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Abstract. Following the general scheme of the convariant path integral quantiz-
ation of gauge systems, two alternative formulations of the first quantized closed
bosonic string in a position representation are presented. In both approaches the
covariant path integral representations of the propagator and of the higher order
off-shell amplitudes are constructed. For a wide class of gauges the explicit
formulae for off-shell amplitudes are obtained. This paper is the continuation of
our previous work where the corresponding problems in the open string case were
considered [20].

1. Introduction

In the past few years, the elegant and self-contained S-matrix formulation of the
interacting bosonic closed string was developed [1]. The basic ingredients of this
formulation are the on-shell amplitudes defined by means of the Polyakov path
integral over closed surfaces [2] with a prescribed topology and with vertex
functional [3] corresponding to ingoing and outgoing on-shell particle states.
This is however thoroughly perturbative formulation and it is an important
problem to derive an underlying theory the perturbative expansion of which we
have. Despite numerous attempts this goal is not yet completely achieved. One
possible way to go beyond the perturbative formulation is to understand whether
the Polyakov on-shell amplitudes could be constructed from simpler pieces. If we
adapt the ordinary field theoretical scheme of perturbation expansion these
building pieces should be interpreted as Green functions (off-shell amplitudes) in a
covariant second quantized string theory. The basic idea of the off-shell
formulation proposed by Cohen, Moore, Nelson, and Polchinski [4] is that the off-
shell amplitudes can be expressed by the Polyakov path integral over bordered
surfaces without making use of string fields. Considering the simplest Green
functions: the off-shell propagator and the off-shell three string vertex one can try
to derive some information about an underlying string field theory [5].
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The potential usefulness of the approach sketched above depends on whether
the following two problems could be solved. The first one consists in constructing a
well-defined path integral representation of off-shell amplitudes without referring
to string field theory (much likely the on-shell amplitudes are unambiguously
determined by the Polyakov path integral over closed surfaces [1, 6, 71]). The
second problem is to derive sewing rules for off-shell amplitudes giving a way for
constructing an arbitrary higher order on-shell amplitude from lower order "off-
shell pieces."

The first approach to the first problem was proposed in the original paper [4].
The idea, based on Alvarez's work [8], was to consider the path integral over
metrized surfaces connecting prescribed contours in the target space. The resulting
functional contains an averaging over boundary reparametrizations which in
contrast to other functional measures in the Polyakov theory remains undeter-
mined and is an untractable formal symbol. The expression for the off-shell
amplitudes is therefore well defined only for point-like string where this averaging
decouples [9-11]. In several papers [12-17] it was pointed out that the off-shell
amplitudes in string theory should be gauge dependent and the averaging over
boundary reparametrizations seems to be spurious. At present the structure of the
BRST extended off-shell closed string propagator is rather well understood. The
derivation based on the proper time representation was proposed by Birmingham
and Torre [12] and by Lee [13]. Another approach using the Batalin-Fradkin-
Vilkoviski phase space path integral was presented by Karchev [14]. These results
are closely related to the canonical operator (first) quantization, therefore a
generalization to higher order amplitudes is not straightforward. On the other
hand the considerations of [15,16] are mainly of string field theory nature and the
original geometrical interpretation of the Polyakov path integral over surfaces is
lost. In particular the relation between boundary parametrization and a conformal
structure on the world sheet remains unclear. This leads to problems in
interpreting the off-shell amplitudes as functionals on boundary values of x- and
ghosts variables [16,17]. Despite difficulties with the definition of the off-shell
amplitudes, important progress was recently made in the second problem of the
off-shell approach [17-19]. In particular the problem of sewing at a fixed
conformal structure was completely solved [19].

In this paper we address the first problem of the off-shell formulation - the
construction of a path integral representation of closed string off-shell amplitudes.
It is a continuation of our previous paper [20] where the corresponding problem
in the open string case was considered.

In Sect. 2 the construction of the space of closed string wave functionals in the
position representation is presented. The considerations of this section are based
on the general scheme of the covariant path integral quantization of gauge systems
with first class constraints described in [20,21]. Similarly as in the open string case
we consider two formulations determined by two different choices of the space of
boundary conditions for closed string trajectories. In the first formulation this
space is chosen as the space %ϊd

M of closed oriented metrized contours with marked
points, while in the second one as the quotient space ($d

M = (&d

M/J!ί+. Special
attention is paid to the gauge independent description of the residual gauge
invariance and to the construction of ultralocal inner products in both
formulations.

In Sect. 3 the path integral representation of the off-shell closed string
propagator is derived and evaluated. It is shown that this representation requires a
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choice of an additional geometrical data concerning the global structure of the
space of trajectories which can be interpreted as a choice of a gauge. For a wide
class of gauges an explicit formula for the propagator is obtained. In the special
gauges (called in this paper the fixed length and the constant curvature gauge) the
known expression [4,12-14] is reproduced. Let us note that due to the presence of
the conformal Killing vector field on the cylinder the application of the F-P
method is slightly more complicated than in the case of the rectangle and requires
generalized (incomplete) gauges.

In Sect. 4 the path integral representations of the off-shell closed string
amplitudes are derived. In the formulation based on the space ΦM and in the fixed
length gauge they have a structure similar to that of the off-shell amplitudes
considered in [17,18]. Unlike in [17,18] the boundary values of the x-variables
are related in the present approach to a conformal structure on the world sheet via
the reparametrization invariant boundary conditions. Moreover the final ex-
pression for amplitudes contains an averaging over boundary twists (this provides
a natural way for incorporating an integration over relative twist in sewing rules).
In the formulation based on the space ^d

M, in the constant curvature gauge the new
expression for the off-shell amplitudes is obtained. This formulation was very
much influenced by the work of DΉoker and Phong [26].

Section 5 includes some comments about the first quantized string in the
position representation and the discussion of some consequences of the present
approach for the sewing problem.

2. The Space of Closed String Wave Functional*

Within the covariant path integral framework [20,21] the first stage of quantiza-
tion consists in the choice of a space of boundary conditions for trajectories of a
system which determines a space of states. Guided by the open string case let us
first consider the space %>d

s of all oriented closed metrized contours in the target
space IRA It is defined by the following quotient construction. Let S denote some
fixed model of 1-dim sphere, Jίs - the space of all einbeins on S, and δ$ - the space
of all mappings x: S—>IRA The action of the group @s of all orientation preserving
diffeomorphisms of S on the space Jίs x <?|, defined by

Jίs xSi3(e,x) y*®s >(y*e,y*x

induces the principal fiber bundle structure:

(2.1)

Unlike in the open string case the bundle above is nontrivial and there are no
tractable parametrizations of the base space ^d

s ^ R + x (S^/S1). For this reason we
will consider instead of ^ the space y>d

s of closed oriented metrized contours with
marked points. The space <€% is defined as the base space of the principal fiber
bundle:

9S >JisxSxSd
s

\ (2.2)

^/Ilv+ X 0$ ,
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where the group action is determined by:

We define the space § o f f of the off-shell closed string wave functionals as the
space of all functionals on <βd

s. Equivalently it can be defined as the space of
^-invariant functionals on Jίs xSxS's. In contrast to the bundle (2.1) the bundle
(2.2) is trivial. In the sequel we will use a special class of global sections of (2.2)
determined by the family of the gauge slices:

.xSx<f|:e = constxέ, s = s}. (2.3)

In these gauges a string wave functional Ψ\_c\ e § o f f can be regarded as a functional
XTβ Γn ?Γ\ U/ΓΓT ίrvί> c γ\Ί r%r\ IP v J®&
* e,s\-™> *J — x\_H<βχ***-") S5 X)j On JIV+ X (o$'

Let us now turn to the description of residual gauge transformations (i.e.
transformations induced on the space of boundary conditions by gauge transforma-
tions on the space of string trajectories [20,21]). In the space Jίs x S x ^ a large
part of this transformation is described by the semidirect product @SQΨ"S, where
Ws denotes the additive group of all real valued functions on S with the following
action on Jis x S x δ%\

As a result of the extension of Jίsx^| to «^ s xSxSs there exist additional
residual gauge transformations connecting metrized contours with different
marked points. It is convenient to describe these transformations in the following
way. Let (S, e) be an oriented 1-dim manifold diffeomorphic to S1 endowed with a
Riemannian metric e2. For every τ e R we define the diffeomorphism:

i\_S,e\τ] :S3s-+s + τeS, (2.4)

where 5 + τ denotes the shift of the point seSby the Riemannian distance |τ| in the
direction determined by the orientation of S for τ > 0 and in the opposite direction
for τ<0. Let [R, +mod2π] be the standard parametrization of 1/(1), then the
map:

where / = J eds, provides an isomorphism of 1/(1) onto the group of the orientation
s

preserving isometries of (S,e). We define the (7(l)-action on Jίs x S x S$ by:

The whole group of the residual gauge transformations in the space Jίs xSxS's
is then described by the semidirect product (i^sQ(U(ί) x Q)s\ In the space ^ and in
the 1-dimensional conformal gauges (2.3) this group reduces to the direct product
R + x ^s(έ9 §). R+ denotes the 1-dim group of constant rescalings of einbeins while
Sιs{eJ) is the subgroup of (iTsO(U(l) x @s) defined by:

In order to obtain a gauge independent description of residual gauge
transformations in ^ we introduce the space JίsxSx§)S9 where §s denotes
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another copy of the group @ιs. The action of the group IR+ x @s on Jts xSx@s

defined by:

(A,y)eR+ * ί
->(/ly*e,y ^s),? ^ j e l s x S x I s

induces the principal fiber bundle structure:

(2.5)

Let us consider the following family of global gauge slices of the bundle (2.5):

We define the group structure on ^ s by:

%s x $s 3 (Γ, Γ) -> ΓΓ = Π#(e, S, yof),

where Γ = Πg(e, s, y) and Γ = Π^(e, s, y).
The action of &s on ^d

s is defined by:

gg9c Γ e ^ s >Γc = Πv(oίέJ,χoγ)e<£d

s, (2.8)

where c = Π<#((xe, s, x) and Γ = 17̂ (e, s, y).
Both definitions (2.7), (2.8) are independent of the choice of (e, s). It follows from

(2.7) that (€s is isomorphic to ®5. We also have:

where J f § denotes the space of closed oriented (not metrized) contours in IRA
In the sequel we will use two subgroups of ^s defined as quotient spaces:

where

It follows from the definition that the subgroup <3% is isomorphic to the group S>s(s)
= {y e Θs: y(s) = s}. By means of (2.4) one can construct the following isomorphism
of (7(1) = [R, + m o d 2 π ] onto Js\

S,έ (2.9)

Let us recall that within the convariant functional approach the first class
constraints linear in momenta are implemented in the quantum theory by means of
the residual gauge in variance [20,21]. The subspace §°f/ C§ o f f consisting of all
1R+ x "^-invariant wave functionals can then be interpreted as the space of all
string states annihilated by all linear in momenta constraints operators.

Our next task is to introduce an inner product in the space §^ f . Following the
geometrical approach to functional integration of invariant objects [6] we start
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with the £/(l)O^s-invariant ultralocal Riemannian structure G( | •) on the space
J(sxSx£d

s:
G(e s ^(δe, δs, δx I δe\ δs\ δx)

δeδe'
= J ds + e2{s)δsδs' + \eδxδx'ds, (2.10)

w h e r e ( δ e , δ s , δ x ) , ( δ e f , δ s ' , δ x ' ) e ^ s r x ) { J i s x S x £>$).
We define the inner product ( , ) in 9f^ by the following formal expression:

1( I duY(Ψ,Ψ')= J ®(e,s,x)(l ®yY1( I du

(2.11)

where the functional measure 2){e, s, x) is related to the metric structure (2.10) and
wave functionaly are regarded as ^-invariant functionals on JisxSxSd

s. The
map R:<έd

s-><gd

s is defined by:

R:c£d

s3c-^Rc = Π<#(e, 5, x ° r [ e , s ] ) e ^ ,

where c = Π^(e, 5, x) and r[e, s] denotes the orientation reversing isometry of (S, e)
uniquely determined by the condition r[e, s\ (s) = s.

In the 1-dim conformal gauges (2.3) the standard application of the F-P
procedure with respect to the group SJS yields:

(ψ,ψ')= J Γdα(Γα)~V J ^φY1 J 3>™X
0 \WS J *s

x ? M [ M ° r [ < M ] ] n / s [ M L (2.12)

where ΐ=\eds and the relation Vol(ί/(l)) = fα was used. The functional measure
9*ex is related to the metric structure E*%- \ •) on δξ\

Note that the inner product (2.12) is independent of the choice of a gauge (2.3). It
can be regarded as a path integral over ^d

s\

(Ψ,Ψf)= J W ί SXpY1 ΨlRc]Ψ'ic']. (2.13)

The functional measure 3)c in the formula above is related to the ultralocal
Riemannian structure C( | •) on ̂  defined as a pull back of the following metric
structure on φέrs\

G«> %ote, s, x) (<Sα, δx \ δaf, δx') = *^~ + Eaέx(δx \ δx')

by the corresponding global section of (2.2). Let us note that the metric structure
C( I •) is ./^-invariant. It is however not R + x ^-invariant and cannot be reduced
by the F-P method to an ultralocal Riemannian structure on the space

As in the open string case there is an alternative formulation in which the space
^ = ̂ / ]R + plays therole of the space of boundary conditions for string
trajectories. The space § o f f of the off-shell string states is defined as the space of all
functionals on Ψs and the subspace ξ>°$ cξ>off of the off-shell "physical" states
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consists of all ^-invariant functional on <$%. The 1-dim conformal gauges are in
this case determined by the global gauge slices:

\:e = e,s = s} (2.14)

of the principal fiber bundle:

R+ x@s >JisxSxSs

\π« (2.15)

Since the metric structure C( | )#is not R+-invariant in order to determine
an ultralocal metric, structure on Φs one should restrict himself to the subspace
^ ) C ^ s C^s(O~^s) of contours with fixed intrinsic length \eds = ί. This
restriction can be regarded as a part of the gauge fixing in the formulation
based on the space 9fn. In this gauge and in the 1-dim conformal gauges
(2.14) the inner product ( | f in ξf^ is determined by:

x o r[e, s]] Ψe £x], (2.16)

where £ = J eds and #^° = {φ e Ws: Jexp(φ)eds = /}.
In the end of this section we will briefly describe the gauge invariant

parametrizations of the spaces ^s,^- Given (e,s)eJίsxS let us consider the
1-dim Laplace-Beltrami operator:

^ e 6 ds6 ds

acting on the space of scalar real valued functions on S. Let us denote by
{ψenS}n^°-σo the complete basis of all normalized eigenfunctions of j£?e:

We define the map 0* with values in the space Λd of infinite sequences of modes
in the following way:

(2.17)

It can be easily verified that & provides the gauge invariant parametrization of ^d

s.
The corresponding parametrization of the space Φd

s has the following form:



360 Z. Jaskόlski

3. The Off-Shell Closed String Propagator

Let us fix a model 2-dim cylinder M with two boundary components Σb Σf C dM
called the initial and the final one respectively. We fix an orientation of M then
ΣbΣf acquire the induced orientations. Let JiM denote the space of all
Riemannian metrics on M and S^ - the space of all mappings x: M-*]RA The
space έFM{Uf) of all closed string trajectories starting at an initial class c eΦs of
metrized contours with marked a point and ending at a final one cf e <βd

s consists of
elements (g, σb σf, x) of the space JίM xΣtxΣfx&M fulfilling the conditions:

έ, §, xt) = δt, (i->/), (3.1)

where:

ef = Ifg, xt = χoli9 ( ΐ - > / ) ,

and /^Γf-^M, If\Σf-^M denote the inclusions of the initial and the final
boundaries of M respectively. ρt and ρf in (3.1) are arbitrary diffeomorphisms:

fti^-S, (;-*/). (3.2)

A special remark is required concerning orientation. We fix the convention
(consistent with our definition of the inner product ( | )) in which both
parametrizations (3.2) are orientation preserving diffeomorphisms. With this
convention the conditions (3.1) are independent of the choice of ρ^ρf.

The requirement of the consistency of the F-P method imposes some additional
conditions on the space of allowed trajectories (see [20] for discussion of this point
in the open string case). First of all one should replace the space MM by an integral
submanifold Ji*M C JiM °f the distribution in 2ΓJ(M determined by the Alvarez
(mixed) boundary conditions for metric variations [20]. Let MD denote the double
of M and ί: MD-+MD some (arbitrary chosen) involution on MD, t2 = ϊάMΌ. The
subspace Jtι consists of all metrics on M admitting smooth /-symmetric
extensions on MD. In a similar way we define the subgroup ^MC^M °f a ^
orientation preserving connected to the identity diffeomorphisms / of M with the
smooth /-symmetric extension fD on MD(ίofD=fDoi) and the additive group
ΊVϊfi of all real valued functions on M with the Neumann boundary condi-
tions ri*daφ = 0 (ft; denotes the invariant direction of the involution ι). In addi-
tion we introduce the subgroup_#^ C # ^ consisting of all functions constant on
dM and the subgroup ^M^^M^^M of a ^ functions vanishing on dM. We
restrict the space of trajectories to the space:

&*&, f) = ?«&> f)nJtiι x Σ; *Σfx£d

M.

In order to formulate an additional condition for allowed trajectories let us
consider the action of the semidirect product ^MO^M o n ^M X ^ix Σf defined
by:

It induces the principal fiber bundle structure:

Σ- x Σf

πτs (3.3)

xS 1



Polyakov Path Integral Over Bordered Surfaces 361

over the cartesian product TβxS1 of the relative Teichmϋller space Tβ of M
[23,24] and the 1-dim sphere S1.

Let us consider the space 93M of all £^O/#Λf-subbundles of (3.3). For every
and /elR + we define the ®Ό^°-subbundle of (3.3):

ί * > = / Mff = Λ (3.4)

Now we are ready to define the path integral representation of the closed string
propagator in the formulation based on the space § o f f . Let us recall that within this
formulation in^order to define an inner product in the space 9f?l o n e should fix a
gauge ^%{β) « *&%. In this gauge, for every 0$M e 3?M we define the string propagator
by the following formal expression:

PlέJf\0MV)l= . ί ®ig9σi9σf9x)( [ @fx f \^e~s^x\

(3.5)

where:

and S[g,x] denotes the BDHP action for the bosonic string [22]. According to
Polykov's ideas [2,6]? the functional measure 3)(g, σi9 σf9 x) in (3.5) is treated as an
infinite dimensional volume form related to the ultralocal Riemannian structure
G( I •) on JiMxΣ.xΣfxSd

M defined by:

G(e σit σft x)(δe9 δϋi9 δσf9 δx \ δe', δσ' , δσ'f, δx')

= Mg(δg I δg') + e*(σt)δσM + ej(σf)δσfδσ'f + E&δx \ δx'), (3.6)

where δg, δg' e ^gJ?M> ^σ^ δσ^ e Tσ Σi9 δσf9 δσ'f e TρfΣf9 δx, δx' e $~X$M « $M and

Mg(δg I δg') = j γgd2zgacgbdδgabδg'cd, (3.7)
M

E9

x(δx I δx') = J ]/rgd2zδxμδx'μ. (3.8)
M

Similarly the functional measures 3ff9 Θφ are related to the Riemannian structures
Hβ{.\-)9 W9( Irrespectively:

Uδf Iδf) = f Vg^22gαί,δrδ/'ft, <5/,£/'esrj&u, (3.9)

2 ti*iirii. (3.10)

The integration over the subspace of ^M(i,f\$MΨ)) °f a

is Gaussian and yields:

2<rSto */to ff ff/31, (3.11)



362 Z. Jaskόlski

where det D J^ denotes the determinant of the Laplace-Beltrami operator S£g

acting on the space of scalar real valued functions on M with the Dirichlet
boundary conditions.

x{[g, σ , σ/] in the formula (3.11) denotes the solution of the boundary value
problem:

g , < W = 0 , (3.12)

where δ£ = Πq{έ9S9x4)9 (/-•/).
The orientation preserving diffeomorphisms:

y,[g,σ,|έ,ί]:Σ,-.S, (*->/),

are uniquely determined (for every (g, σ<9 σ̂  ) e Jί€M x Γ,. x £ / ? (έ, s) e ^ # s x S) by the
equations:

Vtϊg,σAέ,S]M = &, (*->/)• (3.13)

For every (/, φ)e^MQi^^, (Aj)eR+ x ^ s we have the relations:

y. [exp(0)/*g,/- 1 (^ | ί , ί] = 7,Cg,(7,|έ,ί]o/o/., (/-,/), (3.14)

y. [g,σ,μy*ό,y-1(ί)]=7"1°y< [ g ^ J ^ ί ] > ( ^ / ) (3.15)

It follows from (3.12-15) that the classical action S[g, x{[g, σ̂  , σ̂  ]] is a
^ΛfO^M°-invariant functional with respect to the variables (g, σ̂  , σ )̂ e Jil

M

x Σ̂  x Σf and is independent of the choice of parametrizations (e, s, x̂  ),
(έ, 5, Xy) e */#s xSxS^ of the initial c, and of the final Cj contours. Therefore it can be
regarded as a functional on the space Jίι

MxΣ£xΣfx^d

sxΦs\

WCg J ^σ/l4έ/]=S[g,xί [g,^σ / ] ] . (3.16)

Since S[g, x{[g5 σi9 σ j ] is not invariant under conformal rescalings of metric by
conformal factors φ φ Ψ^^ Λ e functional (3.16) nontrivially depends on the choice
of 0HU e 33M. In order to describe more explicitly this dependence we introduce a
suitable parametrization of the family 93M. We start with the construction of a
special class of global sections of the bundle (3.3). (The statements below
concerning the infinite dimensional geometry can be derived identifying the space
J?€

M with the space of /-symmetric metrics on the double MD [23,24] and then
using known results for closed surfaces [7].)

Let Jlfy denote the space of all metrics g e Jίι

M with the zero scalar curvature.
Let &r(ί) be the subspace of Ji$ of metrics with a fixed Levi-Civita connection Γ
and with fixed lengths of the initial and final boundaries equal to t. #?'(/) is a global
gauge slice of the principal fiber bundle:

(3.17)
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where σ- is a fixed point of Σ- and &M(σ€) = {/e&M:f(άt) = σ-}. Using &&£) one
can construct a global gauge slice ^ r(σ< ?/) of the bundle (3.3):

^/j^'MxRjx^. (3.18)

We introduce the "reference" subbundle &°M e 23 M constructed from the gauge
slice (3.18) by the ^ M 0 # ^ - a c t i o n :

^ m x Σ, x Σf. (3.19)

Let Ξ be a global section of a given subbundle

£ : T/ x S 19 (£, sHfe*'*, σ*'s,

There exists a section Ξo of ^ ^ :

Ξo: 7/ x S19(ί, sί-fe& , σj's /

and a smooth family of functions {φtiS} such that for every (t,s)eT^ x S1:

g^^exp^'K'5- (3.20)

Note that S° is determined by Ξ up to a conformal factor φ^eΨ"^.
Let us consider the diffeomorphisms f;s[β,s], f}s[e,s] e@s defined by:

It follows from the definition and the relation (3.14) that f;s[έ,$], f}s[ej~] are
independent of the choice of section 3 of SSM as well as of the choice of section Ξ of
08% fulfilling the relation (3.20). Moreover from (3.15) we have for every

Therefore the function:

b{βM-\: TS

R xS1? (ί,

defined by the equations:

ΓJ>S = Πv(e, s, f;s& §]), ( *-/) , (3.21)

is independent of the choice of (έ, s) e Jίs x S and provides an invariant character-
istic of the subbundle &M. Proceeding in the opposite direction one can easily show
that the construction above yields the 1 — 1 correspondence between the space 33M

of all ^ O # £ - s u b b u n d l e s of (3.3) and the space b of all functions δ: TS

R x S1

->9Osx9°s.
Proceeding as in [20, the formulae (3, 34-42)] one can show that for every

section 3 of ̂

Ξ: 7? x S1 s(ί,

and for every section S of @°M\

the following relation holds:

4 έ 5 t'A #f*\rί-% rγέf-\, (3.22)
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Let us now turn to the path integral (3.11). For simplicity of presentation we will
restrict ourselves to the subspace ©M C 23 M corresponding to the subspace b C b
consisting of all functions δ constant with respect to the variable seS1 (d/dsδ = 0).

Let 0$M e ©M. We start with the construction of an appropriate gauge slice of
the principal fiber bundle:

( 3 2 3 )

Let us observe that for every Γ, σί the submanifold:
x Σf (3.24)

is a global gauge slice of the "reference" ^O^S^jp-subbundle JMOO With an
appropriate parametrization (t, θ) eR+ x [ — π, π] of Tβ x S1 the gauge slice (3.24)
determines the global section S(Γ9ά4) of ^M{βY

It follows from the assumption MM e 33M that there exists a global section Ξ(Γ, <

S(Γ,ίί):R+x[-ίi,j[]9(ί,fl)-*gί,ί,ί/+Γ

such that:

g' = exp(0')gr, (3.25)

where >̂' is independent of seS 1. From this section one can construct the global
section Ξc(Γ,σt) of the bundle (3.23) as follows:

J^'+2^

Let ^C(Γ, σ€) denote the global slice of (3.23) determined by ΞC{Γ, σ, ). Since all
metrics gei^Mi^rtf)) n a v e t n e some conformal group CΓC&M [7] the submani-
fold PC{Γ) = CΓ{PC{Γ, σ )) is a CΓ-reduction of the fiber bundle (3.23). We will use
this reduction as a generalized (incomplete) gauge slice. Applying the geometrical
formulation of the F-P method for generalized gauges developed in [7] to the path
integral (3.11) with the gauge PC(Γ) one obtains:

where the measures @(g,σ^σf\ dω9 are related to the induced Riemannian
structures on PC(Γ) and CΓ respectively. The F-P operator PgPg is defined by
means of the conformal Lie derivative operator Pg and its adjoint P* [6,8]. The
symbol det^ for determinant means that the Alvarez's (mixed) boundary
conditions [8] are used and the zero eigenvalue is omitted.
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The generalized gauge slice PC(Γ) can be parametrized by means of the section
Ξc(Γ,σ,) as follows:

(3.27)

where / σ < e C Γ is uniquely determined by the condition Iσ.(σt) = σ-. Changing
variables in (3.26) by (3.27) and using the ί^-invariance of the classical action we
have:

= f Λ f efdσf $ &φ( f

(3.28)

where g = exp(φ + ΦO&Γ a n ^ (£/)2 = I*§ = exp(φί o I^IJg^. δψ denotes an arbitrary
element of the 1-dim space kerP^ and:

\PX)ab = I "77 Sab ~ ~~ SabS ~Π Scd J •>

The functional measure §S'φ in (3.28) is related to the nonconstant Riemannian
structure W'{-1 •) o n # ^ ° :

M

In order to extract the φ-dependence of the volume of the conformal group CΓ,
let us fix a conformal Killing vector field δφekerP^ and define:

Note that for every g = exp(</> + (/>ί)gr t n e 1-dim spaces kerP^ are identical. The
conformal Killing vector field δφ e &~M&M can be regarded as a right invariant
vector field on CΓ. Taking the 1-form dφ dual to δφ we have for every

ί d^
2ίdφ9 (3.29)

CΓ CΓ

where the integral on the right-hand side is independent on g and can be chosen to
be equal 1.

Let us now consider the finite dimensional integral over Σf in (3.28). Changing
variables (see Def. (2.4)):

ff)
&f+—eΣf9

where σf is arbitrary chosen point of Σf and using the relation:

g> σ., σf + τ | c,, ^ ] = W\_g, σ., σf \ δ4, Iθδf~]
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we obtain:

J έfdσfe-W[d>άi>σ^>ζf]= / - J dθe-™-*"*'^1*'*. (3.30)

Inserting (3.29) into (3.28) and using the relations (3.22) and (3.30) we have:

As it was shown by Alvarez [8] in the critical dimension d = 26 the conformal
anomaly vanishes, therefore taking into account the formal relation:

we finally have:
V/2

V*A. (3.31)

Let us observe that the functional (3.31) is independent of the choice of a
"reference" point άfeΣf. It is convenient to choose as σf the point $£eΣf of
intersection of Σf with the geodesic line starting at σ, and perpendicular to Σi (with
respect to the metric ĝ ) One can show that σ- defined in this way is independent of
t e T£ and of a flat Levi-Civita connection Γ. With this choice the functional:

is independent of the choice of σt and Γ. This functional (with a slightly different
interpretation) was first evaluated in [4]. It is however worthwhile for clarification
of the present approach to repeat some steps of this derivation.

Let us fix a parametrization (σ, τ) e [ — π, π] x [0,1] of M with the identification
[ —π, τ] = [π,τ] and with the clockwise orientation on [ —π, π] x [0, l j c l t 2 . In
this parametrization the space #o(*0 C J^M OΪ metrics with the vanishing Levi-
Civita connection Γ = 0 and with the lengths of the initial and of the final boundary
component equal ( form the 1-parameter family:

M ° 4π2 \0 4π2t2J °

We fix the point σt; = (0,0)61,. It is easy to verify that σ, = (0,1). Let us now fix
(e, s) e Jis x S with J ids = /. There exists the parametrization σ e [ — π, π] of S in

which (e,s)= —,0 . In this parametrization we have:
v2π )

4π 2 d2

dσ
2'

n>0.
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Let x£9xf denote the representants of the contours ti9tf in the gauge £fέt&):

(* \ -

\2π )

Proceeding to the gauge independent parametrization of ^j6 (2.18) we have:

1 π

cv£=¥— I χ^(σ)cos(nσ)dσ, (ί-

1/2 π

With our parametrizations of S and M the diffeomorphisms (3.13) are especially
simple:

and the boundary value problem (3.12) takes the form:

(c£, cos(w<τ)-aLI1..sin(nσ))> (3.34)

f ( ) g/ l Σ {
n>0

Solving (3.34) for x{ we have:

1/2 Σ {^-n/sh(2πntτ) + P_n,sh(2πnt(l -τ))}
n >o
Σ {^-n/sh(2πntτ) + P_n,sh(2πnt(l τ))} f ^ .

n >o sn(zπwί)

and

(3.35)

Evaluating determinants in the expression (3.31) as in [4] one obtains the final
formula:

^ / ) ] = / 2 j Λ r 1 3 e x p ( 4 π ί ) Π { ! - e x P ( ~
0 n>0

(3.36)
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The formula above is the closed string counterpart of the expression for the
open string propagator obtained in [20,21]. Guided by the open string case we
introduce the fixed length gauge consisting in the choice of the "reference"
subbundle J^f/). In this case Γ* = Γ} = iά and the propagator:

Plέ» ef\s]=P\β» έf\KV)l (3.37)

takes the familiar form [4, 12-14].
The only new feature is the appearance of the averaging over boundary twist in

(3.36). Let us introduce the projector Π^ on the subspace of Jyinvariant states:

and the operator P€ defined on f)off by the integral kernel:

Pl£i,έf\f]=ί2 Jf dtΓl3Qxp(4πt) Π {l-exp(
o o

From the ̂ s-invariance of the inner product ( , f (2.16) and from the properties of
W[t\c;,έf] we have:

P, = /*, o 21, = i l , o j * , , [P,, TIA = [Pi9 21,] = 0, (3.38)

where P€ denotes the operator corresponding to the integral kernel (3.37).
It follows from the formulae (3.38) that one can consistently replace P, by &€. In

fact, since both operators lead (after the BRST extension [12]) to the same on-
mass-shell condition on the subspace of j^-invariant states, the physical content of
the quantum theory remains unchanged. The advantage of working with
P\ci9 cf\f\ is that its BRST extension is invertible on the whole (BRST extended)
space of states.

The path integral representation of the functional P[ci9cf\f] can be obtained
taking in (3.5) the subspace of ^ ( ^ , / I ^ M O O ) consisting of all string trajectories
with the zero relative twist. We say that (g, σ£, σf) e Ji€

M x Σ4 x Σf has the zero
relative twist iff for a zero scalar curvature metric g e Ji*M related to the metric g by
a conformal rescaling (g = exp((/>)g) the points σ£,σf can be connected by the
geodesic line perpendicular to the boundaries Σi9 Σf.

The quantum mechanical interpretation of the operator P£ can be derived
proceeding as in [4,12]. As in the open string case [20] it can fye regarded as the
"body" of the operator inverse to the standard BRST extended closed string
Hamiltonian.

As in the open string case there is an alternative formulation based on the space
9fpl with the inner product (*, ) (2.11). Within this formulation the propagator
takes the following form:

PlWfl^m-'JPlέJ/VΔ, (3-39)

where (/„ c€)9 (tff, cf) are determined by the contours ci9 cf respectively. As was
discussed in [20] there are some problems with the path integral representation of
the functional P{.c-9Cf]. One can mimic the delta function structure of (3.39)
defining the space ^~M(*',/|^M) of allowable string trajectories as the space of all
trajectories (g,σ^σf,x)e Ji€

MxΣixΣfx$%f fulfilling the conditions:

(gWjeObniirΐPiJtJ!) x Σ4 xΣf}.
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Note that for c , cf with /,- + if the space ^{ί, f \ 08°M) is empty. This choice of the
space of trajectories will be called hereafter the constant curvature gauge. As in the
previous formulation the propagator P[_c^ cf~] can be replaced by the propagator:

Pit* Cf]=δ(ί4-ίf)Pιέ» ts\tA, (3.41)

which has an invertible BRST extension in §BRST

4. The Off-Shell Closed String Amplitudes

Let Mhtb denote an oriented, bordered 2-dim surface with /i-handles and
ft-boundary components Σi (/ = 1,2,...,b) diffeomorphic to S1 (dMhb = \J Σt). We
assume that the Euler characteristic of Mh bis negative χ(Mh b) = 2 — 2h — b<0 (the
disc and the cylinder cases are then excluded). For every Mhtb we introduce the
double Mbb with a fixed involution ί. We define the spaces M^δ^ and the
groups @*htb9 ΊVζ^ i^hfb, i^h°b by the obvious generalization of conditions used in
the previous section.

The action of the group ^i,bQi^h,b on the space Jί^b induces the principal fiber
bundle structure:

(4.1)

λh,b

where Th

R

b denotes the relative Teichmϋller space of Mh>b [23,24]. Let us consider
the action of the group ^i,bθ^h,b o n the space Jί^b x Σx x ... x Σb defined by:

VitbxΣ1x...xΣb3(g,σ1,...,σb)

This action induces the principal fiber bundle structure:

x...xΣb

( 4 2 )
*h,b x Σ 1 x ... x Σb

Note that the bundle (4.2) is trivial. In fact for every global gauge slice ^hb of (4.1)
the submanifold Sfκh x Σλ x ... x Σb is a global gauge slice of (4.2).

Let JB f̂6 denote the space of all Q}\ b O ^ V s u b b u n d l e s of (4.2). Since the
£&*htbOΨjjtb-2ίCUθΩ on Jίι

Kb is free (there are no conformal Killing vector fields on
Mh'b) the problem of parametrization of 23ΛZj simplifies. Let stf™™1 denote the
®j f bQi^hysubbundle of (4.1) obtained by the #J,* ̂ -action from the space Jίh~b of
all metrics g e J J J ^ with the scalar curvature equal — 1 . Then the submanifold:

is a ^ b O ^ % - s u b b u n d l e of (4.2). Using (4.3) as a "reference" subbundle and
proceeding as in the previous section one can construct the 1 — 1 correspondence
between 93h>b and the space bhb of functions:
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Within the formulation based on the space # | 6 in the gauge # | 6 ^ ^ | 6 ( / ) the
/z-loop fe-states off-shell closed string amplitude is defined by:

\ @(g,σ1,...,σlvx)( J @fx J Sφγ^e-^'K (4.4)

where the space ^ ( c l 3 ...,cb\&htb(£)) consists of all "trajectories"

(g,σl9...,σb9x)eJίj;ίbxΣ1x...xΣbx#Z6

b

fulfilling the conditions:

{g,σl9...,σb)e&4

htb(S)xΣ1x...xΣb,

k, ρk \σk\ ρfxk) = δk, k = 1,..., b

where: ^ = /fg, xΛ = /fx, fc = l,...,fc, and ^, f c (/) denotes the ^
subbundle oϊ$ib determined by the conditions:

\eιdσk = ί, k=l,...,b. (4.6)

(For every /c = l,...,b, Ik:Σk-*Mhtb denotes the inclusion of the boundary
component Σfe into MKb, and ρk:S-*Σk is an arbitrary orientation preserving
diffeomorphism.)

The formal expression (4.4) fulfills the consistency requirement of the F-P
method and can be evaluated ( = defined) for any ^KbeS&Kb. For the special
subspace S/,,bC®ΛfI, of subbundles corresponding to the subspace bhibCbhb of
functions independent of (σl5...,σb)-variables one obtains the following result:

- π - π [T£

(det P + P \ 1 / 2

where

T^b 9 t - r e < T S V ) C ^fj,, (4.8)

is a global section of the ^ O i T ^ - s u b b u n d l e s/£Js\ί) C s/ffist determined by
the conditions (4.6). [ T / J denotes a fundamental domain of the modular group in

1h,b- ± _.

For a given σ = (σ1? . . ^ σ ^ e l Ί x ... xΣb the functional W[^,σ\c1,...9cb'] is
defined by:

C I ] , (4.9)

where xcl is the solution of the boundary value problem:

(4.10)
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It is easy to verify that the expression (4.7) is independent of the choice of a
section f of the subbundle ^C,°ΓV) a n d of a point σeΣ1 x ... x Σb.

In the fixed length gauge the off-shell closed string amplitudes are defined by
choosing for each topological type (h,b) the 3)\^O^b-subbundle J ^ b (4.3):

Note that due to the integration over twists of all boundary components in (4.7) the
propagator P[c^ cf\ί~\ can be replaced by P[c^ cf\ί~\ also on the second quantized
level.

Let us now proceed to the formulation based on the space ^ | 6 . In order to
generalize the condition (3.40) to more complicated topologies we introduce the
Frenchel-Nielsen coordinates of T*b\

For a given pattern for gluing 2h — 2 + b parts to obtain the surface Mhtb, the
coordinates Lί9...,Lb are lengths (with respect to the hyperbolic geometry on
Mhb) of the boundary components Σu ...,Σb while (θj9£j) (j=l, ...,2/ι + b —3) are
parameters of gluing [25]. (We use the convention where θj corresponds to the
relative twist by the hyperbolic distance τJ = (2π)~VJ θ</ , then the Dehn twists
correspond to 0/ = 2πfc, keΈ).

For a given subbundle ΛΛffte95Λfft we define the space &jftcl9...9cb\όShtb)
consisting of all string "trajectories"

fulfilling the conditions:

(g,σl9...,σb)eah9b9 (4.12)

ck9 k = 1,...,b.

As was discussed in [20] in the open string case in order to construct conformally
invariant (in d = 26) functional measure on &h(cl9...9cb\@htb) it is necessary to
introduce the larger space «^*(cl5 ...,cb\$htb) determined by (4.12) with the first
condition omitted. Furthermore we introduce the @h,bθ^h^-invariant
functional:

Π δ(ίk-Lk(Πh,b(g))) (4.13)

which can be regarded as a "characteristic functional" of the submanifold

In the formulation based on the space Φs the path integral representation of the
/z-loop, b-states off-shell closed string amplitude has the following form:

Ahlcl9...9cb\ahtb]= J &(g9σl9 ...,σfc,x) Π δtfk-Lk(Π
&" fc1

*( ί 1e-^x\ (4.14)

J
As in the case of (4.4) the F-P procedure can be applied to evaluate ( = to define) the
expression above for any $hbeS&hb. For 39hibeiBhib proceeding along the
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standard lines [6,7] and using the Frenchel-Nielsen coordinates one obtains the
following result:

Aklcu...,ch\3Kb} = t±} dθ...t±] dθh J dώ™
2π - π 2π - π if*bl

^ " 1 3 e " w ' " | r ί / θ l έ l ' ' n / θ ^ ^ (4.15)

The symbol dώwp in (4.13) denotes the restricted Weil-Petersson volume form
on T*b defined by:

3h-3+b ΛQ

and [ίj^J is the submanifold of a fundamental domain [7Jf&] determined by the
equations Lk(t) = /k, k = 1,..., b.

The determinants in (4.15) are evaluated for a section

T*b3t-+έes/S°SΛtC *i.b (4 1 6 )

of the subbundle £/™b

nst with values in the space Jtl~h

γ of metrics with the scalar
curvature equals —1. The functional WTg', σ|ci, ...,cfc] is defined by replacing in
Eq. (4.9,10) the section g (4.8) by the section gf (4.16) and substituting δk = Π(ck) (Π
denotes the canonical projection J7:#f6-»ίff6). These two sections can be
connected by a transformation from # £ & so the functionals W and W coincide.
They may have however different BRST extensions (the nonhomogeneous
boundary conditions for ghost variables are not # ^ 6-invariant.) Therefore we
prefer to use different notations.

The closed string off-shell amplitudes in the constant curvature gauge are
defined by:

ΛCci,. . , 4 | - l ] = Λ C c i , . . . , 4 K & ] . (4.17)

5. Conclusions

5.1. The First Quantized String

The considerations of Sect. 2.3 provide the first step of the covariant functional
quantization of the closed bosonic string in the position representation. There are
two formulations based on two different choices of the space of boundary
conditions for closed string trajectories. They consist of the following three objects:
the space of string wave functionals endowed with the ultralocal inner product, the
family of off-shell propagators numerated by the family 93M of ^ O f j i -
subbundles of (3.3) and the group of residual gauge transformations describing the
subspace of "off-shell physical" states. As in the open string case [20] it turns out
that the choice of the subbundle £8% constructed from the space of zero scalar
curvature metrics by the #^-action leads (in both formulations) to the propagator
with a simple quantum mechanical interpretation. After the BRST extension
[12-14] it can be related [4] by the quantum mechanical formula:

P=]dte~tH

o

with the standard closed string Hamiltonian (the zero mode of the density of
quadratic in momenta constraints).
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It is an interesting question to find a quantum mechanical interpretation of the
propagators corresponding to other choices of 3§M e 93M. It seems that the freedom
in the choice of $M e ©M corresponds to the freedom in the choice of a closed string
Hamiltonian governing an (unphysical) evolution in the intrinsic time. In the
present paper we adapt the point of view according to which the choice of &M e 33 M

is regarded as a part of the gauge fixing procedure. The general structure of gauge
fixing in the first quantized theory is briefly summarized in Table 1. It is essentially
the same as in the open string case and we refer to [20] for a more detailed
discussion. Let us only note that the resulting formulation crucially depends on the
first and the third stage of the gauge fixing. The choices made at the second stage
have a technical character and do not influence the final expressions.

Within the covariant functional framework of quantization [20,21] the first
class constraints linear in momenta are implemented on the quantum level by the
requirement of in variance of wave functional under the residual gauge transform-
ations. This requirement formulated in terms of infinitesimal transformations
leads to a family of first order differential equations on string wave functionals. In
order to determine the subspace of physical on-shell states it is necessary to add a
second order differential equation corresponding to a quadratic in momenta
constraint (all other quadratic constraints appear as integrability conditions for
this extended system of equations). It could be done by taking the inverse of the
string propagator, but in both formulations considered in Sect. 3 the propagators
are not invertible. One possible way to overcome this difficulty consists in the
construction of an invertible extension of the propagator. This is precisely what the
BRST construction provides. Such an extension of the closed string propagator (in
the fixed length gauge) was proposed in several papers [12-14]. It should be
stressed however that a complete first quantized theory should include, besides a
BRST extended invertible propagator, a BRST extended inner product as well as a
BRST extension of the group of residual gauge transformations.

Table

I

II

III —

1

S o f f

gαff

goff

£θff

goff

δ«ff

Space of boundary
conditions

5-fixed

(2.14)
Conformal gauges

(2.3)

Space of string
trajectories

M-fixed

Generalized
conformal
gauges PC{Γ)

Fixed length gauge

Constant curvature
gauge

5.2. The Second Quantized String

The path integral representations of the closed string off-shell amplitudes
presented in Sect. 4 give a starting point for the off-shell formulation of interacting
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closed string theory. The basic idea of the present approach consists in the choice
of Q)\ &-invariant boundary conditions (4.5), (4.12) for string "trajectories"
(metrized surfaces). There are two advantages of the conditions (4.5), (4.12). First of
all they lead (via the F-P method) to the well defined F-P determinant. Therefore
to derive the path integral representations of off-shell amplitudes one can follow
essentially the same line of reasoning as in the case of the Polykov path integral
over closed surfaces [1, 2,6, 7]. Secondly they allow to compare boundary values
on different bordered surfaces without referring to any special parametrization of
the corresponding boundary components. This gives a way to overcome the
difficulty of previous approaches concerning the relation between boundary
parametrizations (and therefore boundary values of the x-variables) and a
conformal structure on the world sheet [17,18].

Note that with the choice of Q)\ ^-invariant boundary conditions the
#i%-invariance is broken to the #^°-invariance. In consequence the off-shell
amplitudes are not invariant under the residual gauge transformations {^3% or
R + x ^ § ) and depend, for every topological type (Kb), on the choice of a
^i,bQi^h,b-subbund\e J ^ b of the principal fiber bundle (4.2). (In different
formulations the subbundle 0&χh is further reduced to different ̂ i,b~/^/h°b~
subbundles, see conditions (4.5), (4.12).) This freedom in the definition of the off-
shell amplitudes is in fact an expected feature of the off-shell formulation and can
be understood as the freedom in the choice of a gauge. The gauge dependence of
amplitudes is explicitly described for a wide class of gauges by the formulae (4.7),
(4.15).

A complete discussion of sewing rules requires a BRST extension of the
amplitudes constructed in Sect. 4. Therefore we restrict ourselves here only to a few
remarks. In the formulation based on the space # | 6 and in the constant curvature
gauge the sewing rules are especially simple. It can be easily recognized from
formula (4.15) that using the scalar product (2.12) for the sewing one obtains the
correct Weil-Petersson measure. In fact the double integration over twists of
common boundary components reduces, due to the ,/s-invariance of the inner
product (2.12), to the single integration over relative twists. Moweover the
constant curvature gauge has the sewing property [20] and the problem of sewing
amplitudes can be reduced to the problem of sewing at a fixed conformal structure
which was recently solved [19]. This pattern of the sewing amplitudes was first
proposed by D'Hoker and Phong [26].

In the formulation based on the space ^ψ the expression for the off-shell
amplitudes (4.7) contains the integration over Teichmuller parameters related to
the lengths of boundary components. Therefore for every boundary component
along which amplitudes are sewn we have one redundant integration. As it was
argued in [17,18] these superfluous integrations can be removed by inserting the
inverse of the off-shell propagator "between" sewn amplitudes. Let us stress
however that in the approach developed in [17,18] the relation between boundary
parametrizations and a conformal structure on Mh h is constructed by means of
holomorphic quadratic differentials on Mhh and differs from that determined by
the boundary conditions (4.5). The sewing rules proposed in [17,18] require
therefore a modification to be applied in the present formulation.

Both sewing patterns sketched above have (independent of details of a BRST
extension) an important drawback: An infinite overcounting of the moduli space
appears [17,18]. Maybe it is an unavoidable feature of the Euclidean off-shell
formulation. The comparison with the Mandelstam light-cone formalism [27,28]
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suggests however that a solution of this problem exists. It seems that in this
problem a better understanding of the relation between the covariant off-shell
formulations in the Euclidean and in the Minkowski spaces is required.
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