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Abstract. Let R be an expanding rational function with a real bounded Julia set,
σ(y)

and let (Lg) (x) = £ 2 be a Ruelle operator acting in a space of functions
RlR\yΠ

analytic in a neighbourhood of the Julia set. We obtain explicit expressions for the

resolvent function E(x9 z;λ) = (I—XL) ~x and, in particular, for the Fredholm

determinant D(Λ) = det(J—XL). It gives us an equation for calculating the escape
rate. We relate our results to orthogonal polynomials with respect to the balanced
measure of R. Two examples are considered.

1. Introduction

The facts from the Fatou-Julia theory of iterations used below are contained, for
example, in the surveys of Blanchard [6], and Milnor [15]. We shall use also
some notions of the thermodynamic formalism for expanding mappings devel-
oped in the works of Sinai, Ruelle and Bowen (e.g. see Bowen [7, Chap. 1,2], and
the recent survey of Ruelle [18], which is supplied with an extensive list of
references).

Let R be a rational function with a real bounded Julia set J. We shall assume
that the mapping R is expanding on J (another word: hyperbolic), that is, for some
i > 0 , o l J and all integers n>0,

M{\R'n(x)\ :xeJ}^Ac\ (1.1)

where Rn is the nth iteration of R [in the case of real bounded Julia set the inequality
(1.1) is equivalent to the conditions: R has not neutral fixed points and critical
points on J, see Sect. 2.1]. Under these hypotheses J is a Cantor-type set of zero
length.

* The first named author was sponsored in part by the Landau Center for Research in
Mathematical Analysis, supported by the Minerva Foundation (Germany)
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In what follows we shall focus basically on the study of the operator

Lg(x)= Σ π ^ - L . (1.2)
R() LR\y)i

The Ruelle version of the Perron-Frobenius theorem (hereafter called the RPF-
theorem) is applied to this operator acting on the space of continuous functions
C(J). In particular, the spectral radius ρ of this operator is the simple eigenvalue of
operators L and L*, and all other eigenvalues have strictly smaller modules. The
eigenfunction h of the operator L corresponding to the eigenvalue ρ is strictly
positive on J, and the corresponding eigenmeasure v of operator L* is nonnegative.
The measure hv is (up to normalization) the Gibbs state for function | # Ί ~ 2

The value α = log- has an important dynamical interpretation: it follows from

the Kδebe distortion theorem (see e.g. [10]) and the RPF-theorem that α coincides

with the "escape rate": α = lim - log —, where Ω = Ωa is a neighborhood of J
n-oon &areaΩw

and Ωn = R_nΩ its full preimage under the ̂ -iteration Rn. This value has been
investigated both numerically and in a series of physical articles (see especially
Widom, Bensimon, Kadanoff and Shenker [21] and Kadanoff and Tang [12]).

In the case when R(z)=z2—p, the spectral properties of the operator L were
used for the study of the convergence of diagonal Pade approximants to the
Stieltjes transformation of the balanced measure of R (Levin [14]) and for the
investigation of a limit-periodic finite difference operator with the Singularly
continuous simple spectrum acting on the space /2(Z) (Sodin, Yuditski [19]).

Using a general idea of Ruelle we consider the operator L in the space A(Ω) of
functions, which are analytic in a neighborhood Ω D J of the Julia set containing no
critical points of the function R. In this space the operator L is an integral operator,
and the Fredholm-Grothendieck theory is applied to this operator. The operator L
has only point spectrum {ρk}£L x plus its sole limit point zero, and by virtue of the
RPF-theorem, ρ = ρx is, as before, the greatest eigenvalue of the operator L = L\A{Ω).

The present paper is devoted to the constructive investigation of spectral
properties of the operator L^

Let D(λ) = dQt(I-λL)= f[ (ί-λρn) be the Fredholm determinant of the
n = l

operator L. According to the definition,

Σ } (1.3)
m=i m J

The traces of the operator L can be calculated very easily in this case (see Sect. 3),
but the corresponding expansion of logD(λ) converges only in the disk \λ\<ρ and
requires the knowledge of the fixed points of all iterations Rm, m = 1,2,....

In Sect. 4 using perturbation theory we obtain a more convenient expression
for D(λ), which requires a calculation only of iterations of critical points of R. In the
case when R is a polynomial, this expression is the Taylor-series expansion of the
entire function D(λ). In Sect. 5 we find the explicit formula for resolvent



Ruelle Operator for a Real Julia Set 121

In the last three sections (6-8) we dwell on two examples: R(z) = z2—p, p>2,

and R(z) = σz , σ> 1. In the first example our general formula has the form
00 (1 /2)n

1 +?
The entire function D(λ) decreases for λ>0, and the series (1.4) converges very
rapidly. This fact is important for calculating the value of the escape rate. Besides,

in this case we find the Taylor-series expansion of function —— (Sect. 7).
D(λ)

2. Preliminaries

2.1. Let JR be an arbitrary rational function with a real bounded Julia set J.
According to Sullivan's theorem (Sullivan [20]), the domain G = <D\ J is either an
attractive basin, or a rotation domain (Siegel disk or Herman ring). The latter case
is impossible, because the map R:G-^G has a degree more than one. Thus, G is the
attractive domain of a fixed point a sG.lt follows from this and from the criterion
for expansion (e.g. Lyubich [13]) the equivalence of the following conditions in the
considered case JclR:
(a) JR is expanding on J,
(b) there are no critical and neutral fixed points of R on J.

2.2. Fix an expanding rational function R with a real bounded Julia set J, so that
one of the two equivalent conditions (a) or (b) is satisfied, and the domain G = <C\ J
is the attractive domain of the attracting fixed point a e G.

We may assume α= oo. Then either oo is an attracting point, and

R(z) ~ σz, σ > 1, for \z\ large, (2.1)

or oo is a superattracting point, and then

R(z) ~bzm, m ̂  2, b Φ 0, for \z\ large. (2.2)

By the theorems of Schroder and Bόttcher the function R(z) is analytically
conjugate in a neighbourhood of infinity to the simplest transformations of the
form (2.1) or (2.2). More precise, there exists an analytic function φ(z) in a
neighborhood of infinity such that

u = φ(z) = z + c+ - + ..., (2.3)
z

and in addition
φ{R{z)) = σφ{z)

in the case (2.1), and

in the case (2.2).
According to these basic functional equations the function φ may be extended

to an analytic function in the domain G with branching points in the critical
points of R and their preimages under the mappings Rn for all neN.

2.3. Let cήt(R) denote the set of all finite critical points of the expanding function R.
It is known (e.g. see Hirsch and Pugh [11]), that there exists a Lyapunov metric
|| || in some neighbourhood V of J, Fncrit(#) = 0, i.e.
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for some K > 1 and for all points xeV and all tangent vectors v at point x. Let Ω c V
be ^-neighbourhood of J with respect to the Lyapunov metric (δ is positive and
small).

Then
^ (2.4)

(see, for example, Milnor [15]).
For every smooth contour y C Ω, which is close enough to the boundary dΩ and

surrounds J, we get

where Ωy is a finite domain bounded by y. If now geA(Ω\ then by the Cauchy
theorem,

where γ is such a contour, and z e Ωr

2.4. Later on we use the adjoint space of analytic functionals A*(Ω), which can be
identified with the space of functions analytic outside of Ω and equal to zero at
infinity. In other words, if JeA*(Ω), then there exist a domain ΩfD<£\Ω and a
function feA0(Ωf) [it means that / is analytic in Ωf and /(oo) = 0] such that

where g e A(Ω) and a contour 7 seperates singularities of functions / and g and lies

in their common domain of holomorphicity. In particular, f(z) =J .

2.5. We find a form of the adjoint operator L* acting in the space A*(Ω). We have:

Applying the Residue Theorem to the exterior of the contour y we obtain:

K (Z) cecrit(K) K ( l) (Z — X)

Thus, in this situation the passage to the adjoint operator is the passage from an
operator on analytic functions in a neighborhood of the repeller J to an operator
on functions analytic in a neighborhood of the attracting point a = 00.

3. Calculation of Traces tr(Lm)

Let us use the expression (2.5) to get:

= -L J ff^; , geA(Ωm),
2πi 7m Km(τ) lRm(τ) - x]
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where Ωm = R _ mΩ, Ωmncrit (Rm) = φ,ym = R_ my. Hence, denoting by fix (Rm) the set
of fixed points of Rm not equal to oo (i.e. lying in the Julia set), we obtain

zπi ym κm[τ) iκm(τ) — τj Xenx(Rm) κm(x) iκm(x) — lJ

The first sum is equal to the residue of the function — — - — at infinity, i.e.
1 i RΛz)~Z

-ί σm-ί

in the case (2.1) and is equal to zero in the case (2.2). These cases can be united into
one case, if we let σ = oo for the superattracting point.

Substituting (3.1) and (3.2) into the expression (1.3) for the Fredholm
determinant, we obtain

2 m 1 { °° } m 1
e X p Σ ~ Σ 7 ^

(3.3.
l Hi χefix(Rm)

The first factor in (3.3) is the Fredholm determinant of the operator

(Llg)(χ)= Σ
R

the second one is the Ruelle C-function (Ruelle [17]). In the case when R is a
polynomial, the operator Lγ is a Volterra operator.

We observe that

. (3.4)

4. Calculation of D(λ) with the Help of Perturbation Theory

4.ί. In order to prevent long calculations, we assume that the function R obey the
following conditions:
(a) Vcecrit(K), JT(c)φO;
(b) Vc, c'e crit(K), VneN, JR̂ cJ + c'.

Remark. For polynomials with real Julia sets the above conditions are satisfied
automatically. Indeed, let R be such a polynomial. If x e J, then all roots of the
equation R(y) = x are real numbers. Hence R(z) = R(z\ for all zeC. If u(z) is the
Green function of the domain G = <C\ J with the pole at infinity, then an open set
{u(z)<a},a>0, is symmetric with respect to the real axis R and all its components
contain points of J. It follows from this c r i t ^ c R . Suppose that Λ"(c) = 0, for
some c6crit(.R). Then the set {u(z)<u(c)} consists of more than two components.
One of them does not intersect R. So there are points of J outside of R. This
contradiction proves (a). In its turn, (a) implies (b), if we apply (a) to the iterations.

4.2. Let us introduce a space A*(Ω, R) of functions: fe A*(Ω, R) iff/ is defined and
holomorphic function in a domain Ω/9 which contains (D\Ω minus all preimages of
the set crit(lί) under the iterations Rn, n = 0,1,2,..., and /(oo) = 0. We regard that
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A*(Ω)CA*(Ω, R). Define the operator L* in the space A*(Ω, R) by the formula (2.6)
(we preserve the symbol L* for this operator). L* / is a Cauchy-type integral,
hence L*:A*(Ω,R)-+A*(Ω). Then the operator L* considered in the spaces
A*(Ω,R) and A*(Ω) has the same eigenvalues with the same multiplicities. Define
now an operator K in the space A*(Ω,R):

^ , feA*(Ω9R) (4.1)
K{Z)

Because of (2.7), we shall consider the operator L* as a finite-dimensional
perturbation of the operator K, which, in its turn, by (3.4), is a slight variant of the
operator L*v

First of all, we study the spectrum of the operator K. We restrict our attention
to case (2.1): σφ oo [in case (2.2) of a superattracting point similar considerations
prove that the operator K is a Volterra operator].

Let Ω* be a small enough neighbourhood of infinity, invariant under R. We
consider the operator K in the space A0(Ω*). It is easy to see that the spectrum of K
does not change this replacement.

Use the change of variables (2.3). If a function h(u) is analytic in a neighbourhood
of infinity and /i(oo) = 0, then f(z) = h(φ(z)) e A0(Ω*\ and

^$ (4-2)

Let us introduce the function z = φ(w), inverse to φ(z)9 then R(z) = ψ(σφ(z)\ hence

RχZ) = oΨχσuMz)=η^. (4.3)

If we substitute (4.3) in (4.2), then we obtain

The functions {ί/un}™=0 are eigenfunctions of the operator
σ

therefore the functions {ψ'(u)/un} ®= x form eigenfunctions of the considered
operator K:

(4.5)
σn+1 un '

Since the latter set of eigenfunctions is complete in the space A0{Ω*\ then the
spectrum of the operator K is simple and consists of the points {l/σw+1}£°=i.

This fact follows also from the examination of Neumann series. Indeed, we
have, for feA*(Ω,R), zeΩf and sufficiently large N:

w=0 w=0

λNψ(u) « c,

R'N(z) k. λ u"
1 i+l
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f ° Ψ
where u = RN(z), and numbers cb ί = l , . . . , are defined by the expansion ——(w)

00 c
= Σ ~l a t infinity- Thus, the points {l/σ / + 1}£i are the poles of the resolvent

(I — λKy1 and form the spectrum of the operator K. In particular,

(4.7)

Let us now continue (2.7) using conditions (a) and (b):

<τ*f\(\=fm) v f{R{c)) 1

1 J)(Z) R'{Z) ceck(R) R"(C) 2-C

In other words,

L* = K-FG,

where G and F are the operators from A*(Ω, R) to <C and from <C' to
respectively, / = card crit (R):

(4.8)

(4.9)

L -K (c) Jcecrit(K)

(Foί)(z)=

By (4.9), we have

cecrit(K)Z —

=det(/ - XL*)=det(J - XK) detM(A),

where

(4.10)

(4.11)

(4.12)

(4.13)

is an operator taking C' into <C'.
Really,

det(/ - 2L*)=det(/ -XK + XFG)=det(/ - XK) det(/+λ{I - XK) ~ ιFG)

stil+XGil-XK)-^)

(the latter equality follows from the definition of the determinant).
Now we use (4.1), (4.10), (4.11), and (4.13) and get

M(X) = 1+XG[ Σ
\n = 0

X"

= 1 +

= 1 +

X"+ 1

?0R'π(z)(Rn(z)-Cj)Jj=1

I

X"

ί.J=l
(4.14)

(symbol \\ij=ldenotes a square matrix / x I).
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Finally, using (4.14), (4.7), and (4.12), we obtain the desired equality

i x"
(4.15)

or, equivalently, ζ(X) I 1 I =

5. Calculation of the Resolvent Function E(x, z; λ)

Recall, that

E(x, z; λ)=(/ - XL) ~ι -^- = (/ - XL*) ~1 -^ (5.1)

(where the operator L acts on the variable xeΩ, and the operator L* acts on the
variable z e Ω*).

By (4.9) we have

(5.2)={i-λκy1-λ{i-λκy1FM-\λ)G{i-λκy1

(the last equality is checked directly); in (5.2), as above, we set

Let \ oo 1 oo \

— = Σ (λnκn)— = Σ λn—
(5.3)

From Eqs. (5.1)—(5.3) we obtain the required formula

E(x z-X)-H(x z-λ)L{x,z,λ)-H{x,z,λ)

H(x,R(Cl);X)

H(x,R(Cι);λ)

(5.4)

It should be noted by (4.6) the function H{ •, X) is a meromorphic function in C
with poles in the points {σn+1}™=ί (cf. Fatou [9]), and that

H(Ci,R(Cj);X)

The eigenfunctions of the operators L and L* can be explicitly expressed in terms of
the function H.

6 Example 1: R(z) = z2-p,p>2

In this case the obtained formulae (4.15) and (5.4) are simplified as the unique
critical point of the polynomial R is the point 2 = 0, and R'n{z) = 2nRn _ x(z)... R(z)z.
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Therefore

oo (λ/2Y

ί ί ( 0 ) ί ; ( 0 ) . .

( 6 . 3 )

7. Example 1: Continuation. Calculation of the Taylor Expansion
of the Function 1/D(λ)

Using the Neumann series, we obtain another expression for the function E. We
have:

] ^ (7.1)
Z— X w = o Z — X

Let us investigate the function L" . For this purpose we need some

information about orthogonal polynomials (Akhiezer [1]) and, in particular,
about orthogonal polynomials with respect to the balanced measure μ of the
polynomial R(z) (the measure μ was discovered by Brolin [8]. Orthogonal
polynomials with respect to μ were investigated by Pitcher and Kinney [16],
Bellissard, Bessis, Moussa [3], Barnsley, Geronimo, Harrington [2], Bessis and
Moussa [5]; see also Bessis, Mehta, and Moussa [4] and Sodin, Yuditski [19]).

Let S be a polynomial of a degree m. Hereafter the polynomial S is an iteration
of the quadratic polynomial x2—p, more generally, the arbitrary monic centered
polynomial

Then

z-y- S(z)-x '

where Qm_ί(z, x) is a polynomial on variable z of degree m — 1. The values of this

polynomial in the points yeS-^x) are equal to -^ΓT- This implies that the

polynomial Qm-1{z,x) is an orthogonal one to the powers zk, 0^/c^m — 2, with
respect to the probability measure λx uniformly distributed at the points of the set
S_x(x). Indeed,

sy=χ ms

for O^fc^m — 2, since the last sum is equal to the sum of finite residues of the
yk

rational function ——.
S(y)



128 G. M. Levin, M. L. Sodin, and P. M. Yuditski

Let Pk, 0 ̂  k ̂  m — 1, degPfc = k, be orthonormal polynomials with respect to the
measure λx. Then Qm-1 = βPm-19 where β is a constant, which will be calculated
later on.

The polynomials Pk satisfy a three-term recursion relation as follows:

ft*+Λ+iω = (^-βik)^)-frΛ-iW ) fc^m-2, (7.3)

ak = ak(x),bk = bk(x).
We join the polynomial Pm(z) = S(z)- x to the system {Pk}, O^fcgm-1. Then

(7.3) holds for k = m — 1, moreover

bm = (b 1...ftm_ 1)- 1. (7.4)

The corresponding polynomial of the second kind is equal to

Pm(z)-Pm(u)d !
J z - u msw=, z-y m

Therefore (see, for example, Akhiezer [1, Chap. 1])

S'(z) 1

m(S(z)-x) b\
(7.5)

b\

Besides, it follows readily from (7.3) that

Pm-i(z)

bm(S(z)-x)
Z — am-l— '

(7.6)

Now we shall calculate the constant β. The leading coefficient of the polynomial
Qm-i(z,x)is equal to

On the other hand, it is equal to the leading coefficient of the polynomial Pm_1

multiplied by β, that is [by (7.3)] it is equal to

β

Thus,
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or, using (7.4), we obtain

/?=— = — . (7.7)

mbί...bm-ί m
Hence Eq. (7.6) we can rewrite in the following form:

— (7-8)
m h2 .

"m-2

z-ax--

Let now μ be the balanced measure of the polynomial R,S = Rn and x = 0. The
polynomial #„ is orthogonal to the powers zk, 0^fc^2 π — 1 , with respect to the
measure μ, hence as it follows from (7.5) the numbers b\ = b%(0) is the sequence of
coefficients in the continued fraction expansion of the Stieltjes transformation

We denote by ωn the rational function

b2nP2n\7) 02n Kn(Z)

where (Pfc)fcLo is th e system of orthonormal polynomials with respect to the
measure μ.

Then using Eqs. (6.3), (7.1), (7.2), (7.8) (with x = 0, m = 2", S = lίm) and, at last,
(7.9), we obtain the required formula

n=o\2/

Calculating the residues at the point z= oo of each part of (7.10), we obtain
finally

= Σ H«[-) •

Remark. Similar formulae can be written for every monic centered polynomial,
which satisfies the conditions (a)-(b) (see Sect. 4.1).

Comparing (6.1), (7.11), and (3.3) we get the interesting identities

. Σ. λ" 1 f » λm 1

=exp^ Σ - Σn^l Rfβ)...RM
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8. Example 2: R(z) = σz , 1 < <τ < αo

The upper and lower halfplanes as well as the real axis are invariant under the map
R. Hence J c R and Cantorian (since R is expanding, if σ > 1). The function JR has

two symmetric critical points ci = c=—=, c2=—c. Besides, for all n e N the
]/

functions Rn and R'ή are odd functions.
We use (4.14) and obtain

detΛf(λ) =

λn

ί+Σ.ϊΐ^K{c)[Rn{c)-c]

Since R is expanding, the function detM(A) has a root λί with least modulus,
1 c

and λ x >0, and for any point xeJ £ l τ v / x ι 2 x —, c=c(x)>0.

Let us find bounds for λv If aσ =
1

σ - 1
is the positive repulsive fixed point of

/
the function R, then J c [ - α f f , ασ], and \R'\ j ^ R'(aff) = 2σ -1, hence \R'n\j ̂  (2σ - l)π,
and

-1)2"

This inequality implies λγ ^
(2σ-l) 2

1 .
On the other hand, the value log^- is equal to the pressure of the function

— 2 log \R'\ (Bo wen [7, Chap. 1 ]). Let us consider the Dirac measure ε concentrated
at the fixed point aσ, and use the variational principle (Bowen [7, Chap. 1]):

log-J- > J(-21og|Λ'|)d8= -21og(2σ-l)

that is λ1<{2σ-ί)2.

Thus, we have proved that ( °~ ^λt <(2σ- l ) 2 .

In particular, for σ> the least root λx of the function detM(A) lies

outside of the circle of convergence {λ: \λ\ < σ2} of the Taylor expansion of this
function.
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9. Conclusion

Our method works, when R is an expanding rational function and a weight φ in the
Ruelle operator is a rational function with the poles outside of J (the Julia set J is
not necessarily a subset of the real axis). Then one can write down an explicit
expression for the Fredholm determinant of the operator

(Lg)(χ)= Σ ttoWy),
R(y) = x

acting in a space of functions g analytic in a neighbourhood of J. For example, let R
be a finite Blaschke product and J be the unit circle Sx = {\z\ = 1}. Consider φ(z)
= \R'(x)\ ~ 2, for zeSv This function extends to a rational function according to the
formula φ(z) = (R(z)/zRf(z))2.

The approach suggested at the present paper for the calculation of the
Fredholm determinant is applied also to the essentially more general situations,
namely, when the weight φ is a holomorphic function in some neighbourhood of
bounded Julia set of an expanding rational function. In particular, the operators

(Lsg)(χ)= Σ giy)

(R(z) = z2 — p, p>2,se1R) are related to this case. The authors will return to this
question in their coming paper.
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