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Abstract. We show the existence of a phase separation at low temperatures in a
one-dimensional one-component classical gas in the canonical ensemble with
interaction hard core — l/rα, l < α ^ 2 . This implies that for sufficiently low
temperatures there are values of the chemical potential at which the pressure is
not differentiable as a function of the chemical potential.

0. Introduction

Most of the results on phase transitions in continuous models are for phase
separation in mixtures and, to the author's knowledge, there are no results on the
existence of a phase transition in a one-component classical continuous gas, see
however Israel [1]. Extending ideas developed in Johansson [2] we will prove that
a one-dimensional continuous gas in the canonical ensemble with attractive
pair-interaction l/rα, 1 < α ̂  2, and a hard core has a phase transition at sufficiently
low temperatures.

In the proof we rewrite the partition function for the continuous model as an
integral of partition functions for discrete models. These discrete models are
similar to a one-dimensional lattice gas in the canonical ensemble.

In the first section we define the model and state our results. The second section
contains the representation of the continuous model as an integral of discrete
models, the definition of blocks, partitions, and the rearrangement procedure and
the main steps in the energy-entropy argument. In Sect. 3 and 4 we prove the basic
entropy and energy estimates.

Many arguments in this paper are similar to the corresponding arguments in
Johansson [2], which we will refer to as [I].
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1. Preliminaries and Results

Consider N particles at positions xί9 ...,xN in ί2 = [0,L], where LeZ+. The
particles interact via the potential

l + oo for 0 < r < l
W [ - l / r α for r ^ l ,

where α > 1. Without loss of generality we have put the hard-core radius equal to 1.
As boundary conditions we let (L, oo) be empty and we put fixed particles at
xk= — (fc + 1), fc = 0,1,... in ( — oo,0). The total interaction energy is then

H ( χ ) = | Σ Σ V(\Xi-Xj\),
i=l j=-ao,j*i

where x = (x1,..., xN) e ΩN. Since H(x) is symmetric with respect to permutations of
xl9 ...9xN

 w e c a n restrict our attention to ordered configurations. Let

X = {XGΩN; X1>0, XN<L9 xk+ί-xk>ί, k=ί,...,N — ί}

and define for AQX,

The configurational canonical probability measure for the ordered configurations
is

= Z(A)/Z(X)9 AQX. (1.1)

The density, d(τί9 τ2) (x\ of the configuration x in the interval [E^L], [τ2L] + 1),
0 ̂  τ± < τ2 ^ 1, is the number of particles in x in this interval divided by the length
of the interval. Here [•] denotes integer part. Let the asymptotic average density ρ,
0 ^ ρ < l , be given and write Ω->.R+ for the thermodynamic limit N, L-»oo,
N/L^Q. We can now define what it means for the gas to have a uniform/non-
uniform density in the thermodynamic limit exactly as in [I].

For a given small δ>0 and given ρ>δ we put

(5)-y (1.2)

The main theorem of this paper is

Theorem 1.3. Assume that 1 < α ^ 2 and 0<ρ<l/2. There exist positive constants
K, ξ, β0 depending only on α and ρ, such that if β>β0 and δ = K exp( — ξβ), then for
each ε>0,

lim P{xeX;d(τuτ2)(x)^\/2-2δ} = l

for any fixed τ l J τ 2 , O ^ τ 1 < τ 2 ^ d 1 — ε and

lim P{xeX;d(τuτ2)(x)^2δ} = ί
Ω->R +

for any fixed τ l 5 τ 2 ,

The constants in the theorem are such that δ< 1/16 and 0<d1<d2<l when
β^βo- This means that we have a non-uniform density in the thermodynamic
limit. By an argument analogous to the corresponding one in [I] this implies
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Corollary 1.4. Let 1 < α ̂  2. Then if β^.β0 there is a value of the chemical potential
μ for which the pressure p(μ, β) is not differentiable as a function of μ.

2. Proof of the Main Theorem

2.1. The Discrete Model

Let A = {0,..., L - 1 } and let K denote the set of all n e {0,1}Z such that nk = 1 if
fc i f f c d

Given neKwe define p(n) e AN by npuin) = 1,0 ̂  p^n) < . . . < pjyfe) ύL—1. For every
x e X we define n = n(x)eX by n[Λ.k] = l,fc = l, . . . , ^ , ^ = 1 if i ^ —1 and all other n/s
are =0. We also define s = s(x)e[0,l) z by s[JCk] = xΛ —[xfc], fc = l,...,iV, and sf = 0
otherwise. Given n and s, x is uniquely determined since

and consequently the map F:X-+Kx[0,l)z defined by F(x) = (n(x),s(x)) is
injective. Let

and /σ(ί) = (ίσ(i)>...,tσ{N)) for σeSN, the permutation group on {1, ...,JV}.
Note that for each x e X there are unique t = t(x) e T and σ = σ{x) e SN such that

xk — lxkl = tσ(kγ k = l,...,N. Given a subset 4̂ Q X and a ί e T w e write

A(t) = {xeΛ;t{x) = t}

and

2 keΛ, leZ
feΦZ

Define

z<t>Λ)= Σ e~

This defines our discrete model for a given t. Q(t, X) is always non-empty since p(n)
Λ-teA(t) for any teT and any nsK. Z(t,X) is the partition function for our
discrete model. The next lemma says that our continuous model is an integral over
these discrete models.

Lemma 2.1. For each AQX,
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Proof. For m e K we let

J(m) = {x-p(m); n(x) = m and x e 4 } .

Then J(m)+p(m), m e X a r e disjoint with union A. The sets /σ(T), σ e S ^ are also
disjoint with union [0,1]N apart from a set of measure zero. Put /(m, σ) =f~ \J{m)
n/σ(Γ)) a subset of T. Then

$ = Σ Σ ί
A weK σeSN J(w)nfσ(T) (2 Ϋ\

=ί Σ Σ h,m,M)e-mί^m))dNt.
T meK σeSN

For a given teTwe define G:A(t)->Kx5N by x^{n(x\σ{x)). G is injective since
( ) / X 0 N

) = {(m, σ); p(m) +/σ(ί) e

= {(m,σ);tel(m,σ)}.

Thus the integrand in (2.1) can be written as

(w,σ)eG(A(t))

2.2. Definition of Blocks and Partitions

We now fix t e T and take Q = Q{t, X) as our configuration space. Let 0 ̂  a < a' ̂  L
be two integers and (n,s)eβ a configuration. Then

is called a 6/oc/c in (n, 5). 4 is an o-block if nα = 1, nα, _ 2 = 1, and na, _ j = 0, and an
e-blockif nί = na,_ί= 0. We also define < — 00,α> and <α, 00> in the obvious way.
They are always an o-respectively an e-block. Two o-(£-)blocks A = (a,a'y and
B = (a\a"} can be joined to a new o-(e-)block AB = (a,a"}.

A set of integers y = {ai9..., ar}, 0 ̂  ax <... < ar ^ L defines a partition of (n, s)
into blocks <αfeJ α fe+x >, fe = 0,..., r, where α 0 = — 00 and αr + x = 00. We will say that
<αfc, ak+!> is a block in (n, s, y). Our partitions will depend only on n and not on s
and we will write y = y(n) to indicate this dependence.

For x, y e Z and (M, 5) e 6 we define ΛΓ(x, y) (n) as in [I], (1.5). Fix a /? ^ β0 and let 5
be as in Theorem 1.3. The constants X, ξ, and β 0 will be defined in Sect. 2.4.

Definition 2.2. Let y be a partition. We will say that (n, s, y) has the density property
if the blocks in (n, s9 y) alternate between o- and e-blocks and for each 0-(e-)block
A = (a,a') in (n,s,γ)
(i) N(a,x)(n)MV2-δ)(x-a-l) (gφ-fl)).

(ii) ΛiΓ(x,α'-l)(n)^(l/2-5)(έi/-x-l)(^5(έi'-l-Λ;))ifα^x<fl/.
We will now define a partition y ̂ n) for every configuration {n,s)eQί:= Q(t, X).

Put

fc = l,2,.... Define

y(0)(n) = {ieZ; (nt,29n^l9nύ = (ί9090) or =(0,0,1)}.
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The blocks in (rc, s, y{0\ri)) will alternate between o- and e-blocks. A 1 followed by a
double 0, (1,0,0), means going from an o- to an e-block and at the next 1, (0,0,1), a
new o-block starts. In the same way as in [I] we successively define y(k\n),
fc = l,2,. . . . We let

yi(n) = yivkN\n)9 (2.2)

where

(2.3)

and v,ω are constants depending only on α. They are given by (3.7) and (3.16)
respectively.

2.3. The Rearrangement Procedure

Let (n, s) be a configuration and γ = {au ..., a2r-1} a partition into 2r blocks such
that the density property is satisfied. The operation Skk+1(n,s,y,<5) = (n',s',/,<!>')
defined by letting block number k change place with block number k + 1 is defined
exactly as in [I]. Recall that δ is a set whose elements are old partition points
removed during the rearrangement procedure.

Lemma2.3. // (n,5)eβ(ί,X\ then Sk>k+ί(n,s)eQ(t9X), teT.

Proof. From the definition of Q(t, X) it follows that (n, s) e Q(t, X) if and only if
sPkiΰ) = tσ(k), k = l,...,N,ϊor some σeSm all other Sj = O, and

Recall that x e X if x satisfies the hard-core condit ion xk+1 — xk>l,k=l,...,N — 1,
a n d x 1 > 0 , x N < L . Write(n\s') = Sktk+x(n, s)andx! = F" 1(n\ s'). Since we get s'from
s by a permutation of the elements of s it is clear that s'pM) = £σ,(fc), fc = 1,..., AT, for
some σ'eSN. If <αfc_1?αfe>, fc = l,...,2r, are the blocks in (n,s,y), then from the
definition of o- and e-blocks we have that nflk_ x = 0, fc = 1,..., 2r — 1 and hence also
sflk_! = 0. Thus the hard-core conditions place no restriction on the order of the
blocks <α k _ l 5 α k >. Consequently x' also satisfies the hard core conditions and
(n\s')eQ(t,X). D

Write ^ f c = < α 2 ( f c _ 1 ) , α 2 k _ 1 > , 5 k = <α 2 k_ 1,α 2 f e>, fc = l,...,r, so that ^ l 5 . . . ,^ r are
o-blocks and Bί,...iBr are e-blocks. A denotes a constant, depending only on α,
which will be specified in Sect. 4. We now turn to the definition of the elementary
rearrangement operation S. Assume first that an o-block Ak is the shortest block. If
one of its neighbouring e-blocks has length ^ λ times the length of the other, we let
Ak change place with the shortest of its neighbours. Otherwise we let Ak change
place with that neighbouring block which gives the lowest energy for the resulting
configuration. If an e-block, Bp is shortest we take the shortest of its neighbouring
o-blocks and apply the procedure just described to this o-block.

More formally we consider the shortest block among AUBU ...,Ar,Br or the
leftmost if it is not unique,
(a) Assume that Ak is the shortest block:
(i) if |β k | ^4B f c - i l , then S = S 2 k _ 2 , 2 k _ 1 ?

(ii) a\Bk^\^X\Bk\9 then S = 5 2 k _ l i 2 k ,
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(iii) if λ-ι\Bk\<\Bk.γ\<λ\Bk\, then S = S 2 k - 2 f 2 k _ 1 in case

and S = S2fc_i,2fc otherwise.
(b) Assume that £, is the shortest block and \Aj\ ^ \A^+ γ\. Then S is defined as in (a)
with k=j. If | ^ | > | ^ + 1 | 5 t h e n S is defined as in (a) with k=j + l.

We can now define Qj and partitions γj(n) for each (n, 5) e Qj precisely as in [I],
and the rearranged configuration we get starting from (m, s, y; _ ̂ m)) is denoted by

(R(m),R(s),Ry(m),Rδ(m)).

It follows from Lemma 2.3 that QjQQ = Qv

Lemma 2.4. (m, s) e <2/_ 1 ? 7 ̂  2, is uniquely determined by (R(m), R(s)9 Ry(m), Rδ(m)).
This is proved exactly as Lemma 2.4 in [I]. The proof of the next lemma is,

apart from minor changes, the same as the proof of Lemmas 2.3 and 2.5 in [I]. The
necessary modifications will be outlined in Sect. 3.2.

Lemma 2.5. For every (n, s) e Qβ 1 ̂  j ^ km (n, s, y/n)) has the density property and all
blocks in (n,s,y/n)) have length ^uy

2.4. The Energy-Entropy Argument

We now turn to the proof of Theorem 1.3. Fix 0^τι<τ2^dί — ε, where ε>0 is
small and d1 is given by (1.2) with δ as in the theorem. Define

Aτuτ2 = {xeX;d(τuτ2)(n)<l/2-2δ}.

If d2 + ε ̂  τx < τ 2 ^ 1 we define instead

Aτut2 = {xsX;d(τuτ2)(n)>2δ}.

We will show that there is a constant C independent of N and teT such that

zit,x) =JV

Lemma 2.1, (1.1) and (2.4) imply that P(Aτut2)->0 as Ω->R+ and Theorem 1.3
follows.

The rearrangement procedure defines a map 0t: Q->QkN by (n,s)->i?*N~1(n,s)

#ι(ί)={(«,3) e β(ί, X); \ykNmn))\ ^ 3}

and H](t)=R(Hj^1(t)), 2^j^kN> for every ίe T.

Lemma2.6. Let d1 and d2 be given by (1.2). // 0^τί<τ2^dι—ε or
< τ 2 ^ l , then

Qit,Aτuτ2)QHx(t)

for all teT.
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We postpone the proof of this lemma to the end of Sect. 3.2.
By Lemma 2.6, (2.4) will follow if we can prove

1 ^£_ (2.5)

with C independent of t and N. The proof of (2.5) is an energy-entropy argument
which is completely analogous to the corresponding energy-entropy argument in
[I]. In Sect. 3 we will prove that Lemma 3.2 in [I] is true also in the present case if
we let Cx = log(C'1/δ), where C\ depends only on α.

The constants in Theorem 1.3 are defined as follows. Let

where

(50 = min{ρ,l/4-ρL, 1/16, c7}

and c7, which depends only on α, is given by (4.12) below. For given β^β0, δ is
defined by β = (l+4log(C\/δ))/κ so that β^β0 implies δ^δ0. This gives
δ = K exp(- ξβ) with ξ = κ/4.

If all blocks in (w, s, y) have length ^ Uj and (n, s, y) satisfies the density property,
then

H((n, §)) - H(S((n, §))) ̂  2κj, (2.6)

where K is a constant that depends only on α. This energy estimate will be proved
in Sect. 4. It follows from repeated use of (2.6) that

H(n, s) - H(R(n, s)) ̂  κ\Rδ(n)\j (2.7)

for every (n, s) G Q7 _ x. Using the entropy estimate (3.1) in [I], (2.7) and Kβ — Cx ̂  1
we can do exactly the same computation as in Sect. 3.3 in [I] to show that

y g-0ff(o,s)<^ y e-βH(n,s) + log(2kN)\ykN(n)\ Π.8)
(B,δ)eHi(£) "~ (n,s)eHkN(t)

where η is a numerical constant. From the definition of Hx(ί) we know that
|y*wfe)lί^3 if (^sjeH^t). We can now estimate the right-hand side of (2.8) using a
final global rearrangement in exactly the same way as in Sect. 3.4 in [I]. This gives

s) S CL3(ϊogN)3N-2κωβ, (2.9)

where ω is the constant in (2.3). At the end of Sect. 3 we will see that if β ̂  β0 then

2κωβ^4. (2.10)

Thus (2.5) follows from (2.9) and we have proved Theorem 1.3.

3. Proof of Some Lemmas

3.ί. The Entropy Estimate

The proof of Lemma 3.2 in [I] is based on the following lemma. Let

Wj^p-hk, Wj=wjJ+ί, (3.1)
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where ζ will be specified at the end of this section. Recall that λ is the constant in the
definition of an elementary rearrangement. The constants λ and ζ depend only on
α.

Lemma 3.1. There is a constant Cλ that only depends on λ, such that for all
βj-i the distance from an element in Rδ(n) to the closest element in Ry(n) is

j 2k

Proof Denote the assertion in the lemma for a given) by {a)y The proof is similar to
the proof of Lemma 3.1 in [I] but is more involved due to the more complicated
definition of an elementary rearrangement. Let (b)p 1 ̂ j<kN denote the following
assertion

Consider two o-(e-)blocks of length ^wjtk in (n, s, y/n)),
(n, s) e Qj. Then the total length of the o-(e-)blocks between them
is k u k ( k j l ) k

Here v is the constant in (2.2). That (b)1 is true follows from the definition of yγ(n) in
the same way as in [I]. We will prove Lemma 3.1 inductively by showing that
(b)j_1 implies (a)j and that (b)j-1 and (α)7 together imply (b)j, 2^j<kN.

Assume that (&),._ ί is true. Below A and B with some index will always denote
an o-block and e-block respectively. Consider first the elements of Rδ(n) inside an
o-block A in (R(n),R(s),Rγ(n)). A is built up from o-blocks Al9...,Ar9 r ^ l in
fe&ty-ife)):

(n,s)=...B0A1B1A2...Br_1ArBr...,

(Rfa)9R(s))=...B0...B,-1A1...ArB8...Br...9

= ...BAB'...,
where B0,...,Br are e-blocks in (n,s,jj-^n)).

We will prove that there is a ί, 1 ̂  t ̂  r, such that

maκ{\A1...At-1\,\At+1...Ar\}£CλwJ-1. (3.2)

The left-hand side gives an upper bound on the distance from an element in Rδ(n)
inside A to the closest element in Ry(n).

Claim 1. Suppose that at some step in the rearrangement procedure from
{n.s.jj-^n)) to (R(n%R(s\Rγ(n)) the elementary rearrangement

(m,r)=...A°B°A
1
B
ί
A
2
B
2
...,

(S(m)
9
 S(r)) =... A°B°B

1
A
ί
A
2
B
2

was done. Then one of (i)-(iϋ) below must hold
(i) \Aι\<up\A'\^\A\and\B'\<λ\B%

(ii) l ^ μ 2 ! , and |BΊ<w*
(iii) \A°\>\A\ \BP\KUp and l * 1 ^ * 0 ! .

To see this we use the definition of the S-operation in Sect. 2.3. If A1 is the
shortest block, then \Ax\<u} and l^l ^\A2\. In case \BX\^λ\B% A1 and B° would
have changed place instead. Thus (i) holds. If A1 is not shortest block, either B° or
B1 must have been shortest. If B1 is shortest, \B1\<uj and since A1 and B1 changed
places, l ^ l ^ μ 2 ! . Thus (ii) holds. If B° is shortest, |£0 |<w, , M 0 ! ^ 1 ! since
otherwise A1 would not have been involved. Furthermore if |2r | ̂  \B% A1 and B°
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would have changed place. Consequently, l^1] </l|^0 | and (iii) holds. This
establishes Claim 1.

Claim 2. Suppose that at some step in the rearrangement procedure from
(^s^yj-iin)) to (R(n), R(s), Rγ{n)) the elementary rearrangement

...Ak_iJ2+1)Bk_J4 ...Bk-U3 + ί)Ak-.J2...Ak-Uί + ί)Bk-h...

...Bk_γAk.h...AάBk...

to

_ j 4 . . . Bk-ίAk_j2... A k _ j ί . . . A d B k ...

was performed. Assume furthermore that j2>2[2λ] + l, \Ak_J2...Ak_Ui

d j t ^ 0 . Thenj3 = ί, IB^^KUp and

\Ak_J2...Ak_Uι+1)\s\Ak-h...Ad\. (3.3)

It is clear that 72"~(/i + l)=Λ a n d thus J2=J4+Ji + l- Since
\Ak-J2 ...Ak-Uί + 1)\^Ujit follows from Claim 1 that either \Bk_J3 ...Bk.
(3.3) holds, or

Uj and \Bk-h...Bk.1\<λuJ.

In the first case we get)3 = 1 and \Bk _ x | < Uj. In the second case we get j4 =j3 + 1 and
; 3 ^[2A], since all 5/s have length ^u}_v Thus jA^[2/1] + 1 a n d ^ ^ - l
^[2/1] —1. This gives 72^J4+Ji^2[2/l]4-l, which contradicts the assumption

j2 >2[2/l] + 1 , and the claim is proved.
If # s _ ! ends up to the left of 4 and Bs to the right of A, then 4̂S must have been

fixed throughout the rearrangement procedure, since if As has been moved Bs_ί

and Bs would have been joined. We now define two integers q1 and q2 as follows. If
s = 1 or if \At\ < Uj for 1 ̂  i: ^ s — 1 we put ^ = 0. Otherwise

^i^s — 1}.

If 5^3 we put ^2 = 1- If s^4 we define, for l ^ ί ^ s —3, vf = 0 if the first time ^ is
joined with another o-block, this o-block contains As_2, otherwise vt = 1. If vf = 0
for all ί, l^ί^s — 3 we put q2 = 2, otherwise

;vs_ί = l, 3^ί^s — 1}.

Let ^ = max{^ l5^2} Then the following claim is true.

Claim3. \AX ...Aa-q-1\£3λ2wj-1.
Since q^qu Al9...9As-q-1 all have length <Uj and we can assume that s — q

— 1 > 3, otherwise the bound follows trivially. Also q ̂  q2 and the definition of q2

gives that As-q-l9...9A1 were joined successively with an o-block containing As_ 2 .
According to Claim 1, when A2 is joined with the o-block containing A3 we must
have

If \B2\^λwj_i then \Bί\^wj_1 and by (ί>),_u \A2\^M;and we get a contradiction.
Consequently \B2\<λwj-1. Similarly we must have
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and hence |B3 ...Bs_q_ί\<λ2wj_ί which implies s — q — 3^λ2wj_ί/uj_ί. Thus

and the claim is proved.

Claim4. \Bs^\<λuj if ί£i£

lϊq1=0 there is nothing to prove, so assume that q1 ^ 1 and \BS_f| ̂  λujfor some
i,i^i^qv Since Bs^1 ends up in B the same holds for Bs-t. At some step in the
rearrangement procedure an e-block of length ^λuj containing Bs_t must have
changed place with an o-block containing As_qι of length ^.Uy By Claim 1 this is
not possible. Thus IBg^JiKλuj.

It will be convenient to write

Claim 5. At least one of the following two assertions is true:
(i) \A1...A3-2\£(3λ2 + 2)wj-l9

(ii) μ i . . .^ s _ € l_ 1 | ^ (3A 2 + χ)wJ..1 andq^χ.

Assume that q>χ. At some step in the rearrangement procedure an o-block
containing As_q must have been joined with an o-block containing As. The o-block
containing As_q must then have length *tUj, because if q = ql9 \As^q\^Uj and if
q = q2, As_q is joined with some other o-block before it is joined with As_2, and
hence before it is joined with As. Thus we perform a rearrangement of the type
given in Claim 2 with k = s,d^s, and72 ̂ q ^ Λ +1 since the o-block closest to the
left of As is always Bs_v We see that \Aa-J2 ...As-Uι + ί)\^Uj and j2>2[2A] + l.
Furthermore, j3>jχ since the blocks Bs_ t/ l + 1 ),...,B s_ 1 must all lie in
^-fc. .B,-!. Claim2 now gives j 3 = ίjx=0, and | B S _ 1 | < M J .

Consequently at some previous step in the rearrangement procedure an o-block
containing As_q must have been joined with an o-block containing As_ 1# Again we
have a rearrangement of the type given in Claim 2, this time with k = s = l,d = s — l,
j3>jx, and s-ί-j2^s-q, i.e. ; 2 ^ ^ - l > 2 [ 2 A ] + 2. Claim2 gives jf'3 = l5

| β s _ 2 | < W j and

IΛ-,. .Λ-2I^IΛ-il. (3.4)

We see that at some previous step in the rearrangement procedure an o-block
containing As_q must have been joined with an o-block containing As_2. The same
argument as above using Claim 2 now gives

M I_ 4 . . .Λ I_ 3 |^ |4,_ 2 | . (3.5)

Suppose that |^4s_2|^vv/_1. It follows from (3.4) that [A^^^Wj-^ and hence
(b)j-1 gives |β s_ 2 |^M 7 . This contradicts | 5 S _ 2 | < M J and consequently |^ s _ 2 |<w J _1

and \As_q... ^4s_2|^2vvJ _1 by (3.5). Combining this with Claim 3 we see that (i)
holds.

Assume now that q^χ. lϊq = qu \AX... >4s_βl_1|^3λ2ιv/ _1 by Claim 3 and (ii)
holds. In case q = q2, \A1 ...^ls_€2_1|^3A2wi_1 by Claim 3 and

and (ii) follows. This establishes Claim 5.
By symmetry we can apply the same argument to blocks to the right of As. We

introduce integers pl9p2 analogous to gl5<?2 and prove the next claim.
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Claim 6. \Bs+i\<λuj if 0^i<pl and at least one of the following assertions hold
(iii) \As+2...Ar\^(3λ2 + 2)wj.i,
(iv) \As+pι + ί...Ar\^(3λ2 + χ)wj_ί and p^χ.

We are now in position to prove (3.2). Let 1 ̂ μ 1 ? μ2^χ, let At be the longest
block among As_μι, ...,As+μ2 and Ad the second longest. If \Ad\<Up then

mnx{\As-μi...At-1\9 \At+ί...As+μ2}<L2χUj. (3.6)

If \Ad\ ̂  Uj it follows from Claims 4 and 6 that the e-blocks between Ad and At have
length -ζ\d — t\λuj'ζ{μι+ μ2)λuji^2λχuj. Now define the constant v in (2.2) and in
(fyby

v = Dog2(2Aχ)] + l . (3.7)

If MU^w, _ 1 J + v a n d ; + v^v(/c i V-; + 2) + feiV, i.e. 7 ^ ( ^ - 7 + 1) + /^, then (b)j.ί

gives that the total length of the e-blocks between Ad and At is^uj+v> Iλχuy Thus
we get a contradiction and conclude that \Ad\<wj_1j+vS(2λχ)2wj-ί. Hence

m3ix{\As_μi...At_ίl\At+1...As+μ2}S2χ(2λχ)2wj_1. (3.8)

There are four possible combinations of the assertions in Claims 5 and 6. For the
combinations (i) and (iii), (i) and (iv), (ii) and (iii), (ii) and (iv) we choose respectively
μ 1 = μ 2 = l ) μ1 = l, μ2 = pu μx=qu μ2 = l and μx=pl9 μ2=Pι In all cases we
obtain (3.2) by combining the assertions in the claims with (3.6) or (3.8).

It remains to consider elements of Rδ(n) inside an β-block B in {R(n\ R(s), Ry(n)).
B has been built up from e-blocks in {n.s.y^^n)), and one of these e-blocks must
have remained fixed during the rearrangement procedure, say that Bo was fixed.
Then

(n,s)=...A_uB_uA_u+ί...A0B0A1Bi...Bs_ίAsBs+1...ArBr...,

(R(n),R(s))=...A_u...A0B_u...B0...Bs_ίAί...As...ArBs+1,

Claim 7. (i) // |£f|<Aw; for ί ^ ι < s , where ί^2, then

(ii) // At _ x and At are joined before At and At + x are joined then \Bt\ < λUj for t^i<s.

Let qί and χ be defined as above, lϊ qί>χ then by Claim 5, \A1 ...As_2\
2

 j-1 and since all blocks have length ^w, - i this implies

Assume that <h = X ^Y Claim 5 it follows that we always have s—qί
2

 J._1/wi_1 and we get

and

This proves (i).
If At and Aΐ+ί have not been joined, Bt lies to the right of At. When At_ γ and At

have been joined Bt will lie to the right of the o-block containing At_ XAV \t\B^ ^ λUj
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for some i, t^i<s, then at some step in the rearrangement procedure an e-block of
length ^ λUj containing B, must change place with an o-block of length ^ Uj
containing At_γAt, but this is impossible by Claim 1.

Claim 8. There exists a p^χ such that

\Bp...Bs_ί\ί(6λ* + 3λχ + 2λ2)wj_1 (3.9)

and \Ai\<Uj when l^ί<p.

By Claim 4, |B s_ f | < λuj when l^i^q and hence Claim 7(i) gives

If s — qί ^ χ we can take p=s—qv Note that by the definition of ql9 \At\ < Uj when
1 ^i<s — qv Assume that s — qί>χ. If Λ - i a n d At are joined before At and At+1

are joined for some ί, 2 ^ ί ^ χ , then Claim 7 shows that (3.9) holds with p = t.
Suppose that this is not the case. Consider the step when Aχ and Aχ+ί are joined.
Then, by our assumption, Aχ_ ι and Aχ have not been joined and consequently nor
have Aχ_2 and Aχ_ίorAχ..3 and Aχ_2. The following elementary rearrangement
is done:

...Aχ-2Bχ-2Ax-1Bχ-1AχBχ...Bx+JlAx+1...

to

By Claim 1, \BX ... Bχ+Jι\<2λ\Bχ_1\. As in Claim 7 it follows that \Bi\<λuj when
ί>χ+jι and Claim 7 gives

- 1 . (3.10)

At some later step Aχ_γ and ^lχ will be joined and the same argument gives

where 72 ̂ ji. If |Bχ _ x | ̂  2λwj_! then |Bχ _ 21 ̂  w7-_ x and since |̂ 4χ _ 1 \ < Uj this
contradicts (b)j-v Hence |βχ_1 |<2Aw i_1 and we get \Bx...Bx+jί\<4λ2wj-1.
Together with (3.10) this proves (3.9) with p = χ.

We can now prove the following claim by a completely analogous argument.

Claim 9. There is α q^χ such that

and \A_t\<Uj if 0^i<q — ί.

Now let Bt be the longest block among B_q+15..., Bp_ ±. Using Claim 8, Claim 9
and (fc)j-i we can apply the same argument as that after Claim 6 to prove that

with a suitable Cλ. This completes the proof of (a)j.
We now turn to the proof of (b)j given that (ί?); _ x and {ά)j are true.

Claim 10. Suppose that we have two o-(e-)blocks C and C of length ^wjJc in
(ϋ,s,y}{n)\ (n,s)eQj for some kj^k^v(kN —j+l) + kN such that the length of the
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e-(o-)blocks between them is <uk. Let v' = [ log 2 (3 + 2Λ)] + l . Then there is a

configuration (m9r)eQj-ί9 R(m9r) = (n,s) with the following property. In

(m,ΐ,yj-i(in)) there are two o-(e-)blocks C2 and C 2 , of length ^.Wj-ίtk + v>9 such that

the length of the e-(o-)blocks between them is < 3uk + 2λUj.

Since v'^v, k^v(kN-j+ί) + kN implies that k + v'tzv(kN-(j-l) + l) + kN.

N o w 3uk + 2λUj<uk+v,, so Claim 10 contradicts (b)j-ι. Hence the assumption in

Claim 10 must be wrong and {b)j follows.

To prove Claim 10 we first show that there is an (m, r) eQj-ι with R(m, r) = (n, s)

and blocks Cx and C\ in (R(m), R(r\ Ry(m)) of length ^ wjtk9 such that the length of

the e-(o-)blocks between them is < 3uk. Assume first that C and C are e-blocks and

let Al9 ...9AP and Bl9 ...,Bp_ί be, respectively, the o- and e-blocks between C and

C in (n,s,y/n)). We write C = <60,fli>, C = {bp,ap+1\ 4 = <<!*&,>, and

Bι = <bbai+iy. There is a ( m , r ) e g , _ x with R(m,r) = (n,s) such that aγ eRy(m). At

least one of bb l^if^p, must belong to Ry(m) since otherwise we would have an

o-block < α 1 ? b ) , in (R(m),R(r%Ry(m)) with b^ap+1. Since \At\ + . . . + |i4p | < u k and

\C\ ^ wjtk this would contradict the density property of (R(m), R(r)9 Ry(m)). Let bq be

the largest among bi9 l^i^p, that belongs to Ry(m). In (R(m),R(r)9Ry(m)) we have

two e-blocks Cί = <c, aγ> and C^ = <Joφ c'}, where c ^ b0 and cr ^ α p + v Clearly Cγ

and CΊ both have length ^ w ; k. Consider an o-block A = <α ί l 5 fei2>, 1 ^ Ϊ\ ^ ί2 ̂  ^,

between Cγ and Q in (R(m), R(r), Ry(m)). If ^ = i2, \A\ = |^4fJ. Suppose that iί < i2 so

that A = AhBi 1... Bi2 _ ^ ^ Using the density property of {R(m), R(r), Ry{m)) we get

that the number of occupied positions in A is

On the other hand, using the density property of (n, s, y/n)), we see that the number

of occupied positions in A is

This gives

since δ ^ 1/16. It follows that the total length of the o-blocks in (R{m), R(r), Ry(m))

between Ct and C\ is < 3uk. The case when C1 and C\ are o-blocks is analogous.

If we let ζ in (3.1) be given by

(3.11)

it is easily shown that

w Λ f c - 2 C A v v . 1 ^ w k 1 f e + , ,

1 .

The o-(e-)blocks Cγ and CΊ have been built up from o-(e-)blocks in (m, r, 7j_ ^m)). It

follows from (α)7 that there exists o-(e-)blocks C 2 and C 2 in (m, r, jj_ x(m)) contained

in C x respectively C\, such that C 2 and C 2 have length wjk — 2CλWj-1 ^ wk_ 1 > f c + v , .

Assume first that C 2 and C 2 are e-blocks. Let Al9..., Ap be the o-blocks between C 2

and C 2 in {jn9r9y^γ{jri)). If an o-block containing one or several of Aί9 ...,Ap

changes place with an e-block containing one of C 2 or C2, it follows that the length

of this e-block increases by at least λ~ 1 | C 2 | or λ~ 1\C2\ respectively, i.e. using (3.12)
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by at least CλWj_v But this contradicts (a)j. Thus all Al9 ...,AP are included in
o-blocks between C1 and C\ in (R(m\ R(r), Ry(m)) and it follows that |>41| + ... + \Ap\
<3uk.

Assume now that C 2 and C'2 are o-blocks and let Bl9...,Bp be the e-blocks
between C2 and C"2 in ( m ^ y ^ ^ m ) ) . Suppose that an e-block B1 containing
e-blocks among Bl9 ...,Bp changes place with an o-block Aγ containing C 2 :

...A°B0A1BγA2...^...A0B°B1AιA2...

By Claim 1 either \AX\ rg \A\ which will contradict (a)j in the same way as above, or
\B°\<Uj and IB1! <λ\B°\ and consequently IB1! <λuy Since \B°Bι\ ^ u s this second
case cannot be repeated. The same argument can be applied with C 2 instead of C 2.
It follows that the length of the e-blocks between Cx and C\ is at least
\B±\ + ... + \Bp\ - 2λuj. Hence \BX | + . . . + \Bp\ - 2λUj < 3uk. This establishes the claim
and completes the proof of Lemma 3.1. •

The proof of the entropy estimate using Lemma 3.1 is now exactly as the proof
of Lemma 3.2 in [I], except that 16vVj_ x is replaced by 2CλWj- 1 and ζ in (3.1) is not
= 9 but is given by (3.11). This gives Cι=log(CJδ), where C\ can be taken to
be =8ζ.

3.2. Proof of the Density Property for the Partitions

The proof of Lemma 2.5 is very similar to the proof of the Lemmas 2.3 and 2.6 in
[I]. The proof that (n, s, y^n)) satisfies the density property for all (n, s) e Qγ is the
same as the proof of Lemma 2.3 in [I]. The only difference is that y(0)(n) is defined
differently. If <α, a'} is an o-block in (n, s9 y

(0\n)) then na = 1, na, _ 2 = 1, na> _ γ = 0 and
we do not have two consecutive zeros in the sequence na,..., na> _ v This means that
1 — δk has to be replaced by 1/2 — δk everywhere. The proof, by induction on j , that
(ϋ,s,yj{n)) has the density property for every (n,s)e<2/ is the same as the proof of
Lemma 2.6 in [I] except that 1 —δ is replaced by 1/2 — δ.

We will now prove that all blocks in (n, s, y/n)) have length ^ Uj. Let A = <α, a'}
be the shortest block in (n,s,y/n)) and let B = (a',a"} be its right neighbour,
|B|^|i4|. There is a (m,r)eQj.1 such that R(m,r) = (n,s) and aeRy(m). If | B | < M ^
then a' φ Ry(m) since all blocks in (n, s, Ry(m)) have length ^ Uy The next point, b, to
the right of a in jRy(m) is ^ αr/. If ̂ 4 is an e-block then B is an o-block and <α, b> must
be an e-block in (n, 5, y{m)). The density property gives

N(a, a"-\) (n) S δ{a" - a). (3.13)

On the other hand the density property for (n, s9 yjin)) gives

N(a, a"-\) (n) = N(a, at -1) (n) + N(a\ a"-\) (n)

^0 + (l/2-δ)(a"-a'U(lβ-δ)Wr-a), (3.14)

since |B| ^ \A\. Now (3.13) and (3.14) are contradictory if δ S1/16 so we must have

j

Assume now that A is an o-block and hence B is an e-block. Recall that a < a!
<a'f^b and a" — a^d — a. <α, b} must be an o-block in (n, s,Ry(m)). We will prove
the following property for the o-block <α,fc>:

If a^x<x + s<b and N(x,x + s){n)^δd, then x —α^2s. (3.15)
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Thus a' — a^t 2(a" — a—ί) and we get a contradiction. Hence if we can prove (3.15)
we are finished.

If every o-block <α,b> in (n,s,y) satisfies (3.15), then so does every o-block in
S(n, s, y). To see this suppose that the o-blocks Aγ and A2 have been joined to A1A2

= <α, b}. Let a\ a < a' < b, be the position of the old partition point. If a' e (x, x + s),
then since N(x,x + s)(n)^δs we must have either N(x,a' — \)(n)^δ{a' —x) or
N(a\x + s)(n)^(x + s — o!\ which both are impossible by the density property.
Hence <x,x + s> must be completely within A1 or A2 and we are done.

Thus if every o-block in (m,r,yj_1(n)), (m,r)eQj-ί satisfies (3.15), then so does
every o-block in (R(m% R(r), Ry(m)) and since o-blocks in (n, s, y3{n)) are parts of
o-blocks in (R(m), R(r), Ry(m)) for some {rn9r)eQj-ί, R(m,r) = (n,s), we see that
(3.15) holds for o-blocks in (n, 5, y/n)). Hence it suffices to show that (3.15) holds for
every o-block <α,b> in fas^y^n)) for each (n,s)eQv This is done inductively by
showing that (3.15) holds for o-blocks in (n,s,yik\n% k = 0,...,vkN. That (3.15) is
true for k = 0 is trivial since N(x, x + s) (n) ̂  δs is impossible. The argument is now
very similar to the proof of Lemma 4.1 in [I]. Assume that (3.15) is true for o-blocks
in (ϋ, s, y(k~ 1)(n)) and let A = <α, b} be an o-block in (n, s, y(k\n)). Ify is the length of
the e-blocks in (n, s, yik~ υ(n)) that wholly or partly lie in <x, x + s>, then just as in
the proof of Lemma 4.1 in [I] we get x — a^.vk—(s — y\ y^uh and

Together with N(x,x + s)(ή)^δs and (5^1/16 these estimates show that (3.15)
holds.

We will now discuss the proof of Lemma 2.6. The proof is almost exactly the
same as that of Lemma 3.4 in [I]. Fix t e T. If F{x) = (n,s), xeX, then

Hence if 0 ̂  τί < τ2 ^ dι — ε, then

Q(t,AτuX2)= \{n,s)eQit,X); _ J - _ J V ( [ τ 1 L ] , [τ2L])(«)g ^ - 2 5
I L(τ —τx) 2

and similarly for d2 + ε ̂  τ x < τ e ^ 1. Thus we can copy the proof of Lemma 3.4 in
[I] almost verbatim, except that 1—2(5 and 1— δ must be replaced by 1/2 — 2(5
respectively 1/2 — δ. The only other modification is that 8w7 _ t in [I] is replaced by
Cλwj_1 and formula (4.4) in [I] changes to

with y = ωlog4£ where ω comes from (2.3) and ζ from (3.1). Put

so that y = l/2; ω depends only on α.
We can now verify (2.10). We have

o) ̂  8 log(l 6 8ζ) ̂  8 Iog4£

since δ^δo^l/\6. Hence 2κβω^4.
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4. Proof of the Energy Estimate

Let (n,s) be a configuration and γ a partition such that (n,s,γ) has the density
property. Denote by Al9Bl9 ...,ΛnBr the blocks in (n,s,y). By assumption all the
blocks have length ^ Uy An elementary rearrangement is always of the form that
an o-block, Ak say, changes place with one of its neighbouring e-blocks, Bk_ x or Bk.
Recall that these operations are denoted by S2k-2,2k-i respectively S2k-ίt2k. ^ e t

AE2 = H(S2k-U2k(n,s))-H(n,s).

We want to show that:
(i) If \Bk\^λ\Bk_γ\ and I ^ J ^ I ^ I , then AE^IKJ.

(ii) If \Bk.±\^λ\Bk\ and \Ak\>\Ak+1\, then AE2^2κj.
(iii) If λ'^B^^^B^^λ^.^, then max{JEl5AE2}^2κj.

Here K is a constant that only depends on α. Write Ak_ί = (aubι},
Bk_ί = (b1,a2}, Ak = (a2,b2y, Bk = (b2,a3), and Ak+1 = (a3,b3). The lengths of
Ak-l9 JBk-1? ^lfc, βfe, Ak+1 are respectively x1 ? y l 9 x2, y2, and x3.

We write AEγ = ZIE? — AE\ and J E 2 = J E 2 — AE2, where J E j and J E 2 are the
changes in energy which we would have if the e-blocks 2?k_ ί and Bk were empty,
and ΔE\ and zlE2 are the changes in energy due to the particles in 5 f c_ x and Bk.
Then

ΛE»= Σb

- = Σ

and

AE°2 =

i<bι

If we write σ^ = sa2+j—sbl-i and τik = sa3+k — sb2 _ j these formulas can be rewritten
as

oo x2— 1

x2 00

and

AE°2=Σ Σ «b2-/»«3+*
7 = 1 f e = O

00 X2-I

— V V n n
Lu Lt 'ιb\~vιa2
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We will use the following facts, the proofs of which will be sketched at the end of the
section.
(a) If l^x^2z, then

(b) For x9yl9y2 define

Then f(x9yι,y2)>0 a n d f(x,yuy2) is a decreasing function of x for fixed yl9y2.
Furthermore there are constants cγ and c2, depending only on α, such that, if 1 ^ x

and yjy^ί/λ, then
x . (4.1)

We assume to begin with that 1 < α < 2. Consider first the case (i). Then y2 ^ ΛjΊ
and x1 ^ x 2 = ̂  Let us prove a lower bound on zlE?.

From the definition of o-blocks we know that nbί-1=0 and the density
property gives

Σ π f l 2 ^
j=o

If we use 0^n t -^ 1 and — 1 ̂ σ f j , τjk^1 we obtain

0 "2Σ Σ ι 2 j
ί=l j - 0

- Σ Σ (U+k-l+y2Γ*-ϋ+k-l+y2+y1Γ*).
j l feO

Σ
j fe=O

A summation by parts using (4.2) gives

Σ 'Y
i=2 j=0

- Σ Σ((J+k-ί+y2)-'-U + k-l+y2+y1)-'). (4.3)
j=ί k=0

Let z = min{x2,};1} and introduce the function

We want to show that if we choose λ sufficiently large, depending on α, then AE®
= C3&«(z) f°r s o m e constant c3 > 0 that only depends on α. Consider the first double
sum in (4.3) and assume that z ^ 2. Using property (a) above and estimating sums
by integrals obtain

Σ Y
ί = 2 j=0

^ Σ Σ

) £ Σ (/* + 0-α^(l-(2/3)α)cgα(z), (4.4)
i=2j=l
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where c only depends on α. This is easily checked to hold also for z = l. Now
consider the second sum in (4.3). Cancellation between terms and estimation of
sums by integrals gives

Σ Σ (ϋ+k-l+y2Γ°'-U+k-l+y2+y1Γ")

= Σ Σ U+k-l+yJ-'ύ £ Σ U+k+y2-ίΓ*
j=l k = 0 j=ί k = 0

5 ( 4 5 )

where d only depends on α. We have used the fact that y2^λyί ^λz. If we use
<5^1/16 we get (1/2 — δ)2^ 1/6, and combining (4.4) and (4.5) we see that by
choosing λ sufficiently large, depending on α, we get AE^c3ga(z).

We must also estimate the effect on energy changes, AE{, of particles in Bk_ι

and Bk. If we only consider energy losses and not energy gains, there are three
quantities to be estimated: the change in interaction energy between Bk_γ and
everything to the left of #fc_ l 5 between Bk_ί and Ak, and between Λk and Bk. These
quantities are all estimated in a similar way and we only treat the first one. The
density property gives

Σ

Using this in a summation by parts, 0^n f ^ 1 and cancellation between terms we
see that the change in interaction energy between Bk _ x and everything to the left of
βfc-i is

Σ ni
i<bι

Σ Ϋ
i=l j=ί
X2-1 y i - i X2-1 y i - i

Σ Σ nbl+J(i+jy°Zδ Σ Σ (i+JΓ°
ί=0 7=1 »=0 j=l

where c4 > 0 only depends on α. The estimates for the other quantities are the same
and we get

AE{S3δc4ga(z). (4.6)

Thus
ΔE, ^ (c3 - 3δc4)ga(z) ̂  2κ(logz + ί)^2κj,

if δ^cjβc^ and 7c^c3log2. The second inequality follows from the fact that as
α /* 2, ga(z) \ 1 + logz. It can be checked that c3 and c4 remain positive as α / 2, so
the same estimate holds for α = 2. The last inequality comes from z ^ 2 J - 1 .

Claim (ii) is handled in exactly the same way and one proves that AE^ c3ga(z')
and

AΈl&δCtgJM, (4.7)

where z/ = min{x2,j;2}.
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It remains to treat Claim (iii). We thus assume that λ~i ^ y2/yί ^ A and we will
prove that

^ (4.8)

where ζ = min{x1,y1,x2,y2,x2}. From this it follows immediately that

^ ϊ g β ( 0 . (4.9)

Using (4.6), (4.7), and (4.9) we want to conclude that

(4.10)

where c 6 >0 only depends on α, and κ:^^c6log2. There are three possibilities.
Either Ak is the shortest block and z = z' = ζ, or Bk_1 is shortest, z = £ and z'^λζ
since y2f^λyu or £fc is shortest, z' = ζ and zgAζ since j ^ ^λy2. Thus we always
have z,z'^λζ and (4.6) and (4.7) give, after some computation, that

πrnx{AE\,AE2}^δλc4ga(ζ). (4.11)

Equation (4.10) follows from (4.9) and (4.11) if we assume that δ S c5(2λ(λ + I)c4)~1-
Hence we know that (i)—(iii) hold with /c = min{^c3log2, ^c6log2} if

<50 ύ min {c3/6c4, c5(2A(A + l)c4) ~
1} = cΊ. (4.12)

We still have to prove (4.9). If / is defined as in (b), then

t=l J=0

X2 °O

+ Σ Σ

Using the properties (b) of/ and the density property we can sum by parts and get

y-*Δl

| T / j j ^ (4.13)
j — 2 k — 0 |

Let cγ be the constant in (b). If c^/2 < 2 we estimate (4.13) by keeping only the first
term in the sums.

Here we have used the fact that f(i,yuy2)^3cs if yί,y2^ί9 where c 8 >0 only
depends on α. To get this estimate we can argue as follows. If c1y1 < 3, there are
only finitely many possibilities for yί9 y2 and we can take 3c8 less than the smallest
of the possible values oϊ f(3,yuy2), which are all positive. If c1y1 ^ 3 we can use
(4.1).
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If CiC/2^2 we use (4.1) to get

f U^ Σ Σ
JΊ 3 i = 2 j=ί

where c 9 only depends on α. Equation (4.8) now follows with c5 = min{c9, )
We will now sketch the proofs of (a) and (b) above, (a) is obtained as follows:

if 1 ̂ x^2z. That / > 0 follows immediately from the strict convexity of x-

and that / is decreasing as a function of x follows from df/dx < 0, which is a

consequence of the strict convexity of x-> l/xa+*. The inequality (4.1) is obtained as

follows:

, 1 / 1 1 \ 1

where c2 > 0 if cx is chosen sufficiently small. This completes the proof of the energy

estimate (2.6).

References

1. Israel, R.B.: Appendix B to Convexity in the theory of lattice gases. Princeton, NJ: Princeton
University Press 1979

2. Johansson, K.: Condensation of a one-dimensional lattice gas. Commun. Math. Phys. 141,
41-61 (1991)

Communicated by M. Aizenman




