Separation of Phases at Low Temperatures in a One-Dimensional Continuous Gas

Kurt Johansson»
Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden**

Received July 19, 1990; in revised form April 23, 1991

Abstract

We show the existence of a phase separation at low temperatures in a one-dimensional one-component classical gas in the canonical ensemble with interaction hard core $-1 / r^{\alpha}, 1<\alpha \leqq 2$. This implies that for sufficiently low temperatures there are values of the chemical potential at which the pressure is not differentiable as a function of the chemical potential.

0. Introduction

Most of the results on phase transitions in continuous models are for phase separation in mixtures and, to the author's knowledge, there are no results on the existence of a phase transition in a one-component classical continuous gas, see however Israel [1]. Extending ideas developed in Johansson [2] we will prove that a one-dimensional continuous gas in the canonical ensemble with attractive pair-interaction $1 / r^{\alpha}, 1<\alpha \leqq 2$, and a hard core has a phase transition at sufficiently low temperatures.

In the proof we rewrite the partition function for the continuous model as an integral of partition functions for discrete models. These discrete models are similar to a one-dimensional lattice gas in the canonical ensemble.

In the first section we define the model and state our results. The second section contains the representation of the continuous model as an integral of discrete models, the definition of blocks, partitions, and the rearrangement procedure and the main steps in the energy-entropy argument. In Sect. 3 and 4 we prove the basic entropy and energy estimates.

Many arguments in this paper are similar to the corresponding arguments in Johansson [2], which we will refer to as [I].

[^0]
1. Preliminaries and Results

Consider N particles at positions x_{1}, \ldots, x_{N} in $\Omega=[0, L]$, where $L \in Z^{+}$. The particles interact via the potential

$$
V(r)=\left\{\begin{array}{lll}
+\infty & \text { for } & 0<r<1 \\
-1 / r^{\alpha} & \text { for } & r \geqq 1
\end{array}\right.
$$

where $\alpha>1$. Without loss of generality we have put the hard-core radius equal to 1 . As boundary conditions we let (L, ∞) be empty and we put fixed particles at $x_{k}=-(k+1), k=0,1, \ldots$ in $(-\infty, 0)$. The total interaction energy is then

$$
H(\underline{x})=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=-\infty, j \neq i}^{N} V\left(\left|x_{i}-x_{j}\right|\right),
$$

where $\underline{x}=\left(x_{1}, \ldots, x_{N}\right) \in \Omega^{N}$. Since $H(\underline{x})$ is symmetric with respect to permutations of x_{1}, \ldots, x_{N} we can restrict our attention to ordered configurations. Let

$$
X=\left\{\underline{x} \in \Omega^{N} ; x_{1}>0, x_{N}<L, x_{k+1}-x_{k}>1, k=1, \ldots, N-1\right\}
$$

and define for $A \subseteq X$,

$$
Z(A)=\int_{A} e^{-\beta H(x)} d x_{1} \ldots d x_{N}
$$

The configurational canonical probability measure for the ordered configurations is

$$
\begin{equation*}
P(A)=Z(A) / Z(X), \quad A \cong X . \tag{1.1}
\end{equation*}
$$

The density, $d\left(\tau_{1}, \tau_{2}\right)(\underline{x})$, of the configuration \underline{x} in the interval $\left[\left[\tau_{1} L\right],\left[\tau_{2} L\right]+1\right)$, $0 \leqq \tau_{1}<\tau_{2} \leqq 1$, is the number of particles in \underline{x} in this interval divided by the length of the interval. Here [•] denotes integer part. Let the asymptotic average density ϱ, $0 \leqq \varrho<1$, be given and write $\Omega \rightarrow R^{+}$for the thermodynamic limit $N, L \rightarrow \infty$, $N / L \rightarrow \varrho$. We can now define what it means for the gas to have a uniform/nonuniform density in the thermodynamic limit exactly as in [I].

For a given small $\delta>0$ and given $\varrho>\delta$ we put

$$
\begin{equation*}
d_{1}=(1-\delta)^{-1}(\varrho-\delta), \quad d_{2}=(1 / 2-\delta)^{-1} \varrho . \tag{1.2}
\end{equation*}
$$

The main theorem of this paper is
Theorem 1.3. Assume that $1<\alpha \leqq 2$ and $0<\varrho<1 / 2$. There exist positive constants K, ξ, β_{0} depending only on α and ϱ, such that if $\beta>\beta_{0}$ and $\delta=K \exp (-\xi \beta)$, then for each $\varepsilon>0$,

$$
\lim _{\Omega \rightarrow R^{+}} P\left\{\underline{x} \in X ; d\left(\tau_{1}, \tau_{2}\right)(\underline{x}) \geqq 1 / 2-2 \delta\right\}=1
$$

for any fixed $\tau_{1}, \tau_{2}, 0 \leqq \tau_{1}<\tau_{2} \leqq d_{1}-\varepsilon$ and

$$
\lim _{\Omega \rightarrow R^{+}} P\left\{\underline{x} \in X ; d\left(\tau_{1}, \tau_{2}\right)(\underline{x}) \leqq 2 \delta\right\}=1
$$

for any fixed $\tau_{1}, \tau_{2}, d_{2}+\varepsilon \leqq \tau_{1}<\tau_{2} \leqq 1$.
The constants in the theorem are such that $\delta<1 / 16$ and $0<d_{1}<d_{2}<1$ when $\beta \geqq \beta_{0}$. This means that we have a non-uniform density in the thermodynamic limit. By an argument analogous to the corresponding one in [I] this implies

Corollary 1.4. Let $1<\alpha \leqq 2$. Then if $\beta \geqq \beta_{0}$ there is a value of the chemical potential μ for which the pressure $p(\mu, \beta)$ is not differentiable as a function of μ.

2. Proof of the Main Theorem

2.1. The Discrete Model

Let $\Lambda=\{0, \ldots, L-1\}$ and let K denote the set of all $\underline{n} \in\{0,1\}^{2}$ such that $n_{k}=1$ if $k \leqq-1, n_{k}=0$ if $k \geqq L$ and

$$
\sum_{i=0}^{L-1} n_{i}=N .
$$

Given $\underline{n} \in K$ we define $p(\underline{n}) \in \Lambda^{N}$ by $n_{p_{k}(x)}=1,0 \leqq p_{1}(\underline{n})<\ldots<p_{N}(\underline{n}) \leqq L-1$. For every $\underline{x} \in X$ we define $\underline{n}=\underline{n}(\underline{x}) \in K$ by $n_{\left[x_{k}\right]}=1, k=1, \ldots, N, n_{i}=1$ if $i \leqq-1$ and all other n_{i} 's are $=0$. We also define $\underline{s}=\underline{s}(\underline{x}) \in[0,1)^{Z}$ by $s_{\left[x_{k}\right]}=x_{k}-\left[x_{k}\right], k=1, \ldots, N$, and $s_{i}=0$ otherwise. Given \underline{n} and $\underline{s}, \underline{x}$ is uniquely determined since

$$
x_{k}=p_{k}(\underline{n})+s_{p_{k}(n)}, \quad k=1, \ldots, N
$$

and consequently the map $F: X \rightarrow K \times[0,1)^{Z}$ defined by $F(\underline{x})=(\underline{n}(\underline{x}), \underline{s}(\underline{x}))$ is injective. Let

$$
T=\left\{\underline{t} \in[0,1]^{N} ; t_{1}<\ldots<t_{N}\right\}
$$

and $f_{\sigma}(t)=\left(t_{\sigma(1)}, \ldots, t_{\sigma(N)}\right)$ for $\sigma \in S_{N}$, the permutation group on $\{1, \ldots, N\}$.
Note that for each $\underline{x} \in X$ there are unique $\underline{t}=\underline{t}(\underline{x}) \in T$ and $\sigma=\sigma(\underline{x}) \in S_{N}$ such that $x_{k}-\left[x_{k}\right]=t_{\sigma(k)}, k=1, \ldots, N$. Given a subset $A \cong X$ and a $\underline{t} \in T$ we write

$$
A(\underline{t})=\{\underline{x} \in A ; \underline{t}(\underline{x})=\underline{t}\}
$$

and

$$
Q(t, A)=F(A(t)) \cong K \times[0,1)^{Z} .
$$

If $F(\underline{x})=(\underline{n}, \underline{s})$ then

$$
H(\underline{x})=H(\underline{n}, \underline{s})=-\frac{1}{2} \sum_{\substack{k \in \Lambda, l \in Z \\ k \neq l}} \frac{n_{k} n_{l}}{\left|k-l+s_{k}-s_{l}\right|^{\alpha}} .
$$

Define

$$
Z(t, A)=\sum_{(n, s) \in \mathscr{Q}(t, A)} e^{-\beta H(n, s)}
$$

This defines our discrete model for a given $\underline{t} . Q(\underline{t}, X)$ is always non-empty since $p(\underline{n})$ $+\underline{t} \in A(\underline{t})$ for any $\underline{t} \in T$ and any $\underline{n} \in K . Z(\underline{t}, X)$ is the partition function for our discrete model. The next lemma says that our continuous model is an integral over these discrete models.

Lemma 2.1. For each $A \subseteq X$,

$$
Z(A)=\int_{T} Z(\underline{t}, A) d^{N} t
$$

Proof. For $\underline{m} \in K$ we let

$$
J(\underline{m})=\{\underline{x}-\underline{p}(\underline{m}) ; \underline{n}(\underline{x})=\underline{m} \text { and } \underline{x} \in A\} .
$$

Then $J(\underline{m})+p(\underline{m}), \underline{m} \in K$ are disjoint with union A. The sets $f_{\sigma}(T), \sigma \in S_{N}$ are also disjoint with union $[0,1]^{N}$ apart from a set of measure zero. Put $I(\underline{m}, \sigma)=f_{\sigma}^{-1}(J(\underline{\underline{m}})$ $\cap f_{\sigma}(T)$) a subset of T. Then

$$
\begin{align*}
\int_{A} e^{-\beta H(x)} d^{N} x & =\sum_{m \in K} \sum_{\sigma \in S_{N}} \int_{J(m) \cap f_{\sigma}(T)} e^{-\beta H(r+p(m))} d^{N} \tau \\
& =\int_{T} \sum_{m \in K} \sum_{\sigma \in S_{N}} 1_{I(\underline{m}, \sigma)}(t) e^{-\beta H\left(f_{\sigma}(t)+p(m)\right)} d^{N} t \tag{2.1}
\end{align*}
$$

For a given $\underline{t} \in T$ we define $G: A(\underline{t}) \rightarrow K \times S_{N}$ by $\underline{x} \rightarrow(\underline{n}(\underline{x}), \sigma(\underline{x}))$. G is injective since $\underline{x}=\underline{p}(\underline{n})+f_{\sigma}(\underline{t})$. Now

$$
\begin{aligned}
G(A(\underline{t})) & =\left\{(\underline{m}, \sigma) ; p(\underline{m})+f_{\sigma}(\underline{t}) \in A\right\} \\
& =\{(\underline{m}, \sigma) ; \underline{t} \in I(\underline{\underline{m}}, \sigma)\} .
\end{aligned}
$$

Thus the integrand in (2.1) can be written as

$$
\sum_{(m, \sigma) \in G(A(t))} e^{-\beta H\left(p(m)+f_{\sigma}(t)\right)}=\sum_{x \in A(t)} e^{-\beta H(x)}=Z(\underline{t}, A) .
$$

2.2. Definition of Blocks and Partitions

We now fix $\underline{t} \in T$ and take $Q=Q(\underline{t}, X)$ as our configuration space. Let $0 \leqq a<a^{\prime} \leqq L$ be two integers and $(\underline{n}, \underline{s}) \in Q$ a configuration. Then

$$
A=\left\langle a, a^{\prime}\right\rangle=\left\{\left(n_{a}, n_{a+1}, \ldots, n_{a^{\prime}-1}\right),\left(s_{a}, s_{a+1}, \ldots, s_{a^{\prime}-1}\right)\right\}
$$

is called a block in (n, \underline{s}). A is an o-block if $n_{a}=1, n_{a^{\prime}-2}=1$, and $n_{a^{\prime}-1}=0$, and an e-block if $n_{1}=n_{a^{\prime}-1}=0$. We also define $\langle-\infty, a\rangle$ and $\langle a, \infty\rangle$ in the obvious way. They are always an o-respectively an e-block. Two $o-(e-)$ blocks $A=\left\langle a, a^{\prime}\right\rangle$ and $B=\left\langle a^{\prime}, a^{\prime \prime}\right\rangle$ can be joined to a new $o-(e-)$ block $A B=\left\langle a, a^{\prime \prime}\right\rangle$.

A set of integers $\gamma=\left\{a_{1}, \ldots, a_{r}\right\}, 0 \leqq a_{1}<\ldots<a_{r} \leqq L \quad$ defines a partition of $(\underline{n}, \underline{s})$ into blocks $\left\langle a_{k}, a_{k+1}\right\rangle, k=0, \ldots, r$, where $a_{0}=-\infty$ and $a_{r+1}=\infty$. We will say that $\left\langle a_{k}, a_{k+1}\right\rangle$ is a block in ($\underline{n}, \underline{s}, \gamma$). Our partitions will depend only on \underline{n} and not on \underline{s} and we will write $\gamma=\gamma(\underline{n})$ to indicate this dependence.

For $x, y \in Z$ and $(\underline{u}, \underline{s}) \in Q$ we define $N(x, y)(\underline{n})$ as in [I], (1.5). Fix a $\beta \geqq \beta_{0}$ and let δ be as in Theorem 1.3. The constants K, ξ, and β_{0} will be defined in Sect. 2.4.

Definition 2.2. Let γ be a partition. We will say that $(\underline{n}, \underline{s}, \gamma)$ has the density property if the blocks in $(\underline{n}, \underline{s}, \gamma)$ alternate between o - and e-blocks and for each o-($(e$-)block $A=\left\langle a, a^{\prime}\right\rangle$ in $(\underline{n}, \underline{s}, \gamma)$
(i) $N(a, x)(n) \geqq(1 / 2-\delta)(x-a-1)(\leqq \delta(x-a))$.
(ii) $N\left(x, a^{\prime}-1\right)(\underline{n}) \geqq(1 / 2-\delta)\left(a^{\prime}-x-1\right)\left(\leqq \delta\left(a^{\prime}-1-x\right)\right)$ if $a \leqq x<a^{\prime}$.

We will now define a partition $\gamma_{1}(\underline{n})$ for every configuration $(\underline{n}, \underline{s}) \in Q_{1}:=Q(\underline{t}, X)$. Put

$$
u_{k}=2^{k-1}, \quad v_{k}=\frac{2}{\delta} 4^{k-1}
$$

$k=1,2, \ldots$. Define

$$
\gamma^{(0)}(\underline{n})=\left\{i \in Z ;\left(n_{i-2}, n_{i-1}, n_{i}\right)=(1,0,0) \text { or }=(0,0,1)\right\} .
$$

The blocks in $\left(\underline{n}, \underline{s}, \gamma^{(0)}(n)\right)$ will alternate between o - and e-blocks. A 1 followed by a double $0,(1,0,0)$, means going from an o - to an e-block and at the next $1,(0,0,1)$, a new o-block starts. In the same way as in [I] we successively define $\gamma^{(k)}(\underline{n})$, $k=1,2, \ldots$. We let

$$
\begin{equation*}
\gamma_{1}(\underline{n})=\gamma^{\left(v k_{N}\right)}(\underline{n}) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{N}=[\omega \log N] \tag{2.3}
\end{equation*}
$$

and ν, ω are constants depending only on α. They are given by (3.7) and (3.16) respectively.

2.3. The Rearrangement Procedure

Let $(\underline{n}, \underline{s})$ be a configuration and $\gamma=\left\{a_{1}, \ldots, a_{2 r-1}\right\}$ a partition into $2 r$ blocks such that the density property is satisfied. The operation $S_{k, k+1}(\underline{n}, \underline{s}, \gamma, \delta)=\left(\underline{n}^{\prime}, \underline{s}^{\prime}, \gamma^{\prime}, \delta^{\prime}\right)$ defined by letting block number k change place with block number $k+1$ is defined exactly as in [I]. Recall that δ is a set whose elements are old partition points removed during the rearrangement procedure.

Lemma 2.3. If $(\underline{n}, \underline{s}) \in Q(\underline{t}, X)$, then $S_{k, k+1}(\underline{n}, \underline{s}) \in Q(\underline{t}, X), \underline{t} \in T$.
Proof. From the definition of $Q(\underline{t}, X)$ it follows that $(\underline{n}, \underline{s}) \in Q(\underline{t}, X)$ if and only if $s_{p_{k}(\eta)}=t_{\sigma(k)}, k=1, \ldots, N$, for some $\sigma \in S_{N}$, all other $s_{j}=0$, and

$$
\underline{x}=F^{-1}(\underline{n}, \underline{s})=\left(p_{k}(\underline{n})+s_{p_{k}(\underline{n})}\right)_{k=1}^{N} \in X .
$$

Recall that $\underline{x} \in X$ if \underline{x} satisfies the hard-core condition $x_{k+1}-x_{k}>1, k=1, \ldots, N-1$, and $x_{1}>0, x_{N}<L$. Write $\left(\underline{n}^{\prime}, \underline{s}^{\prime}\right)=S_{k, k+1}(\underline{n}, \underline{s})$ and $\underline{x}^{\prime}=F^{-1}\left(\underline{n}^{\prime}, \underline{s}^{\prime}\right)$. Since we get \underline{s}^{\prime} from \underline{s} by a permutation of the elements of \underline{s} it is clear that $s_{p_{k}\left(n^{\prime}\right)}^{\prime}=t_{\sigma^{\prime}(k)}, k=1, \ldots, N$, for some $\sigma^{\prime} \in S_{N}$. If $\left\langle a_{k-1}, a_{k}\right\rangle, k=1, \ldots, 2 r$, are the blocks in ($\underline{n}, \underline{s}, \gamma$), then from the definition of o - and e-blocks we have that $n_{a_{k}-1}=0, k=1, \ldots, 2 r-1$ and hence also $s_{a_{k}-1}=0$. Thus the hard-core conditions place no restriction on the order of the blocks $\left\langle a_{k-1}, a_{k}\right\rangle$. Consequently \underline{x}^{\prime} also satisfies the hard core conditions and $\left(\underline{n}^{\prime}, \underline{s}^{\prime}\right) \in Q(\underline{t}, X)$.

Write $A_{k}=\left\langle a_{2(k-1)}, a_{2 k-1}\right\rangle, B_{k}=\left\langle a_{2 k-1}, a_{2 k}\right\rangle, k=1, \ldots, r$, so that A_{1}, \ldots, A_{r} are o-blocks and B_{1}, \ldots, B_{r} are e-blocks. λ denotes a constant, depending only on α, which will be specified in Sect. 4. We now turn to the definition of the elementary rearrangement operation S. Assume first that an o-block A_{k} is the shortest block. If one of its neighbouring e-blocks has length $\geqq \lambda$ times the length of the other, we let A_{k} change place with the shortest of its neighbours. Otherwise we let A_{k} change place with that neighbouring block which gives the lowest energy for the resulting configuration. If an e-block, B_{j}, is shortest we take the shortest of its neighbouring o-blocks and apply the procedure just described to this o-block.

More formally we consider the shortest block among $A_{1}, B_{1}, \ldots, A_{r}, B_{r}$ or the leftmost if it is not unique.
(a) Assume that A_{k} is the shortest block:
(i) if $\left|B_{k}\right| \geqq \lambda\left|B_{k-1}\right|$, then $S=S_{2 k-2,2 k-1}$,
(ii) if $\left|B_{k-1}\right| \geqq \lambda\left|B_{k}\right|$, then $S=S_{2 k-1,2 k}$,
(iii) if $\lambda^{-1}\left|B_{k}\right|<\left|B_{k-1}\right|<\lambda\left|B_{k}\right|$, then $S=S_{2 k-2,2 k-1}$ in case

$$
H\left(S_{2 k-2,2 k-1}(\underline{n}, \underline{s})\right) \leqq H\left(S_{2 k-1,2 k}(\underline{n}, \underline{s})\right)
$$

and $S=S_{2 k-1,2 k}$ otherwise.
(b) Assume that B_{j} is the shortest block and $\left|A_{j}\right| \leqq\left|A_{j+1}\right|$. Then S is defined as in (a) with $k=j$. If $\left|A_{j}\right|>\left|A_{j+1}\right|$, then S is defined as in (a) with $k=j+1$.

We can now define Q_{j} and partitions $\gamma_{j}(\underline{n})$ for each $(\underline{n}, \underline{s}) \in Q_{j}$ precisely as in [I], and the rearranged configuration we get starting from $\left(\underline{m}, \underline{s}, \gamma_{j-1}(\underline{m})\right)$ is denoted by

$$
(R(\underline{m}), R(\underline{s}), R \gamma(\underline{m}), R \delta(\underline{m})) .
$$

It follows from Lemma 2.3 that $Q_{j} \subseteq Q=Q_{1}$.
Lemma 2.4. $(\underline{m}, \underline{s}) \in Q_{j-1}, j \geqq 2$, is uniquely determined by $(R(\underline{m}), R(\underline{s}), R \gamma(\underline{m}), R \delta(\underline{m}))$.
This is proved exactly as Lemma 2.4 in [I]. The proof of the next lemma is, apart from minor changes, the same as the proof of Lemmas 2.3 and 2.5 in [I]. The necessary modifications will be outlined in Sect. 3.2.

Lemma 2.5. For every $(\underline{n}, \underline{s}) \in Q_{j}, 1 \leqq j \leqq k_{N},\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right)$ has the density property and all blocks in $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right)$ have length $\geqq u_{j}$.

2.4. The Energy-Entropy Argument

We now turn to the proof of Theorem 1.3. Fix $0 \leqq \tau_{1}<\tau_{2} \leqq d_{1}-\varepsilon$, where $\varepsilon>0$ is small and d_{1} is given by (1.2) with δ as in the theorem. Define

$$
A_{\tau_{1}, \tau_{2}}=\left\{\underline{x} \in X ; d\left(\tau_{1}, \tau_{2}\right)(\underline{n})<1 / 2-2 \delta\right\}
$$

If $d_{2}+\varepsilon \leqq \tau_{1}<\tau_{2} \leqq 1$ we define instead

$$
A_{\tau_{1}, \tau_{2}}=\left\{\underline{x} \in X ; d\left(\tau_{1}, \tau_{2}\right)(\underline{n})>2 \delta\right\} .
$$

We will show that there is a constant C independent of N and $\underline{t} \in T$ such that

$$
\begin{equation*}
\frac{Z\left(\underline{t}, A_{\tau_{1}, \tau_{2}}\right)}{Z(\underline{t}, X)} \leqq \frac{C}{N} \tag{2.4}
\end{equation*}
$$

Lemma 2.1, (1.1) and (2.4) imply that $P\left(A_{\tau_{1}, \tau_{2}}\right) \rightarrow 0$ as $\Omega \rightarrow R^{+}$and Theorem 1.3 follows.

The rearrangement procedure defines a map $\mathscr{R}: Q \rightarrow Q_{k_{N}}$ by $(\underline{n}, \underline{s}) \rightarrow R^{k_{N}-1}(\underline{n}, \underline{s})$ $=(\mathscr{R}(\underline{n}), \mathscr{R}(\underline{s}))$. Let

$$
H_{1}(\underline{t})=\left\{(\underline{n}, \underline{s}) \in Q(\underline{t}, X) ;\left|\gamma_{k_{N}}(\mathscr{R}(\underline{n}))\right| \geqq 3\right\}
$$

and $H_{j}(\underline{t})=R\left(H_{j-1}(\underline{t})\right), 2 \leqq j \leqq k_{N}$, for every $\underline{t} \in T$.
Lemma 2.6. Let d_{1} and d_{2} be given by (1.2). If $0 \leqq \tau_{1}<\tau_{2} \leqq d_{1}-\varepsilon$ or $d_{2}+\varepsilon \leqq \tau_{1}$ $<\tau_{2} \leqq 1$, then

$$
Q\left(t, A_{\tau_{1}, \tau_{2}}\right) \cong H_{1}(\underline{t})
$$

for all $\underline{t} \in T$.

We postpone the proof of this lemma to the end of Sect. 3.2.
By Lemma 2.6, (2.4) will follow if we can prove

$$
\begin{equation*}
\frac{1}{Z(t, X)} \sum_{(n, s) \in H_{1}(t)} e^{-\beta H(n, s)} \leqq \frac{C}{N} \tag{2.5}
\end{equation*}
$$

with C independent of t and N. The proof of (2.5) is an energy-entropy argument which is completely analogous to the corresponding energy-entropy argument in [I]. In Sect. 3 we will prove that Lemma 3.2 in [I] is true also in the present case if we let $C_{1}=\log \left(C_{1}^{\prime} / \delta\right)$, where C_{1}^{\prime} depends only on α.

The constants in Theorem 1.3 are defined as follows. Let

$$
\beta_{0}=\left(1+4 \log \left(C_{1}^{\prime} / \delta_{0}\right)\right) / \kappa
$$

where

$$
\delta_{0}=\min \left\{\varrho, 1 / 4-\varrho L, 1 / 16, c_{7}\right\}
$$

and c_{7}, which depends only on α, is given by (4.12) below. For given $\beta \geqq \beta_{0}, \delta$ is defined by $\beta=\left(1+4 \log \left(C_{1}^{\prime} / \delta\right)\right) / \kappa$ so that $\beta \geqq \beta_{0}$ implies $\delta \leqq \delta_{0}$. This gives $\delta=K \exp (-\xi \beta)$ with $\xi=\kappa / 4$.

If all blocks in $(\underline{n}, \underline{s}, \gamma)$ have length $\geqq u_{j}$ and $(\underline{n}, \underline{s}, \gamma)$ satisfies the density property, then

$$
\begin{equation*}
H((\underline{n}, \underline{s}))-H(S((\underline{n}, \underline{s}))) \geqq 2 \kappa j, \tag{2.6}
\end{equation*}
$$

where κ is a constant that depends only on α. This energy estimate will be proved in Sect. 4. It follows from repeated use of (2.6) that

$$
\begin{equation*}
H(\underline{n}, \underline{s})-H(R(\underline{n}, \underline{s})) \geqq \kappa|R \delta(\underline{n})| j \tag{2.7}
\end{equation*}
$$

for every $(\underline{n}, \underline{s}) \in Q_{j-1}$. Using the entropy estimate (3.1) in [I], (2.7) and $\kappa \beta-C_{1} \geqq 1$ we can do exactly the same computation as in Sect. 3.3 in [I] to show that

$$
\begin{equation*}
\sum_{(a, s) \in H_{1}(t)} e^{-\beta H(n, s)} \leqq \eta \sum_{(0, s) \in H_{k_{N}}(t)} e^{-\beta H(n, s)+\log \left(2 k_{N}\right)\left|\gamma_{k_{N}}(n)\right|} \tag{2.8}
\end{equation*}
$$

where η is a numerical constant. From the definition of $H_{1}(\underline{t})$ we know that $\left|\gamma_{k_{N}}(\underline{n})\right| \geqq 3$ if $(\underline{n}, \underline{s}) \in H_{1}(\underline{t})$. We can now estimate the right-hand side of (2.8) using a final global rearrangement in exactly the same way as in Sect. 3.4 in [I]. This gives

$$
\begin{equation*}
\frac{1}{Z(\underline{t}, X)} \sum_{(n, s) \in H_{1}(t)} e^{-\beta H(a, s)} \leqq C L^{3}(\log N)^{3} N^{-2 \kappa \omega \beta} \tag{2.9}
\end{equation*}
$$

where ω is the constant in (2.3). At the end of Sect. 3 we will see that if $\beta \geqq \beta_{0}$ then

$$
\begin{equation*}
2 \kappa \omega \beta \geqq 4 \tag{2.10}
\end{equation*}
$$

Thus (2.5) follows from (2.9) and we have proved Theorem 1.3.

3. Proof of Some Lemmas

3.1. The Entropy Estimate

The proof of Lemma 3.2 in [I] is based on the following lemma. Let

$$
\begin{equation*}
w_{j, k}=\zeta^{j-1} v_{k}, \quad w_{j}=w_{j, j+1}, \tag{3.1}
\end{equation*}
$$

where ζ will be specified at the end of this section. Recall that λ is the constant in the definition of an elementary rearrangement. The constants λ and ζ depend only on α.

Lemma 3.1. There is a constant C_{λ} that only depends on λ, such that for all $(\underline{n}, \underline{s}) \in Q_{j-1}$ the distance from an element in $R \delta(\underline{n})$ to the closest element in $R \gamma(\underline{n})$ is $\leqq C_{\lambda} w_{j-1}, j=2, \ldots, k_{N}$.
Proof. Denote the assertion in the lemma for a given j by $(a)_{j}$. The proof is similar to the proof of Lemma 3.1 in [I] but is more involved due to the more complicated definition of an elementary rearrangement. Let $(b)_{j}, 1 \leqq j<k_{N}$ denote the following assertion

Consider two $o-(e-)$ blocks of length $\geqq w_{j, k}$ in $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right.$), $(\underline{n}, \underline{s}) \in Q_{j}$. Then the total length of the $o-(e-)$ blocks between them is $\geqq u_{k}, j \leqq k \leqq v\left(k_{N}-j+1\right)+k_{N}$.

Here v is the constant in (2.2). That $(b)_{1}$ is true follows from the definition of $\gamma_{1}(\underline{n})$ in the same way as in [I]. We will prove Lemma 3.1 inductively by showing that $(b)_{j-1}$ implies $(a)_{j}$ and that $(b)_{j-1}$ and $(a)_{j}$ together imply $(b)_{j}, 2 \leqq j<k_{N}$.

Assume that $(b)_{j-1}$ is true. Below A and B with some index will always denote an o-block and e-block respectively. Consider first the elements of $R \delta(\underline{n})$ inside an o-block A in $\left(R(\underline{n}), R(\underline{s}), R \gamma(\underline{n})\right.$). A is built up from o-blocks $A_{1}, \ldots, A_{r}, r \geqq 1$ in $\left(\underline{n}, \underline{s}, \gamma_{j-1}(\underline{n})\right)$:

$$
\begin{aligned}
(\underline{n}, \underline{s}) & =\ldots B_{0} A_{1} B_{1} A_{2} \ldots B_{r-1} A_{r} B_{r} \ldots \\
(R(\underline{n}), R(\underline{s})) & =\ldots B_{0} \ldots B_{s-1} A_{1} \ldots A_{r} B_{s} \ldots B_{r} \ldots \\
& =\ldots B A B^{\prime} \ldots
\end{aligned}
$$

where B_{0}, \ldots, B_{r} are e-blocks in ($\underline{n}, \underline{s}, \gamma_{j-1}(\underline{n})$).
We will prove that there is a $t, 1 \leqq t \leqq r$, such that

$$
\begin{equation*}
\max \left\{\left|A_{1} \ldots A_{t-1}\right|,\left|A_{t+1} \ldots A_{r}\right|\right\} \leqq C_{\lambda} w_{j-1} \tag{3.2}
\end{equation*}
$$

The left-hand side gives an upper bound on the distance from an element in $R \delta(\underline{n})$ inside A to the closest element in $R \gamma(\underline{n})$.

Claim 1. Suppose that at some step in the rearrangement procedure from $\left(\underline{n}, \underline{s}, \gamma_{j-1}(\underline{n})\right)$ to $(R(\underline{n}), R(\underline{s}), R \gamma(\underline{n}))$ the elementary rearrangement

$$
\begin{aligned}
(\underline{m}, \underline{r}) & =\ldots A^{0} B^{0} A^{1} B^{1} A^{2} B^{2} \ldots, \\
(S(\underline{m}), S(\underline{r})) & =\ldots A^{0} B^{0} B^{1} A^{1} A^{2} B^{2} \ldots,
\end{aligned}
$$

was done. Then one of (i)-(iii) below must hold
(i) $\left|A^{1}\right|<u_{j},\left|A^{1}\right| \leqq\left|A^{2}\right|$, and $\left|B^{1}\right|<\lambda\left|B^{0}\right|$,
(ii) $\left|A^{1}\right| \leqq\left|A^{2}\right|$, and $\left|B^{1}\right|<u_{j}$,
(iii) $\left|A^{0}\right|>\left|A^{1}\right|,\left|B^{0}\right|<u_{j}$, and $\left|B^{1}\right|<\lambda\left|B^{0}\right|$.

To see this we use the definition of the S-operation in Sect. 2.3. If A^{1} is the shortest block, then $\left|A^{1}\right|<u_{j}$ and $\left|A^{1}\right| \leqq\left|A^{2}\right|$. In case $\left|B^{1}\right| \geqq \lambda\left|B^{0}\right|, A^{1}$ and B^{0} would have changed place instead. Thus (i) holds. If A^{1} is not shortest block, either B^{0} or B^{1} must have been shortest. If B^{1} is shortest, $\left|B^{1}\right|<u_{j}$ and since A^{1} and B^{1} changed places, $\left|A^{1}\right| \leqq\left|A^{2}\right|$. Thus (ii) holds. If B^{0} is shortest, $\left|B^{0}\right|<u_{j},\left|A^{0}\right|>\left|A^{1}\right|$ since otherwise A^{1} would not have been involved. Furthermore if $\left|B^{1}\right| \geqq\left|B^{0}\right|, A^{1}$ and B^{0}
would have changed place. Consequently, $\left|B^{1}\right|<\lambda\left|B^{0}\right|$ and (iii) holds. This establishes Claim 1.

Claim 2. Suppose that at some step in the rearrangement procedure from $\left(\underline{n}, \underline{s}, \gamma_{j-1}(\underline{n})\right)$ to $(R(\underline{n}), R(\underline{s}), R \gamma(\underline{n}))$ the elementary rearrangement

$$
\begin{gathered}
\ldots A_{k-\left(j_{2}+1\right)} B_{k-j_{4}} \ldots B_{k-\left(j_{3}+1\right)} A_{k-j_{2}} \ldots A_{k-\left(j_{1}+1\right)} B_{k-j_{3}} \ldots \\
\ldots B_{k-1} A_{k-j_{1}} \ldots A_{d} B_{k} \ldots
\end{gathered}
$$

to

$$
\ldots A_{k-\left(j_{2}+1\right)} B_{k-j_{4}} \ldots B_{k-1} A_{k-j_{2}} \ldots A_{k-j_{1}} \ldots A_{d} B_{k} \ldots
$$

was performed. Assume furthermore that $j_{2}>2[2 \lambda]+1,\left|A_{k-j_{2}} \ldots A_{k-\left(j_{1}+1\right)}\right| \geqq u_{j}$, and $j_{3}>j_{1} \geqq 0$. Then $j_{3}=1,\left|B_{k-1}\right|<u_{j}$, and

$$
\begin{equation*}
\left|A_{k-j_{2}} \ldots A_{k-\left(j_{1}+1\right)}\right| \leqq\left|A_{k-j_{1}} \ldots A_{d}\right| \tag{3.3}
\end{equation*}
$$

It is clear that $j_{2}-\left(j_{1}+1\right) \leqq j_{4}$ and thus $j_{2} \leqq j_{4}+j_{1}+1$. Since $\left|A_{k-j_{2}} \ldots A_{k-\left(j_{1}+1\right)}\right| \geqq u_{j}$ it follows from Claim 1 that either $\left|B_{k-j_{3}} \ldots B_{k-1}\right|<u_{j}$ and (3.3) holds, or

$$
\left|B_{k-j_{4}} \ldots B_{k-\left(j_{3}+1\right)}\right|<u_{j} \quad \text { and } \quad\left|B_{k-j_{3}} \ldots B_{k-1}\right|<\lambda u_{j} .
$$

In the first case we get $j_{3}=1$ and $\left|B_{k-1}\right|<u_{j}$. In the second case we get $j_{4}=j_{3}+1$ and $j_{3} \leqq[2 \lambda]$, since all B_{i} 's have length $\geqq u_{j-1}$. Thus $j_{4} \leqq[2 \lambda]+1$ and $j_{1} \leqq j_{3}-1$ $\leqq[2 \lambda]-1$. This gives $j_{2} \leqq j_{4}+j_{1} \leqq 2[2 \lambda]+1$, which contradicts the assumption $j_{2}>2[2 \lambda]+1$, and the claim is proved.

If B_{s-1} ends up to the left of A and B_{s} to the right of A, then A_{s} must have been fixed throughout the rearrangement procedure, since if A_{s} has been moved B_{s-1} and B_{s} would have been joined. We now define two integers q_{1} and q_{2} as follows. If $s=1$ or if $\left|A_{i}\right|<u_{j}$ for $1 \leqq i \leqq s-1$ we put $q_{1}=0$. Otherwise

$$
q_{1}=\max \left\{i ;\left|A_{s-i}\right| \geqq u_{j}, 1 \leqq i \leqq s-1\right\} .
$$

If $s \leqq 3$ we put $q_{2}=1$. If $s \geqq 4$ we define, for $1 \leqq i \leqq s-3, v_{i}=0$ if the first time A_{i} is joined with another o-block, this o-block contains A_{s-2}, otherwise $v_{i}=1$. If $v_{i}=0$ for all $i, 1 \leqq i \leqq s-3$ we put $q_{2}=2$, otherwise

$$
q_{2}=\max \left\{i ; v_{s-i}=1,3 \leqq i \leqq s-1\right\} .
$$

Let $q=\max \left\{q_{1}, q_{2}\right\}$. Then the following claim is true.
Claim 3. $\left|A_{1} \ldots A_{s-q-1}\right| \leqq 3 \lambda^{2} w_{j-1}$.
Since $q \geqq q_{1}, A_{1}, \ldots, A_{s-q-1}$ all have length $<u_{j}$ and we can assume that $s-q$ $-1>3$, otherwise the bound follows trivially. Also $q \geqq q_{2}$ and the definition of q_{2} gives that A_{s-q-1}, \ldots, A_{1} were joined successively with an o-block containing A_{s-2}. According to Claim 1, when A_{2} is joined with the o-block containing A_{3} we must have

$$
\lambda\left|B_{1}\right| \geqq\left|B_{2} \ldots B_{s-q-1}\right|
$$

If $\left|B_{2}\right| \geqq \lambda w_{j-1}$ then $\left|B_{1}\right| \geqq w_{j-1}$ and by $(b)_{j-1},\left|A_{2}\right| \geqq u_{j}$ and we get a contradiction. Consequently $\left|B_{2}\right|<\lambda w_{j-1}$. Similarly we must have

$$
\lambda\left|B_{2}\right| \geqq\left|B_{3} \ldots B_{s-q-1}\right|,
$$

and hence $\left|B_{3} \ldots B_{s-q-1}\right|<\lambda^{2} w_{j-1}$ which implies $s-q-3 \leqq \lambda^{2} w_{j-1} / u_{j-1}$. Thus

$$
\left|A_{1} \ldots A_{s-q-1}\right| \leqq(s-q-1) u_{j} \leqq 3 \lambda^{2} w_{j-1}
$$

and the claim is proved.
Claim 4. $\left|B_{s-i}\right|<\lambda u_{j}$ if $1 \leqq i \leqq q_{1}$.
If $q_{1}=0$ there is nothing to prove, so assume that $q_{1} \geqq 1$ and $\left|B_{s-i}\right| \geqq \lambda u_{j}$ for some $i, 1 \leqq i \leqq q_{1}$. Since B_{s-1} ends up in B the same holds for B_{s-i}. At some step in the rearrangement procedure an e-block of length $\geqq \lambda u_{j}$ containing B_{s-i} must have changed place with an o-block containing $A_{s-q_{1}}$ of length $\geqq u_{j}$. By Claim 1 this is not possible. Thus $\left|B_{s-i}\right|<\lambda u_{j}$.

It will be convenient to write

$$
\chi=2[2 \lambda]+3
$$

Claim 5. At least one of the following two assertions is true:
(i) $\left|A_{1} \ldots A_{s-2}\right| \leqq\left(3 \lambda^{2}+2\right) w_{j-1}$,
(ii) $\left|A_{1} \ldots A_{s-q_{1}-1}\right| \leqq\left(3 \lambda^{2}+\chi\right) w_{j-1}$ and $q_{1} \leqq \chi$.

Assume that $q>\chi$. At some step in the rearrangement procedure an o-block containing A_{s-q} must have been joined with an o-block containing A_{s}. The o-block containing A_{s-q} must then have length $\geqq u_{j}$, because if $q=q_{1},\left|A_{s-q}\right| \geqq u_{j}$ and if $q=q_{2}, A_{s-q}$ is joined with some other o-block before it is joined with A_{s-2}, and hence before it is joined with A_{s}. Thus we perform a rearrangement of the type given in Claim 2 with $k=s, d \geqq s$, and $j_{2} \geqq q \geqq j_{1}+1$ since the o-block closest to the left of A_{s} is always B_{s-1}. We see that $\left|A_{s-j_{2}} \ldots A_{s-\left(j_{1}+1\right)}\right| \geqq u_{j}$ and $j_{2}>2[2 \lambda]+1$. Furthermore, $j_{3}>j_{1}$ since the blocks $B_{s-\left(j_{1}+1\right), \ldots, B_{s-1}}$ must all lie in $B_{s-j_{3}} \ldots B_{s-1}$. Claim 2 now gives $j_{3}=1, j_{1}=0$, and $\left|B_{s-1}\right|<u_{j}$.

Consequently at some previous step in the rearrangement procedure an o-block containing A_{s-q} must have been joined with an o-block containing A_{s-1}. Again we have a rearrangement of the type given in Claim 2, this time with $k=s=1, d=s-1$, $j_{3}>j_{1}$, and $s-1-j_{2} \leqq s-q$, i.e. $j_{2} \geqq q-1>2[2 \lambda]+2$. Claim 2 gives $j_{3}=1$, $\left|B_{s-2}\right|<u_{j}$ and

$$
\begin{equation*}
\left|A_{s-q} \ldots A_{s-2}\right| \leqq\left|A_{s-1}\right| \tag{3.4}
\end{equation*}
$$

We see that at some previous step in the rearrangement procedure an o-block containing A_{s-q} must have been joined with an o-block containing A_{s-2}. The same argument as above using Claim 2 now gives

$$
\begin{equation*}
\left|A_{s-q} \ldots A_{s-3}\right| \leqq\left|A_{s-2}\right| \tag{3.5}
\end{equation*}
$$

Suppose that $\left|A_{s-2}\right| \geqq w_{j-1}$. It follows from (3.4) that $\left|A_{s-1}\right| \geqq w_{j-1}$, and hence $(b)_{j-1}$ gives $\left|B_{s-2}\right| \geqq u_{j}$. This contradicts $\left|B_{s-2}\right|<u_{j}$ and consequently $\left|A_{s-2}\right|<w_{j-1}$ and $\left|A_{s-q} \ldots A_{s-2}\right| \leqq 2 w_{j-1}$ by (3.5). Combining this with Claim 3 we see that (i) holds.

Assume now that $q \leqq \chi$. If $q=q_{1},\left|A_{1} \ldots A_{s-q_{1}-1}\right| \leqq 3 \lambda^{2} w_{j-1}$ by Claim 3 and (ii) holds. In case $q=q_{2},\left|A_{1} \ldots A_{s-q_{2}-1}\right| \leqq 3 \lambda^{2} w_{j-1}$ by Claim 3 and

$$
\left|A_{s-q_{2}} \ldots A_{s-q_{1}-1}\right| \leqq\left(q_{2}-q_{1}\right) u_{j} \leqq \chi w_{j-1}
$$

and (ii) follows. This establishes Claim 5.
By symmetry we can apply the same argument to blocks to the right of A_{s}. We introduce integers p_{1}, p_{2} analogous to q_{1}, q_{2} and prove the next claim.

Claim 6. $\left|B_{s+i}\right|<\lambda u_{j}$ if $0 \leqq i<p_{1}$ and at least one of the following assertions hold (iii) $\left|A_{s+2} \ldots A_{r}\right| \leqq\left(3 \lambda^{2}+2\right) w_{j-1}$,
(iv) $\left|A_{s+p_{1}+1} \ldots A_{r}\right| \leqq\left(3 \lambda^{2}+\chi\right) w_{j-1}$ and $p_{1} \leqq \chi$.

We are now in position to prove (3.2). Let $1 \leqq \mu_{1}, \mu_{2} \leqq \chi$, let A_{t} be the longest block among $A_{s-\mu_{1}}, \ldots, A_{s+\mu_{2}}$ and A_{d} the second longest. If $\left|A_{d}\right|<u_{j}$, then

$$
\begin{equation*}
\max \left\{\left|A_{s-\mu_{1}} \ldots A_{t-1}\right|, \mid A_{t+1} \ldots A_{s+\mu_{2}}\right\} \leqq 2 \chi u_{j} \tag{3.6}
\end{equation*}
$$

If $\left|A_{d}\right| \geqq u_{j}$ it follows from Claims 4 and 6 that the e-blocks between A_{d} and A_{t} have length $\leqq|d-t| \lambda u_{j} \leqq\left(\mu_{1}+\mu_{2}\right) \lambda u_{j} \leqq 2 \lambda \chi u_{j}$. Now define the constant v in (2.2) and in $(b)_{j}$ by

$$
\begin{equation*}
v=\left[\log _{2}(2 \lambda \chi)\right]+1 \tag{3.7}
\end{equation*}
$$

If $\left|A_{d}\right| \geqq w_{j-1, j+v}$ and $j+v \leqq v\left(k_{N}-j+2\right)+k_{N}$, i.e. $j \leqq v\left(k_{N}-j+1\right)+k_{N}$, then $(b)_{j-1}$ gives that the total length of the e-blocks between A_{d} and A_{t} is $\geqq u_{j+v}>2 \lambda \chi u_{j}$. Thus we get a contradiction and conclude that $\left|A_{d}\right|<w_{j-1, j+v} \leqq(2 \lambda \chi)^{2} w_{j-1}$. Hence

$$
\begin{equation*}
\max \left\{\left|A_{s-\mu_{1}} \ldots A_{t-1}\right|, \mid A_{t+1} \ldots A_{s+\mu_{2}}\right\} \leqq 2 \chi(2 \lambda \chi)^{2} w_{j-1} . \tag{3.8}
\end{equation*}
$$

There are four possible combinations of the assertions in Claims 5 and 6. For the combinations (i) and (iii), (i) and (iv), (ii) and (iii), (ii) and (iv) we choose respectively $\mu_{1}=\mu_{2}=1, \mu_{1}=1, \mu_{2}=p_{1}, \mu_{1}=q_{1}, \mu_{2}=1$ and $\mu_{1}=p_{1}, \mu_{2}=p_{1}$. In all cases we obtain (3.2) by combining the assertions in the claims with (3.6) or (3.8).

It remains to consider elements of $R \delta(\underline{n})$ inside an e-block B in $(R(\underline{n}), R(\underline{s}), R \gamma(\underline{n}))$. B has been built up from e-blocks in ($\underline{n}, \underline{s}, \gamma_{j-1}(\underline{n})$), and one of these e-blocks must have remained fixed during the rearrangement procedure, say that B_{0} was fixed. Then

$$
\begin{aligned}
(\underline{n}, \underline{s}) & =\ldots A_{-u} B_{-u} A_{-u+1} \ldots A_{0} B_{0} A_{1} B_{1} \ldots B_{s-1} A_{s} B_{s+1} \ldots A_{r} B_{r} \ldots, \\
(R(\underline{n}), R(\underline{s})) & =\ldots A_{-u} \ldots A_{0} B_{-u} \ldots B_{0} \ldots B_{s-1} A_{1} \ldots A_{s} \ldots A_{r} B_{s+1}
\end{aligned}
$$

Claim 7. (i) If $\left|B_{i}\right|<\lambda u_{j}$ for $t \leqq i<s$, where $t \geqq 2$, then

$$
\left|B_{t} \ldots B_{s-1}\right| \leqq\left(6 \lambda^{3}+3 \lambda \chi\right) w_{j-1}
$$

(ii) If A_{t-1} and A_{t} are joined before A_{t} and A_{t+1} are joined then $\left|B_{i}\right|<\lambda u_{j}$ for $t \leqq i<s$.

Let q_{1} and χ be defined as above. If $q_{1}>\chi$ then by Claim $5,\left|A_{1} \ldots A_{s-2}\right|$ $\leqq\left(3 \lambda^{2}+2\right) w_{j-1}$ and since all blocks have length $\geqq u_{j-1}$ this implies

$$
\left|B_{t} \ldots B_{s-1}\right| \leqq(s-2) \lambda u_{j} \leqq\left(3 \lambda^{2}+2\right) w_{j-1} \lambda u_{j} / u_{j-1}=\left(3 \lambda^{3}+2 \lambda\right) w_{j-1}
$$

Assume that $q_{1} \leqq \chi$. By Claim 5 it follows that we always have $s-q_{1}-1$ $\leqq\left(3 \lambda^{2}+\chi\right) w_{j-1} / u_{j-1}$ and we get

$$
\left|B_{t} \ldots B_{s-q_{1}-1}\right| \leqq\left(s-q_{1}-1\right) \lambda u_{j} \leqq\left(6 \lambda^{3}+2 \chi\right) w_{j-1}
$$

and

$$
\left|B_{s-q_{1}} \ldots B_{s-1}\right| \leqq q_{1} \lambda u_{j} \leqq \chi \lambda w_{j-1}
$$

This proves (i).
If A_{t} and A_{t+1} have not been joined, B_{t} lies to the right of A_{t}. When A_{t-1} and A_{t} have been joined B_{t} will lie to the right of the o-block containing $A_{t-1} A_{t}$. If $\left|B_{i}\right| \geqq \lambda u_{j}$
for some $i, t \leqq i<s$, then at some step in the rearrangement procedure an e-block of length $\geqq \lambda u_{j}$ containing B_{i} must change place with an o-block of length $\geqq u_{j}$ containing $A_{t-1} A_{t}$, but this is impossible by Claim 1.

Claim 8. There exists a $p \leqq \chi$ such that

$$
\begin{equation*}
\left|B_{p} \ldots B_{s-1}\right| \leqq\left(6 \lambda^{3}+3 \lambda \chi+2 \lambda^{2}\right) w_{j-1} \tag{3.9}
\end{equation*}
$$

and $\left|A_{i}\right|<u_{j}$ when $1 \leqq i<p$.
By Claim 4, $\left|B_{s-i}\right|<\lambda u_{j}$ when $1 \leqq i \leqq q$ and hence Claim 7(i) gives

$$
\left|B_{s-q_{1}} \ldots B_{s-1}\right| \leqq\left(6 \lambda^{3}+3 \lambda \chi\right) w_{j-1}
$$

If $s-q_{1} \leqq \chi$ we can take $p=s-q_{1}$. Note that by the definition of $q_{1},\left|A_{i}\right|<u_{j}$ when $1 \leqq i<s-q_{1}$. Assume that $s-q_{1}>\chi$. If A_{t-1} and A_{t} are joined before A_{t} and A_{t+1} are joined for some $t, 2 \leqq t \leqq \chi$, then Claim 7 shows that (3.9) holds with $p=t$. Suppose that this is not the case. Consider the step when A_{χ} and $A_{\chi+1}$ are joined. Then, by our assumption, $A_{\chi-1}$ and A_{χ} have not been joined and consequently nor have $A_{\chi-2}$ and $A_{\chi-1}$ or $A_{\chi-3}$ and $A_{\chi-2}$. The following elementary rearrangement is done:

$$
\ldots A_{\chi-2} B_{\chi-2} A_{\chi-1} B_{\chi-1} A_{\chi} B_{\chi} \ldots B_{\chi+j_{1}} A_{\chi+1} \ldots
$$

to

$$
\ldots A_{\chi-2} B_{\chi-2} A_{\chi-1} B_{\chi-1} B_{\chi} \ldots B_{\chi+j_{1}} A_{\chi} A_{\chi+1} \ldots
$$

By Claim 1, $\left|B_{\chi} \ldots B_{\chi+j_{1}}\right|<2 \lambda\left|B_{\chi-1}\right|$. As in Claim 7 it follows that $\left|B_{i}\right|<\lambda u_{j}$ when $i>\chi+j_{1}$ and Claim 7 gives

$$
\begin{equation*}
\left|B_{\chi+j_{1}+1} \ldots B_{s-1}\right| \leqq\left(6 \lambda^{3}+3 \lambda \chi\right) w_{j-1} \tag{3.10}
\end{equation*}
$$

At some later step $A_{\chi-1}$ and A_{χ} will be joined and the same argument gives

$$
\left|B_{\chi-1} \ldots B_{\chi+j_{2}}\right| \leqq 2 \lambda\left|B_{\chi-2}\right|
$$

where $j_{2} \geqq j_{1}$. If $\left|B_{\chi-1}\right| \geqq 2 \lambda w_{j-1}$ then $\left|B_{\chi-2}\right| \geqq w_{j-1}$ and since $\left|A_{\chi-1}\right|<u_{j}$ this contradicts $(b)_{j-1}$. Hence $\left|B_{\chi-1}\right|<2 \lambda w_{j-1}$ and we get $\left|B_{\chi} \ldots B_{\chi+j_{1}}\right|<4 \lambda^{2} w_{j-1}$. Together with (3.10) this proves (3.9) with $p=\chi$.

We can now prove the following claim by a completely analogous argument.
Claim 9. There is a $q \leqq \chi$ such that

$$
\left|B_{-u} \ldots B_{-q}\right| \leqq\left(6 \lambda^{3}+3 \lambda \chi+2 \lambda^{2}\right) w_{j-1}
$$

and $\left|A_{-i}\right|<u_{j}$ if $0 \leqq i<q-1$.
Now let B_{t} be the longest block among $B_{-q+1}, \ldots, B_{p-1}$. Using Claim 8, Claim 9 and $(b)_{j-1}$ we can apply the same argument as that after Claim 6 to prove that

$$
\max \left\{\left|B_{-u} \ldots B_{t-1}\right|,\left|B_{t+1} \ldots B_{s-1}\right|\right\} \leqq C_{\lambda} w_{j-1}
$$

with a suitable C_{λ}. This completes the proof of $(a)_{j}$.
We now turn to the proof of $(b)_{j}$ given that $(b)_{j-1}$ and $(a)_{j}$ are true.
Claim 10. Suppose that we have two o-(e-)blocks C and C^{\prime} of length $\geqq w_{j, k}$ in $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right),(\underline{n}, \underline{s}) \in Q_{j}$ for some $k, j \leqq k \leqq v\left(k_{N}-j+1\right)+k_{N}$ such that the length of the
$e-(o-)$ blocks between them is $<u_{k}$. Let $v^{\prime}=\left[\log _{2}(3+2 \lambda)\right]+1$. Then there is a configuration $(\underline{m}, \underline{r}) \in Q_{j-1}, \quad R(\underline{m}, \underline{r})=(\underline{n}, \underline{s})$ with the following property. In ($\underline{m}, \underline{r}, \gamma_{j-1}(\underline{m})$) there are two o-(e-)blocks C_{2} and C_{2}^{\prime}, of length $\geqq w_{j-1, k+v^{\prime}}$, such that the length of the e-(o-)blocks between them is $<3 u_{k}+2 \lambda u_{j}$.

Since $v^{\prime} \leqq v, k \leqq v\left(k_{N}-j+1\right)+k_{N}$ implies that $k+v^{\prime} \leqq v\left(k_{N}-(j-1)+1\right)+k_{N}$. Now $3 u_{k}+2 \lambda u_{j}<u_{k+v^{\prime}}$, so Claim 10 contradicts $(b)_{j-1}$. Hence the assumption in Claim 10 must be wrong and (b) follows.

To prove Claim 10 we first show that there is an $(\underline{m}, \underline{r}) \in Q_{j-1}$ with $R(\underline{m}, \underline{r})=(\underline{n}, \underline{s})$ and blocks C_{1} and C_{1}^{\prime} in $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$ of length $\geqq w_{j, k}$, such that the length of the e-(o-)blocks between them is $<3 u_{k}$. Assume first that C and C^{\prime} are e-blocks and let A_{1}, \ldots, A_{p} and B_{1}, \ldots, B_{p-1} be, respectively, the o - and e-blocks between C and C^{\prime} in $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right.$). We write $C=\left\langle b_{0}, a_{1}\right\rangle, C^{\prime}=\left\langle b_{p}, a_{p+1}\right\rangle, A_{i}=\left\langle a_{i}, b_{i}\right\rangle$, and $B_{i}=\left\langle b_{i}, a_{i+1}\right\rangle$. There is a $(\underline{m}, \underline{r}) \in Q_{j-1}$ with $R(\underline{m}, \underline{r})=(\underline{n}, \underline{s})$ such that $a_{1} \in R \gamma(\underline{\underline{n}})$. At least one of $b_{i}, 1 \leqq i \leqq p$, must belong to $R \gamma(\underline{m})$ since otherwise we would have an o-block $\left\langle a_{1}, b\right\rangle$, in $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$ with $b \geqq a_{p+1}$. Since $\left|A_{1}\right|+\ldots+\left|A_{p}\right|<u_{k}$ and $\left|C^{\prime}\right| \geqq w_{j, k}$ this would contradict the density property of $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$. Let b_{q} be the largest among $b_{i}, 1 \leqq i \leqq p$, that belongs to $R \gamma(\underline{m})$. In $(R(\underline{\underline{m}}), R(\underline{r}), R \gamma(\underline{m}))$ we have two e-blocks $C_{1}=\left\langle c, a_{1}\right\rangle$ and $C_{1}^{\prime}=\left\langle b_{q}, c^{\prime}\right\rangle$, where $c \leqq b_{0}$ and $c^{\prime} \geqq a_{p+1}$. Clearly C_{1} and C_{1}^{\prime} both have length $\geqq w_{j, k}$. Consider an o-block $A=\left\langle a_{i_{1}}, b_{i_{2}}\right\rangle, 1 \leqq i_{1} \leqq i_{2} \leqq q$, between C_{1} and C_{1}^{\prime} in $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$. If $i_{1}=i_{2},|A|=\left|A_{i_{1}}\right|$. Suppose that $i_{1}<i_{2}$ so that $A=A_{i_{1}} B_{i_{1}} \ldots B_{i_{2}-1} A_{i_{2}}$. Using the density property of $(R(\underline{\underline{m}}), R(\underline{\underline{r}}), R \gamma(\underline{m}))$ we get that the number of occupied positions in A is

$$
\geqq(1 / 2-\delta)|A| \geqq(1 / 2-\delta)\left(\left|A_{i_{1}}\right|+\left|B_{i_{1}}\right|+\ldots+\left|B_{i_{2}-1}\right|+\left|A_{i_{2}}\right|\right) .
$$

On the other hand, using the density property of $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right)$, we see that the number of occupied positions in A is

$$
\leqq\left|A_{i_{1}}\right|+\ldots+\left|A_{i_{2}}\right|+\delta\left(\left|B_{i_{1}}\right|+\ldots+\left|B_{i_{2}-1}\right|\right)
$$

This gives

$$
|A| \leqq\left(1+\frac{1 / 2+\delta}{1 / 2-2 \delta}\right)\left(\left|A_{i_{1}}\right|+\ldots+\left|A_{s}\right|\right) \leqq 3\left(\left|A_{i_{1}}\right|+\ldots+\left|A_{i_{2}}\right|\right)
$$

since $\delta \leqq 1 / 16$. It follows that the total length of the o-blocks in $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$ between C_{1} and C_{1}^{\prime} is $<3 u_{k}$. The case when C_{1} and C_{1}^{\prime} are o-blocks is analogous.

If we let ζ in (3.1) be given by

$$
\begin{equation*}
\zeta=4(3+2 \lambda)^{2}+(2+\lambda) C_{\lambda} \tag{3.11}
\end{equation*}
$$

it is easily shown that

$$
\begin{gather*}
w_{j, k}-2 C_{\lambda} w_{j-1} \geqq w_{k-1, k+v^{\prime}}, \\
\lambda^{-1}\left(w_{j, k}-2 C_{\lambda} w_{j-1}\right)>C_{\lambda} w_{j-1} \tag{3.12}
\end{gather*}
$$

The $o-(e-)$ blocks C_{1} and C_{1}^{\prime} have been built up from $o-(e-)$ blocks in $\left(\underline{m}, \underline{r}, \gamma_{j-1}(\underline{m})\right)$. It follows from $(a)_{j}$ that there exists $o-(e-)$ blocks C_{2} and C_{2}^{\prime} in $\left(\underline{\underline{2}}, \underline{r}, \gamma_{j-1}(m)\right)$ contained in C_{1} respectively C_{1}^{\prime}, such that C_{2} and C_{2}^{\prime} have length $w_{j, k}-2 C_{\lambda} w_{j-1} \geqq w_{k-1, k+v^{\prime}}$. Assume first that C_{2} and C_{2}^{\prime} are e-blocks. Let A_{1}, \ldots, A_{p} be the o-blocks between C_{2} and C_{2}^{\prime} in ($\underline{m}, \underline{r}, \gamma_{j-1}(\underline{m})$). If an o-block containing one or several of A_{1}, \ldots, A_{p} changes place with an e-block containing one of C_{2} or C_{2}^{\prime}, it follows that the length of this e-block increases by at least $\lambda^{-1}\left|C_{2}\right|$ or $\lambda^{-1}\left|C_{2}^{\prime}\right|$ respectively, i.e. using (3.12)
by at least $C_{\lambda} w_{j-1}$. But this contradicts $(a)_{j}$. Thus all A_{1}, \ldots, A_{p} are included in o-blocks between C_{1} and C_{1}^{\prime} in $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$ and it follows that $\left|A_{1}\right|+\ldots+\left|A_{p}\right|$ $<3 u_{k}$.

Assume now that C_{2} and C_{2}^{\prime} are o-blocks and let B_{1}, \ldots, B_{p} be the e-blocks between C_{2} and C_{2}^{\prime} in ($\underline{m}, \underline{r}, \gamma_{j-1}(\underline{m})$). Suppose that an e-block B^{1} containing e-blocks among B_{1}, \ldots, B_{p} changes place with an o-block A^{1} containing C_{2} :

$$
\ldots A^{0} B^{0} A^{1} B^{1} A^{2} \ldots \rightarrow \ldots A^{0} B^{0} B^{1} A^{1} A^{2} \ldots
$$

By Claim 1 either $\left|A^{1}\right| \leqq\left|A^{2}\right|$, which will contradict $(a)_{j}$ in the same way as above, or $\left|B^{0}\right|<u_{j}$ and $\left|B^{1}\right|<\lambda\left|B^{0}\right|$ and consequently $\left|B^{1}\right|<\lambda u_{j}$. Since $\left|B^{0} B^{1}\right| \geqq u_{j}$ this second case cannot be repeated. The same argument can be applied with C_{2}^{\prime} instead of C_{2}. It follows that the length of the e-blocks between C_{1} and C_{1}^{\prime} is at least $\left|B_{1}\right|+\ldots+\left|B_{p}\right|-2 \lambda u_{j}$. Hence $\left|B_{1}\right|+\ldots+\left|B_{p}\right|-2 \lambda u_{j}<3 u_{k}$. This establishes the claim and completes the proof of Lemma 3.1.

The proof of the entropy estimate using Lemma 3.1 is now exactly as the proof of Lemma 3.2 in [I], except that $16 w_{j-1}$ is replaced by $2 C_{\lambda} w_{j-1}$ and ζ in (3.1) is not $=9$ but is given by (3.11). This gives $C_{1}=\log \left(C_{1}^{\prime} / \delta\right)$, where C_{1}^{\prime} can be taken to be $=8 \zeta$.

3.2. Proof of the Density Property for the Partitions

The proof of Lemma 2.5 is very similar to the proof of the Lemmas 2.3 and 2.6 in [I]. The proof that $\left(\underline{n}, \underline{s}, \gamma_{1}(\underline{n})\right.$) satisfies the density property for all $(\underline{n}, \underline{s}) \in Q_{1}$ is the same as the proof of Lemma 2.3 in [I]. The only difference is that $\gamma^{(0)}(\underline{n})$ is defined differently. If $\left\langle a, a^{\prime}\right\rangle$ is an o-block in $\left(\underline{n}, \underline{s}, \gamma^{(0)}(\underline{n})\right.$) then $n_{a}=1, n_{a^{\prime}-2}=1, n_{a^{\prime}-1}=0$ and we do not have two consecutive zeros in the sequence $n_{a}, \ldots, n_{a^{\prime}-1}$. This means that $1-\delta_{k}$ has to be replaced by $1 / 2-\delta_{k}$ everywhere. The proof, by induction on j, that ($\underline{n}, \underline{s}, \gamma_{j}(\underline{n})$) has the density property for every $(\underline{n}, \underline{s}) \in Q_{j}$ is the same as the proof of Lemma 2.6 in [I] except that $1-\delta$ is replaced by $1 / 2-\delta$.

We will now prove that all blocks in $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right)$ have length $\geqq u_{j}$. Let $A=\left\langle a, a^{\prime}\right\rangle$ be the shortest block in ($\underline{n}, \underline{s}, \gamma_{j}(\underline{n})$) and let $B=\left\langle a^{\prime}, a^{\prime \prime}\right\rangle$ be its right neighbour, $|B| \geqq|A|$. There is a $(\underline{m}, \underline{r}) \in Q_{j-1}$ such that $R(\underline{m}, \underline{r})=(\underline{n}, \underline{s})$ and $a \in R \gamma(\underline{m})$. If $|B|<u_{j}$, then $a^{\prime} \notin R \gamma(\underline{m})$ since all blocks in $(\underline{n}, \underline{s}, R \gamma(\underline{m}))$ have length $\geqq u_{j}$. The next point, b, to the right of a in $R \gamma(\underline{m})$ is $\geqq a^{\prime \prime}$. If A is an e-block then B is an o-block and $\langle a, b\rangle$ must be an e-block in ($\underline{n}, \underline{s}, \gamma(\underline{m})$). The density property gives

$$
\begin{equation*}
N\left(a, a^{\prime \prime}-1\right)(\underline{n}) \leqq \delta\left(a^{\prime \prime}-a\right) . \tag{3.13}
\end{equation*}
$$

On the other hand the density property for $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right)$ gives

$$
\begin{align*}
N\left(a, a^{\prime \prime}-1\right)(\underline{n}) & =N\left(a, a^{\prime}-1\right)(\underline{n})+N\left(a^{\prime}, a^{\prime \prime}-1\right)(\underline{n}) \\
& \geqq 0+(1 / 2-\delta)\left(a^{\prime \prime}-a^{\prime}\right) \geqq(1 / 2-\delta) \frac{1}{2}\left(a^{\prime \prime}-a\right), \tag{3.14}
\end{align*}
$$

since $|B| \geqq|A|$. Now (3.13) and (3.14) are contradictory if $\delta \leqq 1 / 16$ so we must have $|A| \geqq u_{j}$.

Assume now that A is an o-block and hence B is an e-block. Recall that $a<a^{\prime}$ $<a^{\prime \prime} \leqq b$ and $a^{\prime \prime}-a \geqq a^{\prime}-a$. $\langle a, b\rangle$ must be an o-block in $(\underline{n}, \underline{s}, R \gamma(\underline{m}))$. We will prove the following property for the o-block $\langle a, b\rangle$:

$$
\begin{equation*}
\text { If } a \leqq x<x+s<b \quad \text { and } \quad N(x, x+s)(\underline{n}) \leqq \delta d, \text { then } \quad x-a \geqq 2 s \tag{3.15}
\end{equation*}
$$

Thus $a^{\prime}-a \geqq 2\left(a^{\prime \prime}-a-1\right)$ and we get a contradiction. Hence if we can prove (3.15) we are finished.

If every o-block $\langle a, b\rangle$ in $(\underline{n}, \underline{s}, \gamma)$ satisfies (3.15), then so does every o-block in $S(\underline{n}, \underline{s}, \gamma)$. To see this suppose that the o-blocks A_{1} and A_{2} have been joined to $A_{1} A_{2}$ $=\langle a, b\rangle$. Let $a^{\prime}, a<a^{\prime}<b$, be the position of the old partition point. If $a^{\prime} \in(x, x+s)$, then since $N(x, x+s)(\underline{n}) \leqq \delta s$ we must have either $N\left(x, a^{\prime}-1\right)(\underline{n}) \leqq \delta\left(a^{\prime}-x\right)$ or $N\left(a^{\prime}, x+s\right)(\underline{n}) \leqq\left(x+s-a^{\prime}\right)$, which both are impossible by the density property. Hence $\langle x, x+s\rangle$ must be completely within A_{1} or A_{2} and we are done.

Thus if every o-block in $\left(\underline{m}, \underline{r}, \gamma_{j-1}(\underline{n})\right),(\underline{m}, \underline{r}) \in Q_{j-1}$ satisfies (3.15), then so does every o-block in $(R(\underline{\underline{m}}), R(\underline{r}), R \gamma(\underline{m}))$ and since o-blocks in $\left(\underline{n}, \underline{s}, \gamma_{j}(\underline{n})\right)$ are parts of o-blocks in $(R(\underline{m}), R(\underline{r}), R \gamma(\underline{m}))$ for some $(\underline{\underline{m}}, \underline{r}) \in Q_{j-1}, R(\underline{m}, \underline{r})=(\underline{n}, \underline{s})$, we see that (3.15) holds for o-blocks in ($\underline{n}, \underline{s}, \gamma_{j}(\underline{n})$). Hence it suffices to show that (3.15) holds for every o-block $\langle a, b\rangle$ in $\left(\underline{n}, \underline{s}, \gamma_{1}(\underline{n})\right.$) for each $(\underline{n}, \underline{s}) \in Q_{1}$. This is done inductively by showing that (3.15) holds for o-blocks in $\left(\underline{n}, \underline{s}, \gamma^{(k)}(\underline{n})\right), k=0, \ldots, v k_{N}$. That (3.15) is true for $k=0$ is trivial since $N(x, x+s)(\underline{n}) \leqq \delta s$ is impossible. The argument is now very similar to the proof of Lemma 4.1 in [I]. Assume that (3.15) is true for o-blocks in $\left(\underline{n}, \underline{s}, \gamma^{(k-1)}(\underline{n})\right)$ and let $A=\langle a, b\rangle$ be an o-block in $\left(\underline{n}, \underline{s}, \gamma^{(k)}(\underline{n})\right)$. If y is the length of the e-blocks in $\left(\underline{n}, \underline{s}, \gamma^{(k-1)}(\underline{n})\right)$ that wholly or partly lie in $\langle x, x+s\rangle$, then just as in the proof of Lemma 4.1 in [I] we get $x-a \geqq v_{k}-(s-y), y \leqq u_{k}$, and

$$
N(x, x+s)(\underline{n}) \geqq(1 / 2-\delta)(s-y) .
$$

Together with $N(x, x+s)(\underline{n}) \leqq \delta s$ and $\delta \leqq 1 / 16$ these estimates show that (3.15) holds.

We will now discuss the proof of Lemma 2.6. The proof is almost exactly the same as that of Lemma 3.4 in [I]. Fix $\underline{t} \in T$. If $F(\underline{x})=(\underline{n}, \underline{s}), \underline{x} \in X$, then

$$
d\left(\tau_{1}, \tau_{2}\right)(\underline{x})=\frac{1}{L\left(\tau_{2}-\tau_{1}\right)} N\left(\left[\tau_{1} L\right],\left[\tau_{2} L\right]\right)(\underline{n}) .
$$

Hence if $0 \leqq \tau_{1}<\tau_{2} \leqq d_{1}-\varepsilon$, then

$$
Q\left(\underline{t}, A_{\tau_{1}, \tau_{2}}\right)=\left\{(\underline{n}, \underline{s}) \in Q(\underline{t}, X) ; \frac{1}{L\left(\tau-\tau_{1}\right)} N\left(\left[\tau_{1} L\right],\left[\tau_{2} L\right]\right)(\underline{n}) \leqq \frac{1}{2}-2 \delta\right\}
$$

and similarly for $d_{2}+\varepsilon \leqq \tau_{1}<\tau_{e} \leqq 1$. Thus we can copy the proof of Lemma 3.4 in [I] almost verbatim, except that $1-2 \delta$ and $1-\delta$ must be replaced by $1 / 2-2 \delta$ respectively $1 / 2-\delta$. The only other modification is that $8 w_{j-1}$ in [I] is replaced by $C_{\lambda} w_{j-1}$ and formula (4.4) in [I] changes to

$$
\lambda-v_{1} \leqq C_{\lambda} \sum_{j=2}^{k_{N}} w_{j-1} \leqq C_{\lambda}^{\prime} N^{\gamma}
$$

with $\gamma=\omega \log 4 \zeta$, where ω comes from (2.3) and ζ from (3.1). Put

$$
\begin{equation*}
\omega=\frac{1}{2 \log 4 \zeta} \tag{3.16}
\end{equation*}
$$

so that $\gamma=1 / 2 ; \omega$ depends only on α.
We can now verify (2.10). We have

$$
2 \kappa \beta \geqq 8 \log \left(C_{1}^{\prime} / \delta_{0}\right) \geqq 8 \log (16 \cdot 8 \zeta) \geqq 8 \log 4 \zeta
$$

since $\delta \leqq \delta_{0} \leqq 1 / 16$. Hence $2 \kappa \beta \omega \geqq 4$.

4. Proof of the Energy Estimate

Let $(\underline{n}, \underline{s})$ be a configuration and γ a partition such that $(\underline{n}, \underline{s}, \gamma)$ has the density property. Denote by $A_{1}, B_{1}, \ldots, A_{r}, B_{r}$ the blocks in $(\underline{n}, \underline{s}, \gamma)$. By assumption all the blocks have length $\geqq u_{j}$. An elementary rearrangement is always of the form that an o-block, A_{k} say, changes place with one of its neighbouring e-blocks, B_{k-1} or B_{k}. Recall that these operations are denoted by $S_{2 k-2,2 k-1}$ respectively $S_{2 k-1,2 k}$. Let

$$
\begin{aligned}
& \Delta E_{1}=H\left(S_{2 k-2,2 k-1}(\underline{n}, \underline{s})\right)-H(\underline{n}, \underline{s}) \\
& \Delta E_{2}=H\left(S_{2 k-1,2 k}(\underline{n}, \underline{s})\right)-H(\underline{n}, \underline{s})
\end{aligned}
$$

We want to show that:
(i) If $\left|B_{k}\right| \geqq \lambda\left|B_{k-1}\right|$ and $\left|A_{k-1}\right| \geqq\left|A_{k}\right|$, then $\Delta E_{1} \geqq 2 \kappa j$.
(ii) If $\left|B_{k-1}\right| \geqq \lambda\left|B_{k}\right|$ and $\left|A_{k}\right| \geqq\left|A_{k+1}\right|$, then $\Delta E_{2} \geqq 2 \kappa j$.
(iii) If $\lambda^{-1}\left|B_{k-1}\right| \leqq\left|B_{k}\right| \leqq \lambda\left|B_{k-1}\right|$, then $\max \left\{\Delta E_{1}, \Delta E_{2}\right\} \geqq 2 \kappa j$.

Here κ is a constant that only depends on α. Write $A_{k-1}=\left\langle a_{1}, b_{1}\right\rangle$, $B_{k-1}=\left\langle b_{1}, a_{2}\right\rangle, A_{k}=\left\langle a_{2}, b_{2}\right\rangle, B_{k}=\left\langle b_{2}, a_{3}\right\rangle$, and $A_{k+1}=\left\langle a_{3}, b_{3}\right\rangle$. The lengths of $A_{k-1}, B_{k-1}, A_{k}, B_{k}, A_{k+1}$ are respectively $x_{1}, y_{1}, x_{2}, y_{2}$, and x_{3}.

We write $\Delta E_{1}=\Delta E_{1}^{0}-\Delta E_{1}^{1}$ and $\Delta E_{2}=\Delta E_{2}^{0}-\Delta E_{2}^{1}$, where ΔE_{1}^{0} and ΔE_{2}^{0} are the changes in energy which we would have if the e-blocks B_{k-1} and B_{k} were empty, and ΔE_{1}^{1} and ΔE_{2}^{1} are the changes in energy due to the particles in B_{k-1} and B_{k}. Then

$$
\begin{aligned}
\Delta E_{1}^{0}= & \sum_{\substack{i \\
a_{2} \leqq j<b_{1} \\
a_{2}}} n_{i} n_{j}\left(\left(j-i+s_{j}-s_{i}-y_{1}\right)^{-\alpha}-\left(j-i+s_{j}-s_{i}\right)^{-\alpha}\right) \\
& -\underset{\substack{a_{2} \leq j<b_{2} \\
k \geqq a_{3}}}{ } n_{j} n_{k}\left(\left(k-j+s_{k}-s_{j}\right)^{-\alpha}-\left(k-j+s_{k}-s_{j}+y_{1}\right)^{-\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta E_{2}^{0} & =\sum_{\substack{a_{2} \leqq j<b_{2} \\
k \geqq a_{3}}} n_{j} n_{k}\left(\left(k-j+s_{k}-s_{j}-y_{2}\right)^{-\alpha}-\left(k-j+s_{k}-s_{j}\right)^{-\alpha}\right) \\
& =\sum_{\substack{i<b_{1} \\
a_{2} \leqq j<b_{2}}} n_{i} n_{j}\left(\left(j-i+s_{j}-s_{i}\right)^{-\alpha}-\left(j-i+s_{j}-s_{i}+y_{2}\right)^{-\alpha}\right) .
\end{aligned}
$$

If we write $\sigma_{i j}=s_{a_{2}+j}-s_{b_{1}-i}$ and $\tau_{i k}=s_{a_{3}+k}-s_{b_{2}-j}$ these formulas can be rewritten as

$$
\begin{aligned}
\Delta E_{1}^{0}= & \sum_{i=1}^{\infty} \sum_{j=0}^{x_{2}-1} n_{b_{1}-i} n_{a_{2}+j}\left(\left(j+i+\sigma_{i j}\right)^{-\alpha}-\left(j+i+\sigma_{i j}+y_{1}\right)^{-\alpha}\right) \\
& -\sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty} n_{b_{2}-j} n_{a_{3}+k}\left(\left(k+j+\tau_{j k}+y_{2}\right)^{-\alpha}-\left(k+j+\tau_{j k}+y_{2}+y_{1}\right)^{-\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta E_{2}^{0}= & \sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty} n_{b_{2}-j} n_{a_{3}+k}\left(\left(k+j+\tau_{j k}\right)^{-\alpha}-\left(k+j+\tau_{j k}+y_{2}\right)^{-\alpha}\right) \\
& -\sum_{i=1}^{\infty} \sum_{j=0}^{x_{2}-1} n_{b_{1}-i} n_{a_{2}+j}\left(\left(j+i+\sigma_{i j}+y_{1}\right)^{-\alpha}-\left(j+i+\sigma_{i j}+y_{1}+y_{2}\right)^{-\alpha}\right) .
\end{aligned}
$$

We will use the following facts, the proofs of which will be sketched at the end of the section.
(a) If $1 \leqq x \leqq 2 z$, then

$$
x^{-\alpha}-(x+z)^{-\alpha} \geqq\left(1-(2 / 3)^{\alpha}\right) x^{-\alpha}
$$

(b) For x, y_{1}, y_{2} define

$$
f\left(x, y_{1}, y_{2}\right)=\frac{y_{2}}{y_{1}}\left(x^{-\alpha}-\left(x+y_{1}\right)^{-\alpha}\right)-\left(\left(x+y_{1}\right)^{-\alpha}-\left(x+y_{1}+y_{2}\right)^{-\alpha}\right) .
$$

Then $f\left(x, y_{1}, y_{2}\right)>0$ and $f\left(x, y_{1}, y_{2}\right)$ is a decreasing function of x for fixed y_{1}, y_{2}. Furthermore there are constants c_{1} and c_{2}, depending only on α, such that, if $1 \leqq x$ $\leqq c_{1} y_{1}$ and $y_{2} / y_{1} \geqq 1 / \lambda$, then

$$
\begin{equation*}
f\left(x, y_{1}, y_{2}\right) \geqq c_{2} / x^{\alpha} \tag{4.1}
\end{equation*}
$$

We assume to begin with that $1<\alpha<2$. Consider first the case (i). Then $y_{2} \geqq \lambda y_{1}$ and $x_{1} \geqq x_{2} \geqq 2$. Let us prove a lower bound on ΔE_{1}^{0}.

From the definition of o-blocks we know that $n_{b_{1}-1}=0$ and the density property gives

$$
\begin{array}{cc}
\sum_{i=1}^{p} n_{b_{1}-i} \geqq(1 / 2-\delta)(p-1), & 1 \leqq p \leqq x_{1}, \tag{4.2}\\
\sum_{j=0}^{p} n_{a_{2}+j} \geqq(1 / 2-\delta)(p+1), & 0 \leqq p \leqq x_{2}-1 .
\end{array}
$$

If we use $0 \leqq n_{i} \leqq 1$ and $-1 \leqq \sigma_{i j}, \tau_{j k} \leqq 1$ we obtain

$$
\begin{aligned}
\Delta E_{1}^{0} \geqq & \sum_{i=1}^{x_{1}} \sum_{j=0}^{x_{2}-1} n_{b_{1}-i} n_{a_{2}+j}\left((j+i+1)^{-\alpha}-\left(j+i+1+y_{1}\right)^{-\alpha}\right) \\
& -\sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty}\left(\left(j+k-1+y_{2}\right)^{-\alpha}-\left(j+k-1+y_{2}+y_{1}\right)^{-\alpha}\right) .
\end{aligned}
$$

A summation by parts using (4.2) gives

$$
\begin{align*}
\Delta E_{1}^{0} \geqq(1 / 2-\delta)^{2} & \sum_{i=2}^{x_{1}} \sum_{j=0}^{x_{2}-1}\left((j+i+1)^{-\alpha}-\left(j+i+1+y_{1}\right)^{-\alpha}\right) \\
& -\sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty}\left(\left(j+k-1+y_{2}\right)^{-\alpha}-\left(j+k-1+y_{2}+y_{1}\right)^{-\alpha}\right) . \tag{4.3}
\end{align*}
$$

Let $z=\min \left\{x_{2}, y_{1}\right\}$ and introduce the function

$$
g_{\alpha}(z)=(2-\alpha)^{-1}\left(z^{2-\alpha}-1\right)+1
$$

We want to show that if we choose λ sufficiently large, depending on α, then ΔE_{1}^{0} $\geqq c_{3} g_{\alpha}(z)$ for some constant $c_{3}>0$ that only depends on α. Consider the first double sum in (4.3) and assume that $z \geqq 2$. Using property (a) above and estimating sums by integrals obtain

$$
\begin{align*}
& \sum_{i=2}^{x_{1}} \sum_{j=0}^{x_{2}-1}\left((j+i+1)^{-\alpha}-\left(j+i+1+y_{1}\right)^{-\alpha}\right) \\
& \quad \geqq \sum_{i=2}^{z} \sum_{j=1}^{z}\left((j+i)^{-\alpha}-\left(j+i+y_{1}\right)^{-\alpha}\right) \\
& \quad \geqq\left(1-(2 / 3)^{\alpha}\right) \sum_{i=2}^{z} \sum_{j=1}^{z}(j+i)^{-\alpha} \geqq\left(1-(2 / 3)^{\alpha}\right) c g_{\alpha}(z) \tag{4.4}
\end{align*}
$$

where c only depends on α. This is easily checked to hold also for $z=1$. Now consider the second sum in (4.3). Cancellation between terms and estimation of sums by integrals gives

$$
\begin{align*}
& \sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty}\left(\left(j+k-1+y_{2}\right)^{-\alpha}-\left(j+k-1+y_{2}+y_{1}\right)^{-\alpha}\right) \\
& \quad=\sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty}\left(j+k-1+y_{2}\right)^{-\alpha} \leqq \sum_{j=1}^{z} \sum_{k=0}^{\infty}\left(j+k+y_{2}-1\right)^{-\alpha} \\
& \quad \leqq(1-\alpha)^{-1}(2-\alpha)^{-1}\left[\left(z+y_{2}-2\right)^{2-\alpha}-\left(y_{2}-2\right)^{2-\alpha}\right] \\
& \quad \leqq c^{\prime}\left[(\lambda-1)^{2-\alpha}-(\lambda-2)^{2-\alpha}\right] g_{\alpha}(z) \tag{4.5}
\end{align*}
$$

where c^{\prime} only depends on α. We have used the fact that $y_{2} \geqq \lambda y_{1} \geqq \lambda z$. If we use $\delta \leqq 1 / 16$ we get $(1 / 2-\delta)^{2} \geqq 1 / 6$, and combining (4.4) and (4.5) we see that by choosing λ sufficiently large, depending on α, we get $\Delta E_{1}^{0} \geqq c_{3} g_{\alpha}(z)$.

We must also estimate the effect on energy changes, ΔE_{1}^{1}, of particles in B_{k-1} and B_{k}. If we only consider energy losses and not energy gains, there are three quantities to be estimated: the change in interaction energy between B_{k-1} and everything to the left of B_{k-1}, between B_{k-1} and A_{k}, and between A_{k} and B_{k}. These quantities are all estimated in a similar way and we only treat the first one. The density property gives

$$
\sum_{j=0}^{p} n_{b_{1}+j} \leqq \delta p, \quad 0 \leqq p \leqq y_{1}-1
$$

Using this in a summation by parts, $0 \leqq n_{i} \leqq 1$ and cancellation between terms we see that the change in interaction energy between B_{k-1} and everything to the left of B_{k-1} is

$$
\begin{aligned}
& \sum_{\substack{i<b_{1} \\
b_{1} \leqq j<a_{2}}} n_{i} n_{j}\left[\left(j+s_{j}-i-s_{i}\right)^{-\alpha}-\left(j+s_{j}-i-s_{i}+x_{2}\right)^{-\alpha}\right] \\
& \leqq \sum_{i=1}^{\infty} \sum_{j=1}^{y_{1}-1} n_{b_{1}+j}\left[(j+i-1)^{-\alpha}-\left(j+i-1+x_{2}\right)^{-\alpha}\right] \\
& \leqq \sum_{i=0}^{x_{2}-1} \sum_{j=1}^{y_{1}-1} n_{b_{1}+j}(i+j)^{-\alpha} \leqq \delta \sum_{i=0}^{x_{2}-1} \sum_{j=1}^{y_{1}-1}(i+j)^{-\alpha} \\
& \leqq \delta c_{4} g_{\alpha}(z),
\end{aligned}
$$

where $c_{4}>0$ only depends on α. The estimates for the other quantities are the same and we get

$$
\begin{equation*}
\Delta E_{1}^{1} \leqq 3 \delta c_{4} g_{\alpha}(z) \tag{4.6}
\end{equation*}
$$

Thus

$$
\Delta E_{1} \geqq\left(c_{3}-3 \delta c_{4}\right) g_{\alpha}(z) \geqq 2 \kappa(\log z+1) \geqq 2 \kappa j
$$

if $\delta \leqq c_{3} / 6 c_{4}$ and $\kappa \leqq \frac{1}{4} c_{3} \log 2$. The second inequality follows from the fact that as $\alpha \nearrow 2, g_{\alpha}(z) \searrow 1+\log z$. It can be checked that c_{3} and c_{4} remain positive as $\alpha \nearrow 2$, so the same estimate holds for $\alpha=2$. The last inequality comes from $z \geqq 2^{j-1}$.

Claim (ii) is handled in exactly the same way and one proves that $\Delta E_{2}^{0} \geqq c_{3} g_{\alpha}\left(z^{\prime}\right)$ and

$$
\begin{equation*}
\Delta \mathrm{E}_{2}^{1} \leqq 3 \delta \mathrm{c}_{4} \mathrm{~g}_{\alpha}\left(\mathrm{z}^{\prime}\right) \tag{4.7}
\end{equation*}
$$

where $z^{\prime}=\min \left\{x_{2}, y_{2}\right\}$.

It remains to treat Claim (iii). We thus assume that $\lambda^{-1} \leqq y_{2} / y_{1} \leqq \lambda$ and we will prove that

$$
\begin{equation*}
\frac{y_{2}}{y_{1}} \Delta E_{1}^{0}+\Delta E_{2}^{0} \geqq c_{5} g_{\alpha}(\zeta), \tag{4.8}
\end{equation*}
$$

where $\zeta=\min \left\{x_{1}, y_{1}, x_{2}, y_{2}, x_{3}\right\}$. From this it follows immediately that

$$
\begin{equation*}
\max \left\{\Delta E_{1}^{0}, \Delta E_{2}^{0}\right\} \geqq \frac{c_{5}}{\lambda+1} g_{a}(\zeta) \tag{4.9}
\end{equation*}
$$

Using (4.6), (4.7), and (4.9) we want to conclude that

$$
\begin{equation*}
\max \left\{\Delta E_{1}, \Delta E_{2}\right\} \geqq c_{6} g_{\alpha}(\zeta) \geqq 2 \kappa j, \tag{4.10}
\end{equation*}
$$

where $c_{6}>0$ only depends on α, and $\kappa \leqq \frac{1}{2} c_{6} \log 2$. There are three possibilities. Either A_{k} is the shortest block and $z=z^{\prime}=\zeta$, or B_{k-1} is shortest, $z=\zeta$ and $z^{\prime} \leqq \lambda \zeta$ since $y_{2} \leqq \lambda y_{1}$, or B_{k} is shortest, $z^{\prime}=\zeta$ and $z \leqq \lambda \zeta$ since $y_{1} \leqq \lambda y_{2}$. Thus we always have $z, z^{\prime} \leqq \lambda \zeta$ and (4.6) and (4.7) give, after some computation, that

$$
\begin{equation*}
\max \left\{\Delta E_{1}^{1}, \Delta E_{2}^{1}\right\} \leqq \delta \lambda c_{4} g_{\alpha}(\zeta) \tag{4.11}
\end{equation*}
$$

Equation (4.10) follows from (4.9) and (4.11) if we assume that $\delta \leqq c_{5}\left(2 \lambda(\lambda+1) c_{4}\right)^{-1}$. Hence we know that (i)-(iii) hold with $\kappa=\min \left\{\frac{1}{4} c_{3} \log 2, \frac{1}{2} c_{6} \log 2\right\}$ if

$$
\begin{equation*}
\delta_{0} \leqq \min \left\{c_{3} / 6 c_{4}, c_{5}\left(2 \lambda(\lambda+1) c_{4}\right)^{-1}\right\}=c_{7} \tag{4.12}
\end{equation*}
$$

We still have to prove (4.9). If f is defined as in (b), then

$$
\begin{aligned}
\frac{y_{2}}{y_{1}} \Delta E_{1}^{0}+\Delta E_{2}^{0}= & \sum_{i=1}^{\infty} \sum_{j=0}^{x_{2}-1} n_{b_{1}-i} n_{a_{2}+j} f\left(i+j+\sigma_{i j}, y_{1}, y_{2}\right) \\
& +\sum_{j=1}^{x_{2}} \sum_{k=0}^{\infty} n_{b_{2}-j} n_{a_{3}+k} f\left(k+j+\tau_{j k}, y_{1}, y_{2}\right) .
\end{aligned}
$$

Using the properties (b) of f and the density property we can sum by parts and get

$$
\begin{align*}
\frac{y_{2}}{y_{1}} \Delta E_{1}^{0}+\Delta E_{2}^{0} \geqq & \left(\frac{1}{2}-\delta\right)^{2}\left[\sum_{i=2}^{x_{1}} \sum_{j=0}^{x_{2}-1} f\left(i+j+1, y_{1}, y_{2}\right)\right. \\
& \left.+\sum_{j=2}^{x_{2}} \sum_{k=0}^{x_{3}-1} f\left(k+j+1, y_{1}, y_{2}\right)\right] \tag{4.13}
\end{align*}
$$

Let c_{1} be the constant in (b). If $c_{1} \zeta / 2<2$ we estimate (4.13) by keeping only the first term in the sums.

$$
\frac{y_{2}}{y_{1}} \Delta E_{1}^{0}+\Delta E_{2}^{0} \geqq \frac{2}{6} f\left(3, y_{1}, y_{2}\right) \geqq c_{8} \geqq \frac{c_{8}}{\zeta}(1+\zeta-1) \geqq \frac{4 c_{8}}{c_{1}} g_{\alpha}(\zeta) .
$$

Here we have used the fact that $f\left(3, y_{1}, y_{2}\right) \geqq 3 c_{8}$ if $y_{1}, y_{2} \geqq 1$, where $c_{8}>0$ only depends on α. To get this estimate we can argue as follows. If $c_{1} y_{1}<3$, there are only finitely many possibilities for y_{1}, y_{2} and we can take $3 c_{8}$ less than the smallest of the possible values of $f\left(3, y_{1}, y_{2}\right)$, which are all positive. If $c_{1} y_{1} \geqq 3$ we can use (4.1).

If $c_{1} \zeta / 2 \geqq 2$ we use (4.1) to get

$$
\frac{y_{2}}{y_{1}} \Delta E_{1}^{0}+\Delta E_{2}^{0} \geqq \frac{c_{2}}{3} \sum_{i=2}^{\left[c_{1} 5 / 2\right]} \sum_{j=1}^{\left[c_{1} 5 / 2\right]}(i+j)^{-\alpha} \geqq c_{9} g_{\alpha}(\zeta)
$$

where c_{9} only depends on α. Equation (4.8) now follows with $c_{5}=\min \left\{c_{9}, 4 c_{8} / c_{1}\right\}$.
We will now sketch the proofs of (a) and (b) above. (a) is obtained as follows:

$$
x^{-\alpha}-(x+z)^{-\alpha}=x^{-\alpha}\left(1-\left(\frac{x}{x+z}\right)^{\alpha}\right) \geqq x^{-\alpha}\left(1-\left(\frac{2}{3}\right)^{\alpha}\right)
$$

if $1 \leqq x \leqq 2 z$. That $f>0$ follows immediately from the strict convexity of $x \rightarrow 1 / x^{\alpha}$, and that f is decreasing as a function of x follows from $\partial f / \partial x<0$, which is a consequence of the strict convexity of $x \rightarrow 1 / x^{\alpha+1}$. The inequality (4.1) is obtained as follows:

$$
\begin{aligned}
f\left(x, y_{1}, y_{2}\right) & \geqq \frac{1}{\lambda}\left(\frac{1}{x^{\alpha}}-\frac{1}{\left(x+y_{1}\right)^{\alpha}}\right)-\frac{1}{\left(x+y_{1}\right)^{\alpha}} \\
& =\frac{1}{x^{\alpha}}\left(\frac{1}{\lambda}-\left(1+\frac{1}{\lambda}\right)\left(\frac{x}{x+y_{1}}\right)^{\alpha}\right) \\
& \geqq \frac{1}{x^{\alpha}}\left(\frac{1}{\lambda}-\left(1+\frac{1}{\lambda}\right)\left(\frac{c_{1}}{c_{1}+y_{1}}\right)^{\alpha}\right) \geqq \frac{c_{2}}{x^{\alpha}},
\end{aligned}
$$

where $c_{2}>0$ if c_{1} is chosen sufficiently small. This completes the proof of the energy estimate (2.6).

References

1. Israel, R.B.: Appendix B to Convexity in the theory of lattice gases. Princeton, NJ: Princeton University Press 1979
2. Johansson, K.: Condensation of a one-dimensional lattice gas. Commun. Math. Phys. 141, 41-61 (1991)

Communicated by M. Aizenman

[^0]: * Research supported by the Swedish research councils NFR and STUF
 ** Mail address: Department of Mathematics, University of Uppsala, S-75238 Uppsala, Sweden

