Commun. Math. Phys. 141, 559-576 (1991) Communications in
thematical
Physics

© Springer-Verlag 1991

Convergence of Nelson Diffusions

Gianfausto Dell’ Antonio!’? and Andrea Posilicano?®

! Dipartimento di Matematica, Universitd di Roma I, I-00185 Roma, Italy
2 SI1S.8.A., 1-34014 Trieste, Italy

Received November 26, 1990; in revised form May 3, 1991

Abstract. Let y,,p}, n=1, be solutions of Schrodinger equations with potentials
form-bounded by —34 and initial data in H'(R?. Let P,P", n=>1, be the
probability measures on the path space 2= C(R ,,R? given by the corresponding
Nelson diffusions. We show that if {y}},> , converges to v, in H'(R?), uniformly in
t over compact intervals, then {P]z},>; converges to Pz, in total variation
Vt=0. Moreover, if the potentials are in the Kato class K,;, we show that the
above result follows from H!-convergence of initial data, and K ,-convergence of
potentials.

1. Introduction

Stochastic Quantization is an algorithm which permits to associate a diffusion
process to a solution of the Schrédinger equation in such a way that the density of
the process corresponds to the usual density of Quantum Mechanics (see [N] for a
thorough introduction to the subject). An unpleasant characteristic of these
diffusion processes is that their drift coefficients are too singular to be handled by
the traditional approaches. The problem of the existence of the stochastic
processes of Stochastic Mechanics was resolved by Carlen for potentials form-
bounded by —14 and initial data in H'(R?) (see [C1, C2, C3], and Sect. 2). His
existence theorem provides us a Borel probability measure on Q= C(R ,,R?), the
space of the physical trajectories of the particles, such that the stochastic process
X (y): =y(t) is a Markov process with density [ip,|?, and is a weak solution of the
stochastic differential equation

t
X,=Xo+ [ b(s, X )ds+B,
0

with b,=(R+3)V logy,, as required by the stochastic quantization procedure.
Carlen’s theorem provides a map from the space of solutions of the Schrédinger
equation to the space .#,(Q2) of probability measures on Q; it is then natural to
consider the following continuity problem: let {}},, be a sequence of solutions
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of Schrodinger equations, possibly with different potentials ¥, and let {P"},, , be
the corresponding sequence of probability measures given by Carlen’s theorem;
which convergence of the y}’s will give a convergence of the P”’s? Obviously the
answer to this question depends on the choice of a topology on .#,(£2). The most
used one is the metric topology given by the Prohorov metric p. This topology
is the topology of weak convergence on bounded continuous functions, i.e.

p(P", P)»0<> [ fdP"—[ fdP VfeCyQ).
Q Q

We will instead consider on .#,(f) the stronger topology induced by the metric
d(P',P):=||P'—P|| = sup Y|P(E)—P(Ey|,

{Exdyen K
where the sup is taken over all measurable partitions of Q. This is the topology that
(£2) inherits as subset of the Banach lattice of bounded signed measures on Q,
normed with the total variation norm.

We will prove (Theorem 6.1) that if y? converges to v, in H'(R?), uniformly in ¢
over compact intervals, then d(Ps,P\sz)—0 Vt=0, and so p(P", P)-0.
Moreover, in case the potentials are in the Kato class K, we will give a criterion
of convergence in terms of H*-convergence of initial data, and K ;-convergence of
potentials; since C*(RY) is dense in K, we can then approximate physics with
extremely nice potentials.

Notice that the drift coefficients b, are typically very singular (independently of
the regularity of the y%’s, they are unbounded on the nodes), it is therefore not
possible to use the usual convergence theorems for diffusion processes (see [SV,
Chap. 11], [Z, Theorem 5], [JS, Chap. IX, Sect. 4a], for weak convergence, and
IS, Chap V, Sect. 4d], for convergence in variation). In fact these theorems
require bounded drifts and convergence in LT (R?*!). We overcome these
difficulties putting together the following facts:

1) By the finite energy condition (see Sect. 2), Pz, < W,z for all T, where W is the
usual Wiener measure on @, and % is the o-algebra generated by trajectories up to
time T;
2) By 1), every subset of R with zero (Newtonian) capacity is polar for X, with
respect to P. Moreover, introducing a suitable capacity I; on subsets of
[0, T] xR, every set with zero capacity Iy for all T is polar for Y,=(t, X,) with
respect to P;
3) For every sequence {y"},>, of function on IR , x R? which are continuous from
R, to H'(IRY, there exists a decreasing sequence of open sets {Dk}k>1, with
I{D,n[0, T]xR%]0 for all T, such that all the y™s are continuous on
N[0, T] x R? for all k and T. Moreover if sup vk —w,|l g1 —0 for all T, then

there exists a subsequence such that y" —>1p p01ntw1se and uniformly on
¢A[0, T] x R? for all k and T;

4) If P and Q are probability measures on Q given by weak solutions of stochastic

differential equations with the same constant diffusion coefficient and equal initial

distribution, and with drifts bp and b, such that

&gnmwwa<+w, Eq { llbo|*(s)ds < + oo,

then ) )
d*(P,Q)<2E, Rf lbp—Dbol|*(s)ds .
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2. Nelson Diffusion with Potentials Form-Bounded by —34

Let K denote the self-adjoint representation of —%4 on L%(R?), and let V be a real-
valued measurable function on R? such that V is K-form-bounded, with relative
bound smaller than one, i.e. da€[0, 1), 3b=0 such that

K| Vpd ol Lalp|Kypdpa+b{plpd Vype HY(RY).

We shall discuss only the case of time-independent potentials. The extension to the
time-dependent case is immediate at the expense of heavier notation.

Let H be the unique self-adjoint operator associated to the sum of the quadratic
forms of K and V. Such H exists by the KLNM theorem (see [RS, Theorem X.17]).
Moreover one has

H*R)N2(V)C 2(H)CH'(R?),

(PIHY 2 ={D|Kp)+{P| V). VoeH'(RY) Vye(H),
and
lpllf: (1 —a)~ Kyl Hp 2+ 0+ D <plwd) QRO+ D) +a)(1—a) " yllZ, -

Let e ¥ be the one parameter unitary group generated by H. By the above
relation, it follows that e~ *# maps H'(RY) into itself, with

le™ g = Q2b+1)+a)(1—a)~*.
Moreover, since

im ([(H+(b+1)D)*e™ " ¢ —¢)| .2

t—0 4

= lim [[(e"**—I)(H+(b+1)D"?¢|.=0,
=04

e~ ™ is a continuous one parameter group of bounded linear operators on H'(IR%).

By the above discussion, proceeding in the same way as in [C1], we have the
following analogue of Theorem 2.1 in [C1]:

Theorem 2.1. Let V be a K-form-bounded potential, with relative bound smaller than
one, let p, be in H'(R?, and let H=K +V be defined as a quadratic form. Then
1) e ™ is a continuous one parameter group of bounded linear operators from
HY(RY) into H'(RY);

2) there are unique jointly measurable functions y(t, x) and V(t, x) such that y(t, x)
=e” "y o(x), and Vy(t, x)= Ve Hp(x);

3) defining of(t, x): =y(t, x)p(t, x), and

u(t, x): =RV p(t, x)/p(t, x)),
ul(t, x): =J(V(t, x)/p(t, x)).,
if p(t,x)=*0, u(t,x)=0v(t, x)=0 otherwise, one has

gT LUl + o] *)edxdt < +co - VT>0; (F.E.C)

4) Vfe Cy(RY the function t+ | f(x)o(t, x)dx is differentiable, and
R4

dit { f(X)a(t,x)dx= | v(t,x)- Vf(x)a(t, x)dx.
Rd Rd
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From Theorem 2.1 it follows that the hypotheses in Theorem 4.1 in [C1] also
holds for K-form-bounded potentials (see also [C2], see [C3] for uniqueness). So
we have the following

Theorem 2.2. Consider the measurable space (2, F), with Q=CR ,,R%, F the
Borel o-algebra. Let u, v, and ¢ be as in Theorem 2.1, define b:=u+v, and let
(2, F,%,,X,) be the evaluation stochastic process X (y): =y(t), with #,=a(X, s<t)
the natural filtration. Then there exists a unique Borel probability measure P on Q

such that:
1) (R, %,%,X,, P) is a Markov process;
2) the image of P under X, has density o(t, x);

t
3) B,:=X,—X,—[b(s, X,)ds
0

is a P-Brownian motion.
Remark 2.3. From 3), Theorem 2.1, and 2), Theorem 2.2, it follows

T

E[|b(s)|*ds<oo VTZ=0

0
(E denotes the expectation with respect to P), so that, by [F61, Proposition 2.11],
or [JS, Theorem 4.23, Chap. IV] (see also [E]),

Pz, <Wg, VT20,
where W: = | W,0(0, x)dx, and W, is standard Wiener measure supported on £,,

R4

the space of continuous paths starting at x. Moreover, by [F61, Proposition 2.11],
T
Hg (P; W)=%E(I) Ib(s)]1ds,

where
dP
H‘g:T(P, W) : —!)IOgd—WfT dP

is the relative entropy of P4, with respect to W5, (see [F62, Chap. L, Sect. 3.1]),
so that (F.E.C.) is a finite entropy condition. In the case of Nelson Diffusions it is
called finite energy condition, since it may be written as (see [C1])

T
(5) 1Vp,l|F2dt < + 0,

ie. quantum mechanical kinetic energy is integrable on [0,7T]. Since
a( U 5’/7,) =& (see [SV, Sect.1.3]), by [JS, Theorem 4.23, and Corollary 2.8,
t=0

Chap. IV, if
E { |b(s)|*ds< o0,
R+

then P < W, and, in this case,
H(P; W)= sup Hg (P;W)=%E | |b(s)|?ds.
TeR 4 R4
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Remark 2.4. Let B be a Borel (or analytic) set such that cap(B)=0. Here cap
denotes the Choquet capacity defined for an open set B by

cap(B): =inf{[|$|f:: pe H'(RY), p=y5 ae.},
where xj is the characteristic function of B, and by

cap(E):= inf cap(B)
Bopen,BO>E
for any set E. Since cap(B)=0< W (13<T)=0VT>0, Vx € B, where 15 denotes
the first hitting time to the set B (see [Fu]), and cap(B)=0 implies m(B)=0 (m
denotes the Lebesgue measure), we have that cap(B)=0 implies W(tz<T)=0.
Since Pz, < W4, capacity zero sets will be polar for the process X, with respect
to the probability measure P. Moreover, since (see [Fu])

cap(B)=lle Iz,  edx):=Ey (e”™),

if {By}Jx»0 is a decreasing sequence of open subsets of R? such that cap(B,)|0, we
have W(tp <T)|0 VT >0, and consequently P(tz <T)|0 VT >0.

3. A Criterion for Convergence of Probability Measures

As stated in the introduction, we will be interested in the continuity of the measure
P described in Theorem 2.2 with respect to the initial data and the potentials in the
Schrodinger equation. Due to the singularity of the drift, we will consider first
processes stopped outside a suitable subset, and prove convergence of the
measures associated to the stopped processes; convergence of a subsequence
{P"};5, to P follow then by the following

Lemma 3.1. Let P,P", n=1, be probability measures on Q, and let P=| P, du(x),
P"={Pidu,(x) be the disintegration of such measures with respect to X,
u=PoXg',u,=P"o X! Let {te} x> 1 be anon-decreasing sequence of #,-stopping
times, and let {P%}, > 1, {P¥*},= | be sequences of probability measures such that, for
each k21, P4z, =Pz, Py%, =Py 5, with

F=F, ={EeF En{y St}eF, Vt=20}.

Finally assume that, for each k=1, there exist subsequences {P;ﬁ"} iz {y,,y} i1
such that
lim | [[PY*—P%|dpulx)=0.
j—>+o Rd 7
If
lim P(t,<t)=0 Vt>0, and lim |u,—ul|=0,
n—+oo

k= +

then there exists a subsequence {P"};> | such that
lim |Pj%,—Pgl=0 Vt=0.
jo+ o
Remark 3.2. The above lemma is similar to Lemma 11.1.1 in [SV], with weak

convergence replaced by convergence in variation. We don’t need here any
hypothesis of lower semicontinuity for the stopping times. Moreover we remark
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that the disintegration of measures assumed in Lemma 3.1 always exists since Q is
a Polish space (see [DM, Chap. III, nos. 70-74]).

Proof of Lemma 3.1. Let v,,,= v}, — vy, be the Jordan decomposition of the signed
measure v,,:= P}z — Py 5. We have

1Phs. = Pryz | =1Vl (Q) =V (Q) + V() 2 |PYE) - P(E)| VEeZ,
For each n, let {4}, B%}, A2UB%=Q, be a Hahn decomposition of Q for v,,,. Then
IPYs, — Pryg | = vin(A%) + v BY).

Since {1, <t}, and En{rt; >t}, are Z-measurable for each #,-measurable E, and
Py%, =Pyg,, We have

|PYE)— P(E)| =|PYEn{t,<t})+ Py E)— Py En{t,<t})— P(E)|
S|PEME)—PJE)| + |PYHEn{t,<t})— PUEN{t,<t})|
<|PYXE)—PE)| +2P¢ ", <1).
Analogously we have
|PYUE)— PE)| S2P(r,<1),
so that
vinl(A7) = PYAY) — P(4Y)
<|PBMA") — PH(A™)| + 2P% (1, < t)+ 2P (1, <1)
S| Py*— Pl + 2Py M1, <t) + 2P (1, <t)
<3| PY*— Py +4P,(1,<1).
An analogous estimate holds for v_,(B}). From
IIP"—Plléﬁfd [1P%— Plldp(x)+ Il s — el 5
one derives
Pl — P [ =6 J,L 1P ¥ — Pl dpay(x)
+38 ll'{[d Px(Tk < t)d:un(x) + ” Un— /*‘”

=61 1P ¥~ PE]| dp(x) + 8P(z, <t) +9 | s, — il

This implies that P4, is a limit point of {P],},>, and our thesis follows.

In order to apply the preceding lemma to our case we must verify that, given a
weak solution of a stochastic differential equation (s.d.c.), a random variable X,
and a stopping time, the probability measure associated to the disintegrated (with
respect to X) stopped process will be again a weak solution of a s.d.e. This is the
content of the following
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Lemma 3.3. Let (Q, #, %, B,, P) be a weak solution of the s.d.e.

t

X=X+ {bls,X)ds+B,,

0
and let P=| P, du(x) be the disintegration of P with respect to the random variable
Xo, u=PoXg'. Let © be a #-stopping time. Define P%: =P, o X', with

Xt:Q—)Q’ Xt(y)(t):=XtAr(y)(y)'

Then

tAt
Bft:=X,—x— [ b(s,X,)ds
0
is a P:-Brownian motion for p-a.e. xR,

Proof. By our hypotheses
t
M!: =f(Xt)—gLsf(Xs)ds,

with L:=34+b,-V, is a P-martingale for each fe C(R%, so that
| M{()dP(y)= | M{(y)dP(y) VYAeZ, Vs<t.
4 4

From the definition of disintegration of a measure it follows that yi— Py (-)isa
version of the conditional probability P(-|a(X,)) (see [DM, Chap. III, no. 70]), so
that, VBe %, Vs<t,

[ f{Ms’(y’)dPx0<n(y’)dP(v)=AI M{(y)dP(y)=Af M{(y)dP(y)

NnB NnB

=[|M tf(yl)dP xo(y)(y,)dp ().
BA

Since Be %, is arbitrary, and u=Po X, ', we have that M/ is a P_-martingale for
p-a.e. x€ R%. From this, and the definition of P, we have that

tAt

SX)— | Lf(X)ds

is a Pi-martingale, and the lemma now follows from the equivalence between
existence of solutions of martingale problem and existence of weak solutions of
s.d.e’s (see [St, Theorem 2.6, Chap. 3]).

Remark 3.4. Let
©(y)=inf{t =2 0:(t, X (y)) e D}

be the first hitting time to the measurable set DCR, xR“. Suppose 7 is a
Z,-stopping time, and let P be defined as in Lemma 3.3. Let ¢j(y)dy and o,(y)dy be
the images of P, and P under X,. Since P4 =P, 4 , we have, for each function
20,

tAT t t
E. { S5, X ds = E5 | 10, o(8)f (s, X Jds = { . § )f (s, X )dP cds

<[ [ 1045 X5, X)S(6, XJAP,d5S | 6, )ei0)yds
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(here E%, denotes expectation with respect to PZ). Since [ 05 (y)oo(x)dx =g,y), it is
easy to prove that there exists a positive constant M such that g}(y) < Mg,(y) for
0o(x)dtdxdy-a.e. (t,x,y)e R, xIR?%, In conclusion we have

tAt
E. [ f(s,X)ds<M [ f(s,y)oy)dyds for go(x)dx-ae., xeR?.
0 De

In particular this implies, by Remark 2.3, that, if P is the probability measure given
by Theorem 2.2, and if there exists a T< + oo such that D°C[0, T] x R%, then
P < W, for g(x)dx-a.e. xeR%

4. A Parabolic Capacity and Pointwise Behaviour of Solutions
of Schridinger Equations

As we have seen in Sect. 2, the natural space for solutions of the Schrodinger
equation with K-form-bounded potentials and initial data in H*(R?)is the Banach
space (WTa ” * ”WT)’ where

Wp:=C(O.T] H'RY) and [uly,:= sup_[ulm.

We will consider real-valued functions only; considering real and imaginary parts
separately, Theorem 4.3 below holds for complex-valued functions as well. We
need “good” pointwise properties of functions belonging to # 7. To this end we will
introduce a sort of parabolic capacity on subsets of [0, 7] x R¢, and we will study
properties of elements of #7 up to sets of arbitrary small capacity. Following the
general procedure in reference [AS], we define a set function on subsets of
[0, T] xR,

IH(E): = inf Y. O(Ey),

{Ex}ken, Excopen, O Ex.CE
where, for an open set E
OH(E):=inf{|lull} ueWr, u=yzae}.
The set function I has the following properties ([AS], p. 146):
P, ECE = I{E)SIL(E);
Pj: FT(kk) E, é;FT(Ek);
P,: Ve>0 36>0 such that 6HE)<é=IHE)<c¢.

From the above definition it is also obvious that there exists a relation between I,
and the Choquet capacity defined in Remark 2.4:

Lemma 4.1.
I(E)zcap(E) Vie[0,T],

where E,:={xeR’:(t,x)e E}.
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Proof. From the definitions of I';, cap, and by countable subadditivity of cap (see

[Fu]), it follows )
I (E)2 inf ; cap((Ey),)

{Ex}ke N, Ex open, % ExDE

= inf cap ( (7‘) (E,,),)

{Ex}keN, Ex open, Y ExDE

2 inf cap(4,)=cap(E,).
ADE

Remark 4.2. Let D be an open subset of R, xIR% Since D is open, and X, is
continuous, we have
{rp<T}= U {X,eD,},
4 QAI0,T)

where Q is any dense denumerable subset of R. By Lemma 4.1 and Remark 2.4 it
follows that if I{DN[0,T]xR%)=0 VT =0, then D is polar for the process
Y;: =(t, X,) with respect to P. Moreover, if { D, },.> , is a decreasing sequence of open
subsets of R, x R? such that I';{D,~[0, T] x R%|0 YT =0, then, by Lemma 4.1,
cap((Dy)){0 YVt =0, and, by Remark 2.4, W(z,,,, <T)]|0 VT >0, V¢t =0. Therefore
W(tp,<T)|0 VT>0, and P(zp, < T)|0 VT >0, by Remark 2.4.

We state now the main result of this paragraph. This result does not depend on
our particular definition of I but holds for any capacity defined by means of a
“good” functional space (see [AS]).

Theorem 4.3. 1) Let u be in %'y Then there exists a decreasing sequence of open sets
D7 ,C[0, T]xR?

such that I'{Dy, )0, and the restriction of u to D% ,n[0, T] x R? is continuous for

all k.

2) Let {u,},>; C#7 be asequence such that #r- lim u,=ueWr. Then there exist
n-+ oo

a decreasing sequence of open sets Dy, C[0, T] x R? such that I';(Dr )0, and a

subsequence {u,,j} =1 converging pointwise and uniformly to u on D%, ,n[0, T] x R*

for all k.

Proof. 1) First of all we note that #7nC([0, T] x RY) is dense in #7. This can be

seen considering, for each ue %7, the approximating sequence of continuous

functions u,(t, x): =(J 1, * u) (x), where

Jin€CPMRY),  supp(Jy,)C{x: x| =Z1/n},

is a molliflier, and then proceeding in the same way as in [LSU, Lemma 4.8,
Chap. I1].
From the definition of 6, we have

S7({(t,x): lu(t, x)| > A}) = ;—2 lull%,  Vue #7nC([0, T1xRY). (*)

Now we proceed as in [AS, pp. 148-149] (see also [Fu, Theorem 3.1.3]): let
{un}ng 1 C WTmC([O’ ﬂ X ]Rd)
be a sequence such that #7;- lim u,=ue #7. Since {u,},-, is a Cauchy sequence,
n—+ o -

by (x) and P,, there exists a subsequence {u, };>, such that
I{A) <277,
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where the sequence of open sets {4}, , is defined by
Ay ={(t,%):[u,,, (8, X)—u, (t,x)|>277}.
If (¢, x)e( U4 j>c, then Vj=J, Vp we have
jZJ

lu ¢ x)=27,

B -1

itp
(t, X) - unj(t’ X)| § = |unk(ta JC) —U

nj+
r k=7

so that {u, };» ; uniformly converges on (g A j>“. This implies the continuity of u
on (.U Aj)c. By P, we have 2!

JjzJ
FT(U A,-) < ¥ L4)=<2.
JjzJ jzJ

Since J is arbitrary, 1) is proven.
2) By 1), proceeding as in [Fu, Lemma 3.1.5], we have

1
FT({(t, X): 'u(t’ X)l>}.})§ F "u"‘%{/‘—r quWT9

so that, by our hypotheses, u, converges to u in capacity, i.e.
lim IH({(t, x): |u,(t,x)—u(t,x)| >e})=0 Ve>0.
n—+ o

Then one proceeds in essentially the same way as in 1).

5. Stopping Times and Nonattainability
We now define the stopping times we will need for the proof of our main theorem.
Let y,p", n=1, be functions belonging to #3 VT=0. Assume
lim |lp"~vyly,=0 VT20,
n— -+

and define, Vk=1,
Hy):=inf{t20:(t, X,0)eDi} j=1,2,
where
D :={(t,%): &, )l >k} L {(t, %): [y(t, )| < 1/k} ,
and the D?’s are the open subsets of R, xIR%,

D’%:=T5L%+ Dy,

where the sets Dy, are given in Theorem 4.3. Define D, : = D; UDZ; by construc-
tion the following holds:
1) L{D?n[0, T]xRH|0 VT=0;
2) y,p"eL*(Dy) Vk21, Vn21;
3) there exists a subsequence {™};, such that
.lim "=l Lepy=0 Vk21.

j=+o
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We remark that, since || - |4, Z || - [l if TS T", the Dy ,’s may be choseninsuch a
way that Dy ED. ., if TST

In order to apply Lemma 3.1 we need to prove that 11, and 12, are %,-stopping
times, and that P(z} A 7 < T)]0. This is the content of the following two lemmas.

Lemma 5.1. t! and 17 are F-stopping times.

Proof. 1) By Remark 4.2, and [BG, Theorem 10.7, Definition 10.21], 7} is a
Z,-stopping time if D} is a “nearly Borel set,” i.e. if there exist Borel sets B, and B;
such that

B.,CDICB;, and I (B,nBin[0,T]xR%)=0 VT=0.
Since the class of nearly Borel sets is a 6-algebra, it will suffice to prove that (D)) is
a nearly Borel set.
We have pe#; YT=0, so that, by Theorem 4.3, there exists a decreasing

sequence of open sets {U,,}> 1, Uy CR . x R, T(U,,n[0, T] x R%) |0 VT 20, such
that y is continuous on U5, [0, T] x R? YT=0 Vm>1. This implies that

I~ [/, + o) it %) < k}ﬁmLZ)1 Un

is a Borel set. Since
FT( N U,.n[0,T] x]R") Sinf I (U,n[0, T]xRH)=0 VT=0,
m1 m

D} is a nearly Borel set.
2) 12 is a F;-stopping time since D? is an open set.

Lemma 5.2. Let vy, v}, n=>1, be solutions of Schridinger equations with K-form-
bounded potentials with relative bounds smaller than one, and initial data in H'(R?).
Suppose pf—y,in W NT >0, define D}, and D, as above and let P be the probability
measure corresponding to v, Then P(tt A12<T)|0VT>0.
Proof. Since P(t} A 12 < T)S P(tl < T)+ P(1% < T), we will prove P(t{ < T)}0 and
P(z? < T)]0 separately:
1) Let us denote by ti*! and 712 the first hitting times to the sets

{&.%): 1t x) >k}, and  {(t,x):|w(t, x)| <1/k}

respectively. Then
P(zi <T)SP(tp* < T)+ Pz 2<T).

One has P(t;° ! < T)|0 YT >0 by Theorem 2.2, since this is equivalent to the non-
explosion of the process (2, %,%,X,, P). From Theorem 2.2 one has also
P(t}* < T)|0 VT >0, since |y,|* is the density of the process X, with respect to P;
2) P(z?<T)|0 by Remark 4.2, and the definition of DZ.

6. Convergence of Nelson Diffusions

We have now at our disposal all the ingredients to prove our main result:

Theorem 6.1. Let V,V,, n=1, be K-form-bounded potentials, with relative bounds
smaller than one. Let H,H,, n=1, be the self-adjoint operators H=K+Y,
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H,=K+YV,, defined as quadratic forms. Consider the sequence of initial data
{y8}us 1 CH'(IRY, and let {y}}, , be the sequence defined by} : =e™ """y Denote
by {P"}ng | the corresponding sequence of probability measures on the path space
Q=C@R,,R% given by Theorem 2.2. If

lim sup [y;—y,[m=0 VT20,

n—>+ow 0Zt<T
where p,=e” "y, poe H(RY), then
lim [Py, — P, |=0 Vt=0,

n—+ o
where P is the probability measure corresponding to v,.

Proof. Let tp, =14 AT; =1, Where 1}, 17, and D,, are defined in Sect. 5, and let

Pt =P Pk =P%™ be defined as in Lemma 3.3. We have proven in Lemma 5.2
that P(z,<T)|0 VT >0. Moreover |g,0,-)—0(0,-)| .1 converges to zero by our
hypotheses, since g,(0, y)=|yh(»)|>, by Theorem 2.2. Therefore, by Lemma 3.1, if

one finds a subsequence {P%>*} ;> such that

lim j||P"J P’;Ilg,,j(O,x)dx=0 Vk=1,

j=+ o R

then there exists a subsequence {P"};, such that
lim |Plg,—Pg =0 Vt20.
j=+ o

We prove now that such subsequence exists. By [JS, Theorem 4.21, Chap. V],
1P *— PYII2 < 16ELM(BLY,

(here E™* denotes expectation with respect to P%*), where the increasing

predictable process h{ is the Hellinger process of order 4 between P™* and P (see

[JS, Definition 1.24, Chap. IV]). Moreover, by Lemma 3.3, there exist sets 4, 4,
with {x,40(0, x)dx =y 4,040, x)dx =1, such that, Vxe A, =AnA,,

tAT
B*=X,—x— [ b(s,X,)ds,
0
and
tAT

Brk=X,—x— j b,(s, X )ds

are Brownian motions with respect to Pt and P™* respectively [since ¢,(0,-)
—0(0,-)37 such that A,+0 Yn>1]. Since, by Remarks 2.3 and 34,

%EI;RI X[O,tk)(s) ”bﬂz(s)dS:H(Px; x)< + o s
SEV RI %10,50(8) 1Dl %(s)ds = H(PY*; W) < + 0,
by [JS, Theorem 4.23, Chap. IV], we have that the process

t
§ § 110,50(5) 16, =l *(s)ds
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is a version of the Hellinger process h"*, Vxe 4,. In conclusion, by Remark 3.4,

(f [P — P%ll04(0, x)d>€>2
R4
<2 4 l{c [1B4(t, y)—b(t, y) 1 *0x(t, y)2u(0, x)dydtdx
+ [ I[P+ — P 20,0, x)dx.
s,

Since | 1 :,04(0, x)dx—0, we have to prove that there exists a subsequence {b, };> 1,
such that
lim | |[b, —bl%e,(t y)dydt=0 Vkx1.
. b

j=+o Dg

From the definitions of b, and g,, we have
[ 1b,—bl1e,dydt
Dy,

m(VL_K‘L>+s<Vi_ m) :
¥: Vi ¥y [

Yy —yprdydt

Dg

2

<2 [ [ryr—Yowy)| dyar
D, L
k n 7w ?,

<2 [Py =V ll*dydt+2 | =— [} —p,|*dydt
0 R4 pe Iyl

<2k sup [[Vy;—Vy,|}.42k> sup [Py, liZv"—ylews
0=tsk 0=st<k

and we have proved the existence of a converging subsequence {Pj},};>; Vt=0.
Suppose now that the whole sequence {P]z,},>; does not converge. Then there
exists a subsequence {P"™},, and an &¢>0 such that [P/, — P,z | >¢ for all k.
But by the above reasoning applied to the convergent sequence gw;"‘}k2 L we get a
further subsequence along which the measures converge to P, which would be a
contradiction, so {Pz,},>, converges to P 4,.

Remark 6.2. Since
E7* | 10, 00(5) |1by—b]*(s)ds < 4+ co = Pr* < Pk
K.

(see [JS, Theorem 4.23, Chap. IV]), by Remark 3.4, we have
{ b, —blI*(s, y)eu(s, y)dyds < + oo = Py *< Py,
D
so that P%* < P* follows from
b,e LX([0, T xR g,dyds), ¢,€L™(D}), and belf(Z°),
where Z:={(t,x):y,(x)=0}. From this we have
tAt
Bt= [ (by—b)(s,X)ds+B"*, P'tas.,
0

so that, by [F61, Proposition 2.11],
H(Pi’k;P§)=%E§"‘RI %10,50(5) 16, — b1 *(s)ds.
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Since

dpr*
dP:
(see [F62, Remark 3.2]), Theorem 6.1 could be proved directly using entropy
estimates.

IPE*—Pg] =

—1'sz§H<P;'k;P§)
(2]

Remark 6.3. If the sequence {y}}, > ; given in Theorem 6.1 does not converge but it
is only bounded with respect to the energy norm, i.e. if

T
sup [ |[Vyillfdt<+o00 VT20,
nelN 0

then, by Remark 2.3,
sung Hg (P", W<+ VT=0,

where W": = | W |y5(x)|*dx. Suppose moreover that the sequence {|i3|?dx}, >, is
precompact with respect to the weak-* topology on . (RY. Then, by [Z,
Theorem 5], the sequence {P"},., is precompact with respect to the weak-*
topology on .#,(), and

Hgz (Q;W)<+o00 VT20,
where W: ={ W,du(x), and (i, Q) is any limit point of {({y§|*dx, P")}, ;.

7. Convergence of Nelson Diffusions with Kato-Class Potentials

In the light of Theorem 6.1 it will be interesting to find conditions on the potentials
which will guarantee the H'-convergence of the solutions of the corresponding
Schrédinger equations. To this end we now suppose that the potentials are in the
Kato-class K, where

Kd:={V:1imsup jl<||x—y|12"’|V(y)|dy=0}, dz3,

al0 x [[x—y]l S«

K2:={V:1imsup ) logllx—yll_llV(y)Idy=0},

al0 x ||x=y|lSa

K1:={V:sup f |V(y)|dy<+oo}
x | <1

xX—yll =
(see [CFKS, Sect. 1.2], [Si2, Sect. A2]). We also define a K,-norm by
HVIIK.11=SUPII I<1Q(x—y;d)|V(y)ldy,

where Q is the kernel in the above definition. One has the following inclusions:
IP(RY)C L2, s(RY) S K, € L, (RY),
with p>d/2 if d=2, p=2 otherwise, where
LR = {V:sup o POlrdy <+ 00}

(see [CFKS, Sect. 1.2]), and
IV, 2100 I Viie,,., 1/q+1/p=1.



Convergence of Nelson Diffusions 573

By [CFKS, Sect. 1.2], if Ve K,, then V is K-form-bounded, with relative bound
zero, so that, when we have a sequence of potentials in K, we may apply
Theorem 6.1. The following theorem gives us a criterion for convergence of Nelson
Diffusions in terms of convergence of the physical data that generate them:

Theorem 7.1. Let V,V,eK,;, n21, p,, e H'(RY, n=1. If P,P", n=1 are the
probability measures on Q = C(R . ,IR%) which correspond, according to Theorem 2.2,

—it.

to p=e "o, pi=e "y, H=K+V, H,=K+V,, and if
lilfl Y6 —wollg1=0, and lirjl V,—Vlk,=0,
then

n—>+ oo

Proof. We will prove the case d > 3, for the other cases the proofis analogous. Since
lle™ *Hmpl—e ™ g | 1 < ||(e_itH"—e_itH)U’0||H1 + ”e—im"”m,m lwo—wollass
in order to apply Theorem 6.1 we have to prove

1) sup [|e”HH
nelN

"”Hl,Hl<+w,

2) lim sup [(e”"Hr—e ™| ;=0 VyeH(RY).

n>+w 0<t<T

From the Kato-Trotter theorem (see [K], Theorem 2.16, Chap. IX)2)is implied by
1) and 2’) there exists a complex number z, 3z >0 such that

lim [|(H,—zl)"'y—(H—zl)""ypll;»=0 VyeH'(RY).
n—>+oo

Let us at first show that Ve>0 3y,>0, 3n,> 0 such that
’l(K+yI)—1IVn| ”L"",L°°<8 V’))_Z_ye’ Vn:Z_nt:'

We will proceed as in [CFKS, Sect. 1.2]. By [RS, Theorem IX.29], (K +7yI)"'isa
convolution operator with an explicit kernel G(x—y;y), so that we may write,
using the known properties of G (see [Sc, Theorem 3.1, Chap. 6]), and Lemma 2.6
in [Sc, Chap. 5],
IK+yD) " Wlll=<sup [ Glx—y;0) IV ()ldy
x lx—ylls1/vy )
+sup | Gx—y;n)V0)dy
x lx=yll>1/vy
Seysup [ x—=yPTUV, )y

x |lx=ylls1/Vy

C
+—=sup [ |V,()ldy
Yy = lx-sil<uvy
<alVo=Vig+esup [ Ix=yI27qV()dy
x lx-ylSUv7

¢
+ = | Vallx, -
Vy
Since ||V,—V|x,—0, and VeK,, Ve>0 3y, In, such that
IK+yD™ WV ll=<e V727, Yn2n,.
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This gives the result, since G(- — y; ) |V, | is a positive integral kernel, and || 4[|y« 1
=||A1]| .~ for any A with positive integral kernel. From the above result, by
duality, and by Stein interpolation theorem, proceeding in the same way as in
[CFKS, Corollary 2.8], it follows that Ve>0 Jy,, In, such that

VYK 49D~ | po<e Vy2y, Yn2n,.
Since
Kol Vapd el S NVIVAHK +9D) ™ 2| F, (K | Ky +yllwl22),

we have that, Vn=n,, choosing y>7,, all the V,’s are K-form-bounded with the
same bound

a=sup |||V,|VAK+y])" |}z 2<1, b=vya.
>

Since
le™™ g < 2b+1)+a)(1—a)~!

(see Sect. 2), we have that 1) holds true.
Let us now consider the operator

Afz): =K +zI)" Y2V(K +2I)~ 12,

Since V, is K-form-bounded with relative bound 0, by [CFKS, Proposition 1.3],
A,(iy) is a bounded operator with

lim || 4,32, 2 =0.

7=+
From the definition of A4, it follows, if y>0,
1AVl 2, 2 S 31 An) 2, 2 S sl TV VK +9D) ™ V222 12,
so that
1Az, 2 <1 V92944, VN2 Ny,
and the Tiktopoulos’ formula holds:
(H,+iyD)~ ' =(K +iy]) " Y*(I + A, (iy)) " (K +iyl)~ /2
(see [Sit, Sect. I1.3]). Therefore we have
I(Hy+iy)™ " —(H+i7)" Dl
SN+ Aiy) ™ =T+ AGy) ™)K +iyD) ™ Pyl .
Since
I 4n(iy)— Ayl 2, 2 S 3 (K +pD) ™ V2V, = V) (K + D)™V 2,12
SclllV,=VIVAK +yD) ™12 2, 2
and
V= VIVHK +yD) ™ 21| E2 2 Zcall Vo= Vg,

(see [Sc, Theorem 2.2, Chap. 5, Theorem 3.1, Chap. 6]),2’) follows, and the proof of
Theorem 7.1 is complete.
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Remark 7.2. In Theorem 7.1 one can replace K; with

{V Wigi= g Vel H(f)'d dy<+oo},

the Banach space of Rollnik-class potentlals, and Kato-convergence of potentials
with convergence with respect to Rollnik norm | -||z. The proof proceeds in an
analogous way, using Theorems 1.21 and II.13 in [S1].

Remark 7.3. It may appear that convergence of initial data in H'(R? be an
unnecessary strong assumption; since one can disintegrate with respect to the
initial distributions, one may expect that I?-convergence be sufficient. However,
suppose that, for every y,e H'(R?), T>0, and for some M >1,

sup le” ™| g pn=M  VteR,

nelN

lim sup |(e” " —e” ™)yl =0,
n—>+ow 0=t=sT

as is the case by our assumptions [V,—V|g,—0. Suppose moreover that
lws—wollL2—0. Then

T
”W’(‘)“PO“HI“’O©(§) V! —Vp,|7.dt—0.
Indeed by our hypotheses yp!— v, in energy norm is equivalent to
T
[ 17”05 — o)l ade—0.

From the group property one has

Il —woll & S llwp—poll 22+ Sup Ve Hn(ypl —1po)lIF2

=lwo— ‘P0”L2+M2 inf ||Ve™ ™ (g —wo)llf2

_t_
MrTooo
<lys—wolfa+ = I Ve™ (g — o) 2.dt

2T .
T (I) lle ™ (g — o)l Fudt

IA

S M*lwg—wollfi»

and our thesis follows.
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