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Abstract. In [1] we analysed the algebra of observables for the simple case of a
genus 1 initial data surface Σ2 for 2 + 1 De Sitter gravity. Here we extend the
analysis to higher genus. We construct for genus 2 the group of automorphisms H
of the homotopy group πί induced by the mapping class group. The group H
induces a group D of canonical transformations on the algebra of observables
which is related to the braid group for 6 threads.

1. Introduction

In [1,2] we have derived the algebra of observables for quantum gravity in 2 +1
dimensions, when the spatial hypersurfaces are genus 1 Riemann surfaces [3],
namely tori. The cases without [1] and with [2] a cosmological constant were
discussed, and in the case of the De Sitter theory, it was shown that the quantum
algebra of gauge invariant quantities, i.e. observables, is trivially related to the
quantum group SU(2)q [4].

In this paper the analysis is extended to higher genus. The classical algebra of
observables is explicitly defined and calculated for genus g = 2. There are at least
two isomorphic and independent sets of observables with corresponding isomor-
phic symplectic structures. Identities satisfied by traces of SL(2, R) matrices used in
the representations of the fundamental group π1(Σ2

9 B\ where B is the base point
on the initial data surface Σ2, are used systematically and pose no problem at the
classical level. Similarly an additional set of identities follows from the relator of πί

which fixes the genus to be exactly g. It is not yet clear which role these combined
sets of identities should play at the quantum level.

In Sect. 2 we review notations and conventions and set the stage for the
calculation of the algebra A of observables for genus g ̂  2. In Sect. 3 this algebra is
discussed in detail. In Sect. 4 we discuss the role and the relationships among the
mapping-class group, the braid group and their representations in terms of
canonical transformations on A. Relevant formulas are presented in the Appendix.
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2. Previous Results

The Lagrangian density for pure gravity with cosmological constant A in 2 +1
dimensions is the Chern-Simons 3-form [2]:

α/8 (dωAB-i ωAnωTB)nωCDεABCD (2.1)

with A,B,... =0,1,2,3, ηAB = (-1,1,1, /c) and A =|/cα" 2. The 1-forms ωAB are the
De Sitter spin connections:

ωab ea/oc
ωAB~ -eb/(x 0

(2.2)

with a,b = 0,1,2, |/fc = l (fe = l, de Sitter), }/fc = ! (fc=-l, anti-de Sitter) and
εabc3 = —εabc. The action (2.1) leads to the Poisson brackets:

[ωfB{x\ ω<jD {y)-\ = hoc' Hifi

ABCDδ\x - y), (2.3)

fj = l,2, x,yeΣ2 and field equations:

R*> = dωAB -ωATnωB = 0 (2.4)

implying that space-time is locally de Sitter. The constraints are given by the
vanishing of the spatial components RfB of the curvatures. The action (2.1) is
invariant under SO(3,1) or SO(2,2).

As argued by Witten [5] one should solve the constraints in (2.4) exactly before
quantisation. In [2] this was achieved by considering the quantum representation
Ψ.π^^^G, where G = SO(3,1) or SO(2,2) [and their corresponding spinor
groups SL(2, C) or 5L(25JR)®SL(2,R)] of π^Σ2^). The algebra of observables is
generated by the traces a(X) of the representation Ψ(X), with the gauge invariance

) = a(γ-χXY),X,Yeπ1.
The fundamental group π1 of a surface Σ2 of genus g admits a presentation with

the generators:
U1,VuU2,V2...U{PVg (2.5)

and the single relator normally given as:

UίVίU;1Vί-
1U2V2U2-

ίV2-
ί...UgVgU-1V-' = l. (2.6)

In Sect. 3 we shall use an equivalent form for this relator consistent with the
definitions of the paths Ufa ί= 1,2 appearing in Fig. 1.

The constraints are satisfied by writing:

dS±=A±S±, (2.7)

where A ± are the upper/lower spinor components of Δ(x)=icoAB(x)yAB. The ± in S
and (2.7) refer to the 2 x 2 irreducible decompositions of the representations (see
[2] for details). Let S±(ρ), S±(σ) be elements of SL(2, R) obtained by integrating the
connection S along paths ρ,σ in Σ2, with base points A,B, having a single
intersection at the point P. Their Poisson Brackets can be derived from those of the
ωAB, (2.3).

[ S + ( ρ ) , S » ] = 0 ,
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Fig. 1. Octagon with identified sides showing two holes of a surface of arbitrary genus. The black
square is an obstruction leading into the remainder of the surface

where the intersection number s = s(σ, ρ) = — s(ρ, σ\ and from now on we set s = 1
for an orientation as in Fig. 1 and (2.8) for example for the pairs Ul9 Vι or U2V2.
The paths σ = σ 2σ l 5 ρ = ρ 2ρ 1 ? and σ1? σ2 are the initial and final open ended paths
joining B to P and P to B, similarly for ρ with base point A.

The integrated connections S± are not gauge invariant but their traces are.
Define now for a generic closed path τ the traces:

cHτ)=^\τ). (2.9)

Comments. 1) Note that if δ = σΐ1ρ1 is the open path from A to B:

where σ and ρf = δρδ~ί share the same base point B in Σ2. This means that σ,ρ'
identify elements U, V of the homotopy group π^Σ2, B) based on B. We write then
c±(l7), ^(V), c±([/F) in place of c±(σ)Jc

±(ρ/) = c±(ρ),c±(σρ/), etc. for every group
element. We then trace (2.8) and find:

(2.10)

For fe=l the c* are mutually complex conjugate, if k= — 1 they are real and
independent. From now on we choose the case + with k= — 1 and drop any
explicit reference to the ± sign.
2) For matrices eSL(2,R) the identity holds:

ι))> (2.11)

and therefore (2.10) can be also written as:

[c{V\ c([/)] = i /(4α|/fc) (c(UV) ~c(UV~ι)). (2.12)

3) By abuse of language we use as argument of c(V) either an element Ve πί or its
image v = S(V)eSL(2,R) induced by the connection.

Under this form the algebra of traces is given an infinite Lie algebra L structure
subject to non-linear constraints (2.11). These constraints generate an ideal in the
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enveloping algebra of L. By using repeatedly (2.11) we can compute recursively all
the c(W), WE π l 5 starting from a finite set of traces. For instance all traces in the
subgroup generated byUl9Vl9 where U1 and Vί refer to the meridian and parallel
around a given hole, say the first, in Σ2, can be computed from c ^ ) , c(Fi), c(Uί V^.
It is therefore reasonable to assume that we can derive a representation for L once
we know an appropriate representation for the above set of traces.

Set c(U) = u, c(V) = v, c(UV) = c(VU) = t and consider (2.10):

lu,vl = -(ί/2a)(t-uv) (2.13)

and cyclical permutations of t, u, v. We set uv — vu = (w, v) = ih[u, υ\ and symmetrise
the uv product. The symmetrised commutator is therefore:

(2.14)

where z = h/2oc= — 2tan(^0). |0|<π, or alternatively:

e*iθuv — e~¥θυu = 2isinθ/2t and cyclical. (2.15)

In [2] t, u, v were each rescaled by cos(|0), irrelevant in the h ->Ό limit of (2.15) since
it corresponds to changes of the order of ft2. The algebra (2.14) is not a Lie algebra
but is trivially related, as shown in [2], to the Lie algebra of the quantum SU(2)q

groups [3]. It admits the central element:

F2 = cos2$θ + 2eί*θuυt-eίθ{u2 + t2)-e-iθv2. (2.16)

In the classical limit ft->0 (0->O) the values of F2 classify the representations of
the subalgebra (2.15). F2 = 0 corresponds to the trace of the relator (2.6) for g = 1.

3. The Classical Algebra

For g ̂  2 the arguments in the previous section hold for the subalgebra generated
by the elements Um9 Vm, respectively meridian and parallel of the mth hole. In
particular the brackets (2.8) are still valid for any two paths in Σ2 with a single
intersection. However we must include elements which are generic products of the
above generators in any combination and arising from different holes. At this point
it is of vital importance to establish a suitable notation.

Consider the subgroup oϊπί generated by Ul9 Vl9 U2, V29 i.e. the paths around
any 2 holes and traces of products of these paths of the form:

c(UTV^Un

2

2Vp), (3.1)

where n0, nu n2, n3 = 0,1. Any other trace can be reduced to a polynomial in traces
of the form (3.1) by repeated use of the trace identities in the Appendix. With two
exceptions we identify the elements (3.1) by Am where n is the number no-\-2n1

+4«2 + 8n3 or 110^1^2^ i n binary form.
These exceptions are

A3 = - c(Uί

A12=-c(U2V2) + 2c(U2)c(V2).

Some examples of the general rule are A4 = c(U2\ A9 = c(U1 V2\ A11 = c(UιVί V2).
We use italics for the images in SL(2,R) of elements eπ 1 ? i.e. u1 = S(Uί% etc.
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Given two indices n, p define nXORp = n0XORp0, n1XORpu n2XORp2,
π3XORp3, where 0XOR0 = ίXORl = 0, ίXOR0 = 0XORl = 1. The binary
degree d(P) of a generic product P in the A's is given by setting d(An) = n,
^(number) = 0 and by the recursion rule d[_PQ\ = d(P) XOR d(Q). As a useful check
we remark that all polynomials appearing in the following are homogeneous in the
binary degree and that all equations are satisfied if we set A—ί, [Ah 4 J = 0 for all
i,k.

The 105 brackets of these 15 elements were calculated by direct geometrical
methods. We do not report all the details but try to explain our reasoning and
method. We made ample use of (2.8) and of the representation of a compact surface
of genus g by means of a polygon of 4g sides suitably identified, each side
corresponding to a factor in the relator (2.6). We denote by A the ring of
polynomials in the 4 endowed with their brackets. It is convenient to perform
calculations on an octagon which represents explicitly the first 2 holes and
possesses an obstruction (see Fig. 1) which represents the remaining holes and thus
applies to any g ̂  2. The convention used in Fig. 1 for the paths Ul9 Vl9 U2, V2 leads
to the relator:

V1'
1U1V1UT1V2'

1U2V2U21 (3.2)

which should be set equal to the identity if there were no obstruction and g = 2.
After calculation of each bracket, using (2.8), the paths are reassembled, then we
trace and simplify using the trace properties of SL(2, R) matrices. The final result is
best displayed by the complete hexagon appearing in Fig. 2. Also we omit the
factor — l/2α. To each element 4 we associate the ιth line of the hexagon. If the
lines ij have no point in common then the corresponding paths are homotopic to
non-intersecting paths and:

[4,4]=0, (3.3)

for example

If the sequence of lines ι, kj forms a triangle and runs clockwise around its
perimeter then we have i = kXORj, k=jXORi, j=iXORk, the corresponding
paths intersect once and:

A^-AJ. (3.4)

For example:

Finally there are pairs of diagonal lines, say n, p, which intersect at one point P
inside the hexagon. These correspond to traces of paths which have 2 intersections.
Let n have end points Pu P3 and p have end points P2, P\ and let iab = iba the line
connecting the points Pa and Ph. If we connect the points Pa a = 1... 4 in all possible
ways we obtain a quadrilateral with diagonals n,p. We may always choose a
convention such that the triples i12, ί23, ί31 = n and i42=P? 1*235 *34 r u n clockwise
(see Fig. 3). We have then:

[ A f f 4 ] = 2 4 1 2 4 3 4 - 2 4 M 4 1 4 . (3.5)

The six elements Aί2A23Aί3Al4A24A34 generate a subalgebra of A, there are 15
such subalgebras corresponding to the 15 quadrilaterals contained in Fig. 2. For
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Fig. 2. Diagram showing the combinatorial rules for the Poisson brackets used in the text

Fig. 3. Diagram used for double intersections

example:

IA5A1O] =2A9A5 -2A3Aί2.

One can show that it is impossible to eliminate completely the double intersections
by considering traces of the form (3.1) and reversing the sign of any nb that is, one
can only change the intersection number by + 2.

The algebra A endowed with the above brackets cannot be identified
immediately with the algebra of classical observables. The variables Aγ... Aί5 are
not algebraically independent since they are gauge invariant functions of the
5L(2, R) matrices uγ = S((7 J, vγ = S(Fi), u2 = S(U2)9 υ2 = S(V2) which represent the
elements Uί9 Vl9 U29 V2. Each matrix is determined by 3 real parameters giving a
total of 12 independent elements from which we must subtract 3 corresponding to
the gauge freedom. This reduction, from 15 to 9, in the dimension of the above
algebra is achieved through the introduction of an ideal R(A) c A generated by a
basic set of trace identities. These identities can be classified as follows:
1) Generic 2x2 real matrices can be considered as vectors eR4 endowed with a
scalar product u v = trace(uv). Consider now the 5 elements 1, uί9 vί9 u29 v2> The
Gram determinant of their scalar products can be evaluated as polynomial of the
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traces Ab i e J, where / = {1,2,3,4,5,6,8,9,10,12) by repeated use of the character-
istic equation u2 — 2c(u)u + l—0, ueSL(2,R) and must vanish:

Det =

1 Aγ A2 A4 A8

A, 2A\-\ (2AίA2-A3) A5 A8

A2 (2A1A2-A3) 2A\-\ A5 Au

A5 A6 2A2-1 (2A4A8-Aί2)

8 A9 A10A8 A9 A10 (2A4_A8 — A12) 2A8 —

=0.

(3.6)

Equation (3.6) yields an identity among the 10 traces Ab iel which reduces the
number of independent variables to 9, as expected and defines an algebraic variety
Det = 0 within the original phase space. The explicit form of Det is extremely
complicated and we see no way to extend it directly into the quantum theory.
Moreover the brackets do not close on the subset Ai9 ί e I and in order to get a
consistent quantum theory we must include traces of higher order. Notice that
d(Ώet) = 0.
2) If we replace SiU^ etc. by their inverses we see that the Ab iel considered
above, i.e. traces of products of less that 3 matrices, are unchanged, whereas the
remaining 5 traces, namely AΊ, Aίl9 Aί3, Ai4, A15 are changed into traces of
products of the same matrices in reversed order. Traces of products ordered as in
(3.1) are called cyclic whereas the transformed traces obtained by replacing each
matrix with its inverse, or equivalently by reversing the order of the paths in (3.1)
are called anticyclic and denoted Bί...Bί5 respectively. We call the traces Ab i e I
selfcyclic. The set of anticyclic traces can be expressed in terms of polynomials in
the set of cyclic traces. For example the cyclic element AΊ = c(UίV1 U2) is related to
its anticyclic partner BΊ = c(U2V1U1) by:

6), (3.7)

+ 4AlA2A5A6-2A1A2A3-2A1A4A5-2A2A4A6-l (3.8)

as can be checked explicitly. Equations (3.7) and (3.8) together determine a
quadratic equation for either AΊ or BΊ in terms of the Ab iel. Similar equations
exist for the pairs Aβb i = 11,13,14. Since these identities are always symmetric in
A and B they are invariant under the map γ: A^Bb with y2 = identity map. The
mirror map γ is not an automorphism of A and therefore there are at least two
inequivalent sets of brackets. Neither the above derived quadratic equations for Ab

ι = 7, 11, 13, 14 nor the equation Det = 0 form a convenient basis for R(A). The
identity:

6A8=0 (3.9)

has many properties which make it a suitable candidate for the quantum theory. In
order to display these properties we must use the automorphisms D(ή)n = 1... 15 of
A defined in the Appendix and discussed in detail in the next section. By explicit
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computation we can prove that:

D(n)W-AnW-(W,An) = 0,

n = l,2,4,8,7,11,13,14,

D(m)W=W, (W,Am) = 0,

m = 3,5,6,9,10,12.

We conjecture that a complete basis for R(A) is given by D(ή)W. It can be
checked that W and its images under the maps D(ή), n = 1,2,4,8 are linear in the
cyclic traces AΊAίίAι3Aί4Aί5. The ensuing relations are not independent by
virtue of Det = 0 and we cannot determine rationally the cyclic traces from the
selfcyclic ones. We can use these relations in order to determine 4 cyclic traces as
rational functions of the remaining one. In order to obtain this we must solve a
quadratic equation. The two possible signs of the square root in this equation
correspond to cyclic and anticyclic traces. Since the generic D(n) is not linear in the
cyclic traces we conjecture that they yield precisely the missing quadratic relation
and that the whole basis contains also implicitly the Det=0 relation. In the
classical theory all the identities among traces can be proved explicitly by replacing
the traces with their explicit expressions in terms of matrices in SL(2, R). In the
quantum theory we know of no convenient way to setup commutation relations
which would take into account the constraints and there is no way to check
directly the validity of the trace identities. We can however extend all properties
deduced so far for W to the quantum domain and obtain a consistent formulation
for the theory. We denote by O = A/R(A) the subalgebra of physical observables
generated by loops around holes 1,2. Thus is appears that the above brackets
define a symplectic structure on an algebraic variety of dimension 9 whose
complete structure is yet to be completely elucidated.
3) If we restrict ourselves to genus 2 then we must take into account more
identities. The homotopy group πx is generated by Ul9 Vlf U2, V2 with the single
relator given by (2.6):

This last identity must be adjoined to the ones discussed in 1) and 2). Since we deal
with gauge invariant quantities we must express it as a set of equivalent relations
among the traces At defined above which would bring the dimension of phase
space down to 6, the number of real moduli on a surface of genus 2. We have not
investigated in any detail this particular case.

4. The Automorphisms of A

The algebra A presented in the previous section is highly symmetric. We have
studied its automorphisms at both the level of the traces A1...A15 and at the level
of nγ and its representations on SL{2, R).

The maps D(ri) mentioned in Sect. 3 can be constructed in the following manner.
As an example consider the canonical transformation generated by G = Θ2/2, with
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A3 = coshΘ, through the differential equation:

dO(t)/dt = tO(t)9G], (4.1)

where 0 is a generic function on A A£t) denotes the transform of Ai = ^(0). Let:

sinh(Θ(l-ί)) + sinh(<9t)

-sinh(<9ί) sinh(β(l
= (sinh<9)- 1 (4.2)

One can show that:

AP(t)

Am(t)
= Ω(ί) (4.3)

where p, m is a pair from (1,2), (5,6), (13,14), (9,10) forming a triangle with 3 as in
Fig. 2. For arbitrary ί, Ω(ί) is a transcendental function of A3 which reduces to a
polynomial for integer t:

0 1
(4.4)

A similar derivation can be performed for A7,Alί9A15, which originate from
paths having double intersections with A3. Their transformations are considerably
more complicated but are still polynomial in the ^4's. They are reported in the
Appendix. Therefore we take for D(3) the above canonical transformation with
t — 1. The full set D(n% n = 1... 15 can be derived similarly. To each An we therefore
associate the map D(ή) which leaves invariant An and all 0 such that 10, AJ = 0.

We denote by D the group of maps generated by the D(ή). The same hexagon
appearing in Fig. 2 can be used to classify the identities satisfied by the D(ή) just as
we did for the An. In particular if the lines ij do not intersect we have:

O. (4.5)

If the lines ij, k run clockwise around a triangle of Fig. 2 we have:

and cyclical

D(ΐ)D(j) = D(j)D(k) = D(k)D{ϊ). (4.6)

For doubly intersecting paths we find more complicated relations which follow
directly from the ones quote above and will not be quoted here. By using these
identities we can express all D(ή) in terms of a subset of 5 elements only, say D(8),
D(6), D(l), D(2), D(9), i.e. the sides of the hexagon with the 6 th missing. The exclusion
of D(4) is purely conventional and does not reflect any breaking of the hexagonal
symmetry.

We set ^ = ,0(8), ζ2 = D(6\ ζ3 = D(ί% C4 = D(2), ζ5 = D(9) and verify from (4.5),
(4.6) that:

Cί + 1

if

i+lbίW+1 9

(4.7)

which are satisfied by the elements of B(6), the braid group of order 6. In particular
the element ζt corresponds to the element of B(6) which exchanges the braids i,i + l.
It follows that D yields a representation of B(6).
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The maps D(ri) can be lifted to maps H(ή) on the homotopy group πx and the
explicit formulae for H(ΐ), i = 1,2,6,8,9 are given in the Appendix. These maps
leave the relator (3.2) invariant and reduce to the maps D(n) on A. They satisfy the
same identities (4.5), (4.6) as the D(ri) and generate a group H of homomorphisms of
πt which is induced by the mapping class group M.

The map Sf: An-+Asf{n), (see Appendix) is an automorphism of A which acts as a
rotation by π/3 of the hexagon in Fig. 2 and whose cube Ex simply exchanges the
labelling of the holes 1,2.

Let rf(n0nίn2n3) = (n0XORn3)n1(n2XORn1)n3, and define the map
Rf:An-*Arfin)9 then Rf is an αnίjautomorphism of A, i.e.:

(Arm,Arf{p))=-Rf((An,Ap)) with Rf2 = Identity, (4.8)

and can be associated to a reflection of the hexagon along the dashed line. It can be
easily seen that Rf and Sf can be generated by the maps D(ή) so that we may
restrict our discussion to the D(ή).

Apart from their own relevance Sf, Ex, and Rf are extremely useful in checking
and deriving further properties of A. The sixth powers of sf and Sf are of course
identity maps.

It is natural to identify elements of A and 0 which lie on the same orbit of the
group D since this would correspond to consider as part of the gauge also those
diffeomorphisms of Σ2 which are not connected to the identity map. The identities
(3.9) guarantee that the brackets close on 0.

5. Outlook and Conclusions

The algebra 0 and the related groups B, H, M can be generalized in many obvious
ways and some of these look very promising for future extensions of the theory to
arbitrary genus >2.

In particular consider the algebras A(ή) associated to complete n-gons formed
by n points joined by n(n —l)/2 lines and including n(n — ί){n—2)/6 triangles and
where the brackets are defined as a straightforward generalization of the rules
given in Sect. 3. For n < 6 these algebras are isomorphic to subalgebras of A and in
particular A(3) contains the triple associated with a triangle (genus 1) and we could
have used any A(5)CA in order to generate 0 at the price of less symmetry and
elegance in the formalism.

This hierarchy of nested subalgebras will be relevant in the construction and
discussion of the quantum theory and associated representations. The group D can
be extended similarly to a hierarchy D(ή).

The discussion of classical 2 + 1 gravity on an initial data hypersurface Σ2 of
genus 2 is now almost complete. As pointed out by many authors [7] the definition
of a time variable remains an outstanding and interesting problem. In many ways
our discussion of 2 +1 gravity reminds us of that of a rotator where we choose not
to discuss angular variables and work with angular momenta only. We recall that
indeed the algebra ,4(3) appearing for genus 1 is related to the quantum group
SU(2)q [2]. We have not reached any similar conclusions for the algebra A(6) nor
are aware of any work where a definite analog for variables has been established
for quantum groups.

The quantisation of the algebra A will be presented elsewhere [8]. All the key
features present at the classical level will be implemented quantum mechanically.
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In particular the Dehn canonical maps D(ή) will be represented by unitary
operators on the physical states.

Appendix

The various maps used in the text are defined as:

s/(l) = 2, s/(2) = 9, s/(3) = ll, 5/(4) = 8, s/(5) = 10, s/(6) = l,

s/(7) = 3, s/(8) = 6, s/(9) = 4,

Sf ={Ak^Asf(k), for k = ί..A5},

Sf5 = 1 = identity map. Sf3 = Ex,
Rf={A1-+Aί, A2^>A5i A3^>AΊ, A4-+A4, A5^>A5,

A —v A A —> A A —* A A —• A A —• A

Aίί-^A14, A12—>Ai3, Aί3^>A12, A14.-+Aίl, A15-+A10},

Λ/2 = l, RfEx = ExRf.

The map i£/ can be used to deduce (D(n))"1 since:

RfD{ή){Rf)-'={D{rf{ή)Y'.

In place of # / one could use equally well SfRfiSf)'1 or
The map Sf is an element of D since:

Here follow explicit definitions for D(ri).

A2

— A
ί5

) = (Sf)-ιD(l)Sf and more generally D(sf(n)) = (SfΓ1D(ή)Sf. From this rel-
ation we can calculate D(2), D(9), D(4), D(8), D(6).

Also:

{̂ 1-^ 2̂? A3^A3, A9-+A10, A5^>A6, A4^>A4,

A8-+A8, A12-+A12, A13-+A1Ar, A2^—Aί + 2A3A29

Ai0—> —A9-\- 2A3A10,Al4.-+ —A13-\-2A3Ai4jA6—> —A5 -\-2A3A5,

Aίί-+Aίl-2A2A9-2A1A10
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From D(3) and Sf we can calculate D{n\ n = 7, 11, 12, 13, 14.

Aγ^ A4-+A4, A3—> A6-\-2A$A-$,

— ̂ 413 + 2A5As,A12—> ~ A

From D(5) and S/ we calculate D(10), D(15).

All maps H(ή) can be generated by the following 5:

Ή{9)=

The identities (4.5), (4.6) can be used profitably to calculate the missing D(ή) or H(ή).
We list next some useful trace identities valid for elements x,y,z,ueSL(2,R):

φc2) = 2 φ φ c - l ,

c(xyz) + c(xz>;) = 2(c{xy)c(z) + φ z ) φ ) + c(xz)c(y) - 2c(x) c(y)c(z),)

c(xyzu) = C(X)C(>?ZM) + C(>?)C(XZM) + c(z)c{xyu) + C(M)C(XJ;M)

+ c(zu)c(xy) + c(wx)c(yz) — c(yw)c(xz) — 2c(zu)c(x)c(y)

- 2c(xy)c(u)c(z) - 2c(ux)c(y)c(z) - 2c(yz)c{u)c(x)

+4c(x)c(y)c(z)c(u).
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