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Abstract. We derive a universal formula for the exchange algebra in the Bloch
wave basis. The main tool we use is a lattice version of the Coulomb gas pic-
ture of conformal field theory, making its quantum group structure explicit
from the very beginning. Calulations are then reduced to a factorization prob-
lem in %(sl2).

1. Introduction

There is an intimate connection between Liouville theory, conformal field
theory and quantum groups. As a unifying feature, we will take the Schroedin-
ger equation

i O. (1)

The relation to Liouville's equation already appeared in Poincare [1] and is as
follows. Let ξ1 and ξ2 be two linearly independent solutions of Eq. (1) with
their Wronskian normalized to one. Setting

it is straightforward to check that the field φ satisfies Liouville's equation

The meaning of Eq. (1) in conformal field theory may be easily understood
by looking at the transformation properties of this equation under conformal
transformations. Let us change coordinates z->z(w). If ξ behaves like a dif-
ferential of weight — \ and ^ as a Schwarzian connection, i.e.

= °U{z)dz2 + \{z, w} dz
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where {z, w} denotes the Schwarzian derivative

z'" 3/z"Y

then the quantity (δz

2 — °ll) ξ behaves like a differential of weight § [2]

dvfiidl - Φ(w)) ξ(w) = dz\dl - W(z)) ξ(z).

This covariance property is strongly reminiscent of null vectors. More precise-
ly, let Vn be generators satisfying the Virasoro algebra

[K,Vm] = (« - m) Vn+m + i c ( n 3 - «)<5B,_m. (2)

Consider a representation of Vn acting on some Hubert space <?f. Let

T(z) = Σ z""" 2 FB.

As it is well known, on the set of operators Θ (z) acting on Jf we may define a
representation Vn(z) of the Virasoro algebra with the same central charge as in
Eq. (2) by writing the short distance expansion [3]

In this representation, the highest weight vectors are the conformal operators.
In fact

translates into the highest weight condition on ξ(z)9

V0(z)ξ(z) =

If Δ takes one of the values given by Kac's determinant formula, the Verma
module built on ξ(z) is reducible and there exists null vectors. Let us parame-
trize the central charge in Eq. (2) as

(3)
\y n J

so that c > 25 corresponds to y real > 0, while c < 1 corresponds to γ real
< 0. Kac's dimensions are given by [4]

where j,f are integers of half integers. For j = ~Jr = 0, the decoupling condi-
tion of the level two null vector reads
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Working on the cylinder instead of the sphere, i.e. setting z = eix,ξ(x) = zΛ ξ(z),
we get [5, 3]

where

4 2 π 16 \π

The double dots mean writing the operator Vn on the left if n < 0, on the right
if n > 0 and sharing Vo equally on both sides.

The semi-classical limit corresponds to y -> 0. In this limit

For j = 1/2, the corresponding null vector also has a finite limit: we simply
get back Eq. (1). So, the Schrόdinger equation is the semi-classical limit of
the decoupling condition for the null vector of weight Δlf2,0'

More generally, for arbitrary j the analog of Eq. (1) is a differential equa-
tion of order 2/+ 1,

Γ 2 1 ^ ( Λ = 0, (4)

where the coefficients % are local functions of the energy momentum tensor
°U and its derivatives [21].

Finally, one has to explain the relation with quantum groups. Equation (4)
has a basis of 2j -f 1 linearly independent solutions ξ^ix). These solutions
are functional of %. The semi-classical limit of Eq. (2) defines on % a Poisson
bracket

{•(x), *O0} = 2y(2*(*)3, + * ' (*) - iδx

3) δ(x - y),

and we may compute the Poisson brackets of the ξjj\ (Poisson brackets are
calculated at time t = 0. We assume x e S1.) For a suitable choice of basis this
Poisson bracket takes the simple form

{ξU)(x) * ξU'){y)} = _ i ξU)(x) 0 ξU'){y) [θ(x -y)r+ + θ(y - x)r-]> (5)

where the tensorial notation means that ξU) is a line vector of components
ξίP and by definition {ξu\x)® ξu'\y)}mm> = {ίiΛ(*), ξiPiy)}- The matrices
r 1 are solutions of the classical Yang-Baxter equation and are given by

r+ = H&H + 4E+® £_, (6)

r~ = -H®H-4E-®E+. (7)

They are expressed in terms of the generators H, E± of sl2

[E+9E-] = H.

In Eq. (5) one has to use the adequate representations of sl2 in the two fac-
tors of the tensor product. A simple way to prove this formula is to use the
relation with Liouville equation and exploit its integrable structure [6]. One
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should stress that in another basis the result Eq. (5) may look quite different.
Moreover the basis where it assumes the simple form Eq. (5) is by no means
unique.

Since the coefficients in Eq. (4) are periodic functions of x there is one basis
which is quite natural and plays an important role. It is the basis of quasi-
periodic solutions (Bloch waves),

ψU)(x + 2π) = φU)(x) e2πPoH,

where Po is the Bloch momentum and H is a traceless diagonal matrix. The
Poisson bracket of the i/f's can be computed and we find

= - Ί- φU)(x) <g> Vr\y)

( 8 )

where
Λ = p2πPo ry * — 2 nPQ

Equations (5, 8) are universal formulae in the sense that Eqs. (6, 7) give an
expression of r± in terms of the generators of sl2 only, independent of the re-
presentations.

One purpose of this work is to derive the quantum version of Eqs. (5, 8). It
is not difficult to write the quantum generalization of Eq. (5),

ξ[J\χ) ξPiy) = ξP(y) ξ[j\χ) RUq), (9)

where again we have used the now standard tensor notation

), KPϋO ξiHχ)]mm = ξWiy)

The sign ± = ε(x — y) so that by consistency we must have Rϊ2(<i) =
[Rϊiiq)]1 Now R\;2{q) are solutions of the quantum Yang-Baxter equation.
Their universal form is [7],

00

Σ(-
i = 0

where now H, E+ denote the generators of the quantum group <%q(sl2),

[H,E±] = ±2E±,

The value of the parameter q which fits with the semi-classical limit is
q = e'

iy. It is associated to the fields of dimensions Δh0. Due to the symmetry

γ -• π2/γ in Eq. (3) one could take also q = e~iΊ^, and all we say would apply
to the fields with dimensions AOtj.
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It is not so easy to guess what is the quantum generalization of Eq. (8).
The answer to this question is the main result of this paper. It is given by the
following

Theorem 1.

where

&i2(q,Po) = Fϊi(<l,Pώ Rΐiiq) Fί2(q,Po)

and

Fu(β,Po)= Σ {q-q-Ύy-τrrγ-

Ak

Π
v = k

In these formulae, Po is the quantum Bloch momentum

ψu\x + In) = ιl/U)(x) e2πPoH q?H\

As in all this paper A = e2πPo and D = e~2nPo.

For j = f =1/2 this exchange algebra was first obtained in [5].
Once the i/̂ -basis is constructed, one can try to define the £-basis out of it.

One can do it using a change of basis depending only on Po

Theorem 2. Let

where

M(P0)=
( _ ί\m Am n±n(n-l) + m(n-m)

„ £ " E- qi(n+m)H,

v = l

then ξij)(x) satisfies Eq. (9).

The ξ-basis and the i^-basis both have their own merits. The ξ-basis is best
suited to discuss the quantum group structure of the theory, while the i/f-basis
is important for the following reason. One can show that the Bloch mo-
mentum Po commutes with the Virasoro generators Vn. Therefore one can
split the representation space Jίf into a sum of subspaces J^ω. indexed by the
eigenvalues co,- of Po

j

Each J^ω. carries a representation of the Virasoro algebra. The distinguished
property of the Bloch waves is that they simply intertwine between these
spaces according to the relation
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Let us now a briefly outline the content of this paper. One noticeable as-
pect of our work is the use of a lattice regulator [8]. This yields a new non-
ultralocal structure described in Sects. 2 and 3, which is at the basis of our
construction. Of course the introduction of a lattice cutoff breaks conformal
invariance, but the cutoff is introduced precisely in such a way that the ex-
change algebra, which is our main concern here, remains unchanged. The ad-
vantage of this method is that the quantum group structure is made explicit
from the very beginning. With this tool at hand, we give in Sect. 4 a precise
definition of the Bloch waves at the quantum level and we calculate their com-
mutation relations in Sect. 5. The ξ-basis is constructed in Sect. 6.

All we do with one chirality can also be done with the other chirality. In
Sect. 7 we construct the Bloch waves ψU)(x) for the second chirality and we
give their exchange algebra. Finally, once the two chiralities are defined one
can combine them to reconstruct a set of periodic and local fields. This is
done in Sect. 8. In the conclusion, we discuss some implications of our results
for the quantum Liouville theory. We also give a free field representation of
the basic non-ultralocal algebra on the lattice which we will be useful in forth-
coming applications.

2. Classical Theory

In this section, we sketch the main steps of the construction yielding to the
Poisson bracket Eq. (8) for the quasi-periodic solutions of Eq. (4). We refer to
[9] for the detailed proofs. We first replace the single differential equation of
order 2j + 1 by a system of first order equations. A very convenient such sys-
tem is the Drinfeld-Sokolov system [10, 11],

dxQ = {P{x)H-E+)Q. (10)

Here P(x) is a periodic field. Poisson bracket is defined by

yδ'(x-y). (11)

Taking H and E+ in a spiny representation of sl2, we find that the matrix ele-
ments of the first line of Q (x)

satisfy a differential of order 2j + 1 which is precisely our Eq. (4). For instance
in the spin 1/2 representation

(

we get

(d? - %) σiί/2)(x) = 0,

with
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Consider the solution of Eq. (10) normalized by the condition Q(0) = 1.
The monodromy matrix S is defined by

Q(x)S, S = Q(2π).

To construct the Bloch waves we diagonalize S. Let

S = g-le2nPoHg^

the matrix g is uniquely determined if we require it to be strictly upper trian-
gular. Then we set

ΨU)ω = <λ^x\Q(x)g-ίρ, (12)

where ρ is a diagonal matrix. These φU)(x) have diagonal monodromy

φU)(x + 2π) = φU)(x) e2πPoIί.

The diagonal matrix ρ is chosen as follows

The constant K+ is defined by

\p(y)dy = K++Pox + Σ ~ein\
o «ΦO in

where we have introduced the Fourier decomposition of P(x)

The role of K+ is to eliminate from φU)(x) all the remaining dependence in
the normalization point x — 0. The variable θ is the conjugate variable of Po,

With these choices, we have shown in [9] that φ{j){x) is a conformal object of
weight —j and the exchange algebra is the one described in Eq. (8). Here we
simply recall the following relations which will be used later. For 0 < x,
y < In we have

{β(*)?βϋθ} = IδW® Qiy) {θ(χ-y)[- r + Q~\y)
®Q-ί(y)(r-H®H)Q(y)®Q(y)]

• β ( * ) ® β (*)]}, (14)

where r is either r+ or r~. We will need also the Poisson brackets of the ma-
trix ρ,

{ρ?ρ}=0, (15)

0<x<2π, (16)

(17)
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3. Quantum Theory on the Lattice

To generalize our analysis to the quantum case one has to define a suitable
ordering for operators. A natural choice would be normal ordering. It has the
advantage of preserving conformal invariance [5].

Another possibility, the one we will follow, is to go to the lattice and use
the lattice ordering [8]. Conformal invariance is lost (in fact it is only de-
formed [15, 18]), but this does not matter as far as the exchange algebra is
concerned. It has the advantage that the quantum group structure is made
explicit from the very beginning.

To go to the lattice, the first step is to discretize Eq. (10). As usual, we set

β» = i»β»-i. (18)

The problem is to define a suitable Poisson bracket for the Lw's. We do it by
requiring that Qn satisfies the lattice version of Eq. (14),

{Qn®Qm}=lQn®Qm
. {θin _ m) [_ r + β - i (x) β - i ( r -H®H) Qm® β j (19)

This condition ensures that the exchange algebra on the lattice will be the
same as in the continuum. Writing Ln = QnQ~}x, we find the Poisson bracket
algebra of the Ln's,

{Ln®Lm}={δnm[r,Ln®Lm]

®Lm (20)

Vice versa if Ln satisfy Eq. (20) then

Qn = LnLn^...Lu n<N,

satisfy Eq. (19). The relations Eq. (20) constitute a non-ultralocal generaliza-
tion of the usual ultralocal formulae which are at the basis of the Hamiltonian
approach of the Inverse Scattering Method [12].

Next we consider a lattice with N sites and periodic boundary conditions.
We define the monodromy matrix S

S = LNLN-ι... L t

so that

remembering that {Lx ® LN} Φ 0 (in contrast to the ultralocal case), one can
show that

{&,? S} = yϊQn®S[-r + Q;1® Q-\r + H®H)Qn®Qn

-H®S~1HS], (21)

{S® S} = \ S ® S[- r + S~ι ® S~xrS® S

+ S-iHS®H-H®S-1HS]. (22)
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If we add to Eqs. (19, 21, 22) the obvious lattice analog of Eqs. (15-17), one
can repeat on the lattice the same analysis as the one performed in [9] and
we get the lattice version of Eq. (8),

So the exchange algebra is the same on the lattice and in the continuum, as
expected.

To quantize the theory, all we have to do is to give the quantum version of
Eq. (20). Introducing the notation

a natural quantum generalization of Eq. (20) is

RιiLιnL2n = L2nLlnR12, (23)

^i«^2,«+i — L2itι+ίAί2Lln, (24)

where

We will define the quantum theory by requiring that R12 is a solution of the
quantum Yang-Baxter equation

and we take

Let us call R}2 the two solutions of the Yang-Baxter equation whose classical
limits are r^2 respectively. Applying the automorphism σ(x ® y) — y ® x to
Eqs. (23, 24) we also get

Since ^Γ2 = [^2i]~S w e s e e that we may use indifferently Rf2 or R^2 in
Eq.(23).

As in the ultralocal case, the crucial property of Eqs. (23, 24) is that they
can be integrated. For this however, one has to change slightly the definition
o f ρ n . We define

(25)

where B is the diagonal matrix

B = q-iH\ (26)
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We also introduce the monodromy matrix S

S = LNBLN-1.. BL1 (27)

so that if the lattice is periodic with N sites we have

Qn+N = QnBS. (28)

Proposition 3.1. Let Ln satisfying the relations Eqs. (23, 24) and Qn, S be de-
fined as in Eqs. (25, 27). Then

1) Ifn<N,

Rl2QlnQ2n = Q2nQlnRl2. (29)

2) Ifn > ra, (n,m < N),

QinQϊmΛ21R12QlmQ2m= Q2mQlnR12. (30)

3) Ifn = N,m<N,

S1Q^Aί2Rί2QlmQ2m = Q2mA12SίR12. (31)

4) Ifn = m = N,

R\2S1A12S2 — S2A12SxRί2, (32)

where by definition

Proof It consists in elementary manipulations based on Eqs. (23, 24) see [8].
We also use the important property that

Rl2BίAl2B2 = BιAί2B2Ri2.

This is because

and

Δq(H) = Δf

q{H) =

To derive the relations involving 5, we have to remember that due to the non-
ultralocality of relations (23, 24) one has

LiχL21 = L21A12L1N.

Finally, we will need the diagonal matrix ρ with the following properties:

(33)

(34)

. (35)

These commutation relations are straightforward quantum generalizations of
the classical formulae Eqs. (15-17). We have introduced a parameter α. It is
a freedom we have also at the classical level [9]. Equations (15-17) corre-
spond to the choice α = 1/2. As we will see this parameter drops out in the
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final formulae. The choice α = 0 is simpler in many respects. We give an ex-
plicit realization of Ln and ρ in terms of a free field in the conclusion. It is
not needed to derive the results of this paper.

Projecting Eq. (30) on highest weight vectors, we get

Proposition 3.2. Let

σU) _ /; U) I Q

then we have,
ϊfn + m

σtfσM^σttσtfRhig), (36)
where ± = s(n — m).

Ifn = m

ί ^ ^σίM? = σy?σi$Rΐ2(g). (37)

Proof. Start from Eq. (30) and use the fact that if R12 = Rΐ2,

4. Definition of the Bloch Waves

The aim of this section is to give a precise definition of the quantum Bloch
waves on the lattice. For this purpose, we will have to diagonalize the mono-
dromy matrix Eq. (27). So let us start by giving a suitable parametrization
of S. At the classical level, the monodromy matrix is an element of the group
Sl2 and it is upper triangular. Therefore we can write

From Eq. (22) we find that

At the quantum level we look similarly for an upper triangular solution of
Eq. (32) depending on two commuting operators Po and Z. The answer is

Proposition 4.1. Let Po and Z be two commuting operators. Then the upper tri-
angular solution of Eq. (32) is

^ q i » E \ , (38)

where we used the notation

and

Proof From the relations

Ώ A (TΓ \ A' ( J? \ D
Kί2 Δq\£±) = Δq\&±) K\2τ

Δq{E±) = E± ® q*H + q~iH ® E±,
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we also have

This gives a non-trivial identity if we insert the expansion

where we have introduced the ^-binomial coefficient

'[i-jV [/]!'

Our proposition is a straightforward consequence of this identity.
Before going ahead, we give the commutation properties of the operators

Po and Z with the matrix ρ. Equation (34) translates into

Proposition 4.2.

Aρ = ρqBA, Dρ = ρq~HD,

where we recall that A = e2πPo, D = e~2πP°.

Now that S is defined, we can diagonalize it. Remembering that

we look for a matrix g~ι such that

BSg~1 = g-'e^^B2. (39)

There is a factor B2 in the right-hand side of this equation because the diago-
nal part of S is e2πPoHB. Then

and the vector σ^g'1 has diagonal monodromy. Of course g~x is deter-
mined only up to a diagonal matrix, and we choose it to be strictly upper tri-
angular. It is interesting to have in mind the classical expression of the matrix

'-1- _t , A

9 das — e X P ( ~~ A _ Γ)

Quantum mechanically, we have

Proposition 4.3. The solution to Eq. (39) is

0"*= Σ ZnXn(H)E\, (40)
«=0

( - " " M Ϊ ^ ( 4 1 )

1 Π
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Proof. Equation (39) reads

Using the form Eq. (40) for g~x, we get

2 γ (τj oτ \ (AΊ\

ί=o [ι]l

The solution of this recursion relation is unique once we impose the boundary
condition X0(H) = 1. It remains to check that Eq. (41) does satisfies this re-
lation. Substituting Eq. (41) into Eq. (42), we arrive at (x = e^

nPoq~2H+2k^

k-i i(k-i)

— (43)

rί
v=0

This identity is easily proved by induction using Pascal's triangle identity for
the ^-binomial coefficient

We are now ready to give the precise definition of the Bloch waves:

Definition. The Bloch waves are defined by

ΨinJ) = σ^g-1

QB1\ (44)

They have diagonal monodromy

^ 2 ^ a B - 2 . (45)

In Eq. (44) the parameter α is the one appearing in Eq. (34, 35), and the matrix
Q satisfy the commutation properties of Proposition 4.2.

5. Universal Bloch Wave Algebra

Now that the Bloch waves are defined, we can compute their commutation
relations. The result will be Theorem 1 of the introduction. To achieve this
goal, we have to calculate the commutation relations of σ^ with g'1 and
ρ. The commutation relations of σ^J) and ρ are obtained by projecting out
Eq. (35) on highest weight vectors. We get

To derive those of σ[{l and g~ι we first determine the commutation of σ[{!
and Z. (Remember that σ[H commutes with Po.) Projecting Eq. (31), we get
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Substituting the explicit form of S and Rf2, we obtain

Z*σ<Λ = σ(Λ £ ( ί - ί - i ) 'Γ f c l z*- 'g-{ i i i ί i i + 1 *- '>} ί -(*-») f l £L. (46)
ί=o L'J

For k = 1 this gives

Z σ P = σ<;> [Z<T» + (1 - q~2) ?-*»£_].

Of course, iterating this simple expression gives back the relation for arbi-
trary k. From these results, the commutation properties of σ^ and g~ι are
derived by elementary calculations.

Proposition 5.1. We have

where
[k\ ( k ' i ) ( Γ ί + 1 ) ψ k-i

Writing

12 = L
i = 0

as in particular

00 fc(fc+l)

Finally, let us write the commutation of σ^j) with the product g~ιρ. One
has

where

We are now in a position to start the calculation of the Bloch waves algebra.
We have

If n > m we get using Eq. (36),

To reconstruct the product ψtfmΨiΐίi w e introduce the matrix ^12(^0)
that

(47)

giving
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Notice that Eq. (47) is really a definition of the matrix SttiiK)- From this
equation, it depends a priori on Po and Z. The remainder of this section is de-
voted to the proof that 3tt2(P0) is indeed independent of the operator Z. The
main step will be to establish the formula

QίQ2. (48)

In fact, using this result, Eq. (47) becomes

K12 Δq\Q ) ^12 Λ\2 QlQl ΰ\ &2 ~ Δq\Q ) ^ 2 1 Λί2 Qί Q2 ΰ\ ΰ2 ^

But

and we can eliminate the factor Δ'^g'1) which contains actually all the Z de-
pendence. Commuting the factors A\2BlaB2

a and QιQ2, we are left with the
universal formula for MX2{P^) given in the introduction with

F12(q9P0) =

We now turn to the proof of Eq. (48). One has to study

02 X Q2 = ^x2Qι Λ\l g2

1Q2.

\First we can push the factor ρi A\2 to the right. We find

Next we make the Z-dependence explicit by writing

V12 92Q2 = ( Σ

where

nψ = Σ Xt-A
j=o

We now have to commute the factors E+ to the left. This is done with the
help of the identity

the proof of which is elementary and uses the relation

Z f e_1(Λ r-2) = -[k](Aq-H+k-DqH-k)Dq*H-1 Xk(H). (49)

We can iterate the above identity and get

' ( 5 0 )

where the coefficients C/'k(x) satisfy the recursion relation

+ q~J~'[j + l] Dqix
 C/L\(X) (Aq'x+i+ι - Dq'~J~ι)
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whose solution is

Using this result, we can write (x = Hx + H2).

nf = Σ { Σ Xi-j(x ~ 2/) Cjι!yj(x - li + 2r)\ [Δq(E+)Y'r M&. (51)
r = 0 (j=0 J

For r = 0, the sum over j is simply equal to Xi{x). For r = 1 we easily check
that it vanishes. We assume now r ^ 2. One has (z = A2q~2x)

Xt-jix - 2/) C/i7 '̂(x - 2/ + 2r) = Xt{x) (1 - z^ 2 ί )

So the sum over j in Eq. (51) reduces to the evaluation of

l+rΓ ( i - ^ 2 v ) . (52)
i + j - r+l

Expanding the product by means of the ^-binomial formula

ΓΊ (1 - ^ 2 v ) = Σ ( - l ) v Γ"l qin-1)vz\ (53)
v = 0 v = 0 |_Vj

expression Eq. (52) becomes

1 ίv(2ί"r)^v Σ (-ivTv J j=° L/
but we have, again using Eq. (53)

Σ (~ l

which is zero for v = 0,1 ... (r — 1). Therefore, only the term r = 0 remains
in Eq. (51) and we finally get

This is exactly what we had to prove.

6. The ξ-Basis

Since the Bloch waves are now well under control, we may try to construct
other basis from this one. In particular we can try to find a basis ξ with the
exchange algebra given by Eq. (9). We have already defined the vectors σU)(x)
with this property, however since Q (x) is normalized to one at x = 0, they do
not have good conformal properties (in the continuum limit). We have shown
in [6] that for 7 = 1/2 there exists a change of basis depending only on Po
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such that ξ(ί/2)(x) does satisfy Eq. (9). This result was later generalized to all
j in [13]. We give here the universal form of M(P0). Since M depends only on
Po and since Po commutes with the Virasoro generators, ξU)(x) has the same good
conformal properties as \jj{j){x).

Before studying the quantum case, it is worth giving the form of the ma-
trix M(P0) in the classical case. Remembering that

the requirement that \j/ij)(x) satisfies Eq. (5) gives the condition on M

2Γ dM

dP0

We look for M in the form

fy[ _ gm + (Po)E+ gin-(Po)E-

Using that

ad(£+®/ + I®E+)r = 2(E+ ®H-

we find the relations

1 , Λ + Z )
ra+, --m'_=m_, —

2π + A-D " ' 2π ' 2π + A-D'

So that

o) = exp (-JZT^EΛ exp(- AEJ).

At the quantum level, the equation one has to solve reads (we write M(A,D)
instead of Λf(P0))

= F2ί M2{AqH\ Dq-H>) M^A^R^. (54)

Its solution is given in Theorem 2 of the introduction. This theorem is itself a
direct consequence of the following

Proposition 6.1. One has

Proof. The crucial identity is

F12[q--H®E+]k=Σ [Δ
ι = o

\ + H29A
: ) , £)q-Hi-H2-2(k-i)\
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It is obtained by multiplying Eq. (50) on the left by ρ t ρ2 and then moving
this factor to the right. With the help of this identity, we get

F12 Mx(AqH\ Dq'Ei) M2(A,D)

2(n -j)) Aq[Mnm(H)],

where the coefficients Mnm(H) are those entering the definition of M(P0)

oo

M(P 0 )= Σ E"+E"lMnm(H)
n,m = 0

and

[b-s]\

We use

2siq

and the analog formula with q -* q~ι to show that

i
-2sj

So

^—* Γ 1 ! ΓL i| I,,,

Now, the proposition results from the fact that

Indeed, if b = 0 then s = 0 and 2T^{x) = 1. let us assume ft > 0. One has to
prove that (z = ^ 2 ^ 2 x )

Σ (-i) sP]^-1 ) s(i-^4 s)SΠ(i-^2 v) Π (i-V v) = o vz.
s = 0 |_^J v = 0 v = b + s+l

(56)

Using the binomial formula Eq. (53) we obtain

(i - z?4*) ϊί (i - V ) fi (i-^ 2 v)
v=0 v=fc+s+l

b+ί

= Σ (-l)VΣ{F(/<,v)i) + ?*1^-l,v,ί)}, (57)
0
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where

F(μ9 V,S) = N [k ~ *Ί

To perform the summation over v in Eq. (57) we substitute for the g-bino-
mial coefficients the identity Eq. (55). We get

-im(m+l)-2bm ΓΛL , Π

The summation over v' can now be done using again Eq. (55)

Substituting back into Eq. (56) the summation over s can be done, again using
Eq. (55)

Similarly, we have

_ . - » • [ »Σ( - Γ * '

X"1 ί Λ\τr ^ ' ' '* ' Λ ' ' u ' ' • '

Adding these two expressions as required in Eq. (56), the terms cancel two by
two.

7. The Second Chirality

In this section we define the various objects entering the second chiral sector,
and we list their basic relations. One can then reproduce the previous analysis.
The results are summarised in Theorem 3.

The Drinfeld-Sokolov linear system for the second chirality reads [9]

E-). (58)

Poisson bracket is defined by

We discretize Eq. (58) as

Qn=Qn-lLH.
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On Ln we have the Poisson bracket

{Ln®Lm} = -lδn,m[r,Ln®Lm]

+ lδn,m+1l®Lm(H®H)Ln®l

-\δn,m-γLn®\{H®H)\®Lm.

Performing the replacement

[,] = /{,},

we find the quantum formulae

Ri2LχnL2n = L2nLίnR12,

L\,n+\L2n = L2nA12Llfn+1

with

So

Finally, we introduce the constant ρ with the properties

We consider now a periodic lattice with N sites and define

S = l^i B LJ2 ''' JJ Ljft,

so that

Qn+N = SBQn.

We have

Proposition7.1. \)Ifn<N

Rl2QlnQ2n=Q2nQlnRl2 (59)

2) Ifn>m(n,m<N)

Q2mQlmίϊl2Aί2Q^Qln = R12QlnQ2m. (60)

3) Ifm = N,n<N

Q2nQχnRi2Λ12Q;n

1Sί = R,2S,A12Q2n. (61)

4) Ifn = m = N

Rί2SίAί2S2 = S2Al2S1Rl2. (62)
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We now define the projection on the first column of Qn

un — *sn lΛmax/5

then we have the exchange algebra

where the upper sign refers to n > m and the lower one to n < m.
We parametrize the solution of Eq. (62) as

i=o \ι\\

The equation determining g is

The Bloch waves are defined as

They have diagonal monodromy

ψ(j)+N = B-2e-2πpoHψφ.

Reproducing the analysis from these data we arrive at the

Theorem 3.

m2{q,Po) = F12(q,P0)

where

F12(q,Fo)

[k]l U
v = l

and

8. Local Fields

In this section we combine the two chiralities to construct a set of periodic
and local fields. In order to do it we have to impose the constraint Po = Po.
We choose to work with independent zero modes Po and Po. Their conjugate
variables are also considered to be independent so that \I/U)(x) and ^ 0 ) ( x )
commute
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The constraint Po — Po is then imposed on the states. If Jf and Jf are the
representation spaces of the two chiral halves of the theory, the physical space
& c 2tf ® #e is defined by the condition

i.e. we have the decomposition

j

where co, denote the eigenvalues of Po. The result is summarized in the

Theorem 4. The fields

1) Admit a restriction to the subspace $F> where Po = Po or

(AA-DD)^ = 0.

2) Their restriction to 3F is periodic.

3) Their restriction to $F is local.

Proof. 1) Recall that

then

ΦiJ\AA - DD) = (AA - DD) Φn

ϋ),

and so

(AX - DD) ΦP& = Φ<ij)(AA -DD)& = 0,

therefore

2) We have

but
β-4e2π(P0-F0)Hρ — ρe2π(P0-P0)Ht

So

δ(j). (63)

Now g and ^ J ) do not contain the variables conjugate to Po or Po. So when
restricting to !F we can set Po = ô i n Eq. (63) and
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3) Let us prove now locality. We calculate (n > m)

Wj\ Φ<nf)] = ΨW Ψii (βXiBl1 B~2

 1 Mΐ2 - Bl1 B2 0 ψM til,
but

SlXiBγ ι B2

 ι$\2 — F21

i
 RX2F12A12F12R12F21

1 A12

ι Bx

 ι B2 *.

If we can show that

Rΐ2F12Aί2Fί2 = 1 + X12 (AAqH^H> - DDq'11^), (64)

F^R^F^Aϊi = 1 + XX2 (AAqH>+H> - DDq'H^E% (65)

then

(AA-DD),

and this implies the desired result

Φi/'>] iF = 0.

We observe now that condition Eq. (65) is the same as condition Eq. (64). In-
deed Eq. (65) is equivalent to

Ri\F2lAl2F21 = 1 — .

Comparing with Eq. (64) we find the relation

X12 = — F21 R\2X2\F21 A12 .

To prove Eq. (64) we evaluate its left-hand side

R\2FX2Al2F12 —
k = o L^J

 :

r _ _

1

Π
v = 2 i + 1

where we have introduced the notation

We are thus lead to study the quantity in the curly bracket. We have to
show that this expression contains a factor (1 - zz) (for k > 0), or else that
it vanishes if we set z = ί/z. This conditon turns out to be equivalent to
Eq. (56).

9. Conclusion

We would like to conclude this paper with a few remarks. The various formu-
lae we have presented here are universal in the sense that they are expressed
entirely in terms of the generators H, E± of ^ίq{sl2). This means that we have
been able to use the quantum group structure of the theory in its full power.
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In particular, we have been able to separate in our formulae the purely group
theoretical aspects from the representation theoretic aspects. This may be of
some interest as we may consider now highest weight representations with ne-
gative spiny as it seems to be necessary in Liouville theory or ID gravity [14].

The main tool to achieve these results was a lattice version of the Drin-
feld-Sokolov linear system. This is by itself an interesting structure. One can
eventually use it to define a lattice version of the Coulomb gas picture of
conformal field theory. This is based on the following free field representa-
tion of the basic relations Eqs. (23, 24). Let φn be a periodic free field on the
lattice and πn its conjugate momentum so that

where a is the lattice spacing. A realization of Eqs. (23, 24) is given by

Moreover the constant ρ satisfying Eqs. (33-35) (with α = 0) is

We will analyse this interesting representation somewhere else.
A natural question which arises is: What happens to the Virasoro algebra?

Clearly, in the continuous theory, one can reconstruct the Virasoro generators
from the ξ or the φ fields. The same is true on the lattice and we get an inter-
esting lattice deformation of the Virasoro algebra [15-17, 19]. Let us sim-
ply mention here that this deformation is related to integrable systems (Toda
chain) [18].

Finally, it is well known that the Drinfeld-Sokolov linear system is a reduc-
tion of a more general system which we would obtain if we were working with
the WZNW model instead of the Liouville model. A discrete version of the
WZNW model was recently proposed [20]. It is likely to be closely related to
our construction.

Acknowledgements. I am very grateful to L. Bonora and F. Toppan for their encouragements
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