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Abstract. Two new hierarchies, MILW2 and a two-dimensional nonlocal Toda
lattice are constructed. The characteristic property of the first one is the
connection with the ILW2 hierarchy by means of g/(2) Miura transformation. On
the other hand, MILW2 equations turn out to be symmetry equations for a two-
dimensional nonlocal Toda lattice. A new version of the dressing technique with
quantized spectral parameter is proposed.

1. Introduction

This paper is a direct continuation of our previous paper [1]. In [1] for the second
representative (π = 2) of the Intermediate Long Waves (ILWΠ) hierarchy [2], the
zero-curvature representation with a noncommutative spectral parameter
X=λe~2mdχ has been constructed. Here λ and h are certain numerical parameters
and dx = d/dx. (The pioneering papers in the theory of the ILW equation are [3].)
This has been achieved by means of a new version of the Zakharov-Shabat
dressing technique with a noncommutative spectral parameter. Formally, the
spectral parameter 1 may be considered as a quantized spectral parameter λ9 so
that, in what follows we will refer to X as a quantum spectral parameter.

It has also been explained in [1] that the ILWΠ hierarchy appears as a special
reduction of the KP hierarchy, which generalizes the well known reduction to
KdV-type equation. Therefore, this hierarchy of equations lies, roughly speaking,
at the same level with KdV type equations. From the other side, one can imagine
the ILWΠ hierarchy as an one-parameter deformation of the KdV equation [3].
We will say in this case that ILW type equations are the nonlocal integrable
partners to KdV type equations.
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There is a close connection of the two other hierarchies of equations, namely,
MKdV and a two-dimensional Toda lattice, with KdV type equations [4—6]. As
we prefer to look at the ILWn and KdVπ hierarchies as different reductions of the
same KP hierarchy, an attempt to find nonlocal integrable partners to MKdV and
a two-dimensional Toda lattice are quite reasonable.

It turns out that this can be done using the ideas of [4] combined with the
generalization of our dressing technique with quantum spectral parameter [1].

Let us state the main results of our paper.
The first result (see Sect. 2) is the construction of nonlocal integrable partners to

the MKdV-type equation. One of the main properties of these equations is that
these equations can be mapped to the ILW2-type equations with the help of the
g/(2) Miura transformation [4]. We will refer to this type of equations as MILW2

equations.
In both cases of MILW2 and ILW2 the situation is the following. We have the

same phase space as in KdV or MKdV cases and Poisson brackets, but there are
different possibilities to construct the Hamiltonians. One approach leads to the
usual integrable KdV or MKdV-type equations. The other one leads to their
nonlocal integrable partners. For the ILWW case, this idea goes back to [2, 8].

The second result (see Sect. 3) is the generalization of the dressing method with
the quantum spectral parameter constructed in our previous paper [1]. With the
help of this technique we are constructing, in particular, the zero curvature
representation for the MILW2-type equations.

The third result (see Sect. 4) is the construction of two-dimensional Toda lattice
partners with the distinctive property: MILW2 equations are the invariance
equations to the last one. The crucial steps in proving this result are the special
form of the zero-curvature representation, which, roughly speaking, corresponds
to the analogous representation of the MILW2 equations and the application of
some ideas of [4].

In Sect. 5, we explain why the simplest case of the ILWΠ hierarchy when n = 1 is
not quite informative. Namely, in this situation the ILWX and MILWX equations
turn out to be the same. But as a consequence, the usual ILWX equations have an
exceptional property. These are the symmetry equations for the nonlocal two-
dimensional Toda lattice equation [see Eq. (4.3) below].

In Sects. 6 and 7, Appendices A and B, we prove more technical results.
In this paper, as in [1], we restrict ourselves to the case n = 2. The reason is that

this is the first informative example in which we can imitate the suitable methods
for dealing with different series of integrable nonlocal equations. The case of n = 1
turns out to be exceptional (for details see Sect. 5) and we loose some important
information. The general case is more complicated and will be considered in a
separate publication [9].

Part 1. Results, Motivations, and Examples

2. Modified ILW2 Equation as a Sequence of the Basic Properties
of Miura Transformation

In this section we are introducing the new hierarchy of integrable equations, which
plays the same role in the theory of ILW type equations as the MKdV equations in
the theory of generalized KdV equations. In the ILWX case, both of this equations
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coincide. It turns out that the first nontrivial case when these equations start to be
different is the case of ILW2 hierarchy.

1. Let us briefly summarize the results on the Hamiltonian properties of KdV,
MKdV-type equations and the Miura transformation that we need. (We will
follow [4] in which a number of the important ideas of the previous papers are
summarized [5-7].)

Let

be the space of the first order differential operators with 2x2 matrix coefficients.

~ ί o L Λ s(χ)W I. u 1
The group JV=<S S = l If acts on the space Mt by the gauge
transformations:

Let Jίι be the factorspace Jijft. To define the Poisson bracket on the space of
functionals on Jίj is the same as to define the Poisson bracket on the space ίF of
gauge-invariant functionals on the linear space Mv This means that !F is the
space of the functionals satisfying the condition f(q)=f(q), where q is defined by
Eq. (2.2). There is a natural Poisson bracket on #":

{/,g}=ίtr(gradί/[grad(Ig) dx + q-F]) (2.3)

where the 2 x 2 matrix gradβ/ is determined by the following equation:

= ftr(gradβ/fc)dx, (2.4)
= 0

with the matrix h has the form ,
0 h22j

Of course, the matrix gradα/ is defined by Eq. (2.4) up to adding an arbitrary
uppertriangular matrix θ with zeros on the diagonal. But it is easy to check that the
bracket (2.3) on the gauge invariant functionals does not depend on the choice of
the gmdqf, i.e. is correctly defined on the functionals from the space J*\ It is also
easy to see that {/, g} (q) = {/, g} (q% i.e. the Poisson bracket (2.4) is gauge invariant
(for the proofs see [4]).
2. There exists a very useful realization of the space Jί1 as a linear space Mj of the
second order differential operators with scalar coefficients. For any first-order

differential operators g of the form ( x qi1 qi2 ) belonging to Jίu one
\ ~ 1 ĴC + ^ 2 2 /

can construct the second-order differential operator L. This is given by the formula

L = i(£>): = d2

x + (qίί+q22)dx + q22 + qlίq22 + q12. (2.5)

There exists a simple rule which we can use to obtain Eq. (2.5). Let us write down
the equation J£ψ = 0 to the vector function ψ = {ψuψ7)

t' Exclude from this
equation the function ψλ. Then, for the function ψ2 we obtain the equation
Lφ2 = 0, which defines the operator L by the Eq. (2.5).

It is easy to check that if i(<£)=L then

(2.6)
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This means that in this way the factorspace Jtι can be realized as a linear space of
the second order operators M 7 with the unit coefficient before d\.

To go from Jίι to Mu it is necessary to fix the gauge. One can do this in the

following way. Let S = ί q22 ) , then

S-\dx-I + q)S = dx-I + qc*\ (2.7)

where q™=^ ty and

Uι=q± i + q22, uo = q'22 + qίίq22 + q12. (2.8)

A useful example of the gauge invariant functionals on Jtτ is given by any
functional depending on the variables uλu0, where u{ is defined by Eq. (2.8). This is
actually true owing to the fact that if q is gauge equivalent to q, then ux and w0,
which are constructed by Eq. (2.8) from both q, and q are the same.

3. There is another possibility to construct the phase space with a Poisson bracket
different from (2.3). Namely, instead of going to the factorspace JίI = JίI/N, one
can reduce JίI to Jίγd, where1

Jtγ* = { 2 r e d I J ί? r e d = dx-I + q;q = dmg(qu q2)}. (2.9)

There is the Poisson bracket on Jt}ed. Let ψ, φ be the functionals depending on
^ 2 ), then

{/, g}r = ί tτ(dx(gmdqφ) gmdqψ)dx. (2.10)

In Eq. (2.10) the diagonal matrix grad^φ is defined by the equation

— ψ(q + εh) (2.11)

where h has the form h = diag(/zl5 h2). It is clear,that now gradqψ is uniquely defined
from Eq. (2.11).

If one starts from the operator JS? defined by the Eq. (2Λ\ then restricts it to
Jί]*ά and finally maps this restriction onto the linear space Mι by means of ί, then,
as a result, one obtains the so-called Miura transformation μ: Jβjeά->Ml9 defined
by the formula

(dχ + qi)(Bx + q2) = 8l + Uidχ + Uo> ( 2 1 2 )

here we have put q1ι = q1 and q22 = q2.
A very important property of this transformation is the Hamiltonian property.

More precisely, let / define the restriction of the functional fe 3F to the space
Jίγά. Then there is

Important fact [5, 4]. For any /, ge !F

U7i (2-13)

1 The reduction (2.9) is not equivalent to a different fixing Q( the gauge, because one can easily
find a nontrivial gauge transformation of the gauge group fit which connects different
choices of ^ =
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Corollary. Let the functionals Hm(q) e 3F be in involution with respect to the Poisson
bracket {,}, then their restrictions Hm to the space Jί\*ά are in involution with respect
to the Poisson bracket {, }r on Jίjed.

A typical example is given by the gauge invariant functionals Hm(q)
= JresLm/2i/x which are in involution with respect to the bracket {,}. Therefore,
Hm(q):=^^ί(Sx-\-qί)(dx-\-q2)]m/2dx are in involution with respect to the bracket
{, }r on Jίτfd. These are an infinite series of conservation laws for the g/(2) KdV
and MKdV hierarchies, respectively.

4. Let us introduce the gauge invariant functionals of a special type on Jίι

Tx(q)=$τesLXdx, (2.14)
oo

where X = £ d~*! ° Xt and L is the second-order differential operator defined by

Eq. (2.5). The Hamiltonian vector field with the Hamiltonian lx, tangent to Mι has
the following form [4, 8] :

^ a n = [gradJ x ,3 J C -/ + ̂ a n ] , (2.15)

where

Or, in the component form

(2.17)

Now, restricting Tx(q) on ^#/ed, one can obtain the Hamiltonian Tx(q) (qu = qι,
q22

 = (l2> a n d ^i2 = 0) on Jίjed. The Hamiltonian flow on Jί\Qά corresponding to
this Hamiltonian with respect to the Poisson bracket (2.10) has the form

qt= -dxgmdjx, q = dmg(quq2), (2.18)

where grad f̂̂  is immediately calculated from Eq. (2.11):

In the component form, Eq. (2.18) is the following:

Direct computation shows that iϊql9 q2 are solutions of Eq. (2.20), then uί = q1 + q2

and uo = q'2 + q1q2 will be solutions of Eq. (2.17). This important property of the
Miura transformation was discovered for the first time in the case of MKdV and
KdV equations in [7] and later generalized to the KdV-type equations in [4—6].

5. Now, we are in a position to define those types of equations which will be
connected with the ILW2 equations by means of the Miura transformation (2.12).
Recall that to obtain an ILW2 hierarchy, one needs to parametrize the coefficients
uuu0 of the operator L by means of the formal series coefficients

X(z,5J = l + Σ * i W (2.21)
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In this formula, the functions Kt(z, t) are holomorphic, bounded and continuous up
to the boundary in the strip Π2h = {z\ —2h<lmz<0}.

More precisely, let us demand

κ-(dx)d2

xκ
+(dxy

1=d2

x+uίdx+u0=L, (2.22)

where K±(dx) = l+ ΣκH^t)Sχ\ and Kr(χ) = Ki(x-2ih% Kf(x) = Ki(x).2

The constraint (2.22) gives expressions for the jumps Kf — K* of the functions
Ki(z) and these boundary values of the Kt{z) may be reconstructed by means of
Sokhotsky-Plemely's formulas:

K-(x)-K+(x) = u(x),

where T[u] is an integral operator of the type

] = iP.V. ? cth(π(y-x)/2h)u(y)dy.

Now, expressing Xx and X2 through the coefficients of the formal series iC*(3 J
using the equation

x= Σ d^oX^iK+idtf-iK-vr1!- (2.23)

and substituting them into Eq. (2.17), we obtain the ILW2 hierarchy [2, 8,1]. [In
the right-hand side of Eq. (2.23), the lower index " —" means the projection onto
the negative powers of 3X.]

To obtain the hierarchy of equations which are mapped onto the ILW2

equations by the Miura transformation (i.e. MILW2 hierarchy), one needs to put

(2.24)

This gives the restriction on the coefficients Kt in terms of qt. Then one needs to
define the functions Xlt2 by Eq. (2.23). Now Xίf2 will be expressed in terms oϊq12

and it is necessary to substitute them to Eq. (2.20). This gives us the MILW2

equation

Example. If 5 = 2, then
Z l = = ~ W l (2 25)

or in terms of qί>2,

* i = -(?i+i2)> (226)
XiHqi+qif-Wi+qiiJ+iTiύ+qΆ,

then MILW2 Eqs. (2.20), (2.23), and (2.24) will be the following:

These are exactly the equations which are mapped onto Eqs. (2.17) and (2.25) by
the Miura transformation (2.12).

2 Sometimes we will omit the sign " + " in K+ and K+(dx) and write simply Kh K(dx)
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6. From [2,8] we know that there is an infinite series of conservation laws
Hs(q) of the ILW2-type equations which are in involution with respect to the
Poisson bracket (2.3). The explicit formula can be obtained as follows. Let K(dx)
satisfy Eq. (2.22). Then

00 K + (λ)

Hs(q)~ ί res^ln—\±άx, (2.28)
- oo ^ \λ)

where K±{λ) = l+

To calculate Hs9 we simply need to replace the condition (2.22) by the condition
(2.24) and oncejnore use Eq. (2.28). But now, Eq. (2.28) gives us an infinite series of
the quantities Hs which, due to the property of the Miura's map, are in involution
with respect to the Poisson bracket (2.10).

Since the Miura transformation maps the MILW2 equations onto the ILW2

ones, it follows that

# M = 0> (2.29)

where q1>2 are the solutions of (2.20), (2.23), and (2.24).

3. Generalization of the Zakharov-Shabat Dressing Technique
with Quantized Spectral Parameter

In this section we are going to construct a generalization of the dressing technique
with quantized spectral parameter which has been described in our previous paper
[1]. The new version is available now both to ILW2 hierarchy and to MILW2 one.
It turns out that it is possible to dress the operator dx—Λ up to the operator
dx — Λ + q, where q is an arbitrary upper triangular matrix.

1. Let us consider the "initial" spectral problem

( 3 , - ^ = 0, (3.1)

where

The column ψ = (φu ψ2f is a solution of Eq. (3.1) and it follows from this equation
that ψι = ψ2,X'

Define the formal series in Λ by the equation

ί=o ί=o\ 0 K3J

where Kίtj = KUj{x,ή are some functions of x and t.
Let

ψ = G(Λ)ψ. (3.3)

Impose an additional condition on the coefficients KUj\

G(Λ)(dx~Λ)G-\Λ) = dx~Λ + q, (3.4)
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where now q is not the same as Eq. (3.5) in [1], but

0 q22J

If such G(Λ) exists, then ψ is defined by Eqs. (3.3) and (3.4) and will be a solution to
the following spectral problem:

0. (3.5)

Note that Eq. (3.4) gives more general restrictions on the coefficients Ku 3 as

compared to those we have in the case q = qcan = ί * ° ) in our previous paper

[1]. In the case q = qcan, the prescription of a dressing with quantized spectral
parameter was recalculated from the known case of scalar integro-differential
equations [2].

The following lemma tells us that the condition (3.4) can be resolved:

Lemma 1. Fix G(Λ) by Eqs. (3.2) and (3.4). Then the recursive equations on the
coefficients Kt 7 which follow from Eq. (3.4) can be solved and, moreover, let us define
the formal integral operators

Then the conditions we are looking for can be written in the following form:

(i) Ki(dx) be an arbitrary Volterra operator (Kl0 = ί), (3.6a)

(ii) K2{d^ = lK3(d^-K1(dJ]dx + K'3(d^ + q22K3(dJί9 (3.6b)

(iii) K;(θx)d2

x = l(dx + qx t)(dx + q22) + qι2]K3(dx) (K3ψ o = l ) . (3.6c)

Let us stress that it is necessary to find only the operator K3(dx), then K2{dx) is
defined by Eq. (3.6b) up to an arbitrary operator Kx(dx), so that all the information is
concentrated in Eq. (3.6c).

See the proof in Appendix A.

2. Due to the Zakharov-Shabat ideology we need one more restriction on the
functions Ku }{x, t), to construct the zero-curvature equations.

Lemma 2. Let us demand

Ga)(dts-Λs)G-\Λ) = dts- V(Λ), (3.7)
s

where V(Λ)= £ Ff(x,ί)Xι. Equation (3.7) gives the same conditions to the time
i = 0

evolution of the elements Kt 3{x, t) of the matrices Gf(x, t) that follow from the
equation

κ3tts(dx)κ3(δxr
1+(κ3(ex)dxκ3(dxr

 x)_ = o , (3.8)
which can be solved recursively.

The proof is given in Appendix B.
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3. Now, let the formal matrix valued series G(Λ) satisfy the conditions of the
previous lemmas, then from

θ=[dx-Λ,dh-Λ']

= lG(Λ)(dx-Λ)G- \Ά), G(Ά){dt-Ά*)G- \Ά)-\ (3.9)

it immediately follows that

ldx-U(Λ%dts-V(Λ)-]=0, (3.10)

where the polynomial V(Λ) is defined by Eq. (3.7) and U(Λ) = Λ — q.
The standard arguments show that Eq. (3.10) is equivalent to the equation

without quantum spectral parameter X:

Thus, we need exact information only about the structure of the matrix Vo. This
is given by a nontrivial (due to the shift operator in the quantized spectral param-
eter X) theorem.

Theorem 1. Let G{Ά) satisfy Eqs. (3.4) and (3.7), then

Vo = lGts(Λ)G-\Λ) + G(Λ)ΛSG~ \

χx Xi-x

where XUX2 are defined from the equation

xid^ΣS Όx^iK^djdi-^idr1!-- (3.13)

The proof of Theorem 1 can be found in Sect. 6.

4. Now, there are two different possibilities. The first one is to fix the gauge as in
Sect. 2. In the dressing technique language this means that qxi=uί, qι2

 = u0,
q22 = Q' Then, Eq. (3.12) will be the same as the equation on the grad^ Tx (2.16) and
Eq. (3.11) turns into the ILW2 Eqs. (2.17), (2.22), (2.23), and (2.25).

The second possibility is to put

011 = « 1 , 022=02, 012=0. (3.14)

First of all Eq. (3.11) may be written in the coordinate form as follows:

0 1 1 , ί = ~~ ̂ 0,11 ~ 0 1 2 ^0,21 ~~ K), 12 >

0 2 2 , ί = - *0.22 +012^0,21 + ̂ 0,12

Here VOfij defines the ij element of the matrix Vo [see Eq. (3.12)]. Now, put ql2 = 0.
Then from the second equation in (3.15),

The simplest solution of the last equation is Fo> 1 2 = 0. In this case, Eqs. (3.15) can
be written in the form

, (3.16a)

'1). (3.16b)
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This is exactly the MILW2 equation (2.20). Note that the condition F 0 > 1 2 = 0
together with the equation g1 2 = 0 is equivalent to Eq. (3.16b).

Conversely, if we are starting from the MILW2 Eqs. (3.13) and (3.16), then
Eq. (3.10) with the additional conditions (3.14), where in the Vo term we are using
once Eq. (3.16b), gives us a zero-curvature representation of the MILW2

equations.

4. Nonlocal Partner to the Generalized Two-Dimensional Toda Lattice

One of the important properties of a two-dimensional generalized Toda lattice is
the invariance under the generalized MKdV equations [4, 5]. In this section we
introduce nonlocal equations with the same invariance property under the
generalized MILW2 equation.

1. Let us try to write a zero-curvature representation for the usual g/(2) Toda
lattice (see Eq. (10.4) in [4]J but with an important difference. Let us apply our
prescription: write always λ=λe~2ihdχ instead of λ to obtain nonlocal integrable
hierarchies; so let us define the operators

(4.1)
^ = ϋτ-e ΨΛ ±eφ,

where

Let us write the zero-curvature equation

[J?,J?] = O. (4.2)

It is straightforward to check that Eq. (4.2) is equivalent to the following equation
on the fields φt and φ2:

k —pΦi(x,τ,t)-φ2(χ-2ih,τ,t)_^φ2(x,τ,t)-φι(x,τ,t)

The fact that Eqs. (4.2) and (4.1) remains to be selfconsistent is not evident and
there are no reasons to believe that our simple prescription will be successful. But it
seems we have been lucky.

2. Of course, it is necessary to give some extra arguments to show that the Eqs.
(4.2) and (4.3) are worth considering. One of such arguments is as follows.

Let φι and φ2 depend on the additional parameter t, and let !£ evolve in the t
direction as the MILW2 equation [we assume that q = φ' in Eqs. (2.27)]. Then
there is an important fact:

Theorem 2. Let the operators ££ and S be defined by Eqs. (4.1) and let t£ as an
operator depending on the variable t satisfy the MILW2 equation (2.27). Then

dtl&,&] = 0. (4.4)

In other words, the MILW2 equations are the symmetry equations for Eq. (4.2).

3. This theorem is a consequence of a little bit stronger Theorem 3.
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Theorem 3. Let the vector function ψ = ψ(x9 τ, t) be a solution to the spectral problem

0 (4.5)

(4.6a)

(4.6b)

0, (4.7a)

(dt-V(Λ))ψ = 0, (4.7b)

where V(Λ) is defined by Eqs. (3.7) and (3.12) with q = φ'. (Consistency condition is
exactly the MILW2 equation with q = φ'.)

Then the following equation is satisfied:

ldτ-e-φA-1eφ,dt-V(A)-]=O. (4.8)

This means that all three equations are consistent:

(Consistency condition is exactly Eq. (4.2)J
(ii) One more system of linear equations is consistent:

(dt-V(Λ))ψ = 0, (4.9)

(dτ-e~φA-1eφ)ψ = 0.

The proof of Theorem 3 can be found in Sect. 7 and the proof of Theorem 2
follows immediately from Theorem 3. Really, Eq. (4.8) is the same as

= ίίV(Λ), <?]&] + [^, ίV(Λ%

5. The Exceptional ILW! Case

In this section we will explain briefly which part of the results in the previous
sections are lost and which remain unchanged for the simplest case of the ILWX

hierarchy.
The simplest representative of such an hierarchy is the equation

+ iT[uxx]=0. (5.1)

The corresponding linear problem is

where M} =d2-2K^x and Kf =(\/2){ + u-iT[u\). In terms of the representa-
tion with a quantized spectral parameter, Eqs. (5.2) can be written as follows:

0 l ' }
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The corresponding dressing procedure can be formulated in the following manner.
00 ^

There exist formal series G(X) = 1 + £ K^'1 such that

where V(X) = P — Xu — u£+u2 + iT[ux~]. In terms of the coefficients of the formal
Volterra operator K(dx) = ί + £ K^d'1 this gives the usual conditions on the

coefficients K^x) [2].
Looking at Eqs. (5.4), we observe the absence of the matrix structure of a zero-

curvature representation and, consequently, in this case the MILWi hierarchy
coincides with the ILWL one. The possibility to construct a nontrivial equation
(5.1) appears due to the quantum spectral parameter in (5.4).

But it still remains possible to construct a nonlocal two-dimensional Toda type
equation for which the ILWΊ equations will be symmetry equations. This strictly
corresponds to the general ideology of Sect. 4. Really, let

(5 5)

where φ = φ(x, τ, t) is the scalar field. Then equation \_<£, S~\ = 0 is equivalent to the
following equation on the field φ (compare with the [10]),

φ = eΦ(x + 2ih,τ)-φ(x,τ) _ eφ(x,τ) -φ(χ- 2ih,τ) ^

The simplest symmetry equation is

which coincides with the ILWX equation with u = φx. This reveals a new property
of the ILW equation: it is a symmetry equation of the nonlocal one-component
two-dimensional Toda lattice equation (5.6).

Putting h = 0 in Eq. (5.6) one can obtain a trivial equation

We would like to stress that Eqs. (5.5) and (5.6) do not coincide with the
corresponding equations in [10] but are very similar to them.

Part 2. Proofs

6. Proof of the Theorem 1

For the proof of the theorem, we need the following technical result:

Lemma 3. Let ψ = (ψuψ2f be the solution of Eq. (3.5), then

(6.1)
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in particular

-2)Ψl,

Proof. Let us prove for example the formula for d~ 1ψ2. As ψ = G(Ά)ψ, then due to
dxψ = Aψ we obtain

=(G(Λ)Λ -1 - G\λ)Ά ~2+G"(Ά)Ά ~3+.. .)G ~ \Λ)ψ=Aψ.

We are interested in the last line in the matrix A, and more exactly those parts of
the last line which have the first order in X~1. The matrix A satisfies the equation

AG{Ά) = G{Λ)Λ ' 1 - G'(Λ)A ' 2 + .... (6.3)

The series G(Ά) has the form

where from Eq. (3.6b),

Up to terms of the order greater than X~1 the last line in Eq. (6.3) is equal to

* * \
I, where A = ((α^ )).

The last line on the right-hand side of Eq. (6.3) is equal to

* * \ / * *
(6.6)

so that a2ί=X~1, and

*,*, \ 3 1 3 1 QΌ.) — Ql 1 V^ /

As a result, we have

(6.8)

which is equivalent to the first of Eqs. (6.2). In the same manner one can prove all
the statements of Lemma 3.

Now we are in a position to prove Theorem 1. We shall organize the proof as
a series of direct calculations.

Step 1. We would like to calculate the zero coefficient in X° of the matrix

V(A) = [Gtβ)G -\A) + G(A)ASG ~ \Ay\. (6.9)

For this let us apply V(Ά) to φ, where ψ is a solution of Eq. (3.5). From (3.5) it
follows that ψ1=ψ'2 and Lψ2 = Xψ2. With the help of the Eqs. (3.1) and (3.3) one
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can rewrite

V(Λ)Ψ=(Gts(Λ)+G(Λ)Λ>)ψ

κut(dx) κ2,tfj\ (KM& κ2(dx)δsX}.
o κasx)) + { 0 κieκ)\ψ- (6 10)

Step 2. From the Eqs. (3.3) and (3.1) it follows

So that the second line in Eq. (6.10) is equal to
\dj\ψ2. (6.11)

By Lemma 3 dx

ιψ2 = O(X~ ι)\p2 + O(X~ 1 )φ ί when i^ 1. As we are interested in the
zero term before ψ2 in (6.11), the first term in this expression can be omitted. The
last term in (6.11) can be rewritten as follows:

κ3(dx)dxκ; \dx)ψ2={K&- 2(κ;yικςd2

xκj ι)ψ2. (6.12)

Let us recall that by the statement of the theorem, K$ d\K3

 1 = L and Lψ2 = Xψ2Λϊ
one denotes by W(dx) and X(dx) the projection of the operator X3δ^~2(KJ)~1 on
the positive and negative powers in dX9 then

κ3(dx)diκ; ί(dx)ψ2^(w+x)Xψ2. (6.13)

Once more we can omit the W term on the right-hand side of Eq. (6.13) as long as
we are interested in the zero in the X term before ψ2. Then the right-hand side of
Eq. (6.13) is equal to

.... (6.14)

But due to the equation dxφ = (Λ~q)ψ it follows that dxψ2 = ψί — q22ψ2 so that
finally

We recall that X= £
( = 1

Step 3. Now, let us calculate the upper line in Eq. (6.15). Due to Eq. (6.10), we have

(Klit(Sx) + ̂ i ( 3 J W i + (K2tt(dx) + K2(δx)Bx)ψ2. (6.16)

By Eqs. (3.3) and (3.1),

(6.17)
ψ2 = K3(dx)φ2.

Thus,

dx)Kϊ \dx)ψ2,
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and Eq. (6.16) will be written as follows

(6.19)
But ψ\ = dxψ2 + q22ψ2

 a n d K2(dx) can be represented through the K1 and K3 by
Eq. (3.6b). So, Eq. (6.19) has the form

^ψj + q22,tψ2 + q22(K3<tKJι + K3dxK3 > 2 .
(6.20)

We would like to stress the remarkable cancellation of the operator Kx{dx) in
Eq. (6.20). But the zero coefficient in 1 standing before ψ2 in the formula

1)ψ2 is equal to

ψ2- (6.21)

Then, substituting Eq. (6.21) into Eq. (6.20), we will have

V 2 ) . (6.22)

But, from equation dxψ = (Λ — q)ψ one has

dχΨi = - ί u V i -412V2 + V̂>2 > (6.23a)

^ 2 = Ψl-«22Ψ2 (6.23 b)

Once more we need to omit the term Xψ2 in Eq. (6.23 a) and finally to substitute the
result into Eq. (6.22). We thus have

(X2 + q22Xi)ψiHq22,t + Xf2-XΊ-qi2Xi+(qiiXi)Ίψ2- (6.24)

This reconstructs the upper line of the quantity Foφ, so that we have the result:

and X = Σ^χl°Xi = lK3^χ~2(K3)~γl-' Thus we can easily conclude, from
Eq. (6.25), the statement of the theorem.

7. Proof of the Theorem 3

Let G(Ά) be the same as in Lemmas 1 and 2. We remind that ψ = G~ί(Λ)ψ. Then
Eq. (4.2) is equivalent to the equation

0 (7.1)

or

ldx-Λ,dt-v]=0, (7.2)

where

v=-G-1dτG-G-1(e~φΛ-'ίeφ)G. (7.3)
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Equations (4.6) are equivalent to the following equations:

(dx-Λ)ψ=0, (7.4a)

(d τ - i# = 0. (7.4 b)

The same is true for Eqs. (4.7), which are equivalent to the following ones:

(δx-Ά)ψ=Q, (7.5a)

(dt-A^p=0. (7.5b)

And finally (7.2) is the same that

dj> = {λ,υ\. (7.6)

Now, as dX9 dτ9 and dt derivatives are commuting we have

dtdτψ = dt(vψ)

II (7.7)
dτdtψ=ds

x(vψ),

so that,

vtψ + υΆsψ = Σ Cs

av^Λs-aψ. (7.8)
α = 0

Now, the statement of the theorem follows from Eq. (7.8) combined with

Lemma 3.

Άs-aψ = Λsυψ. (7.9)Σ ψ ψ
α = 0

Proof of the lemma. By Eq. (7.6) the right-hand side of Eq. (7.8) is equal to

Σ
α=0

where Άάχv = \_Ά9υ\. One can rewrite expression ad^f in (7.10) as

(7.10)

Σ (-l)βCa

βΆ*-βvΆβ, (7.11)
β = 0

so that, the right-hand side of Eq. (7.8) is equal to
s a. s a

Σ /~*S V"1 / /t\β/~'Ol A& — β'.ji AS — (<X — β) V"1 Y"1 / Ί

y~s fi / I — J. / v^/jyJ. v/y. ~~~ / / \ — J

α = 0 β = 0 α = 0 γ = 0

= Σ \ i {-
(7.12)

where in the second equation we changed the index of summation β = a—y and in
the last one we changed the order of summation. But

Σ (-if
a — y ct = γ

=σ'y(-ιγσ-y=$0' i f

yδio U , if y=s.
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This completes the proof of Lemma 3 and prove the equation

υt = \_Ά\υ\ or [dt-Λ\dτ-v~] = 0.

The last equation is the same as

Appendix A

In this appendix we prove Lemma 1. Applying both sides of Eq. (3.4) to the
solution ψ of the equation

one can obtain

G(Ά){δx-Λ)ψ = {dx-Ά + q)G{Ά)φ. (A.2)

Here ψ is a solution to Eq. (3.1) and ψ is related to the ψ by the equation

ψ = G(Λ)ψ, (A3)

where G(Λ) is defined by Eq. (3.2).

Step 1. Defining K£dx) = £ Ku jdx

 3, i = 1,2,3 and using the equation ipx = ψ2fX

and %φ = dlψ, which follow from dxψ = Άψ, one can rewrite Eq. (A.2) in the form

'K2(dx) Ktf^ ( 0

κK3(dx) o[G
o

0 X'(3) ) l ( ) = 0 ' (A'4)

Or, equivalently,

+ K'2(dx) + q, ̂ ( δ j + q12K3(δx)}ψ2 = 0,
(A.5)

{ικ3(dx) - κγ{dx)-]dx+κf

3(dx) - κ2(dx)+q22κ3(dx)}ψ2=o.

Step 2. Now, let us recall that φ 2 is a solution of the equation dχ-ψ2 = λψ2.
Therefore, it can be written as ψ2 = eiξx+ic\ λ=-ζ2e~2hξ. So that Eq.(A.5) are
like ^ ( 3 ^ 2 = 0 or 1 (̂̂ )̂ 2 = 0. Then the formal series #(*'<!;) = 0. In other words,
all the coefficients of the series are equal to zero. But this means that R(dx) = 0. So,
from Eq. (A.5), one can obtain the equations

κ;(d xwl+iκ2(dx)+κ\{dx)+q

+ K'2{dx) + q i xK2(dx) + qί2K3(dx) = 0,

,+κf

3{dx) - κ2(dx)+q22κ3(dx)=o.
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Step 3. From the second of Eqs. (A.6), we obtain

K2(d^ = iK3{d^-K1(dJ]dx + K'3(d^ + q22K3(d^. (A.7)

Substituting (A.7) into the first of Eqs. (A.6), it is easy to check that Kγ dependence
is removed and the result will be a closer equation for the operator K3(dx):

= 0 . (A.8)

But Eq. (A.8) is the same as

K3d
2

x = LK3, (A.9)

where L=(dx + q11)(dx+q22) + qί2.
oo

Step 4. Let K3(dx) = 1 + £ K3 td~\ then Eq. (A.9) is equivalent to the recursive
i=l

equations for the coefficients K3i of the operator K3(dx\

(A.10)

where we put u1=qίl-\-q22 and uo = q'22 + qlίq22-\-q12. From the first equation
one can reconstruct the function K3Λ(z) which is holomorphic, bounded in the
strip Π2h and continuous up to the boundary. This is achieved by using the integral
operator

Equation (A.11) reconstructs the function K3ί(z) with the fix jump

K3Λ-K3Λ=Ul, K3Λ + K3Λ = -iT[u{].

So, for example, K3 ι = (—iT[uί] — ui)/2. Of course, it is necessary to impose
special analytical conditions on uγ and u0 such as smoothness and rapid vanishing
at + 00 together with some of its derivatives. Therefore, it is necessary to be careful
at the next step, namely in the reconstruction of the coefficient K3 2. Really,

00

K3Λ~(i/4h)sign(x) J u^dy as |x|->oo because of the asymptotic behavior of

Γ[ιι(x)]at|x|->oo: ~°°

4 f
But dxT[u] has the same vanishing properties at infinity as the function u, so that
everything will be O.K. with K'3 1 and K3f 2(z) can be reconstructed by Eq. (A.I 1) in
the same manner, with the only difference that instead of uί one has to write
u0 + 2K\ + u1K1. Looking at the general formula for K3fi+2 — K3fi+2 i n Eq. (A. 10),
one can prove by the same arguments that the right-hand side of the appropriate
equation has appropriate analytical properties. Thus, the function K3i+2(z) can be
found from Eq. (A. 11). This completes the proof.
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Appendix B

We must prove that

β _ = 0 (B.I)

is equivalent to the following equation:
1)- = o , (B.2)

where, as before, the signs " —" in (B.I) and (B.2) mean the projections onto the
negative powers of X and dx, respectively.

Using (6.11) and (6.20), one can see that the expression for V(Λ)ψ can be written
as follows:

(B.3)

Then due to Lemma 3, the absence of negative powers of X in (B.3) means the
absence of negative powers of dx9 so that using Eq. (B.3) we can conclude the
statement of the lemma.
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