
Commun. Math. Phys. 141, 453-474 (1991) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1991

Julia Sets and Complex Singularities
in Hierarchical Ising Models

P. M. Bleher1 and M. Yu. Lyubich2

1 School of Mathematical Studies, Tel-Aviv University, 69978 Israel
2 Institute for Mathematical Sciences, SUNY, Stony Brook, NY 11794, USA

Received August 23, 1990; in revised form January 28, 1991

Abstract. We study the analytical continuation in the complex plane of free energy
of the Ising model on diamond-like hierarchical lattices. It is known [12,13] that
the singularities of free energy of this model lie on the Julia set of some rational
endomorphism / related to the action of the Migdal-Kadanoff renorm-group. We
study the asymptotics of free energy when temperature goes along hyperbolic
geodesies to the boundary of an attractive basin of /. We prove that for almost
all (with respect to the harmonic measure) geodesies the complex critical exponent
is common, and compute it.

1. Introduction

The purpose of this article is to analyse complex singularities in temperature of
the free energy 2F in the Ising model on diamond-like hierarchical lattices.
According to the traditional point of view a phase transition manifests itself as a
singularity of J^ as a function of thermodynamic parameters (like temperature
and external magnetic field). From this point of view the theory of phase transitions
should describe the domain of analyticity of 2F and the type of its singularities at
points of phase transition (see [1], where diverse approaches to the first of these
problems are discussed).

Since 3F is real analytic outside of points of phase transition, it can be continued
into complex space with respect to the thermodynamic parameters. Description
of its complex singularities is of great interest for the theory of phase transitions
because it determines analytic properties of the thermodynamic function.

The celebrated Lee-Yang theory (see [2]) gives a realisation of this approach
describing the singularities of the analytic continuation of the free energy in the
ferromagnetic Ising model with respect to the external magnetic field. It proves
that the zeroes of the grand partition function in the ferromagnetic Ising model
lie on the imaginary axis, and hence complex singularities of the free energy lie
on the imaginary axis as well. An important problem stated in [2] is to study the
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limit distribution of zeros of the grand partition function, since the free energy
can be expressed as a logarithmic potential over this distribution.

The problem of description of complex singularities of the analytic continuation
of thermodynamic functions in temperature is also very interesting from different
points of view. Many properties of asymptotic behavior of thermodynamic
functions in the vicinity of a critical point were investigated through the Kadanoff-
Wilson-Fisher renormalisation group theory (see e.g. [3,4]). It gives a local form
of real critical singularities of thermodynamic functions which has a nice universal
scaling structure. A problem is how are these singularities continued to complex
space and what is their global structure in complex space?

Unfortunately no general theory like the Lee-Yang theory exists which
describes for general models global complex singularities of thermodynamic
functions in the complex temperature plane. However some exact results were
obtained for the two dimensional Ising model. The main tool here is the famous
Onsager solution. It turns out that in an isotropic two dimensional Ising model
the zeroes of the partition function lie asymptotically on two circles

e-2J/τ = + i _|_ ^2ei<p (jt was conjectured by Fisher [5] and proved in [6]). Later
it was shown (see [7,8] and references there) that in anisotropic two dimensional
Ising models on diverse lattices the zeroes of the partition function fill some planar
regions in the complex temperature plane and in some cases the density of the limit
distribution of zeroes can be found explicitly.

In the present paper we consider another exactly solvable model, namely the
Ising model on diamond-like hierarchical lattices (see [9-11]). In this case the
Migdal-Kadanoff renormalization transformation turns out to be a rational map
/ on the Riemann sphere which can be found explicitly. The following nice
observation was made in papers [12,13]: the set of complex points of a phase
transition coincides with the Julia set of this map. In this paper we study the
analytical properties of the free energy F near the singular points. We believe that
clear understanding of analytical properties of thermodynamical functions in the
complex plane has much to do with the physical nature of the model.

The hierarchical sequence of the diamond-like lattices depends on one natural
parameter b ̂  2. The lattice Γ0 is just two "outer" sites related by a bond. In order
to obtain Γl we insert in between the outer sites b inner sites related by bonds
with outer ones (see Fig. 0 for b = 3). Then in order to obtain Γn+1 we replace
each bond in Γn by the lattice Γl9n=l,2,

Fig. 0
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We will refer to papers [11-15] for the description of the Ising model on these
lattices and the calculation of the thermodynamical functions. The starting point
for us is the following explicit formula for the free energy:

*=-ί-?Σ(2&r"ln(l + ί!), (1.1)
^ ^ Λ = 0

where b = 2d~i,d is the "dimension" of the lattice, J is the interaction constant, T
is temperature, and the sequence £w,n^0, is given by the following recurrent
equation

ί. + ι=/(α n*0, (1.2)
where

with the initial data

(1.4)

Equations (1.2)-(1.4) mean from the physical point of view that the map
Γκ>G~ l o/°G(T) gives the rescaling of temperature under the Migdal-Kadanoff
renorm-group transformation (see [9-15]). Note that the points ί = 0 and t= 1
are superstable fixed points of the map £i— >/(ί) (low- and high-temperature fixed
points of the renorm-group) and for b > 1 there exists the unique unstable fixed
point tc on [0, 1]. The critical temperature Tc is equal to G"1^).

Formulas (!.!)-( 1.4) make sense for complex values of T as well. So, we can
consider the analytical continuation of free energy ^(T) from the positive axis
T > 0 into the complex plane. It is not hard to see that the singularities of 2F lie
on the Julia set J(f) [12, 13]. (For the definition of the latter, see one of the surveys
[16-19].)

Let us consider now the immediate attracting basins Ω0 and Ω± of points 0
and 1. One can show that C\J(f) is the union of preimages of these domains, and
Ω0 is a Jordan domain in J(f) (see Sect. 2). In this 'paper we study the boundary
properties of OF in the domain ΩQ. To this end let us consider the Riemann map
ψ:Ω0-+\J of Ω0 onto the unit disk. The hyperbolic geodesies in Ω0 are just the
\l/~ * -images of the radii in U. Denote by Bτ the geodesic ending at τedΩ0. Let us
consider also the harmonic measure μ on dΩQ9 i.e. μ = ψ~1λ, where λ is the Lebesgue
measure on the circle δU = T. For teBτ denote by l(t) the length of Bτ from ί to
τ (perhaps, /(ί) = oo).

In the present paper we prove:
(i) The derivative 3F' of free energy is continuous up to the boundary of Ω0.
(ii) For b> 2 the second derivative is discontinuous in Ω, and has the following

asymptotics on μ-almost all geodesies:

inl*™ _ l n 2 _L

Inb d-1

This means that for almost all geodesies the specific heat critical exponent in

thς region of low temperatures is universal and equal to 1 -- .
d— 1
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Now let us dwell in more detail on the content of the paper.
In Sect. 2 we describe the dynamical properties of the endomorphism /. In

particular, we show using the Douady-Hubbard straightening theorem that Ω0

is a Jordan domain.
In Sect. 3 we show that 3F' is continuous in clΩ0 and that dΩQ is the natural

boundary of analyticity of 2F. The proof is based upon some amusing observations
concerning / (its relation to the Koebe function and a Tchebyshev polynomial).

In Sect. 4 we discuss some technical background: the Bowen-Ruelle-Sinai
thermodynamical formalism and the construction of the natural extension (the
inverse limit) of /. These are the main tools (together with the ergodic theorem)
for the accurate computation of the critical exponent.

In Sect. 5 we discuss the functional equation for 3F" and related spectral
properties of the weighted substitution operator in the disk-algebra.

Section 6 is the central section of the paper: here we give the computation of
the critical exponent, provided 3F" is not continuous up to the boundary of Ω0.

In Sect. 7 we prove that 3F" really satisfies this property, which completes the
proof of the main result.

In the last Sect. 8 we discuss some related problems.

4tb

2. Dynamics of the Map f:t\->
(i+O2

We refer to the surveys [16-19] for the general view of the dynamics of complex
rational maps. We will use some concepts and facts of this theory without extra
explanations.

Let us introduce the following notations:

/°»= fo... of is the w-fold iterate of /;
C(f) is the set of its critical points (a rational map of degree d has 2d — 2 critical
points counting with multiplicity);
|| || is the spherical metric on C;
U = {z:|z| ̂  1} is the closed disk;
U° = int U is its interior;
T = dU is the unit circle;
β(α,r) = {zeC:|z - α| ̂  R} for αeC;
J(f) is the Julia set of /.

The function

4tb

f =
(l + tb)2

is related to the well-known extremal Koebe function (see [20])

Jfo(z) = -
(1-z)2

Setting K(z) = - 4Jf0(-z) and S(z) = Sb(z) = zb we have f = K°S.
The relation of / to the Koebe function is quite mysterious, especially if one
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Fig. 1

relates the coefficient 4 to the Koebe constant 1/4. It becomes still more amusing if
we observe that K(f) is conformally conjugated to the Tchebyshev polynomial
T:τh->2τ2 — 1. Indeed, the function K has two simple critical points c1 = 1 and
c2 == — 1. Moreover, f(c±) = c1? i.e. cl is a superstable fixed point, and c2ι—>ooι—>0,
where 0 is repelling fixed point. Up to conformal conjugation, T is the unique
rational function of degree 2 possessing such properties. More specifically,

φ°K°φ~l = T, where φ:ίh-> is the Mόbius transformation mapping the triple

{0,1, 00} onto the triple (1, oo, -1}. In particular, it follows that the Julia set J(K)
coincides with the negative semi-axis [— oo,0] = φ- 1[— 1,1].

The power functions and Tchebyshev polynomials play a particular role in the
iteration theory. They appear as the exceptions in a number of problems; e.g., only
these functions have a Julia set with simple geometry. The composition / = K°S
does not possess such a property (see Fig. 1).

A rational function g is called critically finite if the orbits {gn(Ci}} of all its
critical points are finite.
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By the chain rule

where αf are the bth roots of 1, and βj are the bth roots of — 1. Moreover, 0 and
<*! = 1 are superstable fixed points which absorb the orbits of all other critical
points: αfι->l, βyi— >ooι— >0. Thus, the function / is critically finite.

Denote by Ωa = Ω(a\ the component of F(/) containing a. The domains Ω0

and Ω1 are called the immediate basins of the fixed points 0 and 1.
We say that a rational function g satisfies the axiom A if the following equivalent

properties hold:
(i) The orbits of all critical points converge to stable cycles;
(ii) g is expanding on the Julia set, i.e., there exist constants C > 0 and λ > 1 such

that

\\dgn(z)\\^Cλn (zeJUlneN).

It follows from above that our function / satisifes (i) and hence satisfies axiom
A. This implies in particular that the Fatou set consists of the preimages of the
immediate basins Ω0 and Ωl .

Set Ω = clΩ0 and Γ = dΩ0 (these notations will be used up to the end of the
paper). We will show now that Γ is a Jordan curve and even a quasicircle1 (but
by Fatou's theorem it has no tangents at any point). To this end we apply the
Douady-Hubbard straightening theorem (see [21]).

Let V and V be two simply connected domains bounded by piecewise-smooth
curves, and clV c V c C. A map g:V^>V is called polynomial-like of degree d if
it is a d-sheeted analytical covering of V over V having no critical points on dV.
By the Riemann-Hurwitz formula, such a map has d — 1 critical points in V
counting with multiplicity. Set

K(g) = {z:gn(z)e V (n = 0, 1, . . .)}, K°(g) = int K(g).

The K(g) is a compact subset of V.
The straightening theorem states that any polynomial-like map g is quasi-

conformally conjugated to a polynomial h of the same degree, i.e., there exists a
quasi-conformal homeomorphism ^:C-»C such that ψ°g\W = ho\j/\W for some
domain W,K c Wa V. Moreover, ψ\K°(g) is conformal and

is the filled-in Julia set of h,

Lemma 2.1. The domain ΩQ is Jordan, and its boundary is a quasi-circle. The
restriction f \ Ω0 is conformally conjugated to the power transformation z\-^zb of the
unit disk U°.

Proof. Let us construct a neighbourhood of Ω on which / is a polynomial-like
map of degree b. To this end note that the function K conformally maps the disk
U° into the plane slitted along the semi-axis R! = [1, oo) (this is the characteristic
property of the 4-fold Koebe function). Let us consider the domain V (see Fig. 2)

1 Actually, the last holds automatically
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Fig. 2

bounded by the arc^ of the circle £(1,ε), the arc y2 °f the circle B(Q,R\ where
jR » 1 and two horizontal intervals.

Let V be the component of the inverse image /~1(K/) containing 0. Then
clV c U°, since /(3U) = R! lies outside V. Besides, clV^y^ = 0 for sufficiently
small ε. Indeed, as 1 is a stable fixed point, the arc/^) lies inside the disk B(l,ε)
and, hence, outside F'.

Thus, clV a V.
Further, it is clear from 7 = (X|U)"1°(S~1F/) that V is simply-connected.

Indeed, it is elementary that S~1V is simply-connected (see e.g., [17], Lemma 1.4)
while K\\J is univalent.

We have shown that f:V-+V is a polynomial-like map. Its degree is equal
to b, since V c l/0 contains the unique (b — l)-fold critical point 0. Clearly,
Ωc:K(f\V).

By the Straightening Theorem, /: K-> V is quasi-conformally conjugated to a
polynomial /ι of degree b. Normalize the conjugating homeomorphism ψ in such
a way that ι̂ (0) = 0. Then 0 becomes a (b — l)-fold critical point for h. It follows
that h(z) = Czb. Normalizing φ additionally in such a way that ιj/(tc) = 1, where tc

is a real fixed point lying on Γ9 we get C = 1.
Thus, φ conjugates /: V-+ V to the power polynomial h\z\-^zb. Consequently,

Ω0 — ̂ "^U) is a Jordan domain bounded by a quasi-circle, and ψ conformally
conjugates f\Ω0 to h\\J. The lemma is proved.
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Remark. Tan Lei showed us another proof of the above lemma which can be
applied to the high-temperature region as well.

3. Analytic Properties of 3F'

In this section we will show that the derivative ^'(t) is continuous in the closed
set Ω. So, 3F' belongs to the disk-algebra A(Ω\ i.e. the algebra of functions
continuous in Ω and holomorphic in Ω0. We will get this estimating the derivative
||D/||V in a special Riemannian metric μ.

From now on we will consider the following function F instead of free energy
& (1.1):

f = Σ —9°fn, (3.i)

where g(t) = ln(l + tb). Clearly, its analytical properties are the same as those of
J .̂ Note that g is analytic in a neighbourhood of ί2, and so series (3.1) converges
uniformly in Ω. Hence F eA(Ω). Further, for zeΩ0 we have

(4 (3-2)

We want to show that this series converges uniformly in ί2, which certainly
implies F'eA(Ω). The required statement follows from the following estimate:

Lemma 3.1. |(/")'(z)| ̂  C(^/2b)n for zeΩ.

Proof. Let us recall that / = K°S (see Sect. 2). The power function S satisfies the
functional equation exp (bz) = S (exp z). From the dynamical viewpoint it means
that exp semiconjugates the transformations L:z\~^bz and S. Denote by σ the
Euclidean metric on C, and by μ^exp^σ its image on the punctured plane
C* = C\{0}. We have \dμ\ = \dt\/\t\.

As

= b (3.3)

for ίeC*. Besides

l l - ί l 1

\κ(t)\
where φ(t) = (1 + t)/(\ — t). It is surprising that exactly this function conjugates K
to the Techebyshev polynomial T:τf—>2τ 2 — 1. Due to this observation it is
reasonable to pass to the conjugated function

h = φ° f°φ"1 = T°R,

where R = φ°S°φ~1. Consider the corresponding Riemannian metric v = φ^μ. By
(3.3), (3.4),

\\DR(τ)\\v = b,
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Fig. 3

\\Df(t)\\=\\Dh(τ)\\v =
b

(3.5)

The function h has a superstable fixed point 1 = φ(0) with the immediate
attracting basin W° = φΩ0. Since Ω c U°, the set W = clW° = φ(Ω) lies in the
right half-plane φ(U°) = P° = {τ Reτ > 0}. As Wis ^-invariant, T(R(W)) c P°, and
hence (see Fig. 3)

R(W) c T~^P0) = (τ - x + iy:x2 - y2 >

Consequently, |jR(τ)| > 1/^/2 for τeW, and (3.5) implies

ll^/Wll^^χ/2, teΩ.

Hence,

But on the boundary dΩ the metric μ is equivalent to the Euclidean metric and,

hence, |(/")'(ί)l < C(^/2b)n for tedΩ. By the Maximum Principle, this inequality
holds for teΩ. The lemma is proved.

Now let us establish some global analytical properties of F. It is curious that

this function has no singularities at points βt = \/ — 1.

Lemma 3.2. (i) The function F' is a single-valued holomorphic function on the Fatou
set N(f).

(ii) The set ΩQ is the maximal domain of analyticity of F.

Proof. Consider the multi-valued function σ(t) = g(t) + —g(f(t)\ where g(t) =
2b
_ bIn(1 + tb) as above. Let us show that it is regular near βj = */-1, j = 1,...,b. We
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have

σ(t) = In (1 + t") +1 In (1 + ̂ ^5) = ̂  In (d + W + 4V2).

So, σ(βj) = ̂ \n4 + l - + πn ji, and we see that βj are regular points for σ.

Hence, σ is regular in the components Ω(βj).
Now let V be an n-fold preimage of some Ω(βj). By (3.1),

F(t) = σ(/wί) + regular function.

Consequently, F is regular in V.
Thus, ί2(oo) is the only component in which F is not regular, and there we have

F(t) = ln(l + tb) + regular function.

Hence,

feί6"1

F(f) = + regular function
b

is regular in β(oo).
So, F' is regular on the whole Fatou set N(f\ and it is obvious from (3.2) that

it is single-valued. The (i) is proved.
(ii) Let us consider the functional equation for F:

/TO f — F — π Π f\\
2bF J F~g (16)

Taking the derivative, we get

LF'°f-F' = g' = -̂ -—. (3.7)
2b l + tb

Provided F' can be analytically continued beyond Ω° into some neighbourhood
U of ίeδβ, it follows from (3.7) that it can be continued as a meromorphic function
into fnU. Since /"£/=> J(f) for some n, the function F' is meromorphic on the
whole sphere, i.e. rational.

But we have shown that F has no poles in N(f). If F had a pole at a teJ(f),
then by (3.7) it would have poles at all points of the grand orbit

0(o= y y rvmo
But it is impossible since this orbit is infinite. So, F has no poles at all, and this
absurdity completes the proof.
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4. Symbolic Dynamics, Thermodynamical Formalism
and the Natural Extension of/|/2

To study the boundary behaviour of F" we need the Bowen-Ruelle-Sinai
thermodynamical formalism (see [22, 24 or 18]). We will state the main results of
this theory for our particular map / 1 Γ. The theory can be applied to this map
without any problem because it is expanding (see Sect. 2).

Let us consider the homeomorphism ψ'.Ω ->U conformal on Ω0 and reducing
f\Ω to S:z^zb (Lemma 2.1). Let ψ(t) = re2nWeV. Associate to a point teΩ the
pair (r, έ+), where re[0, 1], and ε+ = (ε0, εn . . .) is the 6-adic decomposition of the
#e[0, 1). Then / turns into the transformation (r9ε+)\-^(rJ),σ+ε+)9 where

is the shift on the space Σ£ of all one-sided fe-adic sequences. Sometimes we will
identify ί2with [0, 1] x Σ£, though the described correspondence is not one-to-one.
Then f\Γ will be identified with the shift σ+.

Denote by [εo,...^-!] b-adic cylinders in Σ+ and corresponding fr-adic
intervals in Γ. Let Bθ = ψ~1{re2πiθ:Q^r ^ 1} be hyperbolic geodesies in Ω, and
Γr = ψ~ί{re2πie:Q^Θ^ 1} be equipotential levels (for the Green function ln|^|).

Let p be a Holder function on 7" which is called the potential (here we pass
from electrostatics to thermodynamics). Set

The Gibbs measure vp on Γ corresponding to the potential p is the measure
satisfying the following estimates on cylinders:

vpίεo -εn-ι']~exp\:Snp(tεo...εn_ί)-nPl (4.1)

where tεo...εn_ί is any point of [ε0 εn_1], and P = P/(p) is a constant called the
pressure, and the sign "αx/Γ means C^β ^ α ̂  C2β.

The main result of the Bowen-Ruelle-Sinai theory states that for any Holder
function p there exists the unique Gibbs measure vp. This measure satisfies the
Vaήational Principle

sup ( hv(β) + f fdv] = hvp(f) + f fdvp = Pf(p\ (4.2)
veM(/)\ Γ / Γ

where M (/) denotes the compactum of all /-invariant probability measures on
Γ, and hv(f) is the entropy of v.

The pressure P/(p) is the smooth convex functional of p, and its differential at
p is the Gibbs measure vp (see [23]):

dPf(p + KOC)

die
(4.3)

To the potential p = 0 corresponds the unique measure of maximal entropy
μ = v0, namely the Bernoully measure with b equal states (in view of the model
Σ*). The entropy of this measure is equal to the topological entropy of
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The Reimann map ψ : Ω -> U transforms μ into the measure of maximal entropy
for zh->zfc, i.e. to the Lebesgue measure on T. Hence, μ coincides with the harmonic
measure on Γ corresponding to 0 (see [20]). Consequently,

#(0) - J Hdv
r

for any function H harmonic in Ω0 and continuous up to the boundary.
Applying this formula to the function2,

we find the characteristic exponent of μ

χμ=$\n\f'\dμ = \nb. (4.4)
Γ

Let us pass now _to the crucial construction of the natural extension (or the
inverse limit) f:Ω->Ω (see [25]). By definition, a point zeΩ is the inverse orbit
z_=(z0,z ,19...)9 i.e._/z_(/+1) = z_ί, and /:zι-»(/z0, z0,zl9...). The transformation
/ is invertible on_ί2, and there exists the natural projection π:β->ί2, π(z) = z0,
semiconjugating / and /. All fibers of π except zero one are Cantor sets. Each
/-invariant measure v on jΓ can be uniquely lifted to the /-invariant measure v on 7".

The symbolic dynamics for / generates the symbolic dynamics for / Namely,
•Qcan be identified modO with [0,1] x Σb, where ̂  = {(•• ε_ 1,ε 0,ε 1 )} is the
space of two-sided sequences. Then

where σ:Σb^Σb is the left shift, and μ turns into the Bernoulli measure on Ωb

with equal states.
The lifts Γr = π~ίΓr of the equipotential levels will be called the solenoids,

Γ = /\ . The reason is that these sets can be supplied with the structure of the
solenoidal group T, i.e. the inverse limit of the group endomorphism zι->zί> of T
(see [26]). Then f\Γ turns into a group automorphism, and μ into the Haar
measure on Γ. _

The space Ω can be regarded as a continuum-sheeted Riemann surface over
ί2, the^'bunch of sheets" gluing together at zero. If one cuts Ω along the geodesic
£0, Ω is foliated into the sheets L(ε_) coded by one-sided sequences
έ_ =( ε_2,ε 1 )eΓ~.

The gluing of the sheets is fulfilled by the b-adic shift A = Ab:έ_ h-»ε_ + 1 where
1 = (...0,0, 1), and addition is understood in the sense of the group of fo-adic
numbers. Gluing together countably many sheets corresponding to an orbit
{An(έ-_)}™=_oo of the b-adic shift, we get the logarithmic Riemann surface W(ε_).3

All inverse functions f~n(z) become single- valued on this surface.

2 Taking into account that ψ(t) ~ t, since there is the following formula for the Green function
(cf. [32]):

ln | ιA|=lim<ί-" |/ 0 " |
Π-»00

3 The inner topology of this surface differs from the topology induced from the space Ω in which
it is densely immersed
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From the dynamical point of view, Riemann surfaces W(ε_) are global unstable
manifolds of /: if ί, τe W(ε _), then / ~ ^orbits of ΐ and τ are exponentially drawing
together.

For a function p(t) in Ω we will write p(t) = p(t\ where ί = π(ί); in particular,
| f | = |ί |.Set

-n+l

Wd(ε_) = {f€^(β_):|ίΊ^<5}) S_.p(f)=- Σ P(/*(*)) (4-5)
fc = 0

The drawing together of inverse orbits originating in Wδ(E-) is uniformly
exponential. It follows in a standard way that for any function p(t\ Holder on
ί2* = ί2\{0}, for δ > 0 and ί,τe ̂ (έ_), the following estimates hold:

\ S _ n p ( f ) - S _ n p ( τ ) \ ^ C ( δ ) , (4.6)

where C(ό) does not depend on n and ε _.

5. The Weighted Substitution Operator

Let us consider a function β = A(Ω) having no zeroes on Γ = dΩ, and hεA(Ω).
In this and the next sections we will consider the following functional equation:

β(t)U(ft)-f(t)=-h(t). (5.1)

Let us consider the multiplicative cocycle βn(t) = β(t)β(ft)... β ( f n ~ 1 t )
associated with β. We will assume in what follows that

(i) The cocycle β has the positive Liapunov exponent:

(5.2)

(ii)4 The function ln|β| on 7" is not homologous to a constant. This means
that there are no continuous solutions φeC(Γ) of the equation

with any constant c.

Motivation. By differentiating equation (3.6), we get Eq. (5.1) for U = F" with:

β(t) = ~ f'(t)2, h(t) = 1 F(/t)/"(0 + g"(t). (5.3)
2b 2b

The function β is holomorphic in a neighbourhood of Ω and has there the unique
root at ί = 0, and the function heA(Ω) (since F'eA(Ω)). Assumption (i) is valid
due to (4.4):

b
χ (β) — 2χ — In 2b = In - > 0. (5.4)

2

Assumption (ii) holds since In |/'| is not homologous to a constant on T [30].

4 This assumption is convenient but it is not essential
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Equation (5.1) has the unique solution holomorphic in ί20:

U(t)= Σ βnW(fnt\ (5.5)

where βn(t) is the multiplicative cocycle generated by the function β.
In this section we will explain why this solution is not, as a rule, continuous

up to the boundary. The words "as a rule" means: for any heA(Ω) outside a set
of first category. In Sect. 7 we will show that the concrete function h given by (5.3)
is not excluded (so, F" is discontinuous).

Let us consider the weighted shift operator Lβ in A(Ω):

(LβU)(t) = β(t)U(ft).

Then we can rewrite (5.1) in the following way:

(Lβ-I)U=-h. (5.6)

This leads us to the problem of spectral properties of the weighted shift operator,
It is known [27] that the spectral radius rβ of Lβ in the disk-algebra can be

calculated by the formula:

Inr,= sup χv(β\ (5.7)
veM(/)

and the spectrum of Lβ is the unit disk: spec(L0) = {λ:\λ\ ^ r^}.
If U is an eigenfunction of Lβ then the function ln\β\ is homologous to a

constant:

which is not the case by Assumption (ii) above. So, the operator Lβ — λl is injective
for all λ. By the Banach theorem on the inverse operator (see [28]), for λespec(Lβ)
the image lm(Lβ — λl) is the set of first Baire category. Thus, the equation
LβU — λU = hfoτ\λ\^rβ and generic hsA(Ω) has no solutions in A(Ω).

By (5.2), rβ > 1, and hence lespecL^. So, Eq. (5.6) is non-solvable in A(Ω) for
generic heA(Ω). For such an h, the analytical solution (5.4) is not continuous up
to the boundary, as we have asserted.

In conclusion let us mention a rough obstruction for (5.1) to be solvable related
to non-invertibility of/ Let t = (ί0,ί_1,...)eί5 be an inverse orbit of/ Iterating
(5.1) we get

17(0 = β-n(t)U(t_n) - Σ β-k(t)h(t-k\ (5.8)
k=l

where β-k(t) = [β(t.1)...β(t_k)']~l. By the ergodic theorem,

1 1 "
lim -Inj8_π(ί)= - lim - Σ lnjβ(/~ fcί)= -$ln\β\dμ<0 (5.9)
n-»oo n n-*oo γιk—^

for μ-almost all teΩ. For such a t the sequence β-n(t) exponentially_converges to
zero, and we can consider the following μ-measurable function on Ω:

G(t)=- £ β-k(f)h(t-k) (5.10)
k = l
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It follows from (5.8) that for continuous h we have G(t) = U(t\ i.e. the a priori
multi-valued function G turns out to be single-valued. It is the necessary condition
for solvability of Eq. (5.1).

Remark that this condition is almost sufficient. Namely, if the function G(t) is
single-valued, then it gives the holomorphic solution in ί2* = ί2\{0} which is
continuous up to the boundary. However, this solution has a singularity at zero
since β(0) = 0.

6. Asymptotics of IF" Along Almost all Geodesies (Conditional Result)

In this section we assume that the function U(t) given by (5.5) is not continuous
up to the boundary. Under this assumption we will calculate its asymptotics along
almost all (in the sense of harmonic measure) geodesies Bθ. It turns out to be the
following:

-

r-i -ln(l-r) χμ

Remark. By Makarov's theorem [31], ln/(ί)~ln(l— r) for μ-almost all geodesies.
So, (6.1) coincides with the required asymptotics (1.5) (take into account formulas
(4.4) and (5.4) for characteristic exponents).

First let us give a heuristic argument yielding (6.1). By (5.8), (5.10) we have

(6.2)

for almost all f =(ί,ί_1,...)efl. By (5.9),

/2V
\β-»®\~(τ >

W
where the sign "αM ~ /?„" means

l imln —= 0.

Hence,

(6.3)

Setting t-n — r_ne
iθ~n, t = reiθ, we get r _ M = rb~n, and hence

r_n l-r_ B

(since r is fixed). Comparing this with (6.3), we find

where αc = χμ(β)/χμ is the critical exponent written above.
The main shortcoming of this calculation is that the points ί_π don't lie near

a single radius Bθ but are wandering along dΩ. However, they quite often approach
almost every geodesic which allows us to turn our argument into a rigorous one.
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Let us consider the multi-valued function G(ί) on the covering space Ω given
by the series (5.10). This function is correctly defined due to (5.2), and satisfies the
following equation:

β(t)V(ft)-V(t)=-h(t\ (6.4)

the lift of Eq. (5.1) on Ω. In order to substantiate the asymptotics we need some
analytical properties of the G.

Let us put on Ω^ [0,1] x Σb measure A, the product of the Lebesgue measure
on [0,1] and the^Bernoulli measure μ on Σb. Consider the space A(Ω) of functions
measurable on β, analytic on almost all Riemann surfaces W(ε_) and continuous
up to the boundary in their inner topology (see Sect. 4). Remark that they probably
are not defined at 0.

Lemma 6.1. The function G(t) given by (5.10) belongs to the space A(Ω).

Proof. By the ergodic theorem, β_n(\ t1) ~ e~an (n-> oo) for μ-almost all t = (1, έ)eΓ.
Applying (4.6) to the function p = — In | jS|, we get the similar asymptotics for all
τ e W ( t ) = W(s_). Moreover, for all θ >0 there exists Q(δ,θ) such that

provided |τ| ^ δ > 0. Consequently, the series (5.10) converges uniformly on Wδ(t)
which yields the required statement.

There is the Bernoulli measure μ on the solenoids Γr ^ Σb, and one can consider
the corresponding spaces Lκ(Γr), K > 0. Now let us prove the main technical lemma.

Lemma 6.2. For_sufficίently small κ>0 and any re(0,1], the function G(t) belongs
to the space Lκ(Γr):

Σb

Moreover, for any δ>0 the same is true for the function

G,(β) = sup |G(r,έ)|.

Proof. Applying (4.6) to the function p = In \β\, we get for r ̂  δ:

\β-n(r,ε)\^Q(δ)\β.n(l,ε)\.

Consequently,
00

and further
00

f n = l Γ

But

f \β.n(t)\«dμ(t)= J \βn(Γnt)Γdμ(t)= I \βn(l)Γ*dμ(ΐ)= f \βn(t)\~"dμ(t).
f T r r
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Fig. 4

Thus, it is enough to show that for sufficiently small K > 0 the last integral
exponentially tends to zero as H->OO. To this end we will apply the thermo-
dynamical formalism.

Let vκ be the Gibbs measure corresponding to the potential — κln\β\, and
Pκ = Pf(— K In I β I) be the corresponding pressure. By (4.1),

for any point tεo...εn_ί from the cylinder [e0"*e«-i]-
Asμ[ε0 εM_ 1] = ft~π, then

Hence, it is sufficient to check that for small enough K > 0,

P κ -lnft<0.

But PO = h(f) = In ft, and by (4.3) and (5.2) we have

= -Jln|β|dμ<0.

(6.5)

Ac

Hence, (6.5) holds for any τce(0,κ:0) (Fig. 4), and the lemma is proved.

So, we have two solutions of Eq. (5.1), U(t) = U(t) given by (5.4) and G(t) given
by (5.10). The first of them comes from the single-valued function on ί20; the second
is multi-valued on Ω0 but possesses better boundary properties. The difference
V(t) = U(i) — G(t) satisfies the homogeneous equation

β(t)V(ft)=V(t). (6.6)

Since U(t) is not continuous up to the boundary (see the beginning of the section),
while GeA(Ω), we have V_^=Q. We are going to find the asymptotics of V along
/ϊ-almost all "geodesies" BE= {(r,ε)eί5:0^r ̂  1} as r->l. Since G is continuous
on almost all sheets, the same asymptotics will be valid for U.
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Set

V0(ε) = max |F(r,fi)|.

By Lemma 6.2, F0eLK. Hence

J ln|K 0(ε)|d/ϊ(6)<+oo.
Σb

Now we can apply the ergodic theorem. It follows

ϊϊm -ln\V0(σnε)\^Q (6.7)
π-χ» n

for almost all εeΣb. Let us consider a geodesic J3ε- corresponding to such an ε. Let
r ̂  1/2 and n = n(r) be such a number that

^rbn<Wb. (6.8)

It follows from (6.6) and (6.7) that

I F(r,ε)| = \βΛ(r,ε + )\ \ V(rbn,σnε)\ <\βn(r,ε + )\,

_ ^where the sign "α -< /?" means lim - In (/?„/<*„) ̂  0. Since by the ergodic theorem,
n

|j8Λ(r,ε+)| ~ ena for almost all ε+, we conclude

lim —

From (6.8) we find

Two last estimates yield

^JnWL^r-ι -ln(l-r)" Info

In order to get the opposite estimate let us consider the set

Xδ={εeΣb:V(l/2,ε)^δ}.

As V φ 0, λ(Xa) > 0 for sufficiently small δ > 0. Hence, almost all orbits {σπέ}^=0

pass through Xδ infinitely many times. For such an ε let us consider a sequence
fi(fc)-> oo for which σn(k)εεXδ. Set rn = (l/2)b~n. Then (6.6) implies

This implies the inequality opposite to (6.9). Thus, for almost all εeΣb we have

— lnK(r,εl =Xμ(/Q

r-»ι -ln(l-r) Infc '

and the required asymptotics (6.1) is proved.
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7. 3F" Is not Continuous up to the Boundary

Let us prove first that one of the derivatives is discontinuous on the interval [0, ίj
at the real critical point tc (it is a critical point from the thermodynamical viewpoint;
from the dynamical viewpoint, tc is a repelling fixed point). Denote by λ=(fn)'(tc)> 1
the multiplier of this point.

Lemma 7.1. Let I be a natural number for which λl > 2b. Thenf(l) is discontinuous
on the interval [0, ίc] at tc.

Proof. Let us linearize / at tc:

where λ is an analytic function in an neighbourhood of ίc, φ(tc) = 0, φf(tc) = 1 (the
Kόnigs function). Clearly, ψ can ΐe analytically continued on the interval (0, ίj,
and one-to-one maps it onto the axis (— oo,0].

Set
F = F°ψ~\ g = g°ψ-1.

Then F satisfies the following functional equation:

2b

Due to the linearization we immediately get the functional equation for F(l):

20

If F(l) is continuous on the semi-axis (— oo,0], then it can be given on it by
the following series (compare (5.10)):

k = l A

which gives the analytical continuation of F(l} through 0. Hence F can be
analytically continued through tc contradicting Lemma 3.2.

Remark. The same argument can be applied to any fixed point αeδί2: some
derivative of F\Ω° must be discontinuous at α.

Lemma 7.2. The function F" is not continuous up to the boundary of Ω.

Proof. Assuming the reverse, we will show that all derivatives"F(/1) should be
continuous up to the boundary, contradicting Lemma 7.1.

Let us consider the functional equations for the derivatives of F (cf. (3.6) and
(5.3)):

2b

where hn can be expressed via the derivatives of F of order ^ n:

1 "~i ί d ί f ' } k dkF \(«-k-u
h g(")_λ_ γ (dU_L.<LLΰf\ (7.2)

y 2 f t k -Λ A dt" J) ^ '
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It is convenient to use the following metric in Ω°:

where inf is taken over all rectifiable paths γ connecting z and ζ.
Assume by induction that all derivatives F(k\k= l,2,...,n, are continuous in

Ω (n = 2 is the base of induction). Then the derivatives F(k\ fc = 1, 2, . . . , n — 1, should
be Lipschitz continuous with respect to the metric d. By (7.2), hn should possess
the same property. But if F(M) is continuous in Ω, n ̂  2, then it can be given by the
series (5.10):

F<")(ί)= - V £2 /,„_!(£_,) (7.3)
*-ι [(/°*)'(ί-t)]"

for a μ-typical inverse orbit t = {ί0, f _ 1?...}. It follows from here (taking into account
the expanding property of f\Γ) that F(M) is also Lipschitz continuous with respect
to d. Hence, F(π+1) is bounded in Ω°. It is enough for F(n+1) to be given by the
series (5.10) and, hence, to be continuous up to the boundary.

8. Concluding Remarks

Note that the complex critical exponent calculated in this paper differs from the
usual real critical exponent α at tc. In fact, there is the general scheme including
both cases. Namely, one can associate to any invariant measure v on dΩ0 its own
critical exponent αv, i.e. exponent of power growth of an appropriate derivative
of the free energy along v-typical geodesies. More specifically, let

1 , Γln2fcl
+l, α v = l - < k

L Xv J I Xv }
where [α] and {a} denote the entire and the fractional part of a respectively, and
χv is the characteristic exponent of v. Then the following general formula should
be true:

for v-almost all geodesies.
Indeed, following the scheme of the present paper, we should find the first m

for which the function β = (f')m/2b has positive characteristic exponent:

i.e. m>ln2b/χv (assume that In2b/χv is non-integer). Then by formula (6. 1) we
get(S.l).

For the (5-measure concentrated at the critical point tc we obtain the usual
formula of the renorm-group theory (see [29, 13]):

g=1 ί I n 2 f e ]
lln/'(tt)J

The similar formula holds for any periodic point on dΩ (without any changes in
the proof).
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The main technical problem in proving (8.1) for general v is related to the fact
that if m > 2, then the right-hand side of Eq. (7.1) for F(m) is discontinuous on the
boundary. The same problem arises if one wants to calculate the critical exponent
for the measure of maximal entropy on the boundary of the "high-temperature"
basin Ω±. The true formula should be α = l — {Inft/In2}. It is interesting also to
find the complex critical exponent for b = d = 2.

The other problem is to study the global properties of free energy on the whole
Riemann sphere. They have to do with Gibbs measures on J(f\

We finish the paper with the following important remark. One can show that
the free energy F can be represented as the logarithmic potential of the measure
of maximal entropy of /. This gives another approach to the circle of problems
under consideration and a nice relation of the critical exponent to the local
dimension of the measure of maximal entropy. We are grateful to P. Moussa and
A. Eremenko for interesting discussions of this point.
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