Commun. Math. Phys. 139, 605-617 (1991)

Flat Periodic Representations of $\mathcal{U}_{q}(\mathcal{G})$

D. Arnaudon and A. Chakrabarti

Centre de Physique Théorique de l'Ecole Polytechnique, F-91128 Palaiseau Cedex, France, UPR 14-CNRS

Received December 26, 1990

Abstract. We give explicit expression of flat periodic representations, when they exist, of the quantum analogues of simple Lie algebras and their affine extensions for a parameter of deformation q equal to a root of unity. By "flat periodic," we mean that these representations have no highest weight and that all the weights have multiplicity 1.

1. Introduction

In [1] and [2], it was proved that $\mathscr{U}_q(SU(2))$ have periodic representations (i.e. with injective action of generators) parametrized by 3 continuous parameters. In [3], this was extended to $\mathscr{U}_q(SU(3))$ and in [4, 5] to $\mathscr{U}_q(SU(n))$. In [6], De Concini and Kac studied the representations of $\mathscr{U}_q(\mathscr{G})$ at root of unity. They proved that their dimensions are bounded and that they were parametrized by dim \mathscr{G} complex continuous parameters. (We prefer the word periodic instead of cyclic, since cyclic has already its own meaning in the theory of modules.)

Periodic representations of $\mathcal{U}_q(SU(2))$ have proved their interest in the generalization of the chiral Potts model [7, 8]. Periodic representations of $\mathcal{U}_q(SU(3))$ are used for the same purpose in [9, 10], and this is extended to flat periodic representations of $\mathcal{U}_q(A_n^{(1)})$ in [11]. In [12], (flat) periodic representations of $\mathcal{U}_q(A_n^{(2)})$ and their intertwiners are related to the Boltzman weights of another statistical model, i.e. the Izergin-Korepin model.

In this paper, we consider "flat" periodic representations, i.e. for which all the weight spaces have dimension 1. If $q^m = 1$, the dimension of flat periodic representations of $\mathcal{U}_q(\mathcal{G})$ is $m^{\operatorname{rank} \mathcal{G}}$. Flat periodic representations are minimal periodic representations, in the sense that when they exist, their dimensions are the smallest possible. We will in the following give an explicit expression of flat periodic representations of $\mathcal{U}_q(\mathcal{G})$, for \mathcal{G} a simple Lie algebra or an affine extended Lie algebra. We prove in fact that there is no flat periodic representation if the Dynkin diagram has a branching point, or a triple link or an extension on both sides of a double link, i.e. if \mathcal{G} contains D_4 , G_2 or F_4 . In all the other cases, we give the action of the generators, the dimension and the number of parameters. In the particular case of $\mathcal{U}_q(SO(5))$, we find two solutions, one extending naturally to $\mathcal{U}_q(SU(2N+1))$ and the other to $\mathcal{U}_q(Sp(2N))$.

In Sect. 2, we define $\mathscr{U}_q(\mathscr{G})$ and prepare the construction. In Sect. 3, we look at the constraints due to each link of the Dynkin diagram. In Sect. 4, we gather these constraints to obtain flat periodic representations of $\mathcal{U}_q(\mathcal{G})$ for \mathcal{G} a simple Lie algebra. In Sect. 5, we extend the procedure to affine Lie algebras.

2. Generalities

Let \mathscr{G} be a complex simple Lie algebra or an affine type Lie algebra. The quantum analogue $\mathcal{U}_{q}(\mathcal{G})$ of the envelopping algebra of \mathcal{G} is defined by the generators $(k_i^{\pm 1}, e_i, f_i)_{i \in I}$, where *I* is the set of indices of the Dynkin diagram of \mathscr{G} $(|I| = \operatorname{rank} \mathscr{G} = N)$, and the relations [13]

$$\begin{cases} k_{i}k_{i}^{-1} = k_{i}^{-1}k_{i} = 1, \quad k_{i}k_{j} = k_{j}k_{i}, \\ k_{i}e_{j}k_{i}^{-1} = q_{i}^{a_{ij}}e_{j}, \\ k_{i}f_{j}k_{i}^{-1} = q_{i}^{-a_{ij}}f_{j}, \\ [e_{i}, f_{j}] = \delta_{ij}\frac{k_{i}^{2} - k_{i}^{-2}}{q_{i}^{2} - q_{i}^{-2}}, \\ \begin{bmatrix} 1 - a_{ij} \\ n \end{bmatrix}_{q_{i}^{2}}e_{i}^{1 - a_{ij-n}}e_{j}e_{i}^{n} = 0 \quad \text{for } i \neq j, \\ \begin{bmatrix} 1 - a_{ij} \\ n \end{bmatrix}_{q_{i}^{2}}f_{i}^{1 - a_{ij-n}}f_{j}f_{i}^{n} = 0 \quad \text{for } i \neq j \end{cases}$$

$$(2.1)$$

- where $A = (a_{ij})_{(i,j) inI^2}$ is the Cartan matrix of \mathscr{G} . In the following, we shall also denote $\mathscr{G} = \mathscr{G}(A)$. If $\{\alpha_i, i \in I\}$ is the set of simple noots, and (.|.)the invariant bilinear form on the weight space, then $(\alpha_i | \alpha_j) \in \mathbb{Z}$. (Let the

shortest root be such that $(\alpha_s | \alpha_s) = 2$.) The Cartan matrix is $a_{ij} = 2 \frac{(\alpha_i | \alpha_j)}{(\alpha_i | \alpha_i)/2}$.

- where $q_i = q^{(\alpha_i \mid \alpha_i)/2}$. - where $\begin{bmatrix} m \\ n \end{bmatrix}_q = \frac{[m]_q!}{[n]_q! [m-n]_q!}$ with $[n]_q! = [n]_q [n-1]_q \dots [2]_q [1]_q$ and $[0]_q = 1$, where by convention $[x]_q = \frac{q^x - q^{-x}}{a - a^{-1}}$.

In the following, we shall consider representations of the algebra structure only. Let us consider a finite dimensional simple module M over $\mathcal{U}_{a}(\mathcal{G})$.

Proposition. The generators k_i are simultaneously diagonalizable on a simple module M.

Proof. This is usual. See for example [13].

Let q be a *m*-root of unity, i.e. we suppose that *m* is the smallest integer such that $q^m = 1$. For simplicity, we restrict ourselves to odd values of m. (Generalization to even values is not difficult, but involves many different new specifications, in particular in the following proposition.)

Flat Periodic Representations of $\mathcal{U}_q(\mathcal{G})$

Proposition. As a consequence of the commutation relations, $(e_i)^m$, $(f_i)^m$ and $(k_i)^m$ belong to the center of $\mathcal{U}_q(\mathcal{G})$.

We now restrict ourselves to **periodic** representation: we shall suppose in the following that the generators e_i and f_i are injective on M. Remark that this assumption is possible for q a root of unity only. Such a representation is otherwise infinite dimensional.

For the following construction we suppose that the points of the Dynkin diagram of \mathscr{G} can be labelled by indices $i \in I$ such that

- each *i* is either even or odd,

- all the neighbours on the Dynkin diagram of an even index *i* are odd and vice versa, i.e. $a_{ij} = 0$ unless *i* is odd and *j* is even or v.v.

Remarks. a) We do not suppose that the *i*'s build a subset of contiguous integers of \mathbb{N} . b) This restriction in fact only excludes the case of $\mathscr{G} = A_{2n}^{(1)}$ since all the tree-like diagrams satisfy the hypothesis. This case will actually be recovered afterwards.

Let I denote the set of indices of the Dynkin diagram, with |I| = N. Let also I_1 be the subset of odd indices and I_2 the subset of even indices. Then

$$[f_{i_1}, e_{i_2}] = 0 \quad \text{for } i_1 \in I_1, \quad i_2 \in I_2, [f_{i_1}, f_{i'_1}] = 0 \quad \text{for } i_1, i'_1 \in I_1, [e_{i_2}, e_{i'_2}] = 0 \quad \text{for } i_2, i'_2 \in I_2.$$
 (2.2)

Let *M* be a periodic simple module. Since $(e_i)^m$ and $(f_i)^m$ are in the center of the algebra, they are scalar on *M*. So

$$\begin{aligned} &(f_{i_1})^m \cdot v = \alpha_{i_1}^m \cdot v & \forall i_1 \in I_1, \quad \forall v \in M, \\ &(e_{i_2})^m \cdot v = \alpha_{i_2}^m \cdot v & \forall i_2 \in I_2, \quad \forall v \in M, \end{aligned}$$

with $\alpha_{i_1} \neq 0$ and $\alpha_{i_2} \neq 0$.

Let M_0 be a common eigenspace of the k_i 's associated to the eigenvalues $q_i^{\mu_i}$. Let $P = \{p_i, i \in I\}$ with $p_i \in \mathbb{Z}$. Then

$$M_{P} \equiv \left(\prod_{i_{1} \in I_{1}} f_{i_{1}}^{p_{i_{1}}}\right) \left(\prod_{i_{2} \in I_{2}} e_{i_{2}}^{-p_{i_{2}}}\right) M_{0}$$
(2.4)

is the common eigenspace of the k_i 's associated to the eigenvalues $k_i|_{M_P} = q_i^{\mu_i - \sum_{j \in I} a_{ij}p_j}$. It has the same dimension as M_0 since f_{i_1} and e_{i_2} are injective. Hence, if P and P' differ through $p'_i = p_i \pm m$, then $M_{P'} = M_P$. Furthermore if $A = (a_{ij})$ is invertible in $\mathbb{Z}/m\mathbb{Z}$, i.e. if det A and m are coprime, then the set of integers $P = \{p_{i_{iel}}\}$ with p_i defined modulo m is in one to one correspondence with a common eigenspace of the k_i 's.

Let \mathscr{G} be a simple Lie algebra. Then det $A \neq 0$. More precisely,

$$det A (A_N) = N + 1,det A (B_N) = det A (C_N) = 2,det A (D_N) = 4,det A (E_6) = 3,det A (E_7) = 2,det A (E_8) = det A (F_4) = det A (G_2) = 1.$$
(2.5)

The condition that det A(G) and m are coprime is always fulfilled if \mathscr{G} is not of type A_N or E_6 (since m is odd). The case E_6 will be excluded later. In the case of A_N , the condition is satisfied if N + 1 and m are coprime, but as in the case of SU(3), the condition can be removed (see [3]) without lost of irreducibility, minimal representation remaining minimal, but not flat.

Let us suppose that det $A(\mathcal{G})$ and m are coprime: Then

$$M = \bigoplus_{\substack{P = \{p_{i_{i_i}}\}\\p_i = 0, \dots, m-1}} M_P.$$

$$(2.6)$$

Since $(f_{i_1})_{i_1 \in I_1}$ and $(e_{i_2})_{i_2 \in I_2}$ provide mutually commuting isomorphisms between the different M_P 's let us denote

$$M = \begin{bmatrix} \bigoplus_{\substack{P = \{p_i, i \in I\}\\ p_i = 0, \dots, m-1}} \mathbb{C} \mid P \rangle \end{bmatrix} \otimes \mathcal{M}$$
(2.7)

so that

$$\begin{cases} f_{i_1} | P \rangle \otimes | x \rangle = \alpha_{i_1} | \dots, p_{i_1} + 1, \dots \rangle \otimes | x \rangle \\ e_{i_2} | P \rangle \otimes | x \rangle = \alpha_{i_2} | \dots, p_{i_2} - 1, \dots \rangle \otimes | x \rangle \\ k_i | P \rangle \otimes | x \rangle = q_i^{\mu_i - \sum_{j \in I} a_{i_j} p_j} | P \rangle \otimes | x \rangle. \end{cases}$$
(2.8)

From
$$[e_i, f_i] = \frac{k_i^2 - k_i^{-2}}{q_i^2 - q_i^{-2}}$$
, we get, for $i_1 \in I_1$ and $i_2 \in I_2$,
 $e_{i_1} | P \rangle \oplus | x \rangle = \frac{1}{\alpha_{i_1} (q_{i_1}^2 - q_{i_1}^{-2})^2} | p_{i_1} - 1 \rangle \otimes \otimes \left[-q_{i_1}^2 (\mu_{i_1} - \sum_{j \in I} a_{i_1, j} p_j + 1) - q_{i_1}^{-2} (\mu_{i_1} - \sum_{j \in I} a_{i_1, j} p_j + 1) + \beta_{P_2}^{(j_1)} \right] | x \rangle$
(2.9)

and

$$f_{i_{2}}|P\rangle \oplus |x\rangle = \frac{1}{\alpha_{i_{2}}(q_{i_{2}}^{2} - q_{i_{2}}^{2})^{2}} |p_{i_{2}} + 1\rangle \otimes \\ \otimes \left[-q_{i_{2}}^{2}(\mu_{i_{2}} - \sum_{j \in I} a_{i_{2}}jp_{j} - 1) - q_{i_{2}}^{-2}(\mu_{i_{2}} - \sum_{j \in I} a_{i_{2}}jp_{j} - 1) + \beta_{P_{1}}^{(i_{2})} \right] |x\rangle,$$

$$(2.10)$$

where $\beta_{P_2}^{(i_1)}$ (respectively $\beta_{P_1}^{(i_2)}$) is an operator acting on \mathcal{M} , and whose expression only depends on $P_2 = \{p_{i_2}; i_2 \in I_2\}$ (respectively on $P_1 = \{p_{i_1}; i_1 \in I_1\}$).

Proposition. The dependence of $\beta_{P_2}^{(i_1)}$ on P_2 is given by

$$\beta_{P_2}^{(i_1)} = \sum_{\substack{l_{i_2} = -a_{i_2 i_1}, \ (i_2 \in I_2)}} \sum_{\substack{j_{i_1} = 2, \dots, a_{i_2 i_1} \\ (i_2 \in I_2)}} \beta_{(l_1)_{i_2 \in I_2}} \prod_{j_2 \in I_2} q_{j_2}^{2l_{j_2} p_{j_2}}$$
(2.11)

and $\beta_{P_1}^{(i_2)}$ depends in the same way on the indices p_{i_1} ,

$$\beta_{P_1}^{(i_2)} = \sum_{\substack{l_{i_1} = -a_{i_1 i_2}, \ -a_{i_1 i_2} + 2, \dots, \ a_{i_1 i_2}}} \sum_{\substack{j_1 \in I_1 \\ (i_1 \in I_1)}} \prod_{j_1 \in I_1} q_{j_1}^{2l_{j_1} p_{j_1}}, \qquad (2.12)$$

where $\beta_{(l_{i_2})_{l_1 \in l_2}}^{(i_1)}$ and $\beta_{(l_{i_1})_{i_1 \in l_1}}^{(i_2)}$ are constant operators on \mathcal{M} , the indices l_i of which being the exponents of q_i^2 in β .

Flat Periodic Representations of $\mathcal{U}_{a}(\mathcal{G})$

Proof. The dependence of $\beta_{P_2}^{(i_1)}$ on p_{i_2} is provided by the Serre relation involving one power of e_{i_1} and e_{i_2} to the power $(1 - a_{i_2i_1})$:

$$\sum_{n=0}^{1-a_{i_2i_1}} (-1)^n \begin{bmatrix} 1-a_{i_2i_1}\\n \end{bmatrix}_{q_{i_2}^2} \beta^{(i_1)}_{\dots, p_{i_2}-n,\dots} = 0.$$
(2.13)

Since the roots of the polynomial

$$\sum_{n=0}^{1-a} (-1)^n \begin{bmatrix} 1-a \\ n \end{bmatrix}_{q_t^2} x^n = 0$$

are q_i^{-2a} , $q_i^{-2(a-2)}$, $q_i^{-2(a-4)}$... $q_i^{2(a-2)}$, q_i^{2a} , then $\beta_{P_2}^{(i_1)}$ is a linear combination of $q_{i_2}^{21p_{i_2}}$ with $l \in \{-a_{i_2i_1}, -a_{i_2i_1} + 2, ..., a_{i_2i_1}\}$ each coefficient being an operator on \mathcal{M} independent of p_{i_2} . This proves the proposition. In particular, if $a_{i_2i_1} = 0$, then $\beta_{P_2}^{(i_1)}$ does not depend on p_{i_2} . $\beta_{(i_1)_{i_2i_1}}^{(i_1)}$ and $\beta_{(i_2)_{i_1i_1}}^{(i_2)}$ generate an auxiliary algebra, as in [3, 5], whose defin-

ing relations are provided by the not already used Serre relations and by $[e_i, f_i] = 0$ for $i \neq j$.

In the following, we study flat periodic representations. Since the e_i 's and f_i 's are injective, the multiplicities of the weights, i.e. the dimension of the weight spaces M_P , are independent of P. For flat periodic representations, we suppose then that these multiplicities are 1, i.e. dim $\mathcal{M} = 1$. The dimension of a flat periodic representation is hence dim $M = m^N$. $(N = \operatorname{rank} \mathscr{G})$. Since dim $\mathcal{M} = 1$, all the operators β commute mutually.

In the particular case $\mathscr{G} = \mathscr{G}(A_1)$, i.e. $\mathscr{U}_q(SU(2))$, no further constraint appears. A flat periodic representation of $\mathcal{U}_q(SU(2))$ is characterized $\alpha = \alpha_1$, $\mu = \mu_1$ and $\beta = \beta^{(1)} \in \mathbb{C}$. All periodic irreducible representations of $\mathcal{U}_a(SU(2))$ are flat (of dimension *m*; the multiplicities of the weights are 1) (see [2]).

3. Constraints due to a Particular Link of the Dynkin Diagram

Let \mathscr{G} be a simple Lie algebra with Cartan matrix A. We now focus on a particular link (i_1, i_2) of the Dynkin diagram, i.e. consider the action of the subalgebra generated by $e_{i_1}, e_{i_2}, f_{i_1}, f_{i_2}, k_{i_1}$ and k_{i_2} on a subspace of M defined by fixed values of p_j 's for $j \neq i_1, i_2$. This subalgebra is either $\mathcal{U}_q(SU(3))$, (if $a_{i_1i_2} = a_{i_2i_1} = -1$) or $\mathcal{U}_q(SO(5))$, (if $a_{i_1i_2} = -2$ and $a_{i_2i_1} = -1$ or vice versa) or finally $\mathcal{U}_q(G_2)$, (if $a_{i_1i_2} = -3$ and $a_{i_2i_1} = -1$). We define effective μ'_{i_1} and μ'_{i_2} by

$$\mu_{i_{1}}^{\prime} = \mu_{i_{1}} - \sum_{\substack{j \neq i_{1} \\ j \neq i_{2}}} a_{i_{1}j} p_{j},$$

$$\mu_{i_{2}}^{\prime} = \mu_{i_{2}} - \sum_{\substack{j \neq i_{1} \\ j \neq i_{2}}} a_{i_{2}j} p_{j},$$
(3.1)

so that the constant values of p_j other than p_{i_1} and p_{i_2} are taken in account by replacing μ_{i_1} , μ_{i_2} by the corresponding μ'_{i_1} , μ'_{i_2} . The dependence of $\beta^{(i_1)}$ (respectively $\beta^{(i_2)}$) on p_{i_2} (respectively on p_{i_1}) will be made explicit in this section.

D. Arnaudon and A. Chakrabarti

a) First case: subalgebra $\mathscr{U}_q(SU(3))$ $(q_{i_1} = q_{i_2})$.

The auxiliary algebra is defined by the generators $\beta_{\pm 1}^{(i_1)}$, $\beta_{\pm 1}^{(i_2)}$ (related, up to a normalization, to u, u', v and v' of [3]) and the relations (simpler than in [3] since dim $\mathcal{M} = 1$ so that the β 's are scalar):

$$\begin{cases} \beta_{+1}^{(i_1)} \beta_{+1}^{(i_2)} = q_{i_1}^{-2} {}^{(\mu_{i_1}^i + \mu_{i_2}^i)} \\ \beta_{-1}^{(i_1)} \beta_{-1}^{(i_2)} = q_{i_1}^{2} {}^{(\mu_{i_1}^i + \mu_{i_2}^i)} \\ \beta_{+1}^{(i_1)} \beta_{-1}^{(i_1)} = 1. \end{cases}$$
(3.2)

The dependence of $\mu'_{i_1} + \mu'_{i_2}$ on the p_j 's is then easy to distribute between $\beta^{(i_1)}$ and $\beta^{(i_2)}$, since for all $j \neq i_i, i_2$ we have $a_{i_1j}a_{i_2j} = 0$. So

$$\begin{cases} \beta^{(i_1)} = q_{i_1}^2 \binom{p_{i_2} - \mu_{i_1} + \sum\limits_{\substack{j \neq i_1 \\ j \neq i_2}} a_{i_1 j} p_j + \lambda}{j^{+}_{i_1}} + q_{i_1}^{-2} \binom{p_{i_2} - \mu_{i_1} + \sum\limits_{\substack{j \neq i_1 \\ j \neq i_2}} a_{i_1 j} p_j + \lambda}{j^{+}_{i_1}} \\ \beta^{(i_2)} = q_{i_2}^2 \binom{p_{i_1} - \mu_{i_2} + \sum\limits_{\substack{j \neq i_1 \\ j \neq i_2}} a_{i_2 j} p_j - \lambda}{j^{+}_{i_2}} + q_{i_2}^{-2} \binom{p_{i_1} - \mu_{i_2} + \sum\limits_{\substack{j \neq i_1 \\ j \neq i_2}} a_{i_2 j} p_j - \lambda}{j^{+}_{i_2}} \end{cases},$$
(3.3)

where λ is a complex parameter, independent of the p_i 's.

The dependence of $\beta^{(i_1)}$ on p_j 's other than p_{i_2} is hence already known, and has to be compatible with the constraints provided by the other links of the Dynkin diagram.

b) Second case: subalgebra $\mathcal{U}_q(SO(5))$. Let $a_{i_1i_2} = -2$ and $a_{i_2i_1} = -1$ so that $q_{i_2} = q_{i_1}^2$. Then

$$\beta^{(i_1)} = \beta^{(i_1)}_{+1} q_{i_2}^{2 p_{i_2}} + \beta^{(i_1)}_{-1} q_{i_2}^{-2 p_{i_2}} \beta^{(i_2)} = \beta^{(i_2)}_{+2} q_{i_1}^{4 p_{i_1}} + \beta^{(i_2)}_{0} + \beta^{(i_2)}_{-2} q_{i_1}^{-4 p_{i_1}}.$$
(3.4)

The relations satisfied by $\beta_{\pm 1}^{(i_1)}$, $\beta_{\pm 2}^{(i_2)}$ and $\beta_0^{(i_2)}$ are given in the appendix in the general case of non-commuting β 's (dim $\mathcal{M} \ge 1$). In the case of flat periodic representations (dim $\mathcal{M} = 1$), they reduce to either

$$\begin{cases} \beta_0^{(i_2)} = \beta_{+1}^{(i_1)} = \beta_{-1}^{(i_1)} = 0\\ \beta_{+2}^{(i_2)} = -q_{i_2}^{-2\mu_{i_1}^{(-2\mu_{i_2}^{(-2)} + \mu_{i_2}^{(-2)}}\\ \beta_{-2}^{(i_2)} = -q_{i_2}^{2\mu_{i_1}^{(+2)} + 2\mu_{i_2}^{(-2)}} \end{cases}$$
(3.5)

or

$$\begin{cases} \beta_{\pm 2}^{i_2} = \beta_{-2}^{i_2} = 0\\ \beta_0^{i_2} = \varepsilon(q_{i_2} + q_{i_2}^{-1})\\ \beta_{\pm 1}^{i_1} = \varepsilon q_{i_2}^{-\mu_{i_1}^{-2} - \mu_{i_2}^{i_2}}\\ \beta_{\pm 1}^{i_1} = \varepsilon q_{i_2}^{\mu_{i_1}^{-1} - 2 \mu_{i_2}^{i_2}}. \end{cases} \text{ with } \varepsilon = \pm 1$$

$$(3.6)$$

We see that either $\beta^{(i_2)}$ or $\beta^{(i_1)}$ (not both) can depend on p_j 's related to other points of the Dynkin diagram. Furthermore, it depends, through μ'_{i_1} and μ'_{i_2} on p_j 's related to neighbouring points of both i_1 and i_2 . As a consequence, quantum Lie algebras whose Dynkin diagrams have extensions on both sides of the double link (i_1, i_2) , i.e. which contain $\mathcal{U}_q(F_4)$ will not admit flat periodic representations.

610

Flat Periodic Representations of $\mathscr{U}_q(\mathscr{G})$

c) Third case: subalgebra
$$\mathscr{G} = \mathscr{G}(G_2)$$
.
Let $a_{12} = -3$, $a_{21} = -1$ so that $q_2 = q_1^3$. Then

$$\begin{cases} \beta^{(1)} = q_2^2 \beta^{(1)}_{+1} + q_2^{-2} \beta^{(1)}_{-1} \\ \beta^{(2)} = q_1^6 \beta^{(2)}_{+3} + q_1^2 \beta^{(2)}_{+1} + q_1^{-2} \beta^{(2)}_{-1} + q_1^{-6} \beta^{(2)}_{-3}. \end{cases}$$
(3.7)

But the relations between β 's required by the further constraints cannot be satisfied for commuting β 's. So there is no periodic representation $\mathscr{U}_q(\mathscr{G}(G_2))$ of dimension m^2 .

4. Extension to General Simple Lie Algebra

We follow the classification A_N , B_N ,.... The action of e_i , f_i , k_i is given by (2.8), (2.9), (2.10), the value of β being made explicit in each case.

a) First case: $A_N (\mathscr{U}_q(SU(N+1)))$.

 $N + 1 = \det A_N$ and *m* are supposed to be coprime. The results (3.3) of the study of $\mathcal{U}_q(SU(3))$ immediately lead to

$$\beta^{(i)} = q^{2(p_{i-1}-p_{i+1}+\lambda_i)} + q^{-2(p_{i-1}-p_{i+1}+\lambda_i)}$$
(4.1)

with

$$\lambda_{i+1} = \lambda_i - \mu_i - \mu_{i+1} \mod \frac{m}{2} \tag{4.2}$$

and $p_i \equiv 0$ if *i* is out of the Dynkin diagram.

Flat periodic representations of $\mathcal{W}_q(SU(N+1))$, of dimension M^N have then 2N + 1 complex parameters $(\alpha_i, \mu_i)_{i=1...N}$ and λ_1 .

After a change of normalization of the basis, they can be expressed as

$$k_{i} | P \rangle = q^{\mu_{i} - 2p_{i} + p_{i-1} + p_{i+1}} | P \rangle,$$

$$f_{i} | P \rangle = c_{i} \left(\left[p_{i} - p_{i-1} - \frac{1}{2} (\mu_{i} + \lambda_{i} - 1) \right]_{q^{2}} \\ \cdot \left[p_{i+1} - p_{i} - \frac{1}{2} (-\mu_{i} + \lambda_{i} - 1) - 1 \right]_{q^{2}} \right)^{1/2} | p_{i} + 1 \rangle,$$

$$e_{i} | P \rangle = \frac{1}{c_{i}} \left(\left[p_{i} - p_{i-1} - \frac{1}{2} (\mu_{i} + \lambda_{i} - 1) - 1 \right]_{q^{2}} \\ \cdot \left[p_{i+1} - p_{i} - \frac{1}{2} (-\mu_{i} + \lambda_{i} - 1) \right]_{q^{2}} \right)^{1/2} | p_{i} - 1 \rangle,$$
(4.3)

corresponding to the example of partially periodic representations given in [5] in terms of the Gelfand-Zetlin basis.

We have restricted ourselves to the case when m and N + 1 are coprime. If this is not so, a treatment analoguous to that of [3] (Sect. V) proves that the above relations also define the smallest periodic representation of $\mathcal{U}_q(\mathcal{G}(A_N))$. The weights are however degenerate in this case, so that the representation is still minimal, but not flat. b) $B_N: \mathscr{U}_q(SO(2N+1)).$

. ...

We already know from the preceding section that the subalgebra $\mathscr{U}_q(SO(5))$ has two four-parameters flat representations. Let α_1 be the short root $(i_1 = 1$ in the study of $\mathscr{U}_q(SO(5)))$ and $\alpha_2 \dots \alpha_N$ the others. $\beta^{(1)}$ cannot depend on p_3 (involved in μ'_2) since $a_{13} = 0$. So the second solution (3.6) of $\mathscr{U}_q(SO(5))$ cannot be extended to one of $\mathscr{U}_q(SO(2N+1))$ for N > 2.

The first solution (3.5) coupled to the constraint (3.3) of $\mathcal{U}_q(SU(3))$ for the other links leads to

$$\begin{cases} \beta^{(i)} = 0\\ \beta^{(i)} = -q^{4(p_{i-1}-p_{i+1}+\lambda_i)} - q^{-4(p_{i-1}-p_{i+1}+\lambda_i)} & i = 2, \dots, N \end{cases}$$
(4.4)

with (4.2) and $\lambda_2 = -\mu_1 - \mu_2$. Flat periodic representations of $\mathcal{U}_q(SO(2N+1))$ have 2N complex parameters $(\alpha_i, \mu_i)_{i=1,...,N}$ and also dimension m^N .

c) $C_N: \mathscr{U}_q(Sp(2N)).$

Only the second solution (3.6) of $\mathcal{U}_q(SO(5))$ generalizes to one of C_N (N > 2). Let a_0 be the long root $(i_2 = 0$ in the study of $\mathcal{U}_q(SO(5)))$ and $a_1 \ldots a_{N-1}$ the others. The flat periodic representation of $\mathcal{U}_q(Sp(2N))$ are given by

$$\begin{cases} \beta^{(0)} = \varepsilon (q^2 + q^{-2}) \\ \beta^{(1)} = \varepsilon (q^{2(2p_0 - p_2 + \lambda_1)} + q^{-2(2p_0 - p_2 + \lambda_1)}) \\ \beta^{(i)} = \varepsilon (q^{2(p_{i-1} - p_{i+1} + \lambda_i)} + q^{-2(p_{i-1} - p_{i+1} + \lambda_i)}) \end{cases} \quad i = 2, \dots, N-1$$
(4.5)

with (4.2) and $\lambda_1 = -2\mu_0 - \mu_1$, and have 2N complex parameters $(\alpha_i, \mu_i)_{i=0, \dots, N-1}$.

d-e) D_N , ($\mathcal{U}_q(SO(2N))$) and E-type exceptional cases.

Let us focus on the D_4 ($\mathcal{U}_q(SO(8))$) subalgebra related to the neighbourhood of the branching point of the Dynkin diagram. Let $i_2 = 2$ be the label of the branching point, and 1, 3 and * his three odd neighbours. The $\mathcal{U}_q(SU(3))$ subalgebra related to the points 1 and 2 of the Dynkin diagram provides the expression (3.3) for β^2 :

$$\beta^{(2)} = q^{2(p_1 - p_3 - p_* - \lambda)} + q^{-2(p_1 - p_3 - p_* - \lambda)}$$
(4.6)

which is obviously inconsistent with that obtained from the subalgebras of type $\mathcal{U}_q(SU(3))$ corresponding to the links (3, 2) or (*, 2), i.e.

$$\beta^{(2)} = q^{2(-p_1+p_3-p_*-\lambda')} + q^{-2(-p_1+p_3-p_*-\lambda')},$$

$$\beta^{(2)} = q^{2(-p_1-p_3+p_*-\lambda'')} + q^{-2(-p_1-p_3+p_*-\lambda'')},$$
(4.7)

since the symmetry between p_1 , p_3 and p_* is broken. So there is no flat periodic representation of $\mathcal{U}_q(SO(8))$ and hence no flat periodic representation of $(D_N)_{N \ge 4}$ and $(E_N)_{N=6,7,8}$.

f) F_4 case. As we remarked before, the two flat periodic representations of $\mathscr{U}_q(SO(5))$ cannot be generalized on both sides of the double line of the Dynkin diagram. F_4 has then no flat periodic representation.

g) G_2 was already excluded in the previous section.

Flat Periodic Representations of $\mathcal{U}_{q}(\mathcal{G})$

5. Flat Periodic Representations of Quantum Analogues of Affine Type Lie Algebras

Let \mathscr{G} be an affine extension of a simple Lie algebra and A the Cartan matrix of \mathscr{G} . Then there exists [14] a unique vector $\delta = (\delta_i)_{i \in I}$ such that $A\delta = 0$ and the δ_i are positive integers, one among them being equal to 1. Let again $\mathbb{C} | 0 \rangle$ be the common eigenspace of k_i , $i \in I$ associated to the eigenvalues $q_i^{\mu_i}$ (unique up to a numerical factor since we consider flat periodic representations) and let $|P\rangle$ with $p_i = 0, \ldots, m-1$ for $i \in I$ be defined as before by the action of $(f_{i_1})_{i_1 \in I_1}$ and $(e_{i_2})_{i_2 \in I_2}$ on $|0\rangle$. Since

$$AP = AP' \Leftrightarrow P \equiv P' \mod \delta \tag{5.1}$$

we then identify the states differing by an integer multiple of δ , i.e. we consider the equivalence classes

$$|P\rangle = \{|P'\rangle \text{ such that } P' - P = 0 \mod \delta\}.$$
 (5.2)

Proposition. The operator

$$\mathscr{C} = \prod_{i \in I} k_i^{\delta_i} \in \mathscr{U}_q(\mathscr{G})$$
(5.3)

is in the center of the algebra $\mathcal{U}_{a}(\mathcal{G})$.

Proof. \mathscr{C} commutes with k_j ; with e_j , we have, since $q_i^{a_{ij}} = q_j^{a_{ji}}$,

$$\mathscr{C}e_{j} = \prod_{i \in I} k_{i}^{\delta_{i}}e_{j} = \left(\prod_{i \in I} q_{i}^{\delta_{i} a_{ij}}\right)e_{j}\mathscr{C} = q_{j}^{\left(\sum_{i} a_{j}, \delta_{i}\right)}e_{j}\mathscr{C}.$$

Remark. In [14], the canonical central element is $c = \sum_{i \in I} \delta_i^V h_i$, where the system of coroots $\{h_i\}_{i \in I}$ generates the Cartan subalgebra, and where $(\delta_i^V = \frac{1}{2}(\alpha_i | \alpha_i) \delta_i)_{i \in I}$ is an eigenvector related to eigenvalue 0 of tA , the transposed Cartan matrix. k_i is in fact related to h_i by $k_i = q_i^{h_i}$ so that $\mathscr{C} = q^c$.

In the following, the eigenvalue $q_{i}^{\sum \delta_{i}^{F} \mu_{i}}$ of \mathscr{C} will be constrained by the application of Serre relations and $[e_{i}, f_{j}] = 0$ for $i \neq j$ on the module, so that, in particular,

$$\left[\sum_{i} \delta_{i}^{V} \mu_{i}\right]_{q^{2}} = 0, \qquad (5.4)$$

corresponding to the vanishing of the central charge modulo m.

We now consider case by each affine Lie algebra, following the classification of [14]. In each case, we give the expression of δ and $\beta^{(i)}$. Since we already know that branching points in the Dynkin diagram forbids the existence of flat periodic representations, we do not have to consider the cases $B_n^{(1)}$, $D_n^{(1)}$, $E_6^{(1)}$, $E_7^{(1)}$, $E_8^{(1)}$, and $A_{2n-1}^{(2)}$. The cases $G_2^{(1)}$ and $D_4^{(3)}$ are excluded since the triple link of their subdiagram G_2 does not allow flat periodic representations. $F_4^{(1)}$ and $E_6^{(2)}$ are also excluded since they contain F_4 .

a)
$$A_1^{(1)}$$
. Here $\delta = |1, 1\rangle$

This new case of 2-points Dynkin diagram was not studied in Sect. 3. In this case the constraints reduce to

$$[\mu_1 + \mu_2]_{q^2} = 0, (5.5)$$

i.e. $q^{2(\mu_1 + \mu_2)} = \varepsilon$ with $\varepsilon = \pm 1$ and

$$\begin{cases} \beta^{(1)} = \beta_0^{(1)} \\ \beta^{(2)} = \beta_0^{(2)} = \varepsilon \beta_0^{(1)}. \end{cases}$$
(5.6)

The dimension is *m* and the independent parameters are α_1 , α_2 , μ_1 and $\beta_0^{(1)}$. (This case is in fact a particular expression of the following.)

The flat periodic representations of $\mathcal{U}_q(\mathscr{G}(A_1^{(1)}))$ are also described in [12], where their intertwiner is given, and is related to the chiral Potts model.

b) $A_n^{(1)}$ (n > 1), *n* odd; here $|\delta\rangle = |1, 1, ..., 1\rangle$.

Flat periodic representations of $\mathscr{G}(A_n^{(1)})$ are still given by (4.3) with $i = 1, \ldots, n + 1$. The constraint (4.2) on l_i has to be periodic in *i*, so that

$$[\sum \mu_i]_{q^2} = 0 \tag{5.7}$$

corresponding to the vanishing of the central charge modulo m. The dimension is m^n and there are 2(n + 1) independent parameters: $(\alpha_i)_{i=1,...,n+1}$, $(\mu_i)_{i=1,...,n}$, λ_1 .

In the first section, we excluded the case when n is even since this forbids the partition of I into I_1 and I_2 , subsets of odd and even indices, such that among two neighbouring points of the Dynkin diagram, one belongs to I_1 and the other to I_2 . However with the choice of basis of (4.3), the symmetry between odd and even indices is recovered and this construction of flat periodic modules also holds for $A_n^{(1)}$ with even n.

Flat periodic representations of $\mathscr{U}_q(\mathscr{G}(A_n^{(1)}))$ were used in [11] to generalize the chiral Potts model.

c) $C_n^{(1)} n \ge 2$. Here $|\delta\rangle = |1, 2, 2, ..., 2, 1\rangle$.

In this case, the second solution (3.6) of $\mathcal{U}_q(SO(5))$ is used for subdiagrams (0,1) and (n-1,n), whereas the constraint (3.3) provided by $\mathcal{U}_q(SU(3))$ holds for the other links,

$$\begin{cases} \beta^{(0)} = \beta^{(n+1)} = \varepsilon (q^2 + q^{-2}) \\ \beta^{(i)} = \varepsilon (q^{2(a_{ii-1}p_{i-1} - a_{ii+1}p_{i+1} + \lambda_i)} + q^{-2(a_{ii-1}p_{i-1} - a_{ii+1}p_{i+1} + \lambda_i)}) \end{cases}$$
(5.8)

with (4.2), $\lambda_1 = -2\mu_0 - \mu_1$ and $\lambda_n = -2\mu_{n+1} - \mu_n$.

As a consequence

$$[\sum \mu_i]_{q^2} = 0. (5.9)$$

d) $A_2^{(2)}$.

In this new case of two point Dynkin diagram not studied in Sect. 3, we have $a_{12} = -4$, $a_{21} = -1$ and $|\delta\rangle = |2,1\rangle$.

The constraints are

$$\begin{cases} \beta^{(1)} = 0\\ \beta^{(2)} = -\varepsilon (q^4 + q^{-4}), \end{cases}$$
(5.10)

where $\varepsilon = q^{2(2\mu_1 + 4\mu_2)}$ and $\varepsilon^2 = 1$ so that

$$[2\mu_1 + 4\mu_2]_{q^2} = 0. (5.11)$$

The dimension is *m* and the parameters are $\alpha_1, \alpha_2, \mu_1$.

Flat periodic representations of $\mathscr{U}_q(\mathscr{G}(A_2^{(2)}))$ have already been derived in [12] with their intertwiners.

614

Flat Periodic Representations of $\mathcal{U}_{a}(\mathcal{G})$

e) $A_{2n}^{(2)}$ with $n \ge 2$. Here $|\delta\rangle = |2, 2, ..., 2, 1\rangle$. We have to extend the first solution (3.5) of $\mathcal{U}_q(SO(5))$ from subdiagram (1,2), and the second solution (3.6) from subdiagram (2n-1,2n), using $\mathcal{U}_{q}(SU(3))$ constraints (3.3) in between. Hence

$$\begin{cases} \beta^{(1)} = 0\\ \beta^{(i)} = \varepsilon (q^{4(p_{i-1} - a_{ii+1}p_{i+1} + \lambda_i)} + q^{-4(p_{i-1} - a_{ii+1}p_{i+1} + \lambda_i)}) & \text{for } i = 2, \dots, 2n-1\\ \beta^{(2n)} = \varepsilon (q^4 + q^{-4}) & (5.12) \end{cases}$$

with

$$\begin{cases} \lambda_{2} = \frac{m}{8} - \mu_{1} - \mu_{2} \mod \frac{m}{4} \\ \lambda_{i+1} = \lambda_{i} - \mu_{i} - \mu_{i+1} \mod \frac{m}{4} \\ \lambda_{2n-1} = \mu_{2n-1} + 2\mu_{2n} \mod \frac{m}{4} \end{cases}$$
(5.13)

so that

$$\left[2\mu_1 + 4\sum_{i=2}^{2n}\mu_i\right]_{q^2} = 0.$$
 (5.14)

The dimension is m^{2n-1} and the parameters are $(\alpha_1)_{i=1, 2n}$ and $(\mu_i)_{i=1, 2n-1}$.

f) $D_{n+1}^{(2)}$ with $n \ge 2$. Here $|\delta\rangle = |1, 1, \dots, 1\rangle$.

We use the first solution (3.5) of $\mathcal{U}_{q}(SO(5))$ on both edges of the Dynkin diagram, and that (3.3) of $\mathcal{U}_q(SU(3))$ in the middle, so that

$$\begin{cases} \beta^{(1)} = \beta^{(n+1)} = 0\\ \beta^{(i)} = q^{4(p_{i-1} - p_{i+1} + \lambda_i)} + q^{-4(p_{i-1} - p_{i+1} + \lambda_i)} & \text{for } i = 2, \dots, n \end{cases}$$
(5.15)

with

$$\begin{cases} \lambda_{2} = \frac{m}{8} - \mu_{1} - \mu_{2} \mod \frac{m}{4} \\ \lambda_{i+1} = \lambda_{i} - \mu_{i} - \mu_{i+1} \mod \frac{m}{4} \\ \lambda_{n} = \frac{m}{8} + \mu_{n} + \mu_{n+1} \mod \frac{m}{4} \end{cases}$$
(5.16)

so that

$$\left[\mu_1 + 2\sum_{i=2}^n \mu_i + \mu_{n+1}\right]_{q^2} = 0.$$
 (5.17)

The dimension is m^n and the independent parameters are $(\alpha_i)_{i=1,n+1}, (\mu_i)_{i=1,n}$.

6. Conclusion

Several methods have been used for the study of explicit expression of representations of quantized envelopping algebras at root of unity. Inclusion into a Weyl algebra led to the expression of periodic representations of $\mathcal{U}_q(sl(n + 1, \mathbb{C}))$ in [4]. The use of the auxiliary algebra led in [3] to all the periodic representations of $\mathcal{U}_q(SU(3))$, and here to flat periodic representations of $\mathcal{U}_q(\mathscr{G})$. The Gelfand-Zetlin basis was used in [5] and [15], providing explicit expression of periodic and partially periodic representations of $\mathcal{U}_q(SU(N))$ and $\mathcal{U}_q(IU(N))$. However, explicit expressions of most general representations of $\mathcal{U}_q(\mathscr{G})$ for $q^m = 1$ do not exist now.

Another step toward comprehension of the case $q^m = 1$ will be the search for a *R*-matrix, intertwiner of representations, and related to Boltzman weights of statistical models.

Appendix

We present here the relations satisfied by the operators $\beta_{\pm 1}^{(i_1)}$, $\beta_{\pm 2}^{(i_2)}$ and $\beta_0^{(i_2)}$ generating the auxiliary algebra related to $\mathcal{U}_q(SO(5))$, in the general case of non-commuting β 's (dim $\mathcal{M} \ge 1$):

$$q_{i_2}^2 \beta_{+2}^{(i_2)} \beta_0^{(i_2)} - q_{i_2}^{-2} \beta_0^{(i_2)} \beta_{+2}^{(i_2)} = 0, \tag{A.1}$$

$$q_{i_2}^2 \beta_0^{(i_2)} \beta_{-2}^{(i_2)} - q_{i_2}^{-2} \beta_{-2}^{(i_2)} \beta_0^{(i_2)} = 0,$$
(A.2)

$$q_{i_2}^2 \beta_{+2}^{(i_2)} \beta_{-2}^{(i_2)} - q_{i_2}^{-2} \beta_{-2}^{(i_2)} \beta_{+2}^{(i_2)} = (q_{i_2}^2 - q_{i_2}^{-2}) \left[1 - \frac{1}{(q_{i_2} + q_{i_2}^{-1})^2} \beta_0^{(i_2)^2} \right], \quad (A.3)$$

$$q_{i_2}^2 \beta_{+1}^{(i_1)} \beta_{+2}^{(i_2)} - q_{i_2}^{-2} \beta_{+2}^{(i_2)} \beta_{+1}^{(i_1)} = 0,$$
(A.4)

$$q_{i_2}^2 \beta_{-2}^{(i_1)} \beta_{-1}^{(i_1)} - q_{i_2}^{-2} \beta_{-1}^{(i_1)} \beta_{-2}^{(i_2)} = 0,$$
(A.5)

$$(q_{i_2} - q_{i_2}^{-1}) q_{i_2}^{-\mu_1} \beta_0^{(i_2)} - (q_{i_2}^2 - q_{i_2}^{-2}) q_{i_2}^{2\mu_2} \beta_{+1}^{(i_1)} + [\beta_{-1}^{(i_1)}, \beta_{+2}^{(i_2)}] = 0, \quad (A.6)$$

$$(q_{i_2} - q_{i_2}^{-1}) q_{i_2}^{\mu_1} \beta_0^{(i_2)} - (q_{i_2}^2 - q_{i_2}^{-2}) q_{i_2}^{-2\mu_2} \beta_{-1}^{(i_1)} - [\beta_{+1}^{(i_1)}, \beta_{-2}^{(i_2)}] = 0, \quad (A.7)$$

$$q_{i_2}\beta_{i_1}^{(i_1)}\beta_0^{(i_2)} - q_{i_2}^{-1}\beta_0^{(i_2)}\beta_{i_1}^{(i_1)} = (q_{i_2}^2 - q_{i_2}^{-2})\left[q_{i_2}^{-\mu_1 - 2\mu_2} + q_{i_2}^{\mu_1}\beta_{+2}^{(i_2)}\right], \quad (A.8)$$

$$q_{i_2}\beta_0^{(i_2)}\beta_{-1}^{(i_1)} - q_{i_2}^{-1}\beta_{-1}^{(i_1)}\beta_0^{(i_2)} = (q_{i_2}^2 - q_{i_2}^{-2})\left[q_{i_2}^{\mu_1 + 2\mu_2} + q_{i_2}^{-\mu_1}\beta_{-2}^{(i_2)}\right], \quad (A.9)$$

$$\begin{array}{l} q_{i_2}^3 \beta_{-1}^{(i_1)} \beta_{+1}^{(i_1)^2} - (q_{i_2} + q_{i_2}^{-1}) \beta_{+1}^{(i_1)} \beta_{-1}^{(i_1)} \beta_{+1}^{(i_1)} + q_{i_2}^{-3} \beta_{+1}^{(i_1)^2} \beta_{-1}^{(i_1)} \\ - (q_{i_2}^2 - q_{i_2}^{-2}) (q_{i_2} - q_{i_2}^{-1}) \beta_{+1}^{(i_1)} = 0, \end{array}$$
(A.10)

$$\begin{array}{l} q_{i_2}^3 \beta_{-1}^{(i_1)^2} \beta_{+1}^{(i_1)} - (q_{i_2} + q_{i_2}^{-1}) \beta_{-1}^{(i_1)} \beta_{+1}^{(i_1)} \beta_{-1}^{(i_1)} + q_{i_2}^{-3} \beta_{+1}^{(i_1)} \beta_{-1}^{(i_1)^2} \\ - (q_{i_2}^2 - q_{i_2}^{-2}) (q_{i_2} - q_{i_2}^{-1}) \beta_{-1}^{(i_1)} = 0. \end{array}$$
(A.11)

This paper is restricted to flat periodic representation, but we briefly present in this appendix the following result as an example of the more general scope of the formalism of the auxiliary algebra. The following $1 \le k \le m$ dimensional irreducible representations of the auxiliary algebra (A.1-11) genFlat Periodic Representations of $\mathscr{U}_q(\mathscr{G})$

$$\beta_{0}^{(i_{2})} = c (q_{i_{2}} + q_{i_{2}}^{-1}) \operatorname{diag}(q_{i_{2}}^{4i})_{i=0,...,k-1},$$

$$(\beta_{+2}^{(i_{2})})_{i+1,i} = K^{-1} (c q_{i_{2}}^{4i+2} - \lambda^{-1}),$$

$$(\beta_{-2}^{(i_{2})})_{i,i+1} = K (c q_{i_{2}}^{4i+2} - \lambda),$$

$$\beta_{\pm 1}^{(i_{1})} = (q_{i_{2}} + q_{i_{2}}^{-1}) (q_{i_{2}}^{\pm \mu_{i_{1}} \mp 2} \mu_{i_{2}} - q_{i_{2}}^{\pm \mu_{i_{1}} \mp 2} \beta_{\pm 2}^{(i_{2})}) (\beta_{0}^{(i_{2})})^{-1}.$$
(A.12)

They lead to km^2 dimensional representations of $\mathcal{U}_q(SO(5))$ with parameters $\mu_{i_{1,2}}$, $\alpha_{i_{1,2}}$, c, K and λ . According to [6] however, there exist up to m^2 dimensional irreducible representations of it, leading to m^4 dimensional irreducible representation of $\mathcal{U}_q(SO(5))$.

Acknowledgement. We thank D. Bernard for discussions and encouragements.

References

- 1. Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras. Funct. Anal. Appl. 17, 273 (1983)
- 2. Roche, P., Arnaudon, D.: Irreducible representations of the quantum analogue of SU(2). Lett. Math. Phys. 17, 295 (1989)
- 3. Arnaudon, D.: Periodic and flat irreducible representations of $SU(3)_q$. Commun. Math. Phys. 134, 523-537 (1991)
- 4. Date, E., Jimbo, M., Miki, K., Miwa, T.: Cyclic representations of $\mathcal{U}_q(sl(n+1,\mathbb{C}))$ at $q^N = 1$. Preprint RIMS 703 (1990) to appear in Publ. RIMS
- 5. Arnaudon, D., Chakrabarti, A.: Periodic and partially periodic representations of $SU(N)_q$. Preprint Ecole Polytechnique A 989.0690, Commun. Math. Phys. (in press)
- 6. De Concini, C., Kac, V.G.: Representations of quantum groups at roots of 1. Progress in Math. vol. 92, p. 471. Basel: Birkhäuser 1990
- 7. Bazhanov, V.V., Stroganov, Y.G.: Chiral Potts models as a decendant of the six vertex models. J. Stat. Phys. 51, 799-817 (1990)
- Bernard, D., Pasquier, V.: Exchange algebra and exotic supersymmetry in the chiral Potts model. Preprint CEN Saclay SPhT (89-204)
- 9. Bazhanov, V. V., Kashaev, R. M.: Cyclic L operators related with 3-state R-matrix. Preprint RMS-702 (1990)
- 10. Date, E., Jimbo, M., Miki, K., Miwa, T.: *R*-Matrix for cyclic representations of $\mathcal{U}_{q}(sl(3,\mathbb{C}))$ at $q^{3} = 1$. Phys. Lett. A148, 45-49 (1990)
- 11. Date, E., Jimbo, M., Miki, K., Miwa, T.: Generalized chiral Potts models and minimal cyclic representations of $\mathcal{U}_q(gl(n, \mathbb{C}))$. Preprint RIMS-715 (1990)
- Date, E., Jimbo, M., Miki, K., Miwa, T.: New R-Matrices associated with cyclic representations of \$\mathcal{U}_a(A_2^{(2)})\$. Preprint RIM9-706 (1990) and references therein
- 13. Rosso, M.: Finite dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Commun. Math. Phys. 117, 581 (1988)
- 14. Kac, V.G.: Infinite dimensional Lie algebras. Basel: Birkhäuser 1983 and Cambridge University Press 1985
- Arnaudon, D., Chakrabarti, A.: q-analogue of IU(n) for q a root of unity. Phys. Lett. B 255, 242 (1991)

Communicated by K. Gawedzki

Note added in proof. We thank Profs. C. de Concini and V. Kac for pointing out that our results concerning existence or non existence of flat solutions are compatible with Conjecture 1 of "Quantum coadjoint action" (1991) by C. de Concini, V. Kac, and C. Procesi.