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Abstract. We give explicit expression of flat periodic representations, when
they exist, of the quantum analogues of simple Lie algebras and their affine
extensions for a parameter of deformation q equal to a root of unity. By
"flat periodic," we mean that these representations have no highest weight
and that all the weights have multiplicity 1.

1. Introduction

In [1] and [2], it was proved that ύlίq{SU{2)) have periodic representations (i.e.
with injective action of generators) parametrized by 3 continuous parameters.
In [3], this was extended to %(SU(3)) and in [4, 5] to %(SU(n)). In [6],
DeConcini and Kac studied the representations of Wq(&) at root of unity.
They proved that their dimensions are bounded and that they were parame-
trized by dim^ complex continuous parameters. (We prefer the word peri-
odic instead of cyclic, since cyclic has already its own meaning in the theory of
modules.)

Periodic representations of %q(SU(2)) have proved their interest in the gener-
alization of the chiral Potts model [7, 8]. Periodic representations of %q(SU(3))
are used for the same purpose in [9, 10], and this is extended to flat periodic
representations of %q(AS^) in [11]. In [12], (flat) periodic representations of
W^A^) and their intertwiners are related to the Boltzman weights of another
statistical model, i.e. the Izergin-Korepin model.

In this paper, we consider "flat" periodic representations, i.e. for which all
the weight spaces have dimension 1. If gm = 1, the dimension of flat periodic
representations of %(&) is m r a n k^. Flat periodic representations are minimal
periodic representations, in the sense that when they exist, their dimensions
are the smallest possible. We will in the following give an explicit expression of
flat periodic representations of ^ ( ^ ) , for 9 a simple Lie algebra or an affine
extended Lie algebra. We prove in fact that there is no flat periodic representa-
tion if the Dynkin diagram has a branching point, or a triple link or an exten-
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sion on both sides of a double link, i.e. if 0 contains D 4 , G2 or F4. In all the
other cases, we give the action of the generators, the dimension and the number
of parameters. In the particular case of ^ ( 5 0 ( 5 ) ) , we find two solutions, one
extending naturally to %(SU(2N + 1)) and the other to %(Sp(2N)).

In Sect. 2, we define %(^) and prepare the construction. In Sect. 3, we
look at the constraints due to each link of the Dynkin diagram. In Sect. 4, we
gather these constraints to obtain flat periodic representations of Wq(@) for ^ a
simple Lie algebra. In Sect. 5, we extend the procedure to affine Lie algebras.

2. Generalities

Let ^ be a complex simple Lie algebra or an affine type Lie algebra. The quan-
tum analogue %(&) of the envelopping algebra of 0 is defined by the gener-
ators (fc*1, ehfi)ieI, where / is the set of indices of the Dynkin diagram of ^

= rank^ = N), and the relations [13]

*W /C^ = =
j Kj z =

(2.1)

n=o
for/Φy,

*fj? = 0 for i Φ j

- where A = (aij)(Uj)inI2 is the Cartan matrix of <§. In the following, we
shall also denote ^ = &(A). If {αί5 / G /} is the set of simple noots, and (. | .)
the invariant bilinear form on the weight space, then (αf | α,-) e Z. (Let the

shortest root be such that (αs | αs) = 2.) The Cartan matrix is au = 2 j*.

- w h e r e ^ = ̂ (αi αi)/2 ^ ' α ^

W l t h and

= 1, where by convention [x]q =

In the following, we shall consider representations of the algebra structure
only. Let us consider a finite dimensional simple module M over %(^)

Proposition. The generators kt are simultaneously diagonalizable on a simple
module M.

Proof. This is usual. See for example [13].

Let ^ b e a ra-root of unity, i.e. we suppose that m is the smallest integer
such that qm = 1. For simplicity, we restrict ourselves to odd values of m.
(Generalization to even values is not difficult, but involves many different
new specifications, in particular in the following proposition.)
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Proposition. As a consequence of the commutation relations, (β f)
m, (/;)m and

(ki)m belong to the center of

We now restrict ourselves to periodic representation: we shall suppose in
the following that the generators et and ft are injective on M. Remark that
this assumption is possible for q a root of unity only. Such a representation is
otherwise infinite dimensional.

For the following construction we suppose that the points of the Dynkin
diagram of ^ can be labelled by indices i e / such that
- each i is either even or odd,
- all the neighbours on the Dynkin diagram of an even index i are odd and

vice versa, i.e. atj = 0 unless / is odd and j is even or v.v.

Remarks, a) We do not suppose that the z's build a subset of contiguous in-
tegers of N. b) This restriction in fact only excludes the case of 9 = Aψn since
all the tree-like diagrams satisfy the hypothesis. This case will actually be re-
covered afterwards.

Let / denote the set of indices of the Dynkin diagram, with |/ | = N. Let
also Iι be the subset of odd indices and I2 the subset of even indices. Then

[/ii,e»2]
 = 0 f o r * Ί e / i , h^h,

[/iιsy;j = O for iuι\elu (2.2)

[ei2,eVl] =0 for i2j'2el2.

Let M be a periodic simple module. Since (e,)m and (fi)m are in the center of
the algebra, they are scalar on M. So

(fiί)
m'V = <x?ί υ VzΊe/i, VveM,

(ei3)
m υ = *T2'V Vi2el2, VveM,

with 0Lh Φ 0 and α i2 φ 0.
Let M o be a common eigenspace of the k/s associated to the eigenvalues

qp. Let P = {ptJe 1} with ^ e l Then

M P = Π /if'1 Π er*2\M0 (2.4)
i2el2

is the common eigenspace of the fc£'s associated to the eigenvalues kt\Mp =
q Li~£iaijPj. It has the same dimension as Mo since fiγ and ei2 are injective.
Hence, if P and P' differ through p'i = pi±m, then MP=MP. Further-
more if A = (dij) is invertible in Z/mZ, i.e. if det^ί and m are coprime, then
the set of integers P = {/?,.. } with px defined modulo m is in one to one corre-
spondence with a common6 eigenspace of the kt

9s.
Let ^ be a simple Lie algebra. Then det^4 φ 0. More precisely,

dctA(AN) = N+ 1,

Q) -2 ,
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The condition that det A (G) and m are coprime is always fulfilled if ^ is
not of type AN or E6 (since m is odd). The case E6 will be excluded later. In
the case of AN, the condition is satisfied if TV + 1 and m are coprime, but as
in the case of SU(3), the condition can be removed (see [3]) without lost of
irreducibility, minimal representation remaining minimal, but not flat.

Let us suppose that d e t ^ ( ^ ) and m are coprime: Then

M= MP. (2.6)

Since {fi^iieIι and (ei2)hel2 provide mutually commuting isomorphisms be-
tween the different MP's let us denote

so that

and

M = θ C|P>
P={puiel}

= ah\...,pi2-i,...y®\x}

From [e^fi] =
k2 — k'2

-\ ί ^ , w e get, for ix e 7X a n d ι 2 e I2,

1

(2.7)

(2.8)

(2.9)

(2.10)

where jβ^0 (respectively βP\
2)) is an operator acting on Jί, and whose expression

only depends on P2 = {^ ii^h) (respectively on P1 = 1/7̂ ; ^ G / J ) .

Proposition. 77*e dependence of βP

ι

2

ι) on P2 w ^'v

Σ {ίβieI Π ^
2 2 j e /

(2.H)

and βP\
2) depends in the same way on the indices ptι,

Π
l 2

( i ie/ i)

(2.12)

^ g ί //2]_ g ί are constant operators on Jί, the indices lt of which being
the exponents ofqiin%
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Proof. The dependence of β^ on pi2 is provided by the Serre relation involv-
ing one power of etl and eh to the power (1 — ai2iί):

(2.13)

Since the roots of the polynomial

l - α

ΣQ(-Όn

are q[2a, q^2{a~2\ #f 2 ( α ~ 4 ) . . . ql{a~2\ q2a, then βg° is a linear combination
of q2

2

lpi2 with le {— ahii, - ai2iί + 2, ...,ahίι} each coefficient being an
operator on M independent of pi2. This proves the proposition.

In particular, if ai2iι = 0, then β$2

ι) does not depend on ph.
βfc)hel and βff$t generate an auxiliary algebra, as in [3, 5], whose defin-

ing relations are provided by the not already used Serre relations and by
[ei9 fj] = 0 for ifj.

In the following, we study flat periodic representations. Since the e/s and
/i's are injective, the multiplicities of the weights, i.e. the dimension of the
weight spaces M P , are independent of P. For flat periodic representations, we
suppose then that these multiplicities are 1, i.e. άimJί = 1. The dimension of
a flat periodic representation is hence dim M = mN. (N = rank 9). Since
dim^# = 1, all the operators β commute mutually.

In the particular case <g = &(A1)9 i.e. %(SU(2)), no further constraint
appears. A flat periodic representation of %q(SU(2)) is characterized α = α l 9

μ = μi and β = /? ( 1 ) eC. All periodic irreducible representations of %q(SU(2))
are flat (of dimension m; the multiplicities of the weights are 1) (see [2]).

3. Constraints due to a Particular Link of the Dynkin Diagram

Let ^ be a simple Lie algebra with Cartan matrix A. We now focus on a partic-
ular link (JΊ , i2) of the Dynkin diagram, i.e. consider the action of the sub-
algebra generated by eiι,ei2,fiι,fi2,kil and kh on a subspace of M defined
by fixed values of p/s for j ^ ίί,i2. This subalgebra is either %q(SU(3)),
(if ahi2 = ai2ii = - 1) or %{SO{5))9 (if ailh = - 2 and ahil = - 1 or vice
versa) or finally ^q(G2), (if aiίh = — 3 and ailh = - 1). We define effective
μ'i^ and μ'i2 by

f42 = to2- Σ ahjpj,

so that the constant values of pj other than ph and /?ί2 are taken in account
by replacing μ I ;, μh by the corresponding μ 1 ? μj2. The dependence of β{h)

(respectively β{ll)) on ph (respectively on ph) will be made explicit in this
section.
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a) First case: subalgebra %(SU(3)) (qh = qh).
The auxiliary algebra is defined by the generators β^l, β{l2l (related, up to

a normalization, to w, u\ v and v' of [3]) and the relations (simpler than in [3]
since dimJtf = 1 so that the /Γs are scalar):

β(iί) βdi) _ n-2{μ'i+μί.)
P + 1 P + l — Cli1

 ί 2

(3.2)

The dependence of μ!h + μ'h on the pfs is then easy to distribute between
β(il) and βih)

9 since for ally Φ ii9 i2 we have ahjai2j = 0. So

j - λ
(3.3)

where λ is a complex parameter, independent of the pfs.
The dependence of β{ίί) onp/s other than^ l 2 is hence already known, and has

to be compatible with the constraints provided by the other links of the Dynkin
diagram.

b) Second case: subalgebra %(SO(5)).
Let ahh = — 2 and ahil = — 1 so that qh = q?. Then

β(i2) = βίii
(3.4)

The relations satisfied by β(lιl, β(±2l and βtf2) are given in the appendix in the
general case of non-commuting /Γs ( d i m ^ ^ 1). In the case of flat periodic
representations ( d i m ^ = 1), they reduce to either

= β^l = 0
(3.5)

or
= βi2l = 0

with β = + 1 (3.6)

We see that either βih) or β(iί) (not both) can depend on pfs related to
other points of the Dynkin diagram. Furthermore, it depends, through μ'h
and μ'i2 on pfs related to neighbouring points of both iί and i2 As a conse-
quence, quantum Lie algebras whose Dynkin diagrams have extensions on
both sides of the double link (il9i2)> i e which contain %(F4) will not admit
flat periodic representations.
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c) Third case: subalgebra 0 =
Let a12 = — 3, a2\ = — 1 so that q2 = # i . Then

But the relations between /Γs required by the further constraints cannot be
satisfied for commuting /Γs. So there is no periodic representation
of dimension m2.

4. Extension to General Simple Lie Algebra

We follow the classification AN, BN,... . The action of eh fh kt is given by
(2.8), (2.9), (2.10), the value of β being made explicit in each case.

a) First case: AN (%(SU(N + 1))).
TV -f 1 = detv4N and m are supposed to be coprime. The results (3.3) of the

study of %(SU(3)) immediately lead to

with

= Λ - μt ~ μt+1 mod — (4.2)

and Pi = 0 if / is out of the Dynkin diagram.
Flat periodic representations of ΰlίq{SU{N 4- 1)), of dimension MN have

then 2N + 1 complex parameters (pn^μdi^i ...N a n d ^i
After a change of normalization of the basis, they can be expressed as

Γ l Ί Y / 2

\Pi+ι~ Pi- ^i- μt + h- \) - \ \ |

Ί Y

Λ ~ 1) I j

1/2

Pt+i-Pt-^(-μi + λt-i)\ 1 | / » , - l > , (4.3)

corresponding to the example of partially periodic representations given in [5]
in terms of the Gelfand-Zetlin basis.

We have restricted ourselves to the case when m and N + 1 are coprime. If
this is not so, a treatment analoguous to that of [3] (Sect. V) proves that the
above relations also define the smallest periodic representation of tflq(y(AN)).
The weights are however degenerate in this case, so that the representation is
still minimal, but not flat.
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b)BN:%(SO(2N+ί)).
We already know from the preceding section that the subalgebra

%q(SO(5)) has two four-parameters flat representations. Let a1 be the short
root (z\ = 1 in the study of %(SO(5))) and α 2 . . . aN the others. β(1) cannot
depend on p3 (involved in μ'2) since ai3 = 0. So the second solution (3.6) of
%(SO(5)) cannot be extended to one oΐ%(SO(2N + 1)) for N > 2.

The first solution (3.5) coupled to the constraint (3.3) of %(SU(ί)) for the
other links leads to

β{1) = 0
d) ~ _ q*(Pi-i-Pi + i + λi) _ q-±{Pi-i-pι + i+λi) i = 2 , . . . , N ( 4 . 4 )

with (4.2) and λ2 = - μί - μ2. Flat periodic representations oϊalίq{SO{2N + 1))
have 2N complex parameters (α ί ? μdi=\, ...,N a i*d also dimension mN.

c) CN:%(Sp(2N)).
Only the second solution (3.6) of ΰlίq{SO{5)) generalizes to one of CN

(N>2). Let a0 be the long root (i2 = 0 in the study of %(SO(5))) and
ai...aN-ί the others. The flat periodic representation of %q(Sp(2N)) are
given by

/ = 2, . . . , iV - 1 (4.5)

with (4.2) and λx = — 2μ0 — μ 1 ? and have 2A^ complex parameters
( α i > μί)ί = 0, ...,N~ί

d-e) i)*, (^(5O(27V))) and ^-type exceptional cases.
Let us focus on the D4 (%(SO(S))) subalgebra related to the neighbour-

hood of the branching point of the Dynkin diagram. Let i2 = 2 be the label of
the branching point, and 1, 3 and * his three odd neighbours. The Wq(SU(ί))
subalgebra related to the points 1 and 2 of the Dynkin diagram provides the
expression (3.3) for β2:

β(2) _ g2(Pl-p3-P*-λ) _̂_ q-2{Pί-P3-p*-λ) M (Λ

which is obviously inconsistent with that obtained from the subalgebras of
type %(SU(3)) corresponding to the links (3,2) or (*,2), i.e.

β(2) _ π2(-Pi+p3-p*-λ') , f,-2(-Pι+p3-p*-λ')

β(2) __ q2(-Pι-P3 + p*-λ") + q-2(-Pl-P3+p*-λ") ? V̂  ̂

since the symmetry between pu p3 and p* is broken. So there is no flat peri-
odic representation of %q(SO(8)) and hence no flat periodic representation of

4 and (EN)N=6>Ίf8.

f) F4 case. As we remarked before, the two flat periodic representations of
%q(SO(5)) cannot be generalized on both sides of the double line of the Dynkin
diagram. F4 has then no flat periodic representation.

g) G2 was already excluded in the previous section.
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5. Flat Periodic Representations of Quantum Analogues of
Affine Type Lie Algebras

Let ^ be an affine extension of a simple Lie algebra and A the Cartan matrix
of 0. Then there exists [14] a unique vector δ = {δ^)ieI such that Aδ — 0 and
the δ{ are positive integers, one among them being equal to 1. Let again C |0>
be the common eigenspace of ku ielassociated to the eigenvalues qp (unique
up to a numerical factor since we consider flat periodic representations) and
let I Py with p( = 0,..., m — 1 for / e / be defined as before by the action of
(fiXsi, and (ei2)hel2 on |0>. Since

A P = Ap><>P = P> moάδ (5.1)

we then identify the states differing by an integer multiple of <5, i.e. we consider
the equivalence classes

I p) = {I py such that P - P = 0 mod δ}. (5.2)

Proposition. The operator

% = Y\l4ie%{($) (5.3)

iel

is in the center of the algebra ^q(^).

Proof. Ή commutes with &,-; with ej9 we have, since qfij = q"ji,

iel \iel

Remark. In [14], the canonical central element is c = Σ ^ί hh where the sys-
iel

tern of coroots {hi}ieI generates the Cartan subalgebra, and where (δ[ =
^(tti\<Xi)δi)ieI is an eigenvector related to eigenvalue 0 of *A, the transposed
Cartan matrix. kt is in fact related to h{ by kx = q\{ so that %> = qc.

In the following, the eigenvalue q' of ^ will be constrained by the ap-
plication of Serre relations and [e i 9/J = 0 for / Φ j on the module, so that, in
particular,

Σ^Γft = 0 , (5.4)

corresponding to the vanishing of the central charge modulo m.
We now consider case by each affine Lie algebra, following the classifica-

tion of [14]. In each case, we give the expression of δ and β{i). Since we already
know that branching points in the Dynkin diagram forbids the existence of
flat periodic representations, we do not have to consider the cases Bf^\ D\l\
E$\ E{

Ί

ι\ Eg\ and Aψn-X. The cases G^ and D^ are excluded since the
triple link of their subdiagram G2 does not allow flat periodic representations.

( 1 ) and E^2) are also excluded since they contain F4.

a) 4 1 *. Hereδ = | l , l>
This new case of 2-points Dynkin diagram was not studied in Sect. 3. In

this case the constraints reduce to

[μx + μ2}^ = 0, (5.5)
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i.e. ?

2<"i+"2) = ε with ε = ± 1 and

The dimension is m and the independent parameters are α1 ? α2, μi and jβ^υ.
(This case is in fact a particular expression of the following.)

The flat periodic representations of <&q(& (A^)) are also described in [12],
where their intertwiner is given, and is related to the chiral Potts model.

b) 4 υ (n > 1), n odd; here |<5> = | 1 , 1 , . . . , 1>.
Flat periodic representations of ^(A^) are still given by (4.3) with

/ = 1,..., n + 1. The constraint (4.2) on \ has to be periodic in /, so that

Eft]«* = 0 (5.7)

corresponding to the vanishing of the central charge modulo m. The dimen-
sion is mn and there are 2(w + 1) independent parameters: (αί)i=i,...,n+i>
Oi)i=l,...,„, Λ

In the first section, we excluded the case when n is even since this forbids
the partition of / into Iγ and I2, subsets of odd and even indices, such that
among two neighbouring points of the Dynkin diagram, one belongs to Ix and
the other to 72. However with the choice of basis of (4.3), the symmetry be-
tween odd and even indices is recovered and this construction of flat periodic
modules also holds for A^] with even n.

Flat periodic representations of ̂ (^(A^)) were used in [11] to generalize
the chiral Potts model.

c) C^ n ̂  2. Here \δ} = \ 1,2,2,..., 2,1>.
In this case, the second solution (3.6) of ̂ ίq(SO(5)) is used for subdiagrams

(0,1) and (n — 1, w), whereas the constraint (3.3) provided by °ilq{SU{Y)) holds
for the other links,

β(ί) _ εSq2(aιi-ίpι-ί-au+ίpi + ί+λi) _|_ ̂ -liau-i pι-ί-aιi + ί pι + ί+λt)\ W *V

with (4.2), λ1 = - 2μ0 - μί and Aπ = - 2μ n + 1 - μn.
As a consequence

Eft]r* = 0. (5.9)
d) Aψ.

In this new case of two point Dynkin diagram not studied in Sect. 3, we
have a12 = — 4, aiγ = — 1 and |<$> = |2,1>.

The constraints are

ff2>:0-ε(^+,-), (5 io)

where ε = ^ 2< 2ί"+ 4«) and ε2 = 1 so that

[2μt + 4μ2]q2 = 0. (5.11)

The dimension is m and the parameters are α l 5 α2, μx.
Flat periodic representations of ̂ (^(^4 (

2

2 ))) have already been derived in
[12] with their intertwiners.
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e) Aψn with n^2. Here |<5> = | 2 , 2 , . . . , 2,1>.
We have to extend the first solution (3.5) of ΰllq{SO{5)) from subdiagram

(1,2), and the second solution (3.6) from subdiagram (In — l,2w), using
<%q(SU(3)) constraints (3.3) in between. Hence

( 2 n ) = ε{qA + q~A) (5.12)

with

λ2 = - - μί -
m

mod -

m o d -

m o d -

(5.13)

so that

= 0 .

The dimension is m2n x and the parameters are
^ x > 2 π

a n d

(5.14)

i= 1,2n-1

f) DfΛ with « ^ 2. Here |δ> = | 1 , 1 , . . . , 1>.
We use the first solution (3.5) of $ίq(SO(5)) on both edges of the Dynkin

diagram, and that (3.3) of %(SU(3)) in the middle, so that

βd) _

with

so that

ϊ = 2, . . . , Λ (5.15)

m w

= - - μx- μ2 mod -

= λt- μt- μi+1 m o d -

= - + μn + μn+1mod-

+ 2 Σ βt+ μn+ι = 0 .

(5.16)

(5.17)

The dimension is m" and the independent parameters are ( α £ ) ί = 1 > I I + 1 , (jUj)i=i,n.
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6. Conclusion

Several methods have been used for the study of explicit expression of represen-
tations of quantized envelopping algebras at root of unity. Inclusion into a Weyl
algebra led to the expression of periodic representations of %q(sl(n + 1,(C)) in
[4]. The use of the auxiliary algebra led in [3] to all the periodic representa-
tions of ^(££7(3)), and here to flat periodic representations of ^q(^). The
Gelfand-Zetlin basis was used in [5] and [15], providing explicit expression of
periodic and partially periodic representations of °llq(SU{N)) and %q(IU(N)).
However, explicit expressions of most general representations of ^ίq{$S) for
qm = 1 do not exist now.

Another step toward comprehension of the case qm = 1 will be the search
for a i^-matrix, intertwiner of representations, and related to Boltzman weights
of statistical models.

Appendix

We present here the relations satisfied by the operators β{±ιl, β%2l and β$2) gen-
erating the auxiliary algebra related to <%q(SO(5))9 in the general case of non-
commuting /Γs ( d i m ^ ̂ 1 ) :

qhβUβUύ ~ <H2

2βU2)βW = 0, (A.I)

ql β8* β«$ - qΓ2

2 βH βjj* = 0, (A.2)

- - i ^

ql β%i β%i - qr2

2 β<®β<ft = 0, (A.4)

qξ β*}\ βH - qr 2 β<l>} β<$ = 0, (A.5)

(qi2 - qΓ2') g,-μiβt!2) - ill - fe2) ύ^βW + [βι-t βΊ® = o. (A 6)

(qi2 - q^) C ^ 2 ) - (ql - qϊ2

2) qϊ2

2μiβH - [βit β«ϊ] = o, (A.7)

qi2 β'lί βίh) - qϊ2

1 / W f = (ql - qΓ2

 2) WS1' 2"2 + q?2> β(ϊϊ\, (A.8)

qhβ^β^ - q^β^lβ^ = (ql - qf2

2) [ C + 2 " 2 + ? ι7 ' f f l . (A 9)

qtjH βlf - (qi2 + qr *) β^ β±l βfl + qr * β%? β^

-(ql-qΓ2

2)(qi2-q^)β(ϊ! = O,

qlβ^βn ~ (ql2 + fe1) β^βWβW + q^βtm? ( A n )

-(ql-qΓ2

2)(qi2-q[2

ί)β^ = 0.

This paper is restricted to flat periodic representation, but we briefly pre-
sent in this appendix the following result as an example of the more general
scope of the formalism of the auxiliary algebra. The following 1 g k g m di-
mensional irreducible representations of the auxiliary algebra (A.I-11) gen-
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eralize (3.6)

( A

βlϊ =lϊ = (qh + fe) (ίi

They lead to km2 dimensional representations of ύlίq{SO{5)) with parameters
μiγ 2, αfl 2, c, K and λ. According to [6] however, there exist up to m2 dimen-
sional irreducible representations of it, leading to m4 dimensional irreducible
representation oΐ%(SO{5)).

Acknowledgement. We thank D. Bernard for discussions and encouragements.

References

1. Sklyanin, E. K.: Some algebraic structures connected with the Yang-Baxter equation.
Representations of quantum algebras. Funct. Anal. Appl. 17, 273 (1983)

2. Roche, P., Arnaudon, D.: Irreducible representations of the quantum analogue of SU{2).
Lett. Math. Phys. 17, 295 (1989)

3. Arnaudon, D.: Periodic and flat irreducible representations of SU(3)q. Commun. Math.
Phys. 134, 523-537 (1991)

4. Date, E., Jimbo, M., Miki, K, Miwa, T.: Cyclic representations of °Hq{sl{n + 1,C)) at
qN = 1. Preprint RIMS 703 (1990) to appear in Publ. RIMS

5. Arnaudon, D., Chakrabarti, A.: Periodic and partially periodic representations of SU(N)q.
Preprint Ecole Polytechnique A 989.0690, Commun. Math. Phys. (in press)

6. De Concini, C , Kac, V. G.: Representations of quantum groups at roots of 1. Progress
in Math. vol. 92, p. 471. Basel: Birkhauser 1990

7. Bazhanov, V. V., Stroganov, Y. G.: Chiral Potts models as a decendant of the six vertex
models. J. Stat. Phys. 51, 799-817 (1990)

8. Bernard, D., Pasquier, V.: Exchange algebra and exotic supersymmetry in the chiral Potts
model. Preprint CEN Saclay SPhT (89-204)

9. Bazhanov, V.V., Kashaev, R. M.: Cyclic L operators related with 3-state Λ-matrix. Pre-
print RMS-702 (1990)

10. Date, E., Jimbo, M., Miki, K., Miwa, T.: Λ-Matrix for cyclic representations of
%(sl(3X)) at q3 = 1. Phys. Lett. A148, 45-49 (1990)

11. Date, E., Jimbo, M., Miki, K., Miwa, T.: Generalized chiral Potts models and minimal
cyclic representations of %q(g/(«,€)). Preprint RIMS-715 (1990)

12. Date, E., Jimbo, M., Miki, K., Miwa, T.: New iί-Matrices associated with cyclic repre-
sentations of Φ ( 4 2 ) ) . Preprint RIM9-706 (1990) and references therein

13. Rosso, M.: Finite dimensional representations of the quantum analogue of the envelop-
ing algebra of a complex simple Lie algebra. Commun. Math. Phys. 117, 581 (1988)

14. Kac, V. G.: Infinite dimensional Lie algebras. Basel: Birkhauser 1983 and Cambridge
University Press 1985

15. Arnaudon, D., Chakrabarti, A.: ^-analogue of IU(n) for q a root of unity. Phys. Lett. B 255,
242 (1991)

Communicated by K. Gawedzki

Note added in proof. We thank Profs. C. de Concini and V. Kac for pointing out that our re-
sults concerning existence or non existence of flat solutions are compatible with Conjecture 1
of "Quantum coadjoint action" (1991) by C. de Concini, V. Kac, and C. Procesi.






