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Abstract. In some invertible maps of the plane that depend on a parameter,
boundaries of basins of attraction are extremely sensitive to small changes in the
parameter. A basin boundary can jump suddenly, and, as it does, change from
being smooth to fractal. Such changes are called basin boundary metamorphoses.
We prove (under certain non-degeneracy assumptions) that a metamorphosis
occurs when the stable and unstable manifolds of a periodic saddle on the
boundary undergo a homoclinic tangency.

Dynamical systems in the plane can have many coexisting attractors. In order to
be able to predict long-term or asymptotic behavior in such systems, it is
important to be able to recognize to which attractor (final state) a given trajectory
will tend. The set of initial conditions whose trajectories are asymptotic to a
particular attractor is called the basin of attraction of that attractor. In some
systems that depend on a parameter, it has been observed that the boundaries of
these basins are extremely sensitive to small changes in the parameter. Not only
can a boundary jump suddenly, but it can also change from being smooth to being
fractal. These changes, called boundary metamorphoses, are studied at length in
[GOY]. In this paper we prove a theorem, originally stated in [GOY], which
characterizes the jumps in basin boundaries.

The Henon map f(x,y) = (A — x2 — Jy,x) provides an example of this pheno-
menon. We fix J = 0.3 and vary A, resulting in a one-parameter, invertible map of
the plane. The Jacobian of/ is J; hence, / is area contracting for all A. We will be
looking specifically at the boundary of the basin of attraction of infinity. (The basin
of infinity is the set of all points (x, y) such that \fn(x, y)\-*oo as π->oo.) Figures la
and lb show the basin of infinity in black for A = 1.314 and A = 1.320, respectively.
In Fig. lb we see that the basin of infinity contains points which were previously (at
4̂ = 1.314) well within the white region. This new set of black points has not
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Fig. la and b. The figure shows the basin of attraction of infinity in black for the Henon map

f(x,y)=(A-x2-Jy,x).

We fix J = 0.3. a A is 1.314, and in b A is increased to 1.32. The change in the basin of infinity
illustrates a basin boundary jump

gradually moved in from the boundary of the white region. Rather, beyond a
certain critical value A = A* «1.3145, black points suddenly begin appearing deep
in the interior of the white region. As A increases, the thin bands thicken. This is a
discontinuous change in the basin of infinity.

In order to understand this phenomena, we must examine the dynamical
behavior on the basin boundary. At A = 1.314 (Fig. la) the boundary is observed
numerically to consist of a saddle fixed point pl9 and its stable manifold Ws{p^).
(The stable manifold Ws(p) of a fixed point p is the set of points (x, y) such that
/"(*> y)^P as n ^ oo. More generally, the stable manifold Ws(pk) of a periodic point
pk of period k is the set of points (x9 y) such that fnk(x, y)-*Pk as n-> oo. Analogously,
the unstable manifold Wu(pk) ofpk is the set of points (x, y) such that / " nk(x, y)^pk as
n-+co. Such sets can be proved to be smooth curves.) One branch of the unstable
manifold oϊpί at A = 1.314 extends into the white region, as shown in Fig. 2a. At
the critical value A* «1.3145, after which the basin boundary jumps into the white
region, we find that W*^^ and WM(Pi) are tangent (Fig. 2b). Hammel and Jones
[HJ] were the first to prove a theorem relating the tangency of Ws(Pi) and Wu(Pi)
(called a homoclinic tangency) to basin boundary metamorphoses. Their methods
are different from ours, however. We want to relate these metamorphoses to the
saddle periodic orbits which are found near the points of tangency and which we
describe below.

The complicated dynamical behavior which occurs at homoclinic tangencies
has been studied at length in recent years, especially in the papers of Gavrilov and
Silnikov [GS], Newhouse [N], and Robinson [R]. Under certain non-degeneracy
assumptions, there are horseshoe maps defined on subsets of the plane near a point
q0 of tangency of W^J and W^pJ. Figure 3 shows a rectangle B4 and some of its
iterates under /. Notice that f4{B4) is horseshoe-shaped and intersects B4 in two
components. In fact, for n sufficiently large, there is a rectangle Bn near the point of
tangency q0 such that fn restricted to Bn is a horseshoe map. There is necessarily a
saddle orbit of period n in each of the two components of the intersection of Bn and
fn(Bn) (see, for example, [R]). One of these saddles will have a "flipped" unstable
manifold (i.e., Dxf

n at this saddle has an eigenvalue less than — 1), and the other
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Fig. 2a and b. The figure show the stable and unstable manifolds of a fixed point pγ before and at
tangency, respectively

Pi

Fig. 3. This illustrates a horseshoe map. The invariant set of the horseshoe is in B4nf\B4)

Bnj.ι Bn n + |

I Vb n + ,J

Pi

Fig. 4. It shows the relative positions of two simple Newhouse saddles pn and pn + 1 of periods n and
n + 1, respectively
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will not. We label the unflipped saddle pn. This orbit is called a "simple Newhouse
saddle" in [TY].

The larger n is, the closer Bn will be to q0 and Ws(pλ). This corresponds to the
fact that the length of time (i.e., the number of iterates of/) it takes for a point to
move around the fixed point p1 is determined by how close the point is to the stable
manifold FP(Pi). What we see (Fig. 4) is an infinite family of horseshoes, and a
sequence {pn} of simple Newhouse saddles (where pn has period n and is in Bn) such
that {pn} -+q0. In the following theorem, as stated in [GOY], the saddle fixed point
5 corresponds to px in the discussion above, and the saddle orbit T corresponds to
a simple Newhouse saddle pn, for some n. The term "first non-degenerate tangency"
refers to the following set (if) of hypotheses:

(i) Wip^ does not intersect PFs(Pi) for ^
(ii) When A = A^, Wu(p) forms a tangency of "finite order" with Ws(p) at a point
qo; i.e., there is a coordinate system (u,υ) in a neighborhood of q0 such that q0

corresponds to (0,0), Ws(p) corresponds to the w-axis (υ = 0), and Wu(p) corre-
r/ x ,/ ^ i rfh fO if l < ι < n . _

sponds to {(u,v):v = h(u)\, where —-. = < for some n>2; and1 n duι [a>0 if ι = n ~
(iii) Wu(p) crosses Ws(p) with non-zero speed. I.e., for each A in (A^, A^ + δ), Wu(p)
intersects Ws(p) at a point qA (the continuation of q0). Furthermore, for each
neighborhood W of q0 sufficiently small that % — Ws(p) is disconnected, there are
points of W™(Pi) in both components of % — WX(px), where W^iPx) is the component
of tfίnW^ί) containing qA.

For the application in which Ws{px) is the boundary of the basin of infinity,
condition (iii) implies that points in FP"(Pi) are in the basin of infinity for each A in

Theorem. Consider a diffeomorphism f of the plane depending on a parameter A with
a saddle fixed point or periodic orbit S. We assume that the absolute value of the
determinant of the Jacobίan off (or offn in the case of a periodic orbit of period n)
is less than one at every point of the plane. Assume that f has a transition value A^ as
A increases where the stable and unstable manifolds of S have a non-degenerate
tangency and then cross for the first time. Then there will be a periodic saddle T that
is in the closure of the stable manifold of S for all A slightly greater than A^ but is not
in it at A^. The saddle T is a positive distance from the stable manifold of S for

We prove this theorem with the aid of the following lemma. The existence of the
sequence {pn} of hyperbolic saddles was first demonstrated in the case of quadratic
tangency by Gavrilov and Silnikov [GS], and later by techniques of Robinson [R]
where arbitrary finite order tangencies are considered. For n sufficiently large, the
horseshoe map fn restricted to Bn persists for parameter values beyond tangency,
i.e., for A in the interval [A+9 A^ + δ), where δ >0 is very small. We let pk = pk{A) be
the continuation of the simple Newhouse saddle of period k for A in [_A^ A^ + δ).

Lemma. Let pk be a simple Newhouse saddle of period k (as described above) for A
in XA^A

(i) There exists No>0 independent of A in \_A^A^ + δ) such that Wu(pn) crosses
Ws(pn+ι)foralln^N0.
(ii) For each A in (A#,A^ + δ) there exists N^Aj^O such that Wu(pm) crosses



Metamorphoses

Fig. 5a and b. This indicates that the closure of Wu(pn+x) is contained in the closure of Wu(pn). b
indicates that the point of tangency q0 is in the closure of the unstable manifolds of infinity many
simple Newhouse saddles

We postpone the proof of this lemma due to its technical nature and proceed to
show how the theorem follows. By part (i) of the lemma, we assume that there exists
No>0 independent of A in [A^A^ + δ) such that Wu(pn) crosses Ws{pn+ί) for all
n^N0, A in [A^A^ + S). The crossing of Wu(pn) and Ws(pn+ί) implies that the
forward iterates of any segment of Wu(pn) containing x will eventually contain all of
Wu(pn+ί) (the closure of Wu(pn+1)) in its set of limit points (see Fig. 5a). For a
discussion of this result in the case of a transverse crossing (the /ί-Lemma), see, for
example, the exposition in [GH], Hence Wu(pn+1)cWu(pn). Proceeding induc-
tively, we have

(i) Wu(pm) C Wu{pn), (see Fig. 5b), for every m ̂  n, n t No. By part (ii) of the lemma,
there exists a number N^A)^ such that Wu(pm) crosses Wl(p) for mί^

+ )

(ii) J Ή ^ ) C Wu(pm\ for every m ̂  NX(A\ A e (A*>
(ii), we have
(iii)

+ δ)- Putting together (i) and

), for all n^N0, Ae{A^A^ + δ). For A>A*, Wu(pt) crosses
i) By (iii), Wu(pn) must also cross W^pJ, for all n^N0. Thus W\pn)cWs(pγ\

for all n^N0, and pNo is in the closure of W^p^, for all A in \_A^,A^ + δ).

Remarks.

(1) At A = Aχ, each of the saddles pn is a positive distance from the boundary
Ws(p1) of the basin of infinity. For every A slightly larger than A^ the theorem says
that there is an ΛΓ0 such that pNo is in the closure of W*{pά Thus there is a jump in
the boundary at A — A^.

(2) Since the Henon map is analytic, the tangency at A^ «1.314 (J = 0.3) is of finite
order and techniques of [R] would apply. At this tangency No appears to be 4 (see
[GOY]). This is supported by computer evidence that for A slightly greater than
1.314, the saddle p 4 is on the boundary of the basin of infinity.

(3) The proof of the theorem characterizes the boundary after tangency by
showing that there are infinitely many saddles and their stable manifolds
contained in W^p^). The fact that there is a jump in the boundary is, of course,
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implied by this characterization. The existence of such a jump can be demonstrated
by a simpler, topological argument. For any path / connecting the left and right
sides of Bn (cf. Fig. 4), fn(I) extends through the horseshoe image fn(Bn). If fn(Bn)
crosses Bn+1 (as shown in Fig. 4), a portion of /"(/) connects the left and right side
of Bn+i. If, at tangency (A = AJ, fr(Br) so crosses Br+x for all r,r^n, then (J fr(I)

contains q0. For A>A^ some forward iterate of/ will then cross Ws(/?i).

Proof of Lemma. Following the construction of [R, TY, and GH] (Sect. 6.6), we
assume the following:

(i) DF{pi) has eigenvalues v andλ which satisfy 0<v<l,/ l>l , and vλ<ί, for all
A near A+.
(ii) There exists a neighborhood U oϊpί in which the map / is linear up to smooth

changes of coordinates i. e., f(x, y, A) = (λx, vy) for (x, y) in [/, all A near A^. (Here
we need an additional non-resonance assumption - namely, that v and λ are not
integer multiples of each other.) Hence, locally, Ws(px) is given by the y-axis and
WipJ is given by the x-axis.
(iii) There is a non-degenerate tangency of Ws(Pi) and WM(Pi). Specifically, there
exist points (po,0) in WίpJnU and (0,q0) in WfaJnU such that /*(p0,0,AJ
=/i*(Po,0) = (0,<zo) and WipJ and WipJ near (0, ί o) satisfy (H). Let F = [ > 0 - ε ,
Po + εl x [0» QI f°Γ some ε > 0 and ρ > 0, and let W be a trapezoidal neighborhood
with vertices /i*(p0 —

 ε> 0)? fϊ*(Po + ε

? 0), and the projections of these points on the
y-axis, Ws{pxy (See Fig. 6.) We assume that V and W are in * .

For n sufficiently large and A = A^f~n+k(V) stretches across W. For such n, let
β π = / " π + Λ ( F ) n W. Actually, since f~n+k(V) may wind around a lot, we let Bn be
the connected component of f~n+\V)r\W which is nearest Ws(Pi). Under
hypotheses (if), we know that /" restricted to Bn is a horseshoe map, in the sense of
Smale [S]. (See, for example, [GH] in the case of quadratic tangency and [R] for
the case of finite order tangency.) Specifically, we use the following facts about such
maps:

(1) Bn and fn(Bn) intersect in two components, Wίftt and W2tH. The saddle pn is
contained inWltti and is the only fixed point of fn in WltH. Furthermore, pn is the
only point in Wi n which stays in W1 n under all forward and backward iterates of
/ n

w u ( P l )

Fig. 6. The figure illustrates definitions used in the proof of the Lemma
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Ws(pn)

(O,qo)

Fig. 7. It shows parts of the stable and unstable manifolds of the simple Newhouse saddle pn

Fig. 8. This illustrates definitions used in the proof of the Lemma

(2) The only points which stay in WlfΆ under all forward (respectively, backward)
iterates of /" are in Ws(pn) (respectively Wu(pn)).

We argue that the stable manifold of pn extends (vertically) through Bn (see
Fig. 7). Let Lo be any horizontal segment in Bn. It is easily seen that fn(L0) is a
parabola which extends through fn(Bn). Recursively, let L^/^Lj-JnWi^ for
i = l,2,3,.... Then /~πί(Lf), i ^ l , are nested intervals converging to a point z0.
Since fmn(z0) is inWίn for all m > 1, z0 must be in Ws(pn). This argument shows that
Ws(pn) intersects the top and bottom of Bn and first leaves Bn through these sides. A
similar argument (using iterates of/" 1 ) shows that Wu(pn) extends through the
horseshoe fn(Bn\ first leaving the horseshoe through the "feet." (See Fig. 7.)

In order to prove that Wu(pn) intersects Ws(pn+1), we will show that the
horseshoe fn(Bn) containing Wu(pn) crosses through Bn+1 for n sufficiently large
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(see Fig. 8). When A = A^ let Q be the distance from (0,q0) to Bn+ί, let R' be the
(vertical distance from p0 to the point p o , « a t the top of the rectangle fn~\Bn\ and
let Rn be the distance from qo=fk(Po)t0 fk(Po,n), as shown in Fig. 8.

By our assumption that Vand Ware in U, Q is given by(po—ε)(λ~(n~k+1}), and

R'n is given by (q0 + <5)μ("-fc). Thus §*• = ^ 0 + f (μλ)<"-*>. Since /d < 1, ̂  ->0 as
8n (Pθ-ε) 6n

n->oo. Similarly, #„/()„-•() as n->oo, since Rn is the distance from qo = fk(po) to
fk(Po,n) a n d /, hence /fc, is Lipschitz; (i.e., there exists a constant K, independent of
n, such that Rn = KR'n). Thus there exists No>0 such that RJQn<\ for n^N0.
When i^ π <β Λ , W™(pπ) crosses Ws(pn+ί). Part (i) of the lemma follows from the
observation that for Ae[_A^A^-\-δ\ the horseshoe fn(Bn) is pulled even further
through Bn+1 for n^N0, implying that Wu(pn) continues to cross W%pn+1).

For the proof of part (ii), notice that fAiPo,n)^fA(Po) f° r aU A, since Po^-^Po.
For each m>N0, the image fA(Bm) contains part of WM(pJ. Thus since fA(pOtm)
-+fA(p0), there exists a sequence {rm} such that rm is on Wu(pm) and rm^>fA(p0). We
assume without loss of generality that, for A in ( ^ , ^ + (5), fA(p0) is on the
opposite side of W'ipJ from Bn and that the distance ρ(A) from /^(Po) to g0 is
positive (by assumption (iii)). (Assumption (iii) does not say specifically that fA(p0)
is on the opposite side of Ws(Pi), but that some points of W^p^) in a neighborhood
°f ΪA(PO) a r e The number R!n, however, measures the distance from ^ " ( p j (the
x-axis) to the rectangle fn~k{Bn) and thus is independent of the point p'o chosen on
^"(Pi) in a neighborhood of p0.) Let N^A) > 0 be sufficiently large that \rm—fA(p0)\
<Q{A\ for all m^N^A). Then for Ae{A^A^ + δ\ Wu(pm) crosses W^pJ for all
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