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Abstract. It is shown that every finite-dimensional irreducible module over the
general linear Lie superalgebra g/(n/l) can be deformed to an irreducible module of
Uq[gl(n/lJ], a g-analogue of the universal enveloping algebra of gl(n/ί). The results
are extended also to all Kac modules, which in the atypical cases remain
indecomposible. Within each module expressions for the transformations of the
GeΓfand-Zetlin basis under the action of the algebra generators are written down.
An analogoue of the Poincare-Birkhoff-Witt theorem is formulated.

1. Introduction

During the last years the quantum groups became a field of increasing interest in
various branches of physics and mathematics. The concept of a quantum group
was introduced by Drinfeld [6]. Its essence crystallized from the intensive
development of the quantum inverse problem method [8] and the investigations
related to the Yang-Baxter equation (see the collection of papers [14] and the
references therein).

An important class of quantum groups are the quantized universal enveloping
algebras, called also quantum algebras. A quantum algebra Uq\_G] associated with
the algebra G is a deformation of the universal enveloping algebra 17 [G] of G
endowed with a structure of a Hopf algebra. In all applications we know these are
one-parameter deformations (see, however, [28]). The first example of a Hopf
algebra of this kind was given for G = s/(2) [23]. The generalization to any Kac-
Moody Lie algebra with a symmetrizable generalized Cartan matrix is due to
Drinfeld [7] and Jimbo [15]. An example of a quantum superalgebra, i.e., of a
quantum algebra associated with a Lie superalgebra, namely the orthosymplectic
Lie superalgebra (LS) osp(l/2) was considered by Kulish [24]. The corresponding
construction for an arbitrary Kac-Moody superalgebra with a symmetrizable
generalized Cartan matrix was reported in [39]; an independent approach for the
basic Lie superalgebras [18] was developed in [2].
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The representation theory of the quantum algebras has been also an object of
intensive studies. An important result in this frame was the proof that for generic
values of q ( = q is not a root of unity) any finite-dimensional module of
An = sl(n +1), n e N, can be deformed in an irreducible module of l/β[4„] [16] and
that one obtains in this way all finite-dimensional irreducible modules of Uq[A„]
[34]. This result has been generalized by Lusztig [26] for all integrable modules
over Kac-Moody algebras with symmetrizable generalized Cartan matrix. In [17]
Jimbo gave explicit expressions for the deformed E7β[AJ modules in terms of the
"undeformed" GeΓfand-Zetlin basis. Similar results for Vq[so(n)~\ have been
reported in [11] without specifying however whether the deformation is a Hopf
algebra. Available are also various results for the representations of some lower
rank quantum (super)algebras [22, 25, 36] and for other, mainly oscillator
representations of the quantum algebras associated with all classical Lie algebras
[4,12] and some of the basic Lie superalgebras [2, 3, 5, 9, 10]. The latter are
obtained through realization of these algebras in terms of g-deformed Bose and
Fermi operators [1,4,27].

In the present paper we show as a main result that for generic values of q every
finite-dimensional irreducible module over the general linear Lie superalgebra
g/(n/l) can be turned into an irreducible module of I/β[g/(n/l)]. To this end we use
the results from [39] for the basic LS sl(n/\) = A(n-\/Q) [18]. In order to simplify
the transformation relations [as this is usually done also for sl(n}] we extend sl(n/l)
by an one-dimensional center to gl(n/l). Similarly for gl(n) [17] we write down
explicit relations for the transformations of the Uq[gl(n/l)~\ modules in terms of the
GeΓfand-Zetlin basis, introduced in [30,31].

The Lie superalgebras sl(n/ί) and more generally sl(n/m) belong to the class of
the simple complex Lie superalgebras (LS's), classified by Kac [19-21] and by
Scheunert et al. [37,38]. More precisely they belong to the subclass of the basic
LS's [18]. Kac showed that the irreducible finite-dimensional modules of any basic
LS G fall into two classes, referred as to typical and atypical. All of them are highest
weight modules. In particular each irreducible sl(n/l) module [and hence
irreducible gl(n/ί) module] W(A) with a highest weight A can be obtained from a
sl(n/\) module V(Λ) ([18], p. 613) induced out of an irreducible module of the even
subalgebra with the same highest weight A. Following the terminology of [40] we
call all such modules V(A) Kac modules. In case of ajypical representation
W(A)=V(A). In the atypical case each Kac module V(A) is reducible and
indecomposible; it contains a unique maximal proper submodule J, such that

W(A)=V(A)/J. (1.1)

We shall see that in the quantum case these properties still hold: the deformed
module V(A) remains reducible and indecomposible, J is deformed onto itself, so
that (1.1) also holds and gives a g-deformed atypical module. All modules we
consider are simultaneously irreducible, reducible or indecomposible both with
respect to Vq[sl(n/\)'] and Uq\_gl(n/\)~]. Therefore we use throughout the more
convenient g/(n/l) notation.

We recall for further reference that the universal enveloping algebra
l/[g/(n/l)] = [7 can be defined as a Z2-graded associative algebra with unity,
generated by the indeterminants etp i,j = l, ...,n + l under the relations

Oθ > ek J = eijeki - (
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here and everywhere in the sequel

θij=θi^θj (1.3)

and

0j = 0 for ί^n, 0—1 for i>n. (1.4)

The Z2-grading on t/4[g/(n/l)] is imposed from the requirement that etj is even
(respectively odd), if θ^ is an even (respectively odd) number.

The paper is organized as follows. In Sect. 2 we give a definition of t/4[g/(n/l)].
In Sect. 3 we introduce an analogue of the canonical generators etj of U and write
down the supercommutation relations between the generators, which hold also for
U q[gl(n/m)'] (to our knowledge such relatively compact relations have not been
written even for L^[g/(w)]); see, for instance the commutation relations in [1 3]. We
formulate also the analogue of the Poincare-Birkhoff-Witt theorem (P.B.W.
Theorem). Section 4 is devoted to the representation theory of Uq\_gl(n/\J]
according to what we have said above.

2. The Quantum Algebra ϊ/β[0/(/ι/l)]

Uq[gl(n/l}] = Uq is a free associative algebra with unity 1 generated by et, fi9

kj = qhjl2

9 i = l, ..., w 5 </ = l, ...,n + l, and the relations (unless otherwise stated the
indices i 9 j below run over all possible values):

1) ktkj = kjki9 fc /ίΓ 1=^-^ = 1; (2.1)

Λ\ 1 1 - 1 y(*f j-*i, j+l) , /-I -1 -ζ(&i,j+l-iίj> f /I 1\2) kiejki

1=q2 ejt kifjkί

1 = q2 f}; (2.2)

3) eJj-fjβ-δ^q-q^Γ^kfk^-kf^kr2), ι = l,...,n-l, (2.3)

eJn+fnen^q-q^Γ^k^.-k^k-^)- (2.4)

4) ef}=efli fjj^fjfi, if li- Ί Φ l , (2.5)

*2

a=L2=0; (2-6)

5) e?ei+1-(q + q-1)eίei+1e/ + e;+1e? = 0, (2.7)

ι/;

2 = 0, (2.8)

/=!,.. .,n-2, (2.9)

i=l,...,«-2. (2.10)

The Z2 grading in l/4[g/(n/l)] is uniquely defined by the requirement that the
only odd generators are ew fn:

degfo) = degt/D = 0 , i = 1, . . ., n - 1 , degfe) = deg(/J = 1 ,

deg(fcj = 0, i=l,.. .,π + l.

It is straightforward to show that Uq is a Hopf superalgebra with respect to a
counity ε, a comultiplication J and an antipode S defined as

e(fd = e(hd = 0, (2.12)
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ΛΦM fΛ + V^-i®/*, i = l,...,n-l, (2.13)

= en®knkn+ i + k~ ̂ i ® ̂  ,

-iΓ1*,, ί=l,...,n-l, (2.14)

S(en)=-en, S(fn)=-fn.

Note [29] that in a Hopf superalgebra yl the multiplication m® on A® .4 is a
graded one: for any homogeneous elements a,b,c,deA

m<s>(a®b®c®d) = (a®b)(c®d) = (-l)άee(b)άeg(c)ac®bd. (2.15)

Moreover A :A-+A®A is a morphism in the sense of graded algebras.

3. An Analogue of P.B.W. Theorem

Let H=lin.env.{Λ jΞe j j |i = l, ...,n + l=N} be the Cartan subalgebra of the
nonquantum ( = classical) gl(n/ί ) (see (1 .2) or, for instance, [32]), H* - the dual to H
space with a bases Λ „

fiSβ2,...,^, ε'(/*,.) = <5}. (3.1)

Define a nondegenerate hermitian form on H* as

(3.2)

On the Cartan subalgebra of s/(n/l) the form (3.2) is proportional to the Killing
form. Moreover (ei = eij+ί,fi = ei+lti)

i.e., ε1—εi!+ *, — ε' + ε1+* are the roots of e{ and ft, respectively [Eqs. (3.4) follow also
from (2.2) at <?->!]. Denote by Q the root lattice,

β = J Σ n^-e'+^eZJcH* (3.4)
0=ι J

and associate with each e{, fi9 kteUq degrees ε1 —εI+1, — el + εl+1, 0 from Q,
respectively. This turns Uq into a Q-graded algebra. Thus Uq is both Z2-graded
and Q-graded. In order to avoid possible confusions (and in agreement with the
classical terminology) we call the β-degree of any homogeneous element aeUqa
weight of a and refer to α as to a weight vector.

For any Z2-homogeneous weight vectors a,beUq define a gκ-deformed
supercommutator (κ= ±1) as follows:

[α, 6]βκ = ab-(-1)<^<«)<^< V(α' β)ba, (3.5)

where deg(α), deg(b) are the degrees of a and b with respect to Z2 and α, /? are the
weights, the β-degrees of α and b, respectively. In the case q = l or if aλ.b (3.5)
becomes usual supercommutator

[α, b] =αfc-(- l)deg(fl)deg(%α. (3.6)
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Denote eiti+l = ei9 ^,ί+ι=/ί? i = l, ...,n and set for each i=H/ = l, ...9N,

eij = l -[.ei,ei+1]q-ι,ei+2]q-ι,...,ej_1']q-l if i<j, (3.7)

^^[...[/iJi-iWi-i^-./j+Je if i>J (3.8)

Each βijEUq is a weight vector with a weight εl — εj and a degree deg(eij) = θi

+ 07. = θy. At q = 1 ei7 become the canonical root vectors of gl(n/l). Therefore also at
q Φ1 it is more natural to call eip i φy = 1,..., N root vectors and their β-degrees -
roots. Moreover e^ is positive, eίy >0 (respectively negative, e^<ϋ) if i</
(respectively i>j). We consider each set Δ+,Δ_ as totally ordered, setting

etj<ekl if i<k or if i = k and j<l. (3.9)

The computation of the "commutation relations" between the root vectors is
fairly lengthy and we present only the barest outline. Denote ht as eu, hi = eii9

i=l,...,N. Let

(Ί if i1>i2>...>ik9

[0 otherwise

and θ(ίk<...<i2<ίl)= — 9(i±>i2>...>ίk). Then one has:

1. [ί

β«/2,g

β^/2] = 0; (3.10)

2. ί"</2^ ~ f(δίj~δik)ejkq
eiί/2 = 0 (3.11)

3. For any ey>0,

( l ι y t

M- ί)β»ekj+δjkθ(l> «>«}

4. For 0<eίj <ek(,

[βy,βH],-l = V«-^>J>*>0(-l)βfc(«-9~1)ewβ«; (3.13)

5. For 0>ev>eikίJ

[βϋ-eJ^Vβ + βί^^^^Oί-l^ί-ί-'KA; (3 14)

6. [βy,βo]=0, iφy. (3.15)

The essential outcome from (3.15) is that the square of each odd root vector is
zero:

(βy)2=0 if θt + θ-ί. (3.16)

One can unify Eqs. (3.13) and (3.14) in two different ways:

a) For0^έ?0.^ew,

-^q-q-^je^ (3.17)
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b) For 0<eij<ekl or etj<ekl<^

(3.18)

Proposition 1. The relations (3.10)-(3.15) hold if and only if the defining
Eqs. (2.1)-(2.10) are fulfilled. Therefore Uq[gl(n/l)~] can be defined as an associative
algebra with unity, generated form the indeterminants eip kt = qeiil2, / =)=/=!, ...,«
+ 1 =N and the relations (3.10H3.15).

Remark. We have written the supercommutation relations (3.10)-(3.15) in a form
which is more general than what is required by E7β[g/(π/l)]. For ί J, fc,/=l,...,n + m
Eqs.(3.10)-(3.15) define the quantum superalgebra E7β[g/(n/m)]. At q->l these
relations reduce to (1.2).

Proposition 2 (P.B. W. Theorem). The set of all ordered monomials

..Kn+l)P"'"+ 1(fcl)P l...fc+l)P"+ 1

i^. .fe + i.J11-*1-, (3.19)

where (p1,...,pn+1)eZn+\

PijeZ2 if 0y = l, PveZ+ if etj = Q or 2, (3.20)

constitute a basis in Uq[gl(n/ί)'].

In all essential points the proof is very similar to the one for Uq[sl(n + 1)] in [35].
We mark only the main steps.

1. Let Uq, U~ and Uq be the subalgebras of Uφ generated by A+, A. and
(fc* *, . . ., kf+i) = K, respectively. Observe that whenever ekjeu appears in the right-
hand side of (3.12H3.14) the multiples always supercommute:

e^^-^^e^j. (3.21)

Therefore L^==[/~t/°£/+. Since U+ is a polynomial only of el9 ...,en, U~ - of
/!,...,/» and Uj - of ̂  from x+x°χ- =0 (x1 e l/±, x° ε l/J) it follows that either
x+ or x° or x~ =0. This finally yields (see for more details [35]) that (® below is a
tensor product of vector spaces)

U^. (3.22)

2. Clearly all monomials

(k^...(kn+^^ (^...Λ+iίeZ^1 (3.23)

define a basis in Uq.

3. From (3.13) and (3.21) one easily concludes that any x+ e Uq is a (finite) linear
combination of ordered monomials

(^2)PI2(^3)
ί"3. .Kn+ι)p" " + I (3.24)

with Pij satisfying (3.20). The linear independence of the vectors (3.24), which are
monomials of only even root vectors has been proved in [34]. The monomials
(3.24) of only odd positive root vectors are also linearly independent since different
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monomials have different weights. Both observations now give that all monomials
(3.24) constitute a basis in 17+.

4. Similarly one concludes that all

(^iΓ^siΓ1...^^,^^1'", (3.25)

for which (3.20) holds, give a basis in [/". In view of (3.22) the monomials (3.19)
constitute a basis in Uq.

4. Finite-Dimensional Representations of Uq[gl(n/T)~\

We now proceed to show that every finite-dimensional irreducible g/(n/l) module
can be turned into an irreducible Uq[gl(nl\)~] module. We recall [30, 31] that the
Kac modules

of g/(n/l) are in one-to-one correspondence with the set of all complex n + 1 -tuples

MB + 1Ξ[Af l t ϊ I + 1, M2 f M + 1,...,M I I + l f Π + 1], (4.1)

for which

MitΛ+1-MJtH+leZ+ V / < / = l,. ..,/ι. (4.2)

The GePfand-Zetlin basis (GZ-basis) in F([M]M+1) consists of all patterns

(Af) =

M2π, ..., Mnn

M 22

\

(4.3)

which are consistent with the conditions:

(1) Min = Mitn+1-φi,φlL

(2) Mu + 1-My6Z+, My-
(4.4)

For an arbitrary GZ pattern (M) denote by (M)±ί j the pattern obtained from (M)
~

by the replacement Ml7- >M0 ±1; set Ly = My— i and let [x]=
qx-q~x

- rr

Proposition 3. EαcΛ g/(n/l) Kαc modw/e F([Af]n+1) is an l/β[g/(n/l)] modw/β wiίft
respect to the following transformation of the basis (fc=l, ...,n— 1):

'
7=1

j,^ (M), i=l,..., (4.5)

fk(M)= Σ
;=ι

k+l

Π
k

Π

1/2

(M)_,, (4.6)
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e,(M) =

k+1

Π [LU+1-LJ
i= 1

k-1

Π [^k-ι-L/k-1]
i = l

k

i Φ j = l

1/2

(4.7)

Π [I*.,-!-LiιΠ+1]
k = l

11

1/2

(4.8)

"ff [**..-!
fc=l

1/2

II

i^+iΦ -n V/=l,. . . ,n,

F([M]B+1) is an irreducible t/4[g/(n/l)] module for any p = Q, $, 1.
// /or certain j = ί,...,n

(4.9)

(4.10)

-n, (4.11)

ί/ien the corresponding Kac module is reducible. More precisely one has the following
cases.

a) The case p = 0. F([M]Π+1) is an indecomposible module. The maximal invariant
subspace W([M]Π+1) is irreducible. It is a linear span of all GZ-patterns (4.3) for
which <p/=0. The factor space

-i) (4-12)

is an irreducible Uq module isomorphic to the subspace VF([M] _J>+ x) spanned on all
GZ-patterns corresponding to <p/=l.

b) The case p = l. V([M~]n + j) w indecomposable. The maximal invariant subspace is
and it is irreducible. The irreducible Uq module

l l+ι) (4.13)

w isomorphic to

c) The case p = 1/2. Now F([M]Π+ J is a direct sum of the irreducible Uq modules

,π+1). (4.14)

The above proposition together with case a), if (4.1 1) holds, indicates that every
finite dimensional irreducible g/(n/l) module can be deformed to an irreducible Uq

module. We formulate this result as a separate statement.
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Proposition 4. Each finite-dimensional irreducible g/(n/l) module W([M]n+1), i.e.,
the linear span of all GZ-patterns (4.3) consistent with the conditions

(1) Min = Mitn+1-φi9φl9...9φn = Q 9 ί ;

(2) M ί J + 1-My6Z+, M0-Mί+1J+1eZ+ Vi</ = l,...,n-l; (4.15)

(3) if MJ9n+1+Mn + ιtn + l=j-n9 then φ~Q9

is deformed to an irreducible Uq\_gl(n/\)~] module (for generic values of q) by the
transformation relations (4.5)-(4.9) for p being either 0, or 1/2.

5. Discussion

The main result of the paper, formulated in Proposition 4, was proved by writing
down explicit relations for the transformation of the basis under the action of the
generators of Uq[gl(n/\J] [see Eqs. (4.5)-(4.9)]. To this end we have used essentially
the classical transformation formulae, achieving representation of the quantum
superalgebra Uq simply by deforming the matrix elements in an appropriate way.
The basis within each module remains the same, the GeΓfand-Zetlin basis, for both
U\_gl(n/\)~] and its deformation I7β[g/(n/l)]. Unfortunately similar results are
unavailable at present for all finite-dimensional irreducible representation of
gl(n/m) (partial results have been reported in [33]) or for the other basic LS's. The
situation is even worse. Although the finite-dimensional irreducible modules are
completely classified [18] (this is not the case with the indecomposible modules) at
present even the dimensions of certain atypical modules are unknown. This is the
reason why we have not considered here the more general quantum superalgebra
t/β[g/(n/m)]. The present paper is not answering also the question whether the
deformed finite-dimensional irreducible modules of the (classical) g/(n/l) exhaust
all such modules of the quantum algebra. We have also not touched the
representation theory of Uq[gl(n/lJ] for q being a root of unity.
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