 1) By Remark 4.2, and [BG, Theorem 10.7, Definition 10.21], τ\ is a
JVstopping time if D\ is a "nearly Borel set," i.e. if there exist Borel sets Bk and B'k
such that

and Γ^n^n^rixR^O VT^O.

Since the class of nearly Borel sets is a σ-algebra, it will suffice to prove that (Dl)c is
a nearly Borel set.

We have ψe^T VT^O, so that, by Theorem 4.3, there exists a decreasing
sequence of open sets {Um}m^ 19 t/mcR+ x RΛ ΓΓ(£7mn[0, T] x Rd)JO VΓ^O, such
that ψ is continuous on l/^n[0, T] x Rd VT^O Vm^ 1. This implies that

M-^l/t+ooίndlfexί l l^fcJn U Uc

m

m^l

is a Borel set. Since

Γτ( Π C/mn[0,T]x
\m^l

D^ is a nearly Borel set.
2) τ£ is a ^-stopping time since D\ is an open set.

Lemma 5.2. Let ψt,ψ?9 n^l, be solutions of Schrδdίnger equations with K-form-
bounded potentials with relative bounds smaller than one, and initial data in // 1(Rd).
Suppose ψϊ^ψt in Hfτ VT> 0, define D\, and D%, as above and let P be the probability
measure corresponding to ψt. Then P(τl Λ τ\ < T)J,0 VT>0.

Proof. Since P(τ\ Λ τ\ < T) ̂  P(τ\ < T) + P(τl < T), we will prove P(τl < T) JO and
P(τl < T)10 separately:
1) Let us denote by τ\Λ and ηj'2 the first hitting times to the sets

{(ί,x):||(ί,x)||>fe}, and

respectively. Then

P^1 < T)^P(τlΛ< T) + P(τfc

1'2< T).

One has P(τ£ x < Γ)|0 VT>0 by Theorem 2.2, since this is equivalent to the non-
explosion of the process (Ω,^^Xt,P). From Theorem 2.2 one has also
P(τ^2<T)lO VT>0, since \ιpt\

2 is the density of the process Xt with respect to P;
2) P(τl < T)|0 by Remark 4.2, and the definition of D\ .

6. Convergence of Nelson Diffusions

We have now at our disposal all the ingredients to prove our main result:

Theorem 6.1. Let V9Vn9 n^l, be K-form-bounded potentials, with relative bounds
smaller than one. Let H,Hn, n^l, be the self-adjoint operators H = K+V,
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Hn = K+Vn, defined as quadratic forms. Consider the sequence of initial data

{ψo}n^ i CΉ1^), and let {ψ"}n^ 1 be the sequence defined by \pn

t : = e~itHn\pn

0. Denote

by {P"}n^ι the corresponding sequence of probability measures on the path space
ί2 = C(R+,Rd) given by Theorem 2.2. If

lim sup
«-> + oo

where ψt = e~itHψ0, ip^eE1^*), then

lim ||PiV t-P|^ll=0
«-> + ao

where P is the probability measure corresponding to ψt.

Proof. Let τDk = τ^ /\τ% = τk, where τjj, τ^, and Dk, are defined in Sect. 5, and let

Pk

x = Pτf, P£fc = P"'τk be defined as in Lemma 3.3. We have proven in Lemma 5.2
that P(τfc<T)J,0 VT>0. Moreover \\Qn(Q,')-Q(Q, )\\Lι converges to zero by our
hypotheses, since ρw(0, y) = \ψn

0(y)\2, by Theorem 2.2. Therefore, by Lemma 3.1, if

one finds a subsequence {P"J'fc}^ι such that

lim J \\Pn

χJ>k

j-* + oo Rd

then there exists a subsequence {Pnj}j^ι such that

lim IIP^-P^HO Vί^O.
./->• + oo

We prove now that such subsequence exists. By [JS, Theorem 4.21, Chap. V],

(here £"'fc denotes expectation with respect to P"'fe), where the increasing
predictable process h"'k is the Hellinger process of order % between Pn

x'
k and Pk (see

[JS, Definition 1.24, Chap. IV]). Moreover, by Lemma 3.3, there exist sets A,An

with J χ^ρ(0, x)dx = J χ^ρn(0, x)dx = 1, such that, Vx e An : = Ac\Aw

k = Xt-x-

and

are Brownian motions with respect to P£ and P"'fc respectively [since ρn(0, •)
->ρ(0, )3n such that JΪMΦ0 Vn^ή]. Since, by Remarks 2.3 and 3.4,

J χ[0,τ
JR.+

-2^k ί χ[0,τk
1R +

by [JS, Theorem 4.23, Chap. IV], we have that the process
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is a version of the Hellinger process hx'
k, Vxe^w. In conclusion, by Remark 3.4,

Z2jd Jc \\bπ(t,y)-b(t,y)\\2ρ*n(t,y)ρn(0,X)dydtdx

+ ^\\Pn

x'
k-Pk

x\\2ρn(Q,x)dx.

Since J χ^ρn(0, x)ίfoc->0, we have to prove that there exists a subsequence {£>„ }7 s

such that

Hin^ ^\\bnj-b\\2ρnj(t,y)dydt = 0

From the definitions of bn and ρn, we have

ί \\bn-b\\2

βndydt

V? V«

..„ v?^..
v,

ψ"--ψ"dydt

dydt

fc

0 Rd

^2fe sup

l lv, l
sup

and we have proved the existence of a converging subsequence j^\ .
Suppose now that the whole sequence {PJVj«^ι does not converge. Then there
exists a subsequence {Pnk}k^ι and an ε>0 such that \\P"£t — P^t\\ >ε for all fe.
But by the above reasoning applied to the convergent sequence {φ?k}k^ i we get a
further subsequence along which the measures converge to P, which would be a
contradiction, so {P^t}n^ι converges to P^t.

Remark 6.2. Since

ί χ[o,τk)(s)\\bn-b\\2(s)ds<+π=>P"x>
k<ζPk

x

(see [JS, Theorem 4.23, Chap. IV]), by Remark 3.4, we have

ί \\bn-b\\2(S,y)ρn(s,y)dyds< + ao => P
°ί

so that Pn

x'
k<ζPk

x follows from

, and

where Z : = {(ί, x) : ψt(x) = 0}. From this we have

, P« fc-a.s.,
0

so that, by [Fόl, Proposition 2.11],

Pk)=iEn

x'
k J χ[0,τk)(s)\\bn-b\\2(s)ds.
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Since

(see [Fό2, Remark 3.2]), Theorem 6.1 could be proved directly using entropy
estimates.

Remark 6.3. If the sequence {ψt}n^ i given in Theorem 6.1 does not converge but it
is only bounded with respect to the energy norm, i.e. if

T
sup J ||ί7ιp"||^2ίίί< + oo VT^O,
neN 0

then, by Remark 2.3,
supHp τ(Pn\ Wn)< + oo VT^0,

where Wn: =J Wx\ψn

0(x)\2dx. Suppose moreover that the sequence {\ψo\2dx}n^ is
precompact with respect to the weak-* topology on Jί^d\ Then, by [Z,
Theorems], the sequence {Pn}n^ is precompact with respect to the weak-*
topology on Jί^(Ω\ and

VT^O,

where W: = $Wxdμ(x\ and (μ,Q) is any limit point of {(\ψl\2dx,Pn)}n^.

7. Convergence of Nelson Diffusions with Kato-Class Potentials

In the light of Theorem 6.1 it will be interesting to find conditions on the potentials
which will guarantee the H1 -convergence of the solutions of the corresponding
Schrόdinger equations. To this end we now suppose that the potentials are in the
Kato-class Kd, where

:limsup J
α|0 x ||

J
« iO x \\x-y\\Za

J \V(y)\dy< +
-y||^ι

(see [CFKS, Sect. 1.2], [Si2, Sect. A2]). We also define a Xd-norm by

l l^ l lx d :=sup f Q(x-y;d)\V(y)\dy,
x | |x-y | |^ l

where Q is the kernel in the above definition. One has the following inclusions:

U(Rd) C I£nίf (R
d) £ Kd C Iinlf (R

d) ,

with p>d/2 if d^2, p = 2 otherwise, where

ΉnifCR") : = \V: sup J | K(y)|'dy < + ool
1 x H x - y l l S i J

(see [CFKS, Sect. 1.2]), and



Convergence of Nelson Diffusions 573

By [CFKS, Sect. 1.2], if VεKd9 then V is £-form-bounded, with relative bound
zero, so that, when we have a sequence of potentials in Kd, we may apply
Theorem 6.1. The following theorem gives us a criterion for convergence of Nelson
Diffusions in terms of convergence of the physical data that generate them:

Theorem 7.1. Let V,VneKd, n^l, \pQ,\pleH^d\ n^l. If P,PW, n^l are the
probability measures onΩ = C(R+, Rd) which correspond, according to Theorem 2.2,
to ψt = e~ltHψ0, ψΐ = e~ltHnψQ, H = K+V, Hn = K+Vn, and if

lim Hv>o —Ψollπ^Oί and lim HKι~^ll*:d

 = 0,
«-> + oo Λ-» + oo

then

n~~* ~f* oo

Proo/. We will prove the case d ̂  3, for the other cases the proof is analogous. Since

\\e~ltHnψQ — e~ltHψo\\Hl= \\(e~ltHn~e~ltH)ψo\\Hl + Ik'^^lljff^HίllV^o^V^ollH 1 >

in order to apply Theorem 6.1 we have to prove

«eN

2) lim sup \\(e-itH»-e-itH)ψ\\Hί=Q VψeHl(Rd).

From the Kato-Trotter theorem (see [K], Theorem 2.16, Chap. IX) 2) is implied by
1) and 2') there exists a complex number z, 3z>0 such that

«->• + oo

Let us at first show that Vε>0 3yε>0, 3nε>0 such that

We will proceed as in [CFKS, Sect. 1.2]. By [RS, Theorem IX.29], (K + y/)'1 is a
convolution operator with an explicit kernel G(x — y γ), so that we may write,
using the known properties of G (see [Sc, Theorem 3.1, Chap. 6]), and Lemma 2.6
in [Sc, Chap. 5],

I Wx-y ,v)\Vn(y)\dy

+ S^P ,f>1/KΓ

G(ic"J';y)|7»(y)|dj'

UP ί Ux-yll2"dIK,(y)l^
Λ: ( I Λ — y\\ ^ 1/Ky

ί IK(3^)I^
-y\\<VVY

ί l|χ-y||2"dl^(y)l^

+ ^||7j|^d>

Since HK,-F||Xd->0, and FeKd, Vβ>0 3yε, 3nε such that
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This gives the result, since G( — y; y) \Vn\ is a positive integral kernel, and ||4||L«fLoo
= ||41||Loo for any A with positive integral kernel. From the above result, by
duality, and by Stein interpolation theorem, proceeding in the same way as in
[CFKS, Corollary 2.8], it follows that Vε>0 3yε, 3nε such that

Since

we have that, V«^n l s choosing y^y l 5 all the Vn's are A-form-bounded with the
same bound

Since

α = sup
W = «l

(see Sect. 2), we have that 1) holds true.
Let us now consider the operator

Since Vn is X-form-bounded with relative bound 0, by [CFKS, Proposition 1.3],
An(iy) is a bounded operator with

lim M,(iy)||L2,L2 = 0.
y-> + c»

From the definition of An it follows, if y>0,

\\*JίmM£C3\\AM\L*.L^^

so that

and the Tiktopoulos' formula holds:

(Hn + iyIΓ^=(K + iyIΓV

(see [Sil, Sect. II.3]). Therefore we have

Since

and

(see [Sc, Theorem 2.2, Chap. 5, Theorem 3.1, Chap. 6]), 2') follows, and the proof of
Theorem 7.1 is complete.
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Remark 7.2. In Theorem 7.1 one can replace K3 with

the Banach space of Rollnik-class potentials, and Kato-convergence of potentials
with convergence with respect to Rollnik norm || ||Λ. The proof proceeds in an
analogous way, using Theorems 1.21 and 11.13 in [SI].

Remark 7.3. It may appear that convergence of initial data in H*(Rd) be an
unnecessary strong assumption; since one can disintegrate with respect to the
initial distributions, one may expect that L2-convergence be sufficient. However,
suppose that, for every ipoeH1^), T>0, and for some M>1,

. V f e R ,
neN

lim sup \\(e-itH"-e-itH)ψ0\\H1=Q,
Π-> + X O g t g Γ

as is the case by our assumptions \\Vn— F||Kd-»0. Suppose moreover that
Hvό-Volln->0. Then

0

Indeed by our hypotheses ψ"-^ψt in energy norm is equivalent to

o

From the group property one has

sup ||F
^ί^Γ

inf

O^f^
M2 τ

-jr ί l l
1 o

and our thesis follows.
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