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Abstract. We prove localization at high disorder or low energy for lattice
Schrόdinger operators with random potentials whose values at different lattice
sites are correlated over large distances. The class of admissible random potentials
for our multiscale analysis includes potentials with a stationary Gaussian distribu-
tion whose covariance function C(x,y) decays as \x — y\~θ, where θ>0 can be
arbitrarily small, and potentials whose probability distribution is a completely
analytical Gibbs measure. The result for Gaussian potentials depends on a
multivariable form of Nelson's best possible hypercontractive estimate.

1. Introduction

We consider the random Schrόdinger operator H = - Δ + Fon /2(Zd), where A is
the centered finite difference Laplacian, i.e., Λ(x,y) = 1 if \x — y\ = 1 and zero
otherwise, and Fis an ergodic potential, i.e., {V(x); xeZd] is an ergodic stochastic
process. The motivation for studying this class of operators comes from Solid State
Physics, where one is interested in the behavior of an electron in a random
background. This model was first introduced by Anderson [1] and is known as the
Anderson tight-binding model.

It is well known that the spectrum of the random operator H is independent of
the choice of potential with probability one [2, 3, 4]. The same is true of the
decomposition of the spectrum into pure point, absolutely continuous and singular
continuous spectrum [3, 4].

The random operator H exhibits localization in an energy interval / if it has
only pure point spectrum in / with probability one. In this case, if the eigenfunc-
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tions corresponding to eigenvalues in /decay exponentially (polynomially), we say
we have exponential (polynomial) localization.

Exponential localization for the Anderson tight-binding model is well under-
stood in one dimension (e.g., [4]), where it was first established in the continuum by
Gold'sheid, Molchanov and Pastur [5]. When the {V(x), xeZd} are independent
identically distributed random variables, one always has exponential localization
[3, 6-9]. The same is true on the strip [10, 11]. For arbitrary ergodic potentials
localization also holds if the joint conditional probability of the values of the
potential at two neighboring sites with respect to the values of the potential in the
remaining sites has an absolutely continuous component [12, 13, 4]. In particular,
Simon [12] noticed that the result holds for nondeterministic ergodic Gaussian
potentials and for potentials whose probability distribution is a Gibbs measure
with an "a priori" measure with an absolutely continuous component and finite
range interactions. The result for Gaussian potentials was also noticed by Pastur
[14] (see also [4]). In one dimension exponential localization has also been proved
for quasi-periodic potentials with large coupling constant [15-17].

In more than one dimension localization results had only been proven for
independent potentials. For such potentials exponential localization was proven at
either high disorder or low energy [18, 6, 19, 20, 21, 9].

In this article we prove localization at high disorder or low energy for certain
correlated potentials, in any dimension. The class of admissible potentials include
potentials whose values at different lattice sites are strongly correlated over large
distances. Our proof yields only polynomial localization.

Our proof involves a multiscale analysis based on the ideas used by von Dreifus
and Spencer [21, 22] and by von Dreifus and Klein [9] to give a simpler proof of
localization in the independent case.

The class of potentials for which we prove localization includes stationary
Gaussian potentials whose covariance function C(x,y) decays as \x — y\~θ, where
θ > 0 can be arbitrarily small, and potentials whose probability distribution is a
completely analytical Gibbs measure. The result for Gaussian potentials depends
on a multivariable form of Nelson's best possible hypercontractive estimate; for
Gibbs potentials we use the work of Dobrushin and Shlosman [23, 24].

2. Statement of Results

We start with some notations and definitions. If A a Zd, we denote by HΛ the
operator H restricted to 12(Λ) with zero boundary condition outside A. The
corresponding Green's function is GΛ(z) = (HΛ—z)"1, defined for zφσ(H^). We
will write GΛ(z; x,y) = (HΛ-z)~x(x,y) for x, ye A. If A = Zd, we simply write
G(z; x,y). Notice that we omit the dependence of HΛ and GΛ on the potential V.

If xeZd, x = (xv...,xά)9 we let ||x|| = ||x||c0 = max{|jc1|,...,|xd|}. It will be
convenient to use this norm; distances in Zd will always be taken with respect to
this norm. Occassionally we may also need the usual Euclidean norm \x\ = \\ x | |2 =

2 2112

We will denote by E and P the expectation and probability measure on the
underlying probability space for the stochastic process {V(x)9 xeZd}.
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Definition. The ergodic potential V is a Wegner potential if the conditional
probability distribution of V(0) given Vφ)-1- = {V(x), xeZd\{0}} is absolutely
continuous with respect to Lebesgue measure for P-a.e. K(O)1, and

δ =
dV(0)

< 00,

oo

where the L^-norm is taken with respect to P.

If V is a Wegner potential, Wegner's estimate on the density of states [25,18, 8,4]
applies and we have

φ|/l| (2.1)

for all £ e R , ε>0, /I c Z d . Furthermore, Kotani's trick can be used so the analysis
of Simon and Wolff [20] and Delyon, Levi and Souillard [19] can be applied to
Wegner potentials.

Let xe Zd, L > 0 . We will denote by ΛL(x) the cube centered at x with sides of
length L, i.e.,

Notice that \ΛL(x)\^(L+l)d.
Given A a Zd an event A on A is an event that depends only on { V(y);

lϊ A is an event on the cube Λ(0), we will use A(x) to denote the same event shifted
to the cube AL{x).

Definition. Let 1 <oc< p,Ke{2, 3,4,...}. We will say that the ergodic potential V is
of type (α, p, K) if for all L sufficiently large, given xl9...,xκeZd with \\x{ — Xj\\ ̂
\U for i φj, and any event A on AL(0)9 we have

{ θ / } (2-2)

for some constant c < oo.

If Kis an independent potential, i.e., the V(x), xeZd, are i.i.d.r.v.'s, then Kis of
type (α, K, K) for any 1 < α < K, K= 2, 3,.... In this case we have equality in (2.2)
with c = 1.

Our main result is

Theorem 2.1. Let V be a Wegner potential of type (α, p, K)for some 1 < α < p, Ke
{2, 3, 4,...}. Then the random Schr'όdinger operator H= — A + V exhibits poly-
nomial localization at high disorder or low energy. More precisely, there exist ηo>0
such that:
(i) Let Hλ — — A + λ V, λ e R. Then for η > η0 we can find λ(η) > 0 such that for any

λ with \λ\>λ(η) Hλ has pure point spectrum with probability one and the
corresponding eigenfunctions decay at least as fast as Hxll"1*.

(ii) For any η>η0 we can find E(η) > 0 such that H has pure point spectrum in
(— oo, — E{η)) u (E(η), oo) with probability one and the corresponding eigenfunc-
tions decay at least as fast as \\x\\~η.
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Theorem 2.1 will be proven by a multiscale analysis in Sect. 3. Condition (2.2)
will replace independence in our proof, the price we pay is that the proof only
yields polynomial localization. But condition (2.2) is satisfied by potentials that
can be strongly correlated at large distances.

We give two examples of ergodic potentials satisfying the hypotheses of
Theorem 2.1: Gaussian and Gibbs potentials.

We start with Gaussian potentials, which we can take to have mean zero
without loss of generality.

Theorem 2.2. Let V be a stationary Gaussian process with mean zero and covariance
C(x,y) = E(V(x)V(y))for x, yeZd. Suppose:
(i) CΛ is invertitle for all A a Zd finite and

a = s\iγ>{C~Λ\θ,O); OeAaZd finite} < oo, (2.3)

where CΛ is the matrix {C(x,y)}x
y e Λ.

for some θ > 0, b < oo and all x, yeZd.

Then there exists τ, 0 ^ τ ^ d, such that if max\ 1, — — ><oc<p<2k, k a

I θ >
positive integer, we have that V is a Wegner potential of type (α, p, 2 ).

In particular, H = — A -f V exhibits polynomial localization at high disorder or
low energy, in the precise sense of Theorem 2.1.

Remarks. Ergodicity follows from (2.4). Notice that

If d= 1, (2.3) is equivalent to the Gaussian process being nondeterministic (e.g.,
[26, 27]). If the operator C on l2(Zd) with kernel given by the covariance function
C(x,y) is strictly positive, i.e., C ^ w/>0, then (2.3) holds with a^ 1/w. In this
case we will see that we can take τ = 0. Notice that the exponent θ in (2.4) can be
arbitrarily small so the values of the Gaussian potential can be strongly correlated
at large distances.

Examples of such Gaussian potentials can be given by specifying the
covariance operator C. For instance let_ A = A — Id, so A is the usual finite
difference Laplacian on Zd. Then C = ( — 4 + m 2 ) " 1 satisfies the desired hypothe-
ses in any dimension if m 2 > 0. The same is true for C = ( - A)"ι if d ^ 3. Notice
that for C = (-A)~1 and d = 3 we have 0 = 1.

Theorem 2.2 will be proven in Sect. 4. The fact that Fis a Wegner potential is a
consequence of (2.3). To show V is of type (α, p, 2*), we will derive a multivariable
version of Nelson's best possible hypercontractive estimate from which the result
will follow.

Our second example concerns Gibbs potentials, i.e., potentials whose probabil-
ity distribution is given by a Gibbs measure, which we are going to require to be
completely analytical in the sense of Dobrushin and Shlosman [23, 24]. We will call
such potentials completely analytical Gibbs potentials.
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Theorem 2.3. Let V be a completely analytical Gibbs potential with the " α priori"
single site spin distribution absolutely continuous with compact support and bounded
Radon-Nikodym derivative. Then V is a Wegner potential of type (α, K, K)for any
\<a<K. In particular, H——AΛ-V exhibits polynomial localization at high
disorder or low energy, in the precise sense of Theorem 2.1.

The proof of Theorem 2.3 is given in Sect. 5. That V is a Wegner potential
follows from the DLR equations and our assumptions on the "a priori" spin
distribution, since completely analytical Gibbs fields have finite range interactions.
The proof that V is of type (α, K, K) is due to Senya Shlosman [28].

Examples of completely analytical Gibbs fields are given by high-temperature
Gibbs fields, or ferromagnetic Gibbs fields with a large magnetic field (arbitrary
temperature) [23].

3. The Multiscale Analysis

We start by recalling a Simon-Lieb type inequality for Green's functions that
follows from the resolvent identity [18, 6, 7, 21, 9]. Let

ΛaΩaZd, EeR, ε#0, xeΛ, yeΩ\Λ.

We have

GΩ(E+iε; x,y) = £ GA(E+ie\ x,u)GΩ(E + iε\ u\y),
<κ,u'>e3(Λ Ω)

where

d(A,Ω) = {(u,u'}; UEΛ, u'eΩ\Λ, |w-w' | = l}.

We write

δΛ=d(Λ,Zd)9

dλ+ = {u'eZd\Λ; (u,u')edΛ for some ueΛ},

dλ~ = {ueΛ; (u,u')edΛ for some u'eZd\Λ}9

and

GΛ(E+iε; x,d)= £ \GΛ(E + iε; x,u)\.
<α, u'}eδΛ

Thus

\GΛE+iε;x9y)\£GA(E+iε;x9d)\GώE+iε;u»,y)\ (3.1)

for some u" e δλ + n Ω.

Definition. Let η > 0, Ee R, L > 0. A site x e Zd is (η9 E, L)-regular (for a fixed V) if

GΛL(X)(E; x,d) = supε¥:0\GΛL(X)(E + iε; x9d)£ — .

A set A cz Zd is (η9 E, L) regular if every xeA is (η9 E, L)-regular.
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Let xeΩaZd with ΛL(x)vdΛL(x)+ czΩ. If x is {η,E,L)-regular, it follows
from (3.1) that for all yeΩ\ΛL(x) and ε φ 0,

\GΩ(E+iε;x,y)\S-^η\GΩ(E+iε;v,y)\ (3.2)

for some v e dΛ L(x)+.

Theorem 3.1. Let V be a Wegner potential of type (<x,pK) for some 1 < α < p ,
Ke{2, 3, 4,...}. Suppose

P{0 is (η, E, L0)-regular} ^ 1 ~ (3.3)

for some

EeR, L0>l,r> α ( r f ~ 1 ) A : , η(A _ α ) > ( β + rf _ ! ) ( # _ 1 + α ( ^ + ϋΓ- 1)),
p - α

>α is an integer andβ>ar + (A + K — l)(d — 1) + d.
Let Lk+1=(A + K- l)La

k, k = 0, 1, 2,.... Γfen, ίΛer̂
L = L(α, rf, K, r, A, β, η) > 0, such that if Lo > L, we have

P{0 is (η,E,Lk)-regular} έ 1 - 77

forallk = 0, 1,2,....

Theorem 3.2. Lei V be a Wegner potential, such that for some EeR, α > 1, Z) ̂  1,
Lo > 1, r > ad, η > ccd, we have

P{0 is fa, £, Lkyregular} ^ 1 - 77

/or Λ// fc = 0, 1, 2,..., wAβrβ Lk + 1=DLa

k. Let 0 < ίy < ^ ~ α . PΓe Aαv̂ , wzϊ/z

probability one,

^ (3.4)

/or Λ// xeZdfor some C = C(V,η) < 00.

Theorems 3.1 and 3.2 prove Theorem 2.1. Condition (3.3) is satisfied at high
disorder or low energy (see, for instance, the discussion in [9]). If in (3.4) we have
ή > d/2, we can apply the results of Simon and Wolff [20] to conclude pure point
spectrum with probability one, and that the corresponding eigenfunctions have at
least the rate of decay of the Green's function.

Proof of Theorem 3.1. Given L > 0, let RL be the statement

P{0 is (η, E,L)-regular} ^ 1 - — .

Theorem 3.1 follows from
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Lemma 3.3. Let V, α, K, p, r,η, A, β be as in Theorem 3.1. Suppose Rt holds, and let
L = (A + K- 1)Γ. Then RL holds if I is large enough.

Proof. LetD = A + K-l,soL = Dla. We set Λj = Ar(0\j = \,...,D. We also set
Λ=ΛD = ΛL(0).

LetyedΛ . We will estimate GΛ{E+ iε; 0,y) by applying (3.1) repeatedly. We
have

\GA(E+iε;0,y)\£GΛι(0)(E+iε;0,d)\GA(E+iε;Ό0,y)\

^ G Λ / ( 0 ) ( £ + / ε ; 0 , δ ) G Λ i ( £ + fe; Ό0,d)\GΛ(E+iε; uί9y)

^ GΛι(0)(E+ iε; ι ; 0 ,3)G Λ i (£+ ίέ; υθ9 d)GΛι{lii)(E+ is; ul9d)

'Gλ2(E+iε; υl9δ)GAM{E+iε\ u29d)

...GΛDJE+iε; vD.1,d)GΛι{UDί)(E-hiε; uD_ud)

-\GΛ(E+iε; vD_1,y)\

for some voedΛι(0) + , UjβdΛj, vjedΛι(uj)
 + ,j=l,...,D—l.

We will call a cube Λt(x) (£, j8)-non resonant ((£, β) - NR) if

Notice also that \dΛt(x)~\ <; |3Λ ί(x)+ | ^std~ι for some s = s(d)< oo. Thus, if
y4f(Λ:) is (E, β) - NR, we have

M ) . (3.6)

Let S be the event defined by

(i) All ΛjJ= 1,...,A and/lίC*), jce/1, are (E,β)-NR.

(ii) There exist yx <y 2 <••• <7^e{0, 1,...,/)— 1}, such that δΛ + ,...,δΛ+ are

(^, £,/)-regular, where CMQ = {0}.
Let us now assume that the event $ holds. It follows from (3.5) and (3.6) that

1 1

~S =Tη = Dηlaη

for / sufficiently large, since

η(A-oc)>(β + d- \){K- 1+ oc(A + K)).

Thus, to conclude the proof of the lemma we need only to show that

l .

Since Fis a Wegner potential, it follows from (2.1) that

tβ-d
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for some σ > 0, depending only on V, Thus

P{(i) does not hold} ̂  ^ + « £ * g ±g r

for / sufficiently large, since αr < β — (α +
So it only remains to show that

ii) does not hold} ^ 5 - 7 .

We have

P{(ii) does not hold} =P{there exist ujtsdΛ^ not (η,E,/)-regular

^ Σ Σ Plw^. ^w^not (?y,£,L)-regular}.
Λ < Λ < 4 e { 0 ' j D - 1 } u.edΛli=l,...,K

I*
Since || wΓ — u{ || ^ — for / Φ i\ we can use (2.2) for / sufficiently large to

conclude

P{(ii) does not hold} g

for / sufficiently large since

r>*(d-l)K

p-ct

This completes the proof of Lemma 3.3 and hence of Theorem 3.1

Proof of Theorem 3.2. Let 0 < ή < , we choose β > d by ή = .
α α

Let us define the events

Ak+ι = {x is 07,£,Lfc)-regular for all xeΛ 2 L k + i(0) and ΛLk+ι(0) is (E,β)-NR}.

By the hypotheses of Theorem 3.2, we have

so Σ?=0P(Ac

k + 1)<oo, since r><xd9β>d. It_foll_ows from the Borel-Cantelli
Lemma that, with probability one, we can find k = k(V) < 00 such that Ak+ί holds
for all k ^ k.

So let us fix_a potential V and k < 00 such that Λfc+ x holds for k^Jc. Given
xeZd, we pick fc = fc(x) in the Jollowing way:
(i) if | |x| | ^ £ L i + 1 , pick Λ = fc.

(ii) if ||xII >^Lk+ί, pick k such that \hk < \x\ ^ 2^* + i
We let Gk(E+iε) = GλLi0)(E+iε)9 and let Γ k be the operator defined by

if either <w,Mr> or <ji\u)edAL(fi)
V ; 10 otherwise
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It follows from the resolvent identity, applied repeatedly, that (we omit E + iε)

G = G f c + 1 4- < J £ + 1 J ~ £ + 1 G £ + 2 + '•• + ^k+l^k+l^k + 2'" ^k+l+fi

If k = &, we just take

If k>k, we use (3.2) w-times where

(here [t] means the largest integer ^ /), to obtain

\G~k+ι(E+iε;O,x)\^Lk

7ηmLk

}

+1:
(n-β*)l*

since w ^ 1, | |x | | ^ 2-^k+i
Similarly

where

+ι *

[¥]- * _ 1

+ 1

and thus

C
= τ(η-φd+l) = II γ||((ιr-«Λ/«)(/+l)

for some constants C, C" independent of x.
Thus, we have

C'
ιε\ ΰ9x)\ SLf.

if || x || ^ fc+1, some constant C'r < oo and

otherwise.

Recall ή = ! L ^ £ ? j t follows from (3.7) and (3.8) that
(X

for all xeZd for some constant C< oo.

(3.7)

(3.8)
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This proves Theorem 3.2.

4. Gaussian Potentials

The key ingredient in the proof of Theorem 2.2 is Nelson's best possible
hypercontractive estimate [30-35]. It can be reformulated as follows [35]:

Let X, Y be jointly Gaussian random variables, both with zero mean. Then, for
any measurable functions/and g of a real variable, we have

\Έ(f(X)g(Y))\ϊ\\f(X)\\p\\g(Y)\\q

if

If particular, we can take

= 1

P q

We will need a multivariable version of this result.

Lemma. Let Xx, X2,...,Xn9 Yί9 Y2,...9 Yn be jointly Gaussian random variables with
mean zero. Let

ίx), p2 = E(YΎ), ρ =

Then, for any measureable functions / g on R", we have

if

-\)^\\p;m Qp-2

ll2\\2

2 \ \ ,

where we used the operator norm for matrices. In particular, we can take

p = q=l + \\P;ίl2QP;m\\.

Proof. By a limiting procedure we can take the covariance matrix

ί Q

Q'

to be strictly positive definite. In this case we can also take

without loss of generality.
Since C > 0, || Q \\ < 1, and we have

(2 =1 ί\ — i ί t — 1 I

Let us consider the operator on Jf = L 2(Rn, (2π)~n/2£?(~ 1/2)(|x |2)rfx) given by the
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multivariable Mehler's formula [34; (1.34)]:

(Γ(β)/)(x) = (2π)-"/2[det(l - Q'Q)}1'2 je^

It is not hard to check that

The lemma now follows from Nelson's best possible hypercontractive estimate
(see [34; Theorem 1.17]).

We are now ready to prove Theorem 2.2. We first show that it follows from
(2.3) that V is a Wegner potential. Let OeJczZd finite, an explicit computation
shows that the conditional probability distribution of F(0) given
{V(x); xeJ\{0}} is absolutely continuous with density

VΛ{0]) = Jgei-

J1where α,= CJ1 (0,0). By (2.3) we have

We can conclude that the conditional probability distribution of V(0) given Vφ)1-

[77[7
is absolutely continuous with a density bounded by / — .

γ 2π
Now let 0 ^ τ S d be such that \\C~γ\\ ^ cγ\J\τld for all /cz Zd finite, some

cί<ao. This can always be done since

by (2.3).

So let us pick α, p, and an integer k such that max< 1, — — > < α < p < 2k. It
I θ J

will follow from the following lemma that V is of type (α,p, 2*).

Lemma 4.2. Let L>2l>0, xteZd, i= 1,...,2*, w/rΛ || JC£ — JCJ || ^Lfor iφj, and let
Ai be events on At{x^), i= l,...,2k. Then

with

In particular, if A is an event on Λj(O), we have
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Proof. Let 7t = {1 2*-1}, I2 = {2*'1 + 1.....2*}. We apply Lemma 4.1 with

X = {V(y);yeΛ,(xi),ieIι},
Y = {V(y);yeΛι(xi),ieI2}.

Then

i=l / Vie/, / \iel2

where

/ ^ l + | |PΓ 1 / 2 βP 2 ~ 1 / 2 | | ,

Λ> ̂ 2» Q being defined as in Lemma 4.1. But

l i p : 1 ! ! s c 1 ( 2 k " 1 ( / + i ) d ) τ / J = c 1 2 (

and we can estimate || Q || by its Hilbert-Schmidt norm as follows using (2.4):

Thus

Repeating the above procedure for a total of A>times, which we can do using
always p given by (4.1), we get the lemma.

This finishes the proof of Theorem 2.4.

5. Gibbs Potentials

In this section we present a proof of Theorem 2.3, due to S. Shlosman [28].
So let V be as in Theorem 2.3. Since the DLR equations and our assumptions

immediately imply that V is a Wegner potential, we have only to prove that V is of
type (α, K, K) for any 1 < α < K.

Dobrushin and Shlosman [23, 24] gave several equivalent conditions that
characterize completely analytical Gibbs measures. We will show that their
condition Hid implies that V is of type (α, K, K) for any 1 < α < K.

First, some notation. We will denote by r the range of the interaction (by
definition completely analytical interactions have finite range, i.e., r < oo). Given
A c= Zd, we define

VΛ={V(x);xeΛ}9

PΛ( |FΛc) = conditional probability distribution of VΛ given VΛc, where Ac = Zd\A.
We can now state Dobrushin and Shlosman's condition Hid:
There exist C < oo, y > 0, such that for all A c Ω c Zd finite, any y e dΩ, and
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any choices Vl9 V2 of VΩc, such that Vx(x) = V2(x) for xeΩc\{y}, we have

U-l < £e-γdist(y,Λ) (5.1)

for any event in A in Λ.

Lemma 5.1. For all ΛaΩa Zd finite, any choices Vl9 V2 of VΩc we have

- 1 (5.2)

Proof. Without loss of generality we can always assume Vx(x) = V2(x) for
xeΩc\dΩ. For such Vl9 V2 we can always find values Wo, Wι,...,Wkoΐ VΩ<, such
that W0—Vl9 Wk=V2,k^\ dΩ\, and for each / = 1,.. .,k we can find y{ e dΩ such
that Willie) = Wi(x) for xφyt. We have

p(^ι^) M PίM
Equation (5.1) applies to each factor in the right-hand-side so we can conclude

that for each i = l,...,fc, we have

1 _

Vo(A\Wt)
-yά\s\{Λ,dΩ)

and hence

1 ι P
_ 1 <

so (5.2) follows.
If dist(Λ, dΩ) is sufficiently large, we have

for some fixed constant Cγ < oo. In this case, it follows from (5.2) that we can find
C'<oo, y ^ O , such that

- 1

Now, let B be an event on Ωc. It follows from (5.5) that

PΩ(A\B)

P(A)
— 1 < ζj'e

(5.3)

(5.4)

We are now ready to show Fis of type (α, K, K) for 1 < α < K. For given events
Al9 A2y...,Aκ, we always have

(5.5)

Solttl<l<L,x1,...,xκeZd, with || xt — xs || > L for all / φj. Assume L — I is
sufficiently large. Then, if Ai is an event on Λ^), /= 1,...,ΛΓ, we have from (5.4)
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that, for each / = l,...,K,

SO

Thus, it follows from (5.5) that

Π A) g
i = l / i=\

This proves Theorem 2.3.
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