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Abstract. We study chiral symmetry in the strong coupling limit of lattice
gauge theory with staggered fermions and show rigorously that chiral sym-
metry is broken spontaneously in massless QED and the gauge-invariant
Nambu-Jona-Lasinio model if the dimension of spacetime is at least four. The
results for the chiral condensate as a function of the mass imply that the
mean-field approximation is an upper bound for this observable which be-
comes exact as the dimension goes to infinity. For the model with gauge
group U(N), N = 2,3,4, we prove that chiral long-range order exists at zero
mass in four or more dimensions.

1. Introduction

The idea that the pion is an approximate Nambu-Goldstone particle induced
by the (approximately) spontaneous breaking of the axial SU(2) invariance,
and that the same mechanism gives most of its mass to the nucleon, is by now
thirty years old [1, 2]. It has survived the tremendous changes that have oc-
curred since then in the description of strong interactions and is nowadays
generally believed to be realized in QCD. Nevertheless to this day a more
rigorous mathematical understanding of this phenomenon, going beyond the
mean-field analysis in [2] is lacking.

Heuristic arguments that were advanced much more recently suggested
that spontaneous breaking of chiral symmetry should be in some way related
to confinement in QCD with massless quarks [3]; these arguments still hinge
on the relation of chiral symmetry breaking and condensation phenomena
that was for purely fermionic theories first analyzed in the above-mentioned
pioneering papers by Nambu and Jona-Lasinio [1, 2]. In their treatment the
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nucleons appear as "dressed" particles and their mass is proportional to the
value of the chiral condensate of a fundamental theory of massless fermions
alone, which exhibits chiral symmetry breaking. Mesons arise as bound states
from a condensation of the fundamental fermions. The Nambu-Jona-Lasinio
(NJL) model is not renormalizable, which makes a treatment surmounting
the mean-fϊeld-approximation of Nambu and Jona-Lasinio difficult, but its
two-dimensional analogue, first introduced by Thirring [4], is [5], and chiral
symmetry breaking was shown to take place in this model [6] in the N = αo-
limit. However, there remained the question how this result could be recon-
ciled with the Mermin-Wagner [7, 8] or Coleman theorem [9] which states that
continuous symmetries cannot be broken spontaneously in two-dimensional
systems of statistical mechanics or relativistic quantum field theory.

Recently, the question of spontaneous chiral symmetry breaking has played
a role in the triviality discussion of QED [10-16]. Miransky [10] solved a trun-
cated version of the Schwinger-Dyson equations which is obtained by omis-
sion of vertex corrections and fermion loops. In this approximation there is a
critical value ec of the bare charge e0 such that chiral symmetry is broken for
eo> ec, and ec is a point where the ultraviolet cutoff can be removed. Miransky
also gave a scaling prediction for the continuum theory to be constructed at ec.
Apart from other objections, his truncation (as well as the improved one of
Rakow [17]) of the Schwinger-Dyson equations is inconsistent with the Ward
identity and the results so obtained seem seriously defective.

Since chiral symmetry breaking was claimed to happen at large values of e0,
it is natural to consider the question in the framework of lattice gauge theory,
where the problems with the Ward identity are absent because the regulariza-
tion of the interaction between gauge fields and fermions is gauge-invariant
in this case. Kogut, Dagotto and Kocic [11], and later on Schierholz and
coworkers [12, 14], did numerical studies to analyze the phase structure of
QED with staggered fermions. Staggered fermions where chosen because they
still have a continuous chiral symmetry; moreover, they are technically sim-
pler than the physically more desirable Wilson fermions. The numerical re-
sults agree with Miransky's as far as the existence of ec and a chiral-sym-
metry-breaking phase at strong coupling is concerned, and the transition at
ec seems to be of second order at least for the noncompact gauge field inte-
gral. The scaling prediction of Miransky, seemingly consistent with the data
at first, is ruled out by now, but there is still an ongoing controversy as to
whether the critical exponents take their mean-field values or not. The discus-
sion has also renewed the interest in the gauge-invariant version of the NJL
model because the four-fermion-interactions were claimed to become renorma-
lizable due to large anomalous dimensions, and also more technically because
they play a role in the renormalization group flow of lattice QED.

To the best of our knowledge, not many rigorous results about lattice mo-
dels with fermions have been obtained outside the cluster expansion region,
and in particular there seems to be no result about chiral symmetry break-
ing in the literature. For QED, Luscher has proven that the charge is always
screened, 0 ^ Z 3 ^ 1 for all e0, and assuming chiral symmetry breaking to
hold and also using the numerical prediction for ec he gives arguments for
triviality [15].

We present here a proof of chiral symmetry breaking in the strong coupling
limit of lattice gauge theories with staggered fermions, which applies to QED,
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U(N) -models for N ^ 4 in four or more dimensions, and also to the Nambu-
Jona-Lasinio type models obtained by including a four-fermion term in the ac-
tion. The rigorous results about strongly coupled QED are: for all m > 0 there
is no phase transition and exponential clustering holds for truncated correla-
tions. If the dimension is at least four, there is a phase transition at m = 0,
namely the limit of the chiral condensate as the mass vanishes is nonzero. The
mean field approximation for this observable is an upper bound in all dimen-
sions which becomes exact as the dimension tends to infinity. Whenever the
chiral condensate has a nonzero limit there is also chiral long-range order in
the system, and we can show that chiral long-range order exists also in the
more complicated U(N)-models. Our results are still very far from giving a
rigorous underpinning to the old ideas of chiral symmetry breaking in strong
interactions, but to our knowledge they are the first rigorous results on chiral
symmetry breaking in existence.

The techniques used to derive these results are the infrared bounds of
Frόhlich, Simon, and Spencer [18, 19] and some Schwinger-Dyson-type equa-
tions. There were technical problems to be solved due to the fact that even
though the fermionic system can be rewritten as a spin system in the limit we
consider, this spin model is inherently complex and thus not accessible to
probabilistic methods. The fact that the action is complex also implies that
the Fourier transform of the two-point function f can become negative (and
chiral symmetry in finite volume forces it to do so); therefore it is not a priori
clear that it is a measure, which is a necessary ingredient for the proof of chiral
symmetry breaking. It is again the infrared bound which provides not only the
upper bound, but also a lower one by which we can show that t is indeed a
measure in the thermodynamic limit.

The infrared bound method works also in three dimensions, and it is fair to
ask why our statement starts with dimension four. This is not a principal re-
striction but rather a technical one; the bounds for the fluctuations are a little
too weak in three dimensions in the case of QED. For a more general com-
plex spin system, called NJL system in the sequel, which for N = 1 is identical
to QED (with or without a four-fermion-interaction), chiral symmetry break-
ing can also be shown to occur in three dimensions, if TV ̂  2. For TV ̂  2 NJL
systems have a chirally invariant current interaction. These systems can alter-
natively be represented as monomer-dimer models which makes it possible to
use the strong results obtained in [20, 21]. While in one dimension the system
is equivalent to a free fermion system, and exhibits chiral symmetry breaking,
we are not able to calculate the limit of the chiral condensate in two dimensions.
However, an old result of Fisher and Stephenson [22] shows that the two-point
function clusters at zero mass in two dimensions. While there is no extension of
the Mermin-Wagner theorem to these systems (in particular because chiral sym-
metry is broken in one dimension), it is likely that the symmetry remains un-
broken in that case. This also agrees with the result one gets in the continuum
Schwinger model with two flavours, and thus with the usual interpretation of the
remaining degeneracy of staggered fermions as flavours.

The result for four-dimensional QED means that there is a phase of the
model with staggered fermions in which chiral symmetry is broken. To estab-
lish the existence of the phase transition when the gauge coupling is varied,
one still has to show that the symmetry is unbroken at weak coupling, which
is of course very plausible, but as yet unproven.
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We define the models and order parameters in Sect. 2, and recall how the
strongly coupled system can be mapped to a complex spin system. Systems of
this kind are studied in Sect. 3, both directly and in their monomer-dimer re-
presentation. Section 4 comprises the results about chiral symmetry breaking,
and the appendix contains some technical details used to bound the fluctua-
tions.

2. Models and Order Parameters

We consider compact and noncompact QED on the lattice as well as com-
pact U(N) -gauge theory (N ^ 2) coupled to staggered fermions and gauged
four-fermion models which can be obtained by addition of a four-fermion
interaction term. Let ΛaZv, |Λ.|<oo and for xeΛ, ψa(

χ) a n d Ψa(x) be
Grassmann variables carrying a vector index ae_{ί,...,N} of the fundamen-
tal representation of U(N) acting on the ψ and ψ. The gauge fields are repre-
sented by the parallel transporters Uμ(x)e U(N) associated to each link. The
lattice will be taken as a block

A = {x = (xl9..., * v) e Z v I We {1,..., v} :0 £ xt < Lt} (2.1)

with sidelengths L | e N and free or, more often, toroidal boundary conditions
are chosen; toroidal means periodic for the gauge field and antiperiodic for the
fermion fields. The action is

g (2.2)

where g4 ^ 0,

SF=Σ (λ

2ΣΓμ(x)(ψ(x) Uμ(x) ψ(x + eμ) - ψ(x + eμ) Uμ(Xy
ι φ(x))

xsΛ -μ (2 3)

-mφ(x)ψ(x)) ^ V

and the γ matrices are replaced by the sign factors
μ - l

Γμ(x) = ( - I ) * * ' . (2.4)

For technical and interpretational reasons, we will always assume that Lμe 2N
for all μ e {1,..., v}. If the boundary conditions are toroidal, one would get
into consistency troubles with the various sign factors Γμ and ε(x) if one re-
fused to bend to this restriction.

S4 is the gauge invariant four-fermion interaction

S 4 = - Σ Σ ΦΨ(x)ΨΨ(x + eμ), (2.5)
xeΛ μ= 1

where

ΦΦ(X)= Σ $a(x)Ψa(x). (2.6)
α = l

Chiral invariance holds in the form that at mass m = 0, for all β and g4, the
action is invariant under the transformation

(x)
(x) K }
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with a continuous parameter α and the sign factor

ε(x) = (-l)^Xμ (2.8)

which plays the role of y5 for staggered fermions. This chiral invariance would
of coursejiave been spoiled for g4 > 0 if a strictly local four-fermion term of
the type ψψ(x)2 had been introduced for TV > 1 (for N = 1 it would be identi-
cally zero because of nilpotency).

While technically in several respects convenient, staggered fermions still do
not seem to be satisfactorily understood as far as their interpretation is con-
cerned. That only one spinor component sits at every lattice site is not the
real obstacle because Dirac and spacetime indices are somewhat mixed in
this formalism; to establish the connection to the continuum one has to intro-
duce blocks on the lattice and construct spinors from the fermions by taking
their components to be the fields at different points in the same block [23].
It remains an open question, however, whether the remaining degeneracy can
then really be interpreted as occurrence of flavours. Sharatchandra, Thun and
Weisz [24] have shown that it is also possible to define a current which has
the anomaly familiar from continuum perturbation theory. This current is, of
course, not directly related to the symmetry called chiral, (2.7).

The gauge part Sg of the action is multiplied by β = —% here it is taken in
eo

Wilson's original form which reproduces the continuum action in the limit of
vanishing lattice spacing [25].

The partition function is defined as
ZA = l®AW9AUe-s (2.9)

and expectation values of functions/(C/, φ, ψ~) by

',Ψ). (2.10)

In these expressions, the fermionic integral [26] is
_ N _

ί®yl# = ί Π Π #αW # β W , (2.11)
xevl Λ = 1

and
®ΛU=U Π rfC/^x), (2.12)

xeΛ. μ = 1

where d£/ denotes the Haar measure on U(N).
For N = 1, QED, using the parametrization E/μ(x) = e ί i 4 μ ( x ) with Aμ(x) e R,

the group integral amounts to integrating Aμ{x) from — π to π. One can also
define a "noncompact" regularization of the theory where A is integrated over
the whole real axis and the action is the discretization of the continuum field-
strength term together with a gauge fixing term. Balaban, Brydges, Imbrie and
Jaffe [27] have shown that the expectation values of gauge invariant functions
of the fields which are periodic in Λ in the noncompact model coincide with
those of compact QED with a special action containing vortex fields. This
statement is also true if the boundary conditions are chosen toroidal [28], and
it implies that compact and noncompact QED are identical in the strong



400 M. Salmhofer and E. Seiler

coupling limit β = 0, so our results also apply to the noncompact theory.
Suitable gauge fixing terms include the usual (W*,4)2-term with compact
integration over the zero modes as a special case (the zero modes cannot
simply be fixed, of course), and it is also identical to what one gets from a
limit of a gauge fixing term which regularizes the zero-mode divergences
by a mass, as this mass is sent to zero [28]. If \Λ\ < oo, lim (ΨΨ(X)}Λ — 0 be-
cause of continuity. m~*°

Definition 2.1. The chiral order parameter is

X = lim inf <$ψ (*)> = lim inf lim < # (x))Λ. (2.13)
m-+0 m-+0 Λ->oo

There is long-range order (LRO) in the system if there is a truncated correlation
function which does not cluster at zero mass, e.g. if

lim sup < # ( 0 ) ΨΨ(x)>m=o * 0 (2.14)

(because < # ( x ) > w = 0 = 0).

Remark 2.2. For free (β = oo) staggered or naive fermions, chiral symmetry is
broken only in one dimension,

\N forV = 1 (2 15)

This means simply that there are two states of zero energy for v = 1.
In classical statistical mechanics, violation of clustering implies that the

infinite volume state constructed at m = 0 is a mixture of coexisting phases,
so that there must be a phase transition at this point [29]. If the chirally in-
variant two-point function is continuous at m = 0 and clustering holds at
m > O , I φ O and (2.14) are equivalent.

Gauge Field Integration at Strong Coupling

In the strong coupling limit β-^0 (eQ-+oo) the gauge field is "completely
random" and the integral over the gauge fields can be done, leaving behind an
effective action for the matter fields. This effective action can in principle be
controlled by cluster expansion methods for 0 ^ β ^ β0 but is nonlocal if
β > 0. At β = 0, however, the gauge integration can be done separately on
each link and it generates an interaction between fields on adjacent sites only.

An explicit expression for this nearest-neighbour-interaction was calcu-
lated for staggered fermions by Rossi and Wolff [30]. Staggered fermions
seem to be the only case where this is possible; for fermions with more than
one spinor component per lattice site no simple expressions are available,
but many papers on the formal 1/iV-exρansion for the effective action of
U(N) -theory and the corresponding expansion around mean field theory
have been published [31-34]. The conditions under which we have a proof
that the expansion for the effective action is mathematically controllable are
naturally fulfilled for gauge theories with bosonic matter [28], but we cannot
bound the remainders for fermions. For staggered fermions the exponential
of the effective action is [30]

Σ&ktk, (2.16)
k = 0
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where

b k = ~ΎYkΓ • ( 2 1 7 )

The effective interaction W is defined in terms of B as

W{t) = \og B{t), (2.18)

this definition makes sense as a formal power series in t because B(ϋ) = 1.
Moreover the element of the Grassmann algebra which is the argument of W
is nilpotent, therefore the series for the logarithm terminates after a finite
number of terms. The partition function can thus be rewritten in the strong
coupling limit β = 0 as that of a purely fermionic system,

ZA = I®A ψφ exp(Σ mφψ(x) + Σ W^φψ(x) ψψ(x + eμ))) (2.19)
x x,μ

and so can observables. The action depends only on the bilinears φψ(x) which
can be interpreted as mesonic fields; this allows to do a bosonization which
results in a complex spin system, using the formula [30]

Jdψ dψf(ψψ) = N\j^zσ-Nf(σ) (2.20)

for the Grassmann integral at each lattice point. It is convenient to rescale

and call σx = σ/2N, motivated by the fact that σ replaces Σ ΦaΦa- Dropp-
ing global constants, a=1

where

W(N2)=Σ wkt
k (2.22)

is the interaction and

B(t) = eNW(t) =

k N\k\

its exponential. In particular, wγ = 1 + 4Ng4. The expectation value of xj/ψ is
given by

<ΦΨW>Λ = 2N<σx>Λ, (2-24)

therefore the chiral order parameter is

>. (2.25)
m-+0

3. Complex Spin Systems and Monomer-Dimer Models

A general framework for the rewritings of fermionic systems at strong cou-
pling is given by
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Definition3.1. Let iVeN and G be a graph with finite vertex set V(G) and
a set B(G) of bonds i = (x,y) connecting vertices x and y. To each vertex
x e V(G) assign a complex variable (spin) σx and a function Fx: C ->(C which is
analytic at zero. To each bond IGB(G), assign a function i^ CC-^C which is
also analytic at zero and satisfies B{φ) = 1. The complex spin system on G is
defined by the partition function

Ze = §[ Π f^*;NFx(σx) Π Bι{σxσ,) (3.1)
\xeV(G) lTliσx ) i = (χ,y)eB(G)

and for ZG φ 0, expectation values of functions φ which are analytic at zero in
all σx are defined by

ZG \xeV(G)2πiσx

 x / ί=(x,y)eβ(G)

Wiy(0 = ^ l o g ^ ( / ) (3.3)

w called the interaction of the system.

Remark 3.2. In Definition 3.1 the path of integration was not specified; it is
of course assumed to be chosen at each x such that it fits into the common
domain of analyticity of Fx and all Bt with x e i. However, it is clear that Fx

and Bt can then be replaced by the polynomials one gets when truncating
their Taylor expansion after N terms without changing the result, and since
polynomials are entire functions the path of integration can then be chosen
arbitrarily (around zero). This truncation will always be assumed to have
been done and the path of integration will always be taken to be the unit
circle. The fact that only polynomials matter corresponds to the nilpotency
of the original Grassmann variables. This choice of the path means for
staggered fermions that the chiral transformations are represented in the
associated complex spin system by

Map to a Monomer-Dimer Model

Complex spin systems can be mapped to monomer-dimer models simply by
expansion of all the functions and calculation of the contour integral at each
lattice point. The residue is only nonzero for a fixed combination of powers
occurring in the expansion; this gives rise to a hard-core constraint for the
associated monomer-dimer model.

For N = 1 and Fx(σx) = emχ(Jχ the partition function turns out to be the
classical monomer-dimer system [35, 20, 21] which is one of the oldest models
in statistical mechanics and has a simple geometric interpretation: a monomer
is an object which can occupy a vertex, dimers can sit on bonds. The activity
of a monomer at x is mx and that of a dimer on i = (x, y) is wxy, where

(3.5)
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(the higher orders in t do not have any influence, see Remark 3.2). An allowed
dimer configuration is an arrangement of dimers on the bonds of G such that
no two dimers can have a vertex in common: they have a hard-core-interac-
tion. For an allowed dimer configuration C, denote

£>c = r K , (3-6)

where the product is over all edge weights of occupied bonds ie B(G). Thus
the expression for the partition function can be restated as a sum over all al-
lowed dimer configurations on G,

ZG = ΣDcUmx, (3.7)
c

with monomers filled in at all those vertices that are not touched by a dimer.
The restriction to allowed dimer configurations as well as the filling condition
come from the contour integral.

If Fx(σx) = e

Nmχ(Tχ but the interaction W is derived from the U(TV)-model
with TV> 1, the system is more complicated; it may be called a generalized
monomer-dimer model and its rules are discussed in [30]. The difference be-
tween generalized and ordinary monomer-dimer models is, however, rather
due to the type of interaction W than to the value of TV.

Definition 3.3. Let TV e N, Fx(z) = eΉmχ\ Bxy(z) = e

NWχ>iz).

(1) If Wxy(z) = wγz for (x, y) e B(G), wx > 0, the complex spin system is called
a NJL system.

(2) The system given by

( 3 ' 8 )

N\k\

on all bonds is called a U(N)-system.

(3) The NJL- (U(N)~)system on A aZv is the system on the graph with vertex
set A and set of bonds B — {(x, y): \x — y\ = 1}, with mx = m on all vertices
and Wxy(t) = wxt {respectively Wxy{t) = W(t) with exp W{t) = B(t), B{t) de-
fined by (3.8)) on all bonds (x, y) e B.

If one truncates the interaction W(t) after the first term in the U(TV) -system,
one gets an NJL-system, for this reason the NJL systems were called "simpli-
fied" in [36].

Remark 3.4. For all g4 ^ 0:

(1) Strongly coupled QED is an NJL system.
(2) Strongly coupled U(TV) -lattice gauge theory is a U(TV) -system.
(3) The NJL system on G can be mapped to an ordinary monomer-dimer-
system on a graph with vertex set V(G) x {1,..., TV}.
(4) By trivial rescaling, without loss of generality, wγ = 1.
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Proof of (3). The partition function is

Π ^-σ-Nem"A Π ew>. (3.9)
xeV(G) lniOx / ί = (x,y)eB(G)

To see why this is an ordinary monomer-dimer model, it is useful to take a
step backward to a fermionic system: let ιl/a(x) and ij/a(x) be Grassmann vari-
ables associated to the vertex x and ae{l,...9N}9 and define

= Σ ψa(x)Ψa(x), (3.10)

then

J Π Π #«(*)#,(*)
xeV(G) α = l /^ J J X

£ m x φφ(x) J~J e^>XyΦΦ(x) ΦΨ(y) .
i = (x,y)eB(G)

Now we go back to a complex spin system by the contour integral formula
(2.20), but replace each component ψa(x) ψa(

χ) by a complex variable σa(x),
so that

l W Π h
\xeV{G) α = l a ( y j

N (3-12)

Define the new graph Γ by

K(Γ)=K(G)x{ l , . . . , t f } (3.13)

and

5(Γ) = {(*,,

with edge weights

ά),{y,b)):

a)(y,b)

eB(G),,

= wxy.

a,b e {1, ..-,N}} (3.14)

(3.15)

Talking of a e {1,..., N} as labelling the vertical direction of Γ, this means
that Γ is a complete graph in vertical direction. Equation (3.12) is a complex
spin system on Γ with N = 1 and therefore equivalent to an ordinary mono-
mer-dimer model. •

If quadratic terms had been present in W, a term (τa(x) σb(y) σc(x) σd(y)
with a + c, b φ d would have been possible. Such terms represent pairs of
dimers which can be interpreted as more complicated polymers on Γ. A gen-
eral interaction, e.g. the one for the U(N) -system, can be written as

Σ WM Π σy, (3.16)
M yeM

M summed over subsets of Γ containing x with an even number of elements.
Unfortunately the strong results for ordinary dimer systems do not carry over
to this type of interactions containing larger polymers.
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Mean Field Theory and Exact Results in Low Dimensions

The partition function of the NJL system on A can be written as

"™

Ix(σ) = 2mxσx + ± Σ σxσy = σx(2rn + ± Σ σy). (3.18)
| * - y | = l y : | y - x | = l

The mass term acts like an external field on σx and so does the sum over the
neighbouring spins. The corresponding mean field model is obtained by re-
placing this varying field produced by the spins around x by a constant
one, M = 2v<σx)MF, which reduces the calculation of <σy>MF to evaluation of
a one-dimensional integral, and the usual consistency condition is simply a
quadratic equation

M F - 1 = 0 . (3.19)

The positive solution

as m -• 0, so chiral symmetry is broken in the mean-field approximation.
It is possible to set up formal expansions in 1/v or ί/N in which the mean-

field result appears as the leading term [34, 30]. The first order in ί/N was
calculated by Rossi and Wolff for the U(N) -system [30], and it gives a hint
at the failure of the mean-field approximation in two dimensions: the ί/N-
correction to the order parameter is divergent.

There is, however, no straightforward way to adapt the proof of the
Mermin-Wagner-theorem given by Mermin [37] to the case of complex spin
systems: the fact that the action is complex prevents the definition of a local
scalar product from which Bogoliubov's inequality can be got as a Cauchy-
Schwarz inequality. That the situation is more complicated can be seen from
the case N = 1, v = 1, which also represents QED in one dimension. The
gauge field can be removed by a gauge transformation so that there remains
a system of free fermions, and

The monomer-dimer partition function has not been obtained exactly in two
dimensions for general monomer activity m but the counting problem to which
this question reduces at m = 0 has been solved. In this limit, the lattice has
to be covered completely by dimers since no monomers are available to fill
remaining holes (unoccupied lattice sites). If the dimer activity vμx = 1, the
partition function is the number of close-packed dimer configurations on the
lattice. It has been shown by Kasteleyn [38] and Temperley and Fisher [39,
35] that on a two-dimensional square lattice this number can be written as a
Pfaffian, that is, one can find an antisymmetric matrix AΛ such that

(3.22)
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and it is possible to calculate this determinant exactly (one can of course
easily represent the partition function by a permanent, but no method seems
to be known presently to evaluate large permanents). Kasteleyn [40] has
proven that a matrix AΛ such that (3.22) holds can be found for any planar
graph A. To obtain ZΛ(θ) on the two-dimensional torus (which is not a planar
graph), it suffices to calculate four determinants. A very readable presentation
of the solution of the close-packed-dimer problem on a square lattice which
various boundary conditions is given in [41].

The two-point function of ψψ in the original system (QED2),

<W(0) # W ) B = o = <σoσ,>m=o = Λ£*) ' , (3-23)

can be calculated as a determinant,

where A = AΛ\{OtX] — AΛ. This was done in 1963 by Fisher and Stephenson
[22] and afterwards by Hartwig [42], with the result that

1

|x | 1 / 2

for large | x \ (if x is in direction of a lattice axis or the diagonal). Repeating
the trivial observation that

>»=o = < 0 » = o = 0 (3.26)

because the (free) boundary conditions are symmetric, this implies

Remark 3.5. In strongly coupled QED2 at m = 0, the two-point function of
ψψ clusters.

If there is LRO in this system, it can only show up in some more compli-
cated correlation function. It will be shown below that clustering holds in this
model for all m > 0, so that I Φ O can happen only if the invariant part of
the two-point function is discontinuous at m = 0. While a discontinuity must
occur in (ij/ij/y at a symmetry-breaking phase transition, its presence in an in-
variant function would be rather weird. Furthermore, we will show that the
four-dimensional model exhibits both LRO at m = 0 and chiral symmetry
breaking in the sense of X φ 0. So, occurrence of chiral symmetry breaking
and existence of LRO are very likely to be equivalent (even if this has not
been rigorously proven yet in general), and we conclude that chiral symmetry
remains unbroken in strongly coupled two-dimensional QED with staggered
fermions. This result agrees with what one gets from a calculation in the
continuum Schwinger model: the two-point function of the model with two
flavours clusters at mass zero.

NJL Model: Rigorous Results

Consider a monomer-dimer system on the graph G with monomer activities
mx and edge weights wxy. The partition function satisfies a recursion relation
[20, 21], which implies
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Theorem 3.6. Let G be a graph, wxy ^ 0 for all {x, y) e B{G) and Rem x > 0
for all x e V{G) {or Rem x < 0 for all x e V{G)). Then

ZG Φ 0. (3.27)

Proof. See [20, 21]. The absolute value of the zeros of ZG{m) cannot exceed
/ 0 , 21], where

W= max Σ w*y (3.28)

For the NJL model on A, W = 2vN does not depend on \A\. That the zeros
of ZΛ(m) stay in a bounded interval even if A -• oo can also be derived from
the convergence of the cluster expansion. Let if = (C\2z[— λ/2vΛΓ, ^/2viV].

Definition 3.7. ^ function L: Z v -• {0,..., TV + 1} for which suppL = {x e Z v :
L x Φ 0} is finite is called a finite multiindex. The {countable) set of all such L is

<£ = {L:L finite multiindex on Zv}, (3.29)

and

<>LXi = < Π σ^)Λ. (3.30)
xeΛ

Theorem 3.8. Let < }Λ be the expectation value of the NJL model on A c: Z v

and L a finite multiindex.

(1) For all me if, the thermodynamic limit

<σL> = lim (σL}Λ (3.31)
Λ-*co

exists if A-^ co in the sense of Van Hove.

(2) <<τL> is an analytic function ofm on if.

Proof. By Remark 3.2, the NJL system on A is an ordinary monomer-dimer
system on a graph Γ{A) with vertex set V{Γ{A)) = A x {1, . . . , TV}. The proof
of the statement for these systems is contained in [20], see also [28]. D

Corollary 3.9. Let m e 1R. A phase transition can occur in a NJL model only if
m = 0. For m φ 0, all correlation functions are analytic in m.

Remark 3.10. Despite analyticity for all m > 0, the expansion in the hopping
parameter K = ί/2m does not converge for all m > 0 due to the zeros of the
finite-volume partition functions on the imaginary axis. The radius of con-
vergence of the expansion is, however, at least (2λ/2vTV)~1.

Penrose and Lebowitz have first proven that analyticity of the free energy
implies clustering in spin systems [43]. The fact that all correlations are ana-
lytic in m for m > 0 makes it easy to show the same for NJL systems.

Theorem3.11. In the NJL system exponential clustering holds for all me if.
More specifically, if wx — 1,

K<rXl . σXnY I S C{ή) e-KO-Wi. - * " ) , (3.32)

where K(m) > 0 for all me if, < >Γ is the truncated expectation value and
9{x1,..., xn) is the length of a minimal tree on {xί,..., xn}.
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Proof. For all Le££, K ^ L ) | ^ 1 (because monomer-dimer systems can also
be represented as limits of Ising systems; this inequality will be proven more
generally for reflection-positive complex spin systems below), therefore

(3.33)

(the superscript T again meaning truncation) obeys a bound

(3.34)

where C(L) is the number of summands occurring in the definition of the
truncated expectation value. C(L) can be bounded by a function of n = \L\
alone. Let 9(L) be the length of the minimal tree connecting the sites in
supp L, and for 5 (L) + 0 define

then
φ)^0VmeC, LeJS?. (3.36)

For all L, F(L, ) is analytic on iΓ9 therefore uL is subharmonic [44], so for all
w with I w — z I < r,

uL(w) ^ f P(w - z, re") wL(z + reiθ) dθ (3.37)

if {w: I w — zI ^ r) aiΓ, where for |ζ\ > \z\

l Kl'-H^
K Λ ) 2 π \ζ-z\2 =

is Poisson's kernel. By the triangle inequality,

(3.38)

P M £ j L ί ! L H I ± i . (3.39)

Since all uL are nonpositive,

w (m) = lim sup wL (m) (3.40)

exists and is nonpositive.
For \m\>mθ9 the cluster expansion converges and the truncated correla-

tions decay exponentially, uL(m) ^ — K(m) < 0 for all L, so u{m) ^ — K(m)
< 0 for all m with \m\>m0. Given an arbitrary element meΨ, there exists
a disk centered at some m1, D = {z e C: \z — mί \ ̂  r], such that Z) n {m e C:
| m | > m o } + 0 , D c t ; and m is in the interior of D. Since δ = r —
\m — m1\>0, P(m -m1,reiθ) ^ δ/4πr, and

w(m) = lim sup uL(m) ^ - — lim sup f dφ uL(m1 + reιφ). (3.41)

Fatou's Lemma yields

δ 2π . ^ 2 π

u(m) ^ - — f lim sup uL(mί + re ι >) rfφ = - — f w(mi + reιφ) dφ (3.42)
4πr o Leif 4πr 6
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which is negative because u is nonpositive on the whole path and strictly
negative on its intersection with the region of cluster expansion convergence
(which has nonzero measure). κ(m) = — u(m). D

Remark 3.12. The clustering rate κ{m) is an extension of the function K(m)
defined on { m e C : | m | > m0} it is independent of the number of spins n oc-
curring in the rc-point-function (3.32) because in the proof the limit superior
was taken over all L e S£.

The Ward identities which one can derive by doing space-dependent
chiral rotations relate the expectation value of ψψ directly to its two-point
function for staggered fermions,

(ψψ(y)y = — wι Σε(x) ε(y) (ΨΨ(χ) ΦΦ(y)yτ (3.43)
X

(the truncation can be included because of the alternating signs ε(x) in the
sum). Inserting the exponential decay with rate κ(m) into this equation one
sees that if chiral symmetry is broken in the sense of X Φ 0, the mass gap
κ(m) must go to z&ro as the mass vanishes. One may regard this as a weak
version of the Goldstone theorem.

Schwinger-Dy son-Equations

Let Bxy(t) = exp(NWxy(t)) for all (*, y) e Λ{1\ Fx(z) = exp(Nfx(z)) for all x,
and L e JSf be a finite multiindex. Then for all x e A,

N — Lx L ,
— ^ — <σ >Λ = \σχJxKσχ) σ >Λ + Σ \°x<ry Wχy(σxσy) σ >Λ.(3.44)

Proof. If LΛ = TV, the right side is zero because σx

 + λ appears in the numerator
of the contour integral. Let Lx < N, then the integral over σx contains

σϊ*-"-1 = ~ T7-V / - σ"^-L*. (3.45)
N - Lx dσx

Integration by parts with respect to σx in the numerator of the defining expres-
sion for (σLyΛ yields (3.44). D

The case Fx(σ) = exp(2JVmσ) for all x and Wxy = W will be of special im-
portance; the SD equations then read

I^-^(σLyΛ = 2m(σxσ
LyΛ+ Σ <σxσy W

f(σxσy) σLyΛ. (3.46)
^ v y:\y~x\ = l

Reflection Positίυity

The set ΘΛ of all functions which are analytic at zero forms a (C-algebra in a
natural way. However, to avoid endless but trivial discussions about the path
of integration, these functions were replaced by their truncations to polynomi-
als of degree at most TV in every σ̂  and accordingly the definition of the alge-
bra of observables can be given as follows.
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Definition3.13. Let ΛaZv finite, &(Λ) = {Le£e\ suppL c A), and

^Λ = {A:€Λ^€, σ*->A{σ)\A(σ) = Σ aLσL,aLe(C} (3.47)

For L, L' e if (Λ), L + L' e if (Λ) is defined by

(L + L')x = min{Lx + L'x,N+l}, (3.48)

for A,BejrfΛ, A(σ) = Σ aLσL and B(σ) = Σ ^ L σ L , ABestfΛ is defined as

(AB)(σ) = Σ aLbL.σL+L'. (3.49)
L,L'sSe{Λ)

It is obvious that with this definition srfA is a ̂ -algebra.

For μ e {1, . . ., v} the reflection rμ is given by (rμx)λ = xλ for λ + μ, and
(rμx)μ = Lμ - 1 - xμ. The reflection plane Eμ = {y e Rv | yμ = (Lμ - l)/2} lies
between the planes containing lattice sites, it cuts the lattice into two halves,

A = Λ+ u Λ _ , with Λ+ = <xeΛ\xμ^ -^—V and Λ_ = rμΛ+. If A is a

torus, not only the links (x, x + eμ) with xμ = -^ — 1 but also those with

xμ = Lμ — 1 connect yl+ with A-. For simplicity of notation, in the following
the reflection rt will be considered and called r.

Definition 3.14. Let LeJ£(A). The reflection on the field algebra correspond-
ing to r is the antilinear map Θ: stfA -• $iA with

(ΘA)(σ)= Σ aLσL' (3.50)

for A =ΣaLσL> where Lr(x) = L(rx). The complex spin system on A is called
reflection positive (RP) if for all A e s#Λ+,

(AΘA}Λ^0. (3.51)

Proposition 3.15. Let Fx(σ) = F(σ) for all x e Λ, where

F(σ) = F(σ) (3.52)

and

B(t)=Σakt
k. (3.53)

k = 0

If ak ^ 0 for all k e {0,..., Λf} then the complex spin system with F and B, as
given by Definition 3.1, is RP,

Proof As in [45, 46]. The condition ak ^ 0 is used when the terms coupling
Λ+ and A- are considered. D

Remark 3.16. RP implies that (A,B} = (AΘB}Λ is a semiscalar product on
s/Λ+ and therefore the Schwarz inequality

\{AΘB}\2 ^ {AΘA} (BΘB} (3.54)
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holds for all A,Be jtfΛ+. In particular, for all x,

\<σx}\2 = \(σxΘί)\2S<σxσrx) (3.55)

since <1Θ1) = 1. Let x1 = Lμ/29 then rx = x — ex and

\<σx}\2^(σxσx_ei). (3.56)

Let ε(x) be given by (2.8), Λe = {x eΛ \ ε(x) = 1}, and Λ0 = A\Λe. As
proven in [19], reflection positivity implies the

Theorem 3.17 (Chessboard bounds). Let G * : C - > C be analytic at zero for all
x e A, and < }Λ RP, then

\ I \ -

Π Gx(σx) Π Gy(σx) Π Gy{σx)JΛK (3.57)
xeΛo I

Theorem 3.18. Let Ne N, Fx(z) = e 2 N m z /or a// xeΛ, and Bxy(t) = eNWit) for
all (x, y) e Λ(l) with

W(t)=Σwkt\ (3.58)
k=ί

w1 = 1 and wk ̂  0 /or α// ^ e {2, . . . , N}, and < }Λ the expectation value of
the corresponding complex spin system on A. Then

(1) For all A,N,m^OandLe 5£,

0 ^ < σ L > ^ l . (3.59)

(2) For all N, m e R, thermodynamic limits

lim (σL}Λ = <σL> (3.60)

(3.59).

(3) The Fourier transforms o/<σ L ) are distributions on &v = [— π,π]v.

Proof (1) That <σL> ^ 0 is clear from the monomer-dimer representation be-
cause m ̂  0 and all wk ̂  0. All terms on the right side of the SD equation
(3.46) are of the form α<σL> with nonnegative a, hence nonnegative. Since
wx = 1, (3.46) reads

^ - ^ (σL)Λ = 2m(σxσ
L)Λ + Σ <σxσyσ

L)Λ + ρ (3.61)

with ρ ̂  0. Dropping ρ, the term multiplied by m and all terms in the sum
over y except for the one with y = x + eλ,

<σxσx+eισ
LyΛ ^ ^ ^ (σL}Λ ^ <σL}Λ. (3.62)

Since

Λ= 0 {*,* + £i}, (3.63)
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iteration of (3.62) yields

Π σ ι + 1 ) = / TΊ σ ι Γ T σ σ ) < I Γ Ί σ ι ) < • • • <
xeA I A \x^A xeAe /A \xeΛ /A

Given L e if, set Gx(σx) = σ£x = Gx(σx) and apply the chessboard bound
(3.57) to get

<σL>Λ£n(n<r£>)wzi. (3.65)
yeΛ \xeΛ /

ζ = {Λ<=Zy:\Λ\<ao}. (3.66)

For Λeζ, define the linear functional

U = (aL)Leχ»fA(a)= Σ aL(σL}Λ.
 ( 3 ' 6 7 )

Ley

By (1), for all α ε X and all w e ]R (m -> — m only changes the sign of <σ L »,

\fΛ(a)\S Σ l%l = l|αlU (3.68)

s o / ^ e J * and H/̂ H <; 1. By the Banach-Alaoglu-theorem [47], the sequence
(/A)Λeζ has accumulation points. By definition of weak-*-convergence, there
are subsequences (Λk)keM so that (/ f̂c(«))/ce^ converges for all aeX. D

Remark 3.19. (1) For the NJL models (wfc = 0 for k ̂  2) and m > 0, exis-
tence, analyticity and uniqueness of the thermodynamic limit have already
been proven before. So, if A -> oo in the sense of Van Hove, the limit coin-
cides with the one constructed earlier. Theorem 3.18 ensures existence of a
thermodynamic limit also for m = 0, but not, of course, uniqueness.

(2) The results obtained so far do not show that in the infmite-volume-
limit

lim ( O oc lim (ψψ> (3.69)
m-+0 m-»O

exists. However, because of the boundedness (3.59), lim sup and liminf do,
and therefore the order parameters defined above exist.

Theorem 3.20. Let < > RP. For all A, 5, Cf, Df e s/Λ+9

\ζeA + ΘB+ΣCtθDt\\2 < /eA + ΘA + ΣCiΘCi\ ̂ B + ΘB + ΣDiθD^ (3.70)

Proof. See [19].

Theorem 3.21 (Infrared Bound). Let A be a torus,

with

(3.72)
k=l
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V(t) = W(t) - t, and define bk by

eNV(t)= Σ b k t k ( 3 < 7 3 )

Ifbk ^ Ofor allke{0,...,N}, then for all /z: Λ -• IR,

<σ(h)σ(-Δh))Λ^^\\h\\2 (3.74)

and

<σ(h)σ(Δh))Λϊt-^\\h\\2. (3.75)

A is the Laplacean, A its antiferromagnetic counterpart, defined by

(2f) (x) = Σ(f(x + eμ)+f(x- eμ) + 2/ (*)), (3.76)
β

and
σ{h) = (σ,A) = Σ σxhX9 \\h\\2 = (A,A). (3.77)

xeΛ

Proof Define an unnormalized background expectation value [ ] Λ by

[/L = $ Π ̂ σ ; » f ω ί " " iΠ^ ( "-- ) /W. (3-78)

By P r o p o s i t i o n 3.15, [m]Λ is R P with respect to the reflection Θ given in
Definit ion 3.14. F o r φ:A-+(C a n d ε e { — 1 , 1 } (ε = — 1 is needed for the
lower b o u n d ) , let

H\{φ) = \ Σ ((σx - ψx) - ε( σ ; t + e μ - φx+eμ))2 (3.79)

and

ZΛ

Λ(φ) = [e-NH*{φ)]Λ, (3.80)

then Z^(0) = ZΛ and

= ZΛ
\ / „ .. r i

(3.81)
• <Π exp(ε7V(σx - εσx + eμ) (φx - εφx+eμ))}Λ9

x,μ

i.e.
N,Z+(φ) = e ΐw'~ ΨβZΛ(e»(°>-^)Λ (3.82)

and
N

Z A ί(Pt\ = ^ 2 7 /s>~ N(σ, Δφ)\ fX 8^^
Λ \τ / ^^yi \ ^ /A. y J yJ JJ

H\ can be rewritten as

where

Hε

Λ(φ) = εv Σ fax- < P * ) 2 - Σ fax- Ψx)i^χ + e - Ψ x + e ) , ( 3 - 8 5 )
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[the second sum is understood to contain only (x, μ) for which both x and
x + eμ are in A+\ and

Hc(φ) = - Σ (σx- φx) (σx_e i - φ x_ e i) (3.86)
*:*ie{O,Li}

consists of the terms coupling Λ+ and Λ-,

Hc(φ)=- Σ CXΘDX9 (3.87)

x:*ie{O,Li}

^ = σ --?» (3.88)

Denoting Λι={xeΛ:xi = 1} and φ ( ί ) = (φx)xeΛιe<CΛl,

Ft{φV\...,φ^-V) = Z*Λ(φ) (3.89)
defines a function F:(CΛί x ••• x C ^ - ^ C which fulfills cyclicity due to the
periodic boundary conditions on A. Using Theorem 3.20 which is applicable
because [ ]Λ is reflection-positive (normalization does not matter), one sees
that

so the abstract chessboard bounds [19] apply (with the involution defined as
complex conjugation) and

\Z Λ(φ)\ZLnFt(φ«\φM,...,φ«KφV)π. (3.91)
J = 0

The factors on the right side are partition functions Zε

A(φ) with φ consisting
of identical or reflected copies of φ{l) in each plane Ax. Repetition of this ar-
gument for all other directions implies that

£(Φ<*>)i3τ, (3.92)
xeΛ

where

φx if y e Ao '

For β = 1, take φxe R for all x, then Φ ( x ) is a constant configuration, and

Hi (Φ{x)) = HX (0), (3.94)

that is, ZA(Φ(X)) = ZA and consequently Gaussian domination [18, 19]

\Zt(φ)\ύZA (3.95)

holds. For ε = — 1, take φxe /R, then Φ ( x ) is a staggered configuration. Since
HA is formally antiferromagnetic,

Z ^ ( Φ ( X ) ) - Z ^ , (3.96)

and thus

\ZA. (3.97)
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Together with (3.82) and (3.83), this means that for all φ: A -> R,

^ 2 W Ψ) (3.98)

and
N -

I Ce~ ^(σ> ^ Φ ) \ j <c ^ 2 f3 QQ^

The rest of the proof is similar to the one in [18]. D

Remark 3.22. For the NJL model V(t) = 0 and the infrared bound can also
be proven by application of the chessboard bounds along the lines of [19].

Let
TΛ(x) = (σyσy+x}Λ = TΛ(- x) (3.100)

be the two-point function. At m = 0, because of chiral symmetry, (σoσx}A = 0 if
ε(x) ε(0) = 1, so (since ε(x) = exp(z'πx) with π = ( π , . . . , π))

For φ:

and TΛ

then

with

A-

by

TΛ{x)

> C, define

= 2 TΛ(X)

fΛ(ή

fΛ(Φ) = ι

tΛ(k) =

( i -

,ψ)-

') =

1 .

~Λ\k;

Σ e

eiix) for m = 0.

= ΣATA(x)φx

TΛ(φ),

Σt fΛ(k) φk

~ikx TAx),

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

and

ίi(A: + π) = - ί^(ik) VA: e Λ* if m = 0. (3.106)

Theorem3.23. (1) Let v^ 3, meR, i^(z) = ^ 2 N m z for all xeA, and the com-
plex spin system on A fulfill the conditions of Theorem 3.21, and assume that
the two-point function TΛ(x) satisfies \TA{x)\ ^ 1 for all x. Any thermodynam-
ic limit of the two-point function

f= Urn fΛ (3.107)
Λ-»oo

is a signed measure on 33x = [ — π, π ] v .

T(k) = c 0 δ(k) -Cύδ(k-π) + g(k) (3.108)

with c0 ^ 0, cή ^ 0 (c0 = cή at m = 0), g absolutely continuous with respect to
Lebesgue measure, and

^ S i k ) ^ ^ (3.109)
2N(2πY D(k + π) = a v ' = 2N(2%γ D(k)
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with the kernel of the Laplacean

2D(k) = 2 Σ (1-cos^) . (3.110)

(2) For v 2; 3, in the thermodynamic limit of the NJL model at m + 0,

(3.111)

where s = <σx>, g is analytic for |Im kμ\ < κ{m), and g obeys the bound (3.109).

Proof. Upon Fourier transformation, (3.74) and (3.75) become

2 Σ tA(k)D(k)\fik\
2£N-1 Σ \kΫ

T - , (3-112)
2 Σ TΛ{k)D{k + π)\hk\

2^-N-1 Σ \K\
keΛ* keΛ*

for all h~ with h-k = hk. D(k + π) is the kernel of the antiferromagnetic La-
placean in momentum space. The constraint on h does not matter since
D(k) = D(- k) and fΛ(- k) = fΛ(k); choosing dk = δktko + \ _ t o , we have

^ (3.113)

with

b(k) = sup{D(ky\ D(k + π)"1}. (3.114)

In the thermodynamic limit, Λ* = J^v. For v ^ 3, b e L1

tΛ can be viewed as a distribution on C

TA = r-r, Σ tΛ{k)δk (3.115)
\Λ\ keΛ*

(δk is Dirac's delta located at k). Let φ e C 0 0 ^ ) , then

= \Λ\keΛ*

ύ\\φ\\Jτ^i Σ 6W + rTί(l:

Since 7^ is bounded,

— \fΛ(j>)\£— Σ | Γ Λ ( Λ : ) | ^ 1 . (3.117)
\Λ\ \Λ\ xeΛ

Applying this to p = 0 and p = π,

+ — i - T Σ *(*:)), (3.118)
Z i V \Λ\ keΛ\{0,π} )

and because b is integrable, the sum converges to (2π)"v || fc || i and in the limit

lim \fΛ{φ)\ = \t(φ)\%(2+ * , v ||f> II x) 11 φ II „, (3.119)
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so f is a signed measured by the Riesz-Markov-theorem [47]. Inequality
(3.109) follows by taking the thermodynamic limit in the infrared bound
and using a peaking argument, as in [18].

(2) By Theorem 3.11, <σoσx> — <σo><σx> = g(x) clusters exponentially for
m φ 0, therefore its Fourier transform g is analytic in k for |ϊmfcμ| < κ(m).
The (S-term in f is the Fourier transform of the constant s2 = <σo> <σx>. ϋ

4. Chiral Symmetry Breaking

This section contains the results of the analysis of complex spin systems done
above. That the mean-field solution is an upper bound for the order parame-
ter is a simple consequence of reflection positivity and the Schwinger-Dyson
equations (SDE). The strategy of the proof of chiral symmetry breaking is
the same as the one used by Frόhlich, Simon, and Spencer [18] to prove the
existence of long-range order in continuous spin models at low temperature,
namely to combine a lower bound for the two-point function at a fixed dis-
tance with the infrared bound for its Fourier transform. In the case of the
O(N)-model, the lower bound is provided by (sx sx} = <1> = 1 simply be-
cause the length of the spin vector is fixed. In the complex spin systems de-
rived from the strongly coupled fermion-gauge systems there is no simple po-
sitive lower bound for <σx) oc (ψψ(x)2y independently of m because this
function is not invariant (in the case N — 1 it is even zero because of nilpo-
tency, and for N > 1 the proof of a positive lower bound for this function is
essentially the same problem as the proof of a lower bound for <σx> itself.
However, the SDE (3.46) can be used to give a lower bound for <σxσx+βμ>,
especially (σxσx+e > = l/2v for all μ at m = 0, and this lower bound can be
used for a proof of chiral symmetry breaking.

The fact that clustering could be shown for the NJL models allows to
prove a lower bound for the chiral order parameter X, more generally, the
SDE and the infrared bound combine nicely to a lower bound for <ι/^> as a
function of m which is of exactly the same form as the upper bound by the
mean field solution except that in it the fluctuations are controlled instead
of neglected. Their effect on the order parameter can be estimated by a func-
tion S which depends on the dimension. S(v) is not the integral occurring in
the O (N) -models [18] (which is denoted R in the appendix) because the inte-
grand contains an additional cosine in the numerator due to the fact that
<σxσx + e μ> is used to get the lower bound. So let us start with the definition of
S and a list of its properties.

Definition 4.1.

c(k) = Σ coskμ = v - D(k), (4.1)
μ=l

®: = {ke@v\C(k)>0}, (4.2)

for v ̂  3
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Proposition 4.2. (1) 0 < 5(v) < oo for all v ̂  3.
(2) Let R(y) be given by (A.4). Then

5 ( v ) £ v Λ ( v ) - ^ ^ - | , (4.4)

both upper bounds are decreasing functions of v.
(3) *S(v) -• 0 as v -* co, for v ̂  v0

\S(v)\^c(vo)v-v\ ( 4 β 5 )

(4) 5(3) < 0.64, 5(4) < 0.35, 5(5) < 0.26, 5(v) g 5(4)/or α// v £ 4.

Proof See Appendix.

Chiral Symmetry Breaking in QED and the NJL Model

Let TV G N, and < }Λ denote the expectation value of the NJL model on A as
defined in (3) of Definition 3.3. Recall that <#(•*)> = 2N(σx}. Without
loss of generality, m ̂  0. By Theorem 3.18 the thermodynamic limit of the
correlation functions exists, they are unique and analytic in m if m φ 0 by
Theorem 3.8, and exponential clustering holds for m φ 0 (Theorem 3.11). The
infrared bound implies the special properties of the two-point function stated
in Theorem 3.23.

Theorem 4.3. For all m ^ 0 and all v ̂  1,

<σx>^sl9 (4.6)

where st is the positive solution (3.20) of the mean-field equation

2vs{ + Imsi - 1 = 0 . (4.7)

//v ^ 3 and ^ S(v) < 1, for allm>0

(σxy ^ s2, (4.8)

where sί is the positive solution (3.20) of the mean-field equation

2vs2

2 + 2ms2 - (l - jfS(y)\ = 0. (4.9)

Proof Consider the SD equation (3.46) in infinite volume for L = 0,

l-2m(σx)= Σ <σxσy). (4.10)
y : | y - x | = l

Using the lattice rotational symmetry of the two-point function which holds
because the thermodynamic limit is unique for m > 0 and the symmetry holds
in the cluster expansion region, this becomes

1 = 2m(σx) + 2v<σxσx_e i> ^ 2m(σx) + 2v<σx>
2 (4.11)
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by the Schwarz inequality (3.56). Replacing the inequality by an equation,
one gets the upper bound for (σx} by the mean-field solution. The lower
bound is shown by expressing the right side of (4.10),

Σ <σxσy}= Σ T(ξ) (4.12)
y:\y-x\ = l K l = l

in terms of the Fourier transform t and inserting the form (3.111) of the
latter which was derived from the infrared bound,

1 - 2ms = 2 f dvk f(k) C(k) = 2C(0)s2 + 2 f dvk g{k) C{k) (4.13)

with s = (σx)e [0,1] and C(k) given by (4.1). Since C(fc + π) = - C(fc),
J*v

+ + π = 8Sv\ϋ8y up to a set of measure zero, and

dvk g(k) C(k)=j+ d*k C(k) (g(k) -g(k + π)) ύ^S(v), (4.14)

where the last inequality follows from (3.109) which can be applied because
C > 0 o n ^ v

+ . C(0) = v, thus

+ ^ 5 ( v ) (4.15)

which implies the lower bound by the solution of (4.9). D

Corollary 4.4. Let v ^ 3.
(1) Chiral symmetry is broken for all N, v for which 2S(v)/N< 1, the chiral
order parameter X = liminf (ψψ} satisfies

m->0

1 X 1 / 2 \ 1 / 2

^ ^ (l--5(v)) . (4.16)

N J

^ 7 (
2N jTv\ N

In the case N = 1, which is strongly coupled (compact or noncompact) QED,
2S(v)/N < 1 holds for all v ^ 4, so chiral symmetry is broken for all v ^ 4. If
N ^ 2 the breaking of the symmetry holds for all v ^ 3.
(2) Mean field theory\_which neglects all fluctuations, is an upper bound for the
expectation value of(\j/ψy. The lower bound is of precisely the same form, except
that in it the effect of the fluctuations has been included and bounded by
2S(v)/N. Therefore, as N-^oo or v-»oo, the fluctuations die out, the lower
bound s2 approaches the upper one s± and the mean-field solution indeed be-
comes exact in either of these limits. An explicit lower bound for X for v ^ v0

(v0 specified in the appendix), is

(3) The upper bound for (ψψ} by the mean field solution decreases with increas-
ing mass m, in particular

/ ? } (4.18)
v m

so the actual influence of m on the order parameter is not similar to that of an
external field in an Ising system, contrary to what the way in which m appears
in the action might suggest.
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(4) The chiral Ward identity (3.43) and I φ O imply that the clustering rate κ(m)
satisfies.

κ(m) ^constra1 / v (4.19)

as m -» 0.

Proof. Clear from the preceding Theorem and the properties of S(v) listed in
Proposition 4.2.

U(N)Model: The Two-Point Function Declines to Decay

The treatment of the U(N)-model for N^2 faces some difficulties due to
the m o r e complicated interaction term W. Whereas the infrared b o u n d can be
shown to carry over unchanged, the lower b o u n d does not because contribu-
tions of the form ((σxσx+eμ)

ky are present in the S D E . It is possible to b o u n d
them in terms of {σxσx+eμ}, but the constants get worse when this is done.
Last but not least the proof that clustering holds for nonzero mass has not
been extended to the U (TV) -models for N^2, therefore only existence of
long-range order can be shown.

The most general result about L R O in complex spin systems which is ob-
tained here is T h e o r e m 4 . 8 . Let i V e N , and < }Λ denote the expectation
value of the U(N)model on A as defined in (3) of Definition 3.3, if nothing
else is stated. Without of loss of generality, rn^.0.

Remark 4.5. The £/(Λ0-model fulfills the requirements of Theorem 3.21, so
the infrared b o u n d (3.74, 3.75) holds.

Proof. The only thing to be proven is that the coefficients in the expansion of
the exponential of V(t) = W{t) — t are nonnegative. Since gA ^ 0 and gA

enters in B as given by (3.8), it suffices to give a proof for gA = 0. It is con-
venient (see (3.8)) to consider the expansion with respect to u = N2t. The
problem is then to show that in the expansion

N

Σ {J~f^uk=Σbku
k (4.20)

k=o Nik! k^o

bk ^ 0 for k e {1, . . . , TV}. By construction, bγ = 0, and

m {N ~k)\ ( - l)m~k

brM =
N\k\ {m-k)\Nm'k' v ' J

Using the Euler representation for the factorial in the numerator,

fN-m { 4 2 2 )

which shows already that bm ^ 0 for even m%N. Introducing cm = m\N\bm

and applying integration by parts (writing / N " m asa derivative),

(N - (m - i)) c - i + _ )c dm (4.23)

\ NJ N
with

*. (4.24)
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A second integration by parts, taking e~x = — (e"')'? yields

— 2̂
(4.25)

and thus the recursion relation

(N-m+ l)cm = -(m- \)cm^λ + ^ - c m _ 2 . (4.26)

Since co = N\ and cγ = 0, this implies cm ̂  0 for all m e {0,..., N}. D

Remark 4.6. Let N ̂  5. Then wk ̂  0 for all k S N holds in the ί/(ΛΓ)-model,
because

1
2 Δ̂

4(A^

N
—

2N2

• i)(N~:

(5N-6)

•ί)2(N-

N

2)

>N

3

(N

12)

3)'

Lemma 4.7. Le/ ŵ  ̂  0/or all k ε {0,..., N}, wγ = 1 α«ί/ m ̂  0. Then

Φxσx+ei)
n) ^ otn(σxσx + e i ) , (4.28)

where

tiB)
«» = f r ^ r (4-29)

" n - l k-1 / n —
1=1 \ iV

Proof. Abbreviate
Sn = <(σxσx + eι)

n} (4.30)

and apply the SD equation (3.46) to σL = ( σ x σ x + e i )
n , to get

+ Σ < ( ^ σ x + e i ) " ( σ ; c σ ; c + e μ W'(σxσx+e) + σ xσ,_ e ^ ' ( ^ σ ^ - ^ ) ) ) ,
μ = l

(4.31)

stated otherwise,

^B+! + V few, 5 n + t = A - ^ SB - Rn - Tn, (4.32)

where
σxσx+eχy^0 (4.33)
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and

Tn= <(σxσx+eι)
nσxσx-eί}

+ <(σxσx + eί)
n(σxσx+ Wf(σxσx + eμ) + σxσx-βμ W(σxσx-eμ))) ^ 0

(4.34)

are nonnegative, the reason being again that the same is true for all wk. Dropp-
ing Rn and Tn, and calling n + 1 = a, this becomes the inequality

N+1~a

Σ2 bwbSa.1+b (4.35)

which holds for all a e { 1 , . . . , N} (empty sums are to be interpreted as zero).
Let n e { 1 , . . . , N]. We will prove by induction that for all k e {1, . . . , « — 1}

For k = 1, the claim Sn S S«-i (1 - (n - ί)/N) follows directly from (4.35).
Assume now that (4.36) has been proven up to k e {1,..., n — 2}. From (4.35)
with a = n — k,

n — K —

(4.37)

The induction step is completed by inserting this bound for Sn-k on the right
side of (4.36) and transferring the term proportional to Sn to the left side. The
case k = n — 1 is the assertion of the Lemma. D

Theorem 4.8. Let N e N and the interaction W of the complex spin system have
coefficients wk ^ 0 for all k e {0,..., N) and wx = 1. Then there is a v0 ^ 3 so
that long-range order holds at m = 0 for all v ^ v0.

Proof Due to the nonnegativity of the wk9 Theorem 3.18 applies and guar-
antees the existence of thermodynamic limits as well as boundedness of the
two-point function. As in the proof of Theorem 4.3, the starting point is the
infinite-volume SD equation for L = 0 which now reads

1 = 2m(σx} + Σ kwk Σ <(σxσy)
k} S 2m(σx} + K(N) Σ <σxσy\

fc=l | y - χ | = i | y - χ | = l

(4.38)
the inequality comes from application of Lemma 4.7, with

K(N) = Σ kwkak, (4.39)
fc=l

<*! = 1, and αfc, k ^ 2 given by (4.29). Theorem 3.23 applies, so again

Σ <σxσy) = 2 f -f^ f(k) C(k) = 2 v (c0 + cj + 2 j - ^ g (k) C(k)Σ
y~Xl = 1 } 2S() ( } (4.40)
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At m = 0, c0 = cή because of chiral symmetry, (3.106), so

and

o ψ), (4.41)

for v ̂  v0, where 2S(v) K(N)/N < 1. v0 exists because S(v) -• 0 as v -• oo ac-
cording to Proposition 4.2. D

Corollary 4.9. For TV ̂  4 and v ̂  4, the £7 (TV) -model has chiral LRO at m = 0,
for TV = 5 the same is true for v ^ 5.

Proof. K(N) is calculated using Remark 4.6 and Lemma 4.7; K{\) = 1,
£(2) - 2, £(3) = ̂ , K(4) = 5 + £ , 7CΓ(5) < 7.4. That c0 > 0 in the cases
mentioned follows from the numbers given for S(v). D

In [36] it was stated that the proof works also for TV = 5 and v = 4, i.e. that
K(5)

also 25(4) < 1. This statement is incorrect due to a calculational error in

the determination of K(5) made in [36].

Remark 4.10. (1)

1 1
lim sup ,, ΛT,7 (ψil/ (0) \l/\b (x)} = lim .. „. 9 (ψψ (0) il/ϋ/ (x)} — 2c 0 .

x e P (2TV)Z μ|->oo,ε(jc)=-l (2TV)Z

(4.43)
(2) Assuming that wfc ̂  0 if A: ̂  TV is true for all TV e N, chiral LRO can be

proven in the U(TV) -model for v ̂  vo(TV). From the 1/TV-expansion, one would
expect the fluctuations to decrease with increasing TV which is very likely to
happen; unfortunately, inequality (4.29) is still too crude to allow for a proof
of this.

(3) Assuming that clustering holds for m > 0 also in the U(TV) -model one
can again get a lower bound for the chiral order parameter

<O^3, (4.44)

where

2v K(N) s2

3 + 2m s3 - 1 + 2 K ^ S(v) = 0 (4.45)

[K(N) as in the proof of Theorem 4.8] which means that chiral symmetry is
broken in the sense J Φ O whenever chiral LRO holds.

(4) It is generally expected in the spirit of phase decompositions that sym-
metry breaking and existence of LRO are equivalent. For the NJL model,
W(t) = t, K(N) = 1 and by Corollaries 4.4 and 4.9 we have a proof that
chiral LRO holds if and only if the chiral condensate has a nonvanishing limit
as the mass goes to zero.
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5. Summary

The material presented here consists of some already known and some new
rigorous results about the phase structure of lattice QED, gauged Nambu-
Jona-Lasinio models and models with gauge group U(N). The new results
concern the strongly coupled theory with staggered fermions, i.e. the theory
in the limit of infinite bare coupling, and contain

(1) the proof of clustering of truncated expectation values for QED and the
NJL-systems at nonzero mass (Theorem 3.11),
(2) the proof that chiral symmetry is broken in QED and the NJL models if the
dimension is at least four (Theorem 4.3, Corollary 4.4),
(3) a lower bound for the chiral order parameter in thse systems which implies
that mean field theory becomes exact for dimension to infinity at least for this
observable (Theorem 4.3, Corollary 4.4),

(4) the proof of existence of chiral long-range order in the models with gauge
group U(N) for TV ̂  4 if the dimension is at least four (Corollary 4.9).

That we have to require N ^ 4 is a purely technical limitation which might be
overcome if the constants can be improved. The case of SU(N) is technically
more complicated; the set of SU(N)-invariants is larger than that of U(N)-
invariants, which gives rise to other than nearest-neighbour interactions in
the effective fermionic theory (these objects are aptly called baryon loops in
[30]). However, it is generally believed that these additional terms do not
qualitatively change the behaviour and assuming this our results give support
for chiral symmetry breaking in QCD with massless quarks.

For N = ί, the results establish the existence of a phase of lattice QED in
which chiral symmetry is broken spontaneously and thus provide a proof of
some of the assumptions on which the present discussion about a possible
nontrivial continuum limit of lattice QED is based. The known results about
monomer-dimer systems and the techniques used in the proofs, namely the
infrared bound and integration by parts formulas, may suffice to extend
analyticity of the expectation values and clustering at nonzero mass and
chiral symmetry breaking in the limit as the mass vanishes to large but finite
gauge coupling in compact QED. Among the many open mathematical
problems which further work about lattice QED should attack the most im-
portant question seems to be whether a chirally symmetric phase at weak
coupling exists.

Appendix

Let v > 2. The purpose of the following is to study the function

£k C(k)
(2π)» D{k) ~l (2πΓ D{k)

[see (4.1, 4.2, 4.3), Θ(x) = 1 if x > 0 and zero otherwise], especially its de-
pendence on the dimension v, and to prove Proposition 4.2. To do so, it is
convenient to rewrite the integral such that the v-dependence is only para-
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metric, i.e. that the integration measure does not change with v. Noting that
C(k) = v — D(k), it is possible to split

S(v) = v ϋ + ( v ) - i , (A.2)

Λ+(v) = Λ(v)-Λ-(v), (A.3)

( A 4 )

k Θ(-C(k)) d^k Θ(C(k))

The integrand in i^-(v) is a bounded function if v > 0, therefore the integral
exists for all v > 0. The singularity at k = 0 is in the integrand of the expres-
sion for R(v).

Remark A.ί. Since 0 ^ C(k) ^ v throughout the support of the integrand in
(A.5),andJ®(C(fc))rf*/(2π)v = £,

^ Λ - ( v ) 4 (A 6)

Proposition A.2. Let v e N.
(1) Let v > 2, r(x) = I0(x)e~x, where Io is the modified Bessel function of
zeroth order. Then

R(v) = ] r(x)vdx. (A.7)

(2) Let Jo be the zeroth Bessel function and for α > 0,

then

π I °

Remark A3. The integral (A.7) defines a continuation of i? to real values of
v > 2, so v can be regarded as a real variable. Whenever derivatives of R with
respect to v occur in the following they are meant to act on the function de-
fined by (A.7).

Proof of Proposition A.2. Let v e N, v > 2. Then the integral (A.4) is absolute-
ly convergent, and therefore

is defined for ε e 1R and continuous at zero:

limΛ(ε,v) = ϋ(0,v) - R(v). (A.ll)
ε-> 0
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Let ε + 0, then ε2 + D{k) > 0 and

the integral converges uniformly in k. Inserting this into (A. 10), one can
therefore integrate over k first, and now this integral is a product of one-
dimensional ones :

_ / / v — y cos k

due to the standard integral representation [48] of Io. The asymptotic behav-
iour of I0(x) as x -• oo is

I0(x) - -±= ex(l +

therefore the integrand behaves as t~^ for large t, and the integral converges
absolutely for v > 2, independently of ε. The limit ε -• 0 can therefore be
taken under the integral, which yields (A.7).

The integral (A.5) for R_ can be rewritten as

\ h ί ^ - (A 15)

[Strictly speaking, the function Θ should be mollified to some Θ e Sf (J^v) to
be able to apply δ as a distribution. This is completely analogous to the proce-
dure in the preceding proof.] To evaluate the integral over hypersurfaces of
constant C(k), δ is replaced by

δε(u) = - T dte~Et cosOτ), (A.16)
π i

and
Λ_(v) = limΛ_(ε,v). (A.17)

Using the standard integral representation for Jo [48],

R ( ) { Λ r " J r W 7 ( ) (A18)

with / given by (A.8). The limit ε -> 0 yields (A.9). D

We will use the following elementary properties of the Bessel functions:

x2l{(x) + xl'o(χ) - x2lo(x) = 0, (A.19)
and for x ^ 0,

4n)(x) ^ 0 (A.20)
and
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Lemma A.4. (1) r(x) = /0(x) e~x satisfies

O ^ r ( x ) g
y/ί +2X

for all x^O. The upper bound becomes exact as x -• 0.

(2)

(A.22)

«(i)S^2- (A.23)

Proof. By the integral representation for 70,

r ( x ) = -L J e*(coβί-i)Λ> ( A 2 4 )

SO

r"(x) = ̂ - I ^ " " - ^ ( c o s ί - I ) 2 Λ > 0 (A.25)

for all x e R . The differential equation (A. 19) for the Bessel function Io implies

xr"(x) + (1 + 2x)r'(x) + r(x) = 0. (A.26)

Forx ^0, xr"^0, so

(1 +2x)r'(x) + r(x)S0, (A.27)

which, upon integration, gives (A.22). (A.7) then gives (A.23). D

Remark A.5. By (A.2, A.3, A.6) and, for the second inequality, (A.23),

S(y) S vΛ(v) - ^ ^ - \ . (A.28)

Proposition A.6. Let veR, v ^ 3 . Then v R(y) is a decreasing function of v.

Proof. Let F(v) = vR(v). From (A.7),

vR'(v) = I dxv e'vx I0(xy(log70(x) - x). (A.29)

Using integration by parts with ve~vx = — —

vί'(v) = I dxe-v'Ioixy-1 ^(xXvGog/oW - x) + 1) - Λ(v). (A.30)

Again integrating by parts in the summand multiplied by v,

F(v) = T dxe~vxI0(xy-2 φ(x) (A.31)

with

φ(x) = (log/0(x) - x) ((v - 1) Ix(x)2 + I0(x) h(x)) + h{x)2. (A.32)

By (A.22),

- x ^ - \ log(l + 2x) S 0 (A.33)
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for all x ^ 0, so the only positive contribution to φ comes from the term 1\,

φ (x) ^ h (*)2 ((v - 1) (logIo(χ)-χ) + l) (A.34)

which is negative for x ^ x0 = | ( e 2 / ( v " 1 } - 1). For v ^ 3, x0 < 1. For x ^ 1,
one can use the bounds (A.21) to get

φ(x) 5Ξ Io(x)2 ^J~(χ- log/„(*))) - j ~ 2 (x

1 ° (A.35)
^ - O 2 - l o g ( l + 2 x ) ) ^ 0 .

So, for v ^ 3, (p(x) ^ 0 for all x ϊϊ 0, and the derivative of F with respect to v
is negative. •

Lemma A.7. The upper bound in (A.6) becomes exact as v -* oo,

*_(v) = ^ ( l - « ( v ) ) (A.36)

w(v) ^ 0, w (v) —• 0 as v —• oo. For v ^ v0,

«(v)^^ (A.37)

Proo/. Let α ε R , 0 < α < { , and split

R.(v) = ~ I dtJ0(^jf(t) =^-v(Q1 + S2+ ρ3), (A.38)

where

(A.39)

ρ3 = I dίJ0^Jf(t) = v I rfτ /o(t)/(vt).

The function / has the following properties:

1 (A.40)

for all / > 0, and (by double integration by parts)

sin/ 1

with |φ(0l ύ 3 for all ί. Let v > 2, then j/0(τ)ί/τ converges absolutely be-
cause J0(x) = O(x~ί/2) for large x. Since |/ 0 (*) | ^J0(l)^e~1/4 for all x ^ 1
and / is bounded,

|ρ 3 | ^ conste~v/4 (A.42)
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for large v. From (A.41),

0 S JQ(X) ^ 1 f° r all x e [0,1], and φ is bounded, so

ΛxoIML)-t
^3 f Γ2dt£3v-'.
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(A.43)

(A.44)

The remaining integral can be decomposed according to the periods of the sine,

/ \ v / j \ V ' J

v I t \ *\\X\ t wt7Γ / / \ >1TΪ /

where

— < m = min {/ e ΊL \ In > vα} < 1 + — (A.46)
π ~ π

and
βn(V)= Jn

n + l ) π

J (A.47)

Since Jo is positive in the integration interval, an(v) ^ 0 for all n ^ 0, and

ΛB +i(v)<Λn(v) (A.48)

for all n ^ 0 for which an > 0 because /0 is a strictly decreasing function on
(0,1]. By Leibniz's criterion this implies

and some simple estimates yield

(A.49)

(A.50)

Again by the Leibniz criterion, now applied to the expansion of Jo around
zero, for all x Ξ 2,

therefore

and

- τ I ̂  /0(x) ^ I 1 - - I , (A.51)

^ 1 - J0(xY ϊ 1 - f 1 - ^ Y = v *jf* (1 - ξy-' dζ^v^, (A.52)

t2 . 1 , 3 α - l

Therefore

1

(A.53)

(A.54)
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and the remaining task is to calculate the integral over / alone. Interchanging
the order of integrations and performing an integration by parts we get

dt = 5/(0) - 5/(vα) + (sin(vα) - cos(vα)) (5/(vα) - 5/(2vα)).

(A.55)
The function

Si(x) = JS^fLdξ (A. 56)
X ζ

satisfies

x — π

for x > π and

5/(0) = ^ . (A.58)

For α = 1/4, (A.42, A.50, A.53, A.55, A.58) imply (A.36) and (A.37), with
some constant c(v0). D

Proof of Proposition 4.2, (l)-(3). (1) is clear, (2) follows from Remark A.5
and Proposition A.6. (3) From (A.2, A.3, A.23) and (A.36),

0 ^ 5(v) ^ — V - — - vR-(v)-- = —V-— - 1 +-w(v)-*0 (A.59)

as v ->oo. D

The numbers in (4) of Proposition 4.2 have been obtained doing the inte-
grals (A.7), (A.9) numerically, which is a straightforward exercise. However,
since the concrete values of v and N for which chiral symmetry breaking
holds depend on these constants some words about how they were obtained
may be in place.

Concerning the calculation of R(v), since the integrand in (A.7) is a mono-
tonically decreasing function which is convex by (A.25), one can always
majorize it by a piecewise linear map in a finite interval and by an in-
verse power for large \x\, and thus get arbitrarily accurate upper bounds
for R(v), which are R(3) ^ 0.5062, 7^(4)^0.3100, 7^(5)^0.2313, R(6) £
0.1862, 7^(7)^0.1564, 7^(8)^0.1349, Λ(9)g 0.1187, 7^(10)^0.1061 (the
value of 7? is known exactly for v = 3 [18], R(3) = 0.50546...). It may be
noted that

5(4) ^47?(4) - f < | , (A.60)

so that already this bound suffices to prove symmetry breaking for QED, the
NJL model and the (7(2)-model for v = 4 (and also all v ^ 4, as will be seen
below).

The integrand in (A.9) is a product of the oscillating function/(v/) and
/ 0 ( 0 v which also oscillates if v is odd. The integral can safely be calculated
by splitting the integration region into intervals between the zeros of Jo and
using asymptotic representations for large /. The actual analysis shows that
because of the oscillations the contributions from the intervals between the
zeros are almost negligible already after the third zero. Combining the re-
sults, one gets 5(3) ^ 0.63, 5(4) ^ 0.34, 5(5) ^ 0.25, 5(6) ^ 0.20. These num-
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bers suggest that actually S(v) itself, not only the upper bound in terms of R,
is a decreasing function of v.

Computer Assisted Proof of Proposition 4.2, (4). The numbers for v = 3, 4, 5
have been give above. The inequality follows from the fact that the upper
bound

v ϋ ( v ) - f (A.61)

is decreasing (see Proposition A.2) and the observation that already its value
forv = 8, 8Λ(8)-3/4<S(4). D
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