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Abstract. In this article, a large deviation principle (cf. Theorem 1.3) for the
empirical distribution functional is applied to prove a rather general version of
Boltzmann's principle (cf. Theorem 3.5) for models with shift-invariant, finite range
potentials. The final section contains an application of these considerations to the
two dimensional Ising model at sub-critical temperature.

1. A Large Deviation Principle for Lattice Systems

In this section we will prove a large deviation theorem for families of random
variables indexed by points on a square lattice. (Related earlier results in this
direction can be found in [C, F0, and O].) Thus, let 7Ld be the ^/-dimensional square
lattice. We will write A a a Έd if A is a non-empty finite subset of Έd and use
\A\eZ+ to denote the cardinality of A. Also, for ReZ+ and A<^czZd, we
define

A{R) = {k eZd: | k - A | ^ R} and δRA = A(R)\A

to be, respectively, the R-hull and ^-boundary of A. (Throughout, |k| = max |fcf|.)

Next, let £ be a Polish space, &E the Borel field over E, and Ω = Eπ\ We give
Ω the product topology, and use 0HΩ to denote the associated Borel field over Ω.
Given a non-empty A g TLd and xeΩ,xΛ will denote the element of EΛ obtained
by restricting x to Λ,&Λ is the σ-algebra over Ω generated by the projection
map xeΩ -+ xΛeEΛ (of course, fflQ = @zd\ BΛ(Ω; R) is the set of bounded R-valued,
^-measurable functions on Ω, and CΛ b(Ω; R) is the subset of continuous elements
of BΛ(Ω; R). When A = Zd, we will simply write B(Ω; R) for BΈ*(Ω\ R) and Cb(Ω; R)
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for Czdb(Ω;ΊR); and we set

£ 0 ( ί 2 ; R ) = U BΛ(Ω;JR) and C 0 ( β ; R ) = [) C Λ , , ( β ; R ) .

(That is, # 0 ( β ; R ) and C 0 ( β ; R ) , are the spaces of "local" bounded measurable,
respectively bounded continuous, functions on Ω.) Finally, let M ^ β ) be the space
of probability measures on ( β , &Ω), and set

</,μ> = j / d μ for /efl(fl;R) and μeM^Ω).

For technical reasons, we will have to consider two topologies on M ^ β ) : the local
strong one generated by the maps μeM1(β)h-></,μ>GR as / runs over # 0 ( β ; R ) ,
and the weak one which is generated by the same maps when / runs over C 0 (β; R)
(or, equivalently, over C b(β;R)). Unless it is explicitly stated to the contrary,
topological considerations on M ^ β ) will be with respect to the local strong topology.
On the other hand, the measurable structure on MX(Ω) will always be the one
determined by the Borel field for the weak topology (which is, of course, the same
σ-algebra as the one generated by the same maps as the ones used to generate
either the local strong or the weak topologies).

For each keZd,θk:Ω-+Ω is the shift transformation determined by

(0*x). = χ k + j for all }eZd and x e β ;

and we use M\(Ω) to denote the subset of veMx(Ω) which are shift-invariant (i.e.,
v = v°(0k)~S keZd.) Clearly, M?(β) is closed in the weak (and therefore also the
local strong) topology.

For any 0 Φ A g TLά and any μ e M ^ β ) , let μΛ denote the marginal distribution
of γeΩ\-+yΛeEΛunder μ, Next, given a second veM^fl), define the entropy HΛ(μ|v)
of μ relative to v on A by

{ lfΛ\ogfΛdvΛ if vΛ«μΛ and fΛ = ^~
dvΛ

oo otherwise.

Finally, for neZ+, let Vn denote the cube [ - n , n ] d and define

I I
h(μ I v) = lim — - H K n ( μ | v) and h(μ | v) = lim —- H F n ( μ | v)

when v,μGMi(β), a n ( l t a ^ e HlLί\v) — h(β\v)= °° when either μ or v is not
shift-invariant. If they coincide, we call

h(μ|v) = h(μ|v) = h(μ|v) (1.1)

the specific entropy of μ relative to v. Note that h( |v) is concave (cf. Exercise 4.4.41
of [DS]) whereas h( |v) is convex; thus the specific entropy h( [v) is affine on the
set where h( |v) and h( |v) are equal.

Given PeM\(Ω) and JReN, we will say that P is ^-mixing if, for some Me[0, oo)
and all cubes Q c= c Έd,

f f(x)g(x)P(dx)
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whenever feBQ{Ω;{0, oo)) and geB^Q{R)(Q;(O9 oo)). Our goal in this section is to
show that if PeM\(Ω) is K-mixing, then the large deviations of the empirical
distribution functional

are governed by the specific entropy function μeM1(Ω)\-^h(μ\P)e[O, oo]. That is,
we will prove the following theorem.

1.3 Theorem. Assume that PsMl{Ω) is R-mixing. Then h{-\P) = h( |P) on the whole
ofM^Ω), and the level sets of μeMι(Ω)\-+h(μ\P)e[O, oo] are compact. Moreover
for jevery AeΛMι(Ω)9

- inf ^
μeA° ii-oo I P J

S i ί m - ^ - l o g [ P ( R M e A ) ] ^ -infh(μ|P). (1.4)

The strategy behind our proof of Theorem 1.3 is the same as the one on which
we based the proof of Theorem 5.4.27 in [DS]. As in [DS], throughout, P is an
R-mixing element of M?(Ω), M is the constant in (1.2), and Q denotes a generic,
non-empty, finite cube in TLd.

Step 1. {Upper Bound for Finite Cubes) For feB0{Ω,R), define

M n(/)= f expΓ Σ f(Θkx)]p(dxl

and

Next, for each Q, define /ρ M^ί^h-^O, oo] by

IQ(μ) = sup {</, μ> - Λ(f):feBQ(Ω;R)}.

Our goal in this step is to prove that:

(1.5)
Q Q

and

ϊkn -^Tlog[P((RJ Q EF G )] ^ -inf{/ β (μ):μ Q eF β } (1.6)

for every closed set FQ in M^E^. Notice, that as a consequence of (1.5), we will
know that

^ Q for each Le(0, oo). (1.7)

The proofs of (1.5) and (1.6) depend on the following estimate:
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where

K)' " 8)

for feBQ(Ω;lR) and n ^ \Q(R)\1/d. In proving (1.8), we may and will assume both
that Q = [0, / - l ] d and that / ^ 0. Now, take m to be the smallest integer larger

than - — — , and note that

ί Σ \Q(R)\f(θ<ι+R)kx)]p(dx)
Ω \keVm J

t
where the passage to the second line is an application of Jensen's inequality plus
shift-invariance and the third line comes from the R-mixing condition. Clearly,
this proves (1.8).

From (1.8), we see that

first for non-negative feBQ(Ω;JR) and then for general ones. Hence, by taking the
supremum over feBQ(Ω; IR) and using the extremal expression for relative entropy
given in Lemma 3.2.13 of [DS], we arrive at (1.5). We will first prove (1.6) with
respect to the weak topology on M^E®). To this end, first note (cf. Theorem 2.2.4
and Exercise 5.1.13 in [DS]) that (1.5) is essentially immediate when FQ is weakly
compact in M^E®). Thus (cf. Lemma 2.1.5 in [DS]), the general result for weakly
closed FQ will follow as soon as we show that, for each Le(0, oo), there is a
CLQ a c M ^ E 2 ) with the property that

M ^ log [P((Rn)Q£Q,e)] ^ - L.

But, starting from (1.8), this becomes an easy application of Lemma 3.2.7 in [DS].
Finally, again because of (1.8), the extension to FQ's which are closed in the local
strong topology is accomplished by an application of Theorem 3.2.21 in [DS].

Step 2 (The General Upper Bound). Define

I(μ) = sup IVn{μ\ μeM^Ω).

Given (1.5) and (1.6), it is an easy matter to check (cf. Exercise 2.1.21 and Theorem
3.2.21 in [DS]) that / has compact level sets and that the upper bound in (1.4)
holds when h(μ|P) is replaced by J(μ). Thus, to complete the proof of the upper



Microcanonical Distributions for Lattice Gases 87

bound in (1.4), we still need to check that

Γoo if μeM^Ω^M^Ω) ( 1 9 )

Iiμ)=)\im^-HVn(μ\P) if μeM?(β)

I*-*00 \vn\
The proof of the first part of (1.9) is easy (cf. the verification of (5.4.16) in [DS]).
As for the case when μeM^Ω), we use (1.8) to see that

for any μeM^Ω), and the argument leading to (5.4.19) in [DS] to see that

when μeM?(β).

Step 3 (The Lower Bound). Define

J(μ)= -infίlim -^

as G runs over open sets in M ^ β ) . Trivially, the lower bound in (1.4) holds when
h(μ|P) is replaced by J(μ). Hence, all that remains is to check that

(1.10)

Since, when μeM1(ί2)\Mi(ί2) there is no problem, we will restrict our attention
to μeMi(β). But, by exactly the same argument as was given in Lemma 5.4.21 of
[DS], (1.10) holds for ergodic μeM?(β). Moreover, by the Ergodic Decomposition
Theorem (cf. Theorem 5.2.16 in [DS] or [D]), general μeM\(Ω) can be expressed
as a (continuous) convex combination of ergodic elements of M\(Ω). Thus (cf.
Lemma 5.4.15 in [DS]), (1.10) for general μeMf (Ω) comes down to checking that
μeMi(/2)ι->h(μ|P) is affine and that μeM\(Ω)\-*J(μ) is lower semi-continuous
and convex. The first of these is easy (cf. (5.4.23) in [DS]). As for the second, the
lower semi-continuity presents no problem; and so it remains only to show that

for μ+,μ_eMi(f2) with J(μ ± ) < oo. To this end, let G be an open neighborhood

of __± z ψQ c a n t h e n choose a cube Q and an ε > 0 with the property that

G

where

BQ(μ,r) = {oceM^):LQ(ccQ^Q) < r}

with LQ a Levy metric (cf. (3.2.1) in [DS]) on M^E*2). Next, we introduce the
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notation / to stand for the side length of Q and

E± = {eeZd:eί = ± 1 and \et\ = 1 for 2 ^ i ^ d}.

Notice that, for sufficiently large neΈ+:

Π {x:R[nj2](θ«+R*x)eBQ(μ±,ε)} £ {x:RB(x)6flQ(μ±,2ε)};
ee£±

and therefore, by β-mixing,

P(RMGG)^exp[-2 dM|^KJ](P(R [ M / 2 ]G^^

Hence, from the definition of J, we arrive at

Remark 1.12.

i) As a direct consequence of Theorem 1.3 and Varadhan's Lemma we have

lim -1-log J exp [| Vn\ Φ(RB)]dP = sup {Φ(μ) - h(μ|P):/ιeM?(β)}
"-*0 01 yn\ Ω

for every ΦeCiM^Ω^JR) which is measurable and bounded above. In particular
if we choose

Φ(μ) = </,μ>, for some feB0(Ω;B)9

then

and satisfies

Λ(f) = su

Actually, if we restrict our attention to Φ's of the form μGM1(ί2)h-></,μ>GlR,
where feB0(Ω;JR), then we get away without the lower bound in (1.4). To be more
precise, suppose that PGMi(f2) is a measure (not necessarily K-mixing) for which
we can show that h( |P) =H(|P), that h( |P) has compact level sets, and that, for
every closed Fe@Ml{(2),

lϊm -ί-log[P(RMGF)] ^ _infh(μ|P). (1.13)

One can then show that, for every feB0(Ω;]R),

Λ(f) = ϊϊm - 1 - log MM(/) = lim - i - log Mn(f) = Λ(f)

and that

= sup{</,μ>-h(μ|P):μGM?(β)}, (1.14)

where Mf(β) denotes the subset of μeMi(β) which are ergodic. Indeed, the form
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of Varadhan's Lemma in Lemma 2.1.8 of [DS] together with (1.14) implies

where, in the passage to the second line, we have used the fact that h( \P) is affme,
the Ergodic Decomposition Theorem, and Lemma 5.4.24 of [DS]. At the same
time, by the form of Varadhan's Lemma in Lemma 2.1.7 of [DS],

Λ(f) ^ sup {</,μ> - J(μ):μeMl(Ω)}

where, in the last inequality, we have used the fact that (cf. Step 3 in the proof of
Theorem 1.3) with no further assumption one always has

J(μ)£h(μ\P) for μeM?(fl).

ii) For neΈ+ and xeί2, let x(π)ef2be the Kw-periodic element of Ω which coincides
with x on Vn. That is,

XVn — X F n

 a n d x K M + (2w+l)k ~~ XKM5 KG^L .

Next define the Kn-periodic empirical distribution measures

~ 1

" X "1^,1 kέFn

 0 k χ ( n ) G 1

It is an easy matter to check that R(x) is shift-invariant for each neΈ+ and xeΩ.
In addition, for each l ^ m ^ n ,

|| (RB(x))Km - (RB(X)VM llvar ̂  ~ ^

from which it is clear that Theorem 1.3 holds equally well with Rn replaced by Rn.

iii) Let M : Z + -> [1, oo) and α:Z + -> [0,1] be functions for which

lim - — - = 1 and lim oc(n) = 0,
n -* oo I vn I n -> oo

and suppose that PeMί satisfies the condition

Λ(f) S ^ l o β ( ί e x P [Λφ)/(x)]P(dx)j + α(n) (1.15)

for all n e Z + and fsBVn{Ω\ [0, oo)). Then, using precisely the same argument as
in Steps 1 and 2 of the demonstration of Theorem 1.3, one can prove that the specific
entropy h( |P) exists, has compact level sets, and provides the upper bound in (1.4).
Thus, if one does not require the lower bound in (1.4), one can get away with a
far less than K-mixing. In particular, the following hypermίxing condition will do:
PeM\(Ω) is said to be hypermixing if there exists a non-increasing δ:Z+ -> [1, oo)
satisfying lim δ(ή) = 1 for which

H-+OO

n

\\fl'"fn II LHP) = Π H/m II L«*>(P)> fm€BQm(Ω; R ) , ΊΠ = 1,. . Π,



90 J.-D. Deuschel, D. W. Stroock and H. Zessin

whenever n ̂  2 and Qx,..., Qn c c Zd are cubes with dist (Qh Qm) >R,mφl Since
one can easely show (cf. Lemma 5.4.13 in [DS]) that for any cube QaczZd,
hypermixing implies

( ^ feBQ(Ω;JR),

it is clear that hypermixing is more than enough to imply that (1.13) holds. In
connection with applications of the sort discussed below, this observation may be
useful when dealing systems in which the interaction is unbounded.

2. Gibbs' States and the Variational Principle

In this and the next sections we will be discussing the Gibbs' states on Ω which
come from a shift-invariant, finite range potential % and a reference measure
λeM^E). To be more precise, we will say that % = {UF:F c c ί j c B0(Ω;JR) is
a shift-invariant, finite range potential if:

1) UF is bounded and 0$F measurable for each F c c ί ,
2) Uk+F = UF°θ

k for each F c c Z d and all keZ d ,
3) there is an ReΈ+ (the range of °U) for which (7F = 0 whenever FsO and
F£[-R,Rγ.

Next, let λsM^E) be a fixed reference measure, set λ = λπ, and, for a given
shift-invariant, finite range potential % and βeR, construct the family

{ y / t . Λ ί l y ί y ^ s ^ )

by the prescription that, for every /e£(ί2;IR),

* Γ |F|l/F(xA yAo)lλ(dx),
JFCΛΛΦ0

where, for x,ye£2, x^-y^o is the element of ί2 whose restrictions to A and Ac

coincide with those of x and y, respectively. (The number Zβ>Λ(^9γ) is determined
by the condition that yβί Λ(Ω \ y) = 1.) It is then an easy matter to check that {yβi Λ( \ y):
y l c c Z ' ' and yeΩ} is a consistent family of regular conditional probabilities in
the sense that, for Λt a Λ2,

l = £ ( j j

and we will say that y e M ί (Ω) is a Gibbs' state with potential ̂  at inverse temperature
β and will write yedΰβi^) if, for each Λa czZd,y\-*γβfΛ( \y) is a conditional
probability distribution of y given 0$A (i.e.,

\ /
for every feB{Ω;]R)). Finally, we set ®£(Φ) = ^

Note that λ is 0-mixing and that, for any shift-invariant potential % with range
R, all shift-invariant elements of dδβ(%) are K-mixing. In particular, this shows that
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K-mixing measures need not be ergodic. Moreover, given such a potential % and
a ye<5%<%), one has that

for some Me[U oo) and all A c c Z d , 0 e R , y e β . Thus not only does each γe©
satisfy the large deviation principle in (1.4), but we also have

^ Urn r ^ l o g \viyβtVJfrneA\

^ lim — - log supyβtVn(RneA\y) g — infh(μ|y).

In particular, this implies that h( |y) is independent of the choice ^
When E is compact and <% g C0(i2;R), the afore-mentioned consistency of the

7/?,/i('ly)'s guarantees that ©/,(*) # 0 . However, because we have not assumed
that E is compact and do not want to restrict ourselves to °U £ C 0 (β;R), even the
existence of a Gibbs's state is not entirely obvious; and this is one reason why it
will be important for us to have an alternative characterization of Gibbs' states
in terms of a variational principle. Namely, for A c c Zd, set

= Σ and

where ZβtΛ(<%) is determined by the condition that
is the range of <%, then there is M > 0 such that

where
keΛ

Λ(Ω). Note that if R>0

(2.1)

Σ
Fak

In particular, this means that

1
lim

°° IK.
log (Z,,K l lW) - log Π exp [| Kn| < ^ 0 , Rπ(x = 0;

and therefore, since λ (as a 0-mixing element of Mi(ί2)) trivially satisfies the
hypotheses of Theorem 1.3, Remark 1.12 leads immediately to the expression

i (2.2)

for the pressure p^(Φ); and this, in turn, leads to the following characterization of
shift-invariant Gibbs' states (cf. [L] for an earlier account of the same principle).

2.3 Theorem (The Variational Principle). For each j8GR,©?(*)Ξ
is a non-empty, convex, compact subset of M^(β). Moreover,

= -β(%,μ}-h(μ\λ)
veM*(Ω). (2.4)
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Finally, for all μeMf (Ω) and ye©^),h(μ|y) exists (i.e., h(μ\γ) = h(μ\γ)) and

= h(μ|y) - ,
γ) - (%,μ}). (2.5)

Proo/. We begin with the observation that

HVn(μ\yβtVn) = nVn(μ\λ) + \og{ZβΎβί))

which, in conjunction with (2.1) and (2.2), leads immediately to

lim H ^ > l W = h ( μ μ ) + w + /?<^0^>, μ eM?(Λ). (2.6)
| K |

Clearly, the second equivalence in (2.4) is just a re-statement of the second part
of (2.2). In addition, because

ye®s

β(<%)=>HVn(y\yβtVn) ^ M\dRVn\ for some Me(0, oo) and all neZ+

the implication

is an immediate consequence of (2.6). Furthermore, because h( |A) has compact
level sets, it is clear both that

= -β(%μ) ~h(μ\λ)}

is convex and compact and that there is at least one μeM^Ω) for which the
supremum in (2.2) is achieved. Hence, all that remains is to check the implication

&W. (2.7)

In proving (2.7), we will follow a line of reasoning which we have adapted to
the present setting from [P]; and for this purpose, we will need a little preparation.
Given a μeM^Ω) and a Λac:Zd, let yeΩh-+μΛ(-\y)eM1(Ω) be a regular
conditional probability distribution of μ given 3i^A, Obviously,

μe®βWo$H(μΛ('\y)\yβ,Λ( \y))μ(dy) = 0 for all Λ c czZd.
Ω

Next, use ΓβΛ(μ) to denote the element of M^β) determined by

in*)lΓ,Mm<l*) = ί ( ί f(x)yβ,Λ(dx\y))μ(dy), /eB(B IR).

Ω Ω\Ω /

Then, by Lemma 4.4.7 in [DS],

ίH(μΛ( |y)|y/J,Λ( |y))^y) = H(μ|Γ/ί,Λ(μ))= lim HF(μ\ΓβJμ)).

Thus, if we set
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then we see that

μe&β(%)o lim Ψμ(F,Λ) = 0 for all ΛcczZd. (2.8)

Finally, note that if A c <= Έd and Λ(R) g G c c=Zd, then

W g F and

and so, by another application of Lemma 4.4.7 in [DS], we see that

if A(R)^F and F(R)^G. (2.9)

Now let μeM?(β) satisfying p,(Φ) = - β<<%0,μ} - h(μ\λ) be given. By (2.8), we
will know that μ e ( 5 ^ ) as soon as we show that lim Ψμ(F9Λ) = 0 for each

/ l c c Z d ; and, because F\-+Ψμ{F;Λ) is non-decreasing, this comes down to
checking that, for each / I c c ϊ , Ψμ{Vn,Λ) = 0 for all sufficiently large neZ+.
Thus, let 0 Φ A c cz Έd and an neZ+ satisfying A(R) g Kn be given. For meZ+,
set N(m) = m(2n + 1) + n, let kx,..., k ( 2 m + 1 ) d be an enumeration of {(2n + l)j: JG Fm}
with kλ = 0, and set

Λ — k f + Λ, F — k i + K , , , and G ^ F ^ - u F j for l ^ i ^

Then

- HGι_
w(m)() Σ

At the same time, by (2.9),

and

~ HGi_

where, in the last equality, we have used shift-invariance. Hence, after combining
these, we have that

for allΨμ(Vn,A)^

and therefore, by (2.6), we conclude that Ψμ(Vn,Λ) = 0. •

2.10 Remark. Let ty(Ω) stand for the set of all shift invariant, finite range potentials
on Ω. Then for each β Φ 0, we have

h(μ|λ) = sup{-/ί<Φo,μ>-P/ι(*):*eφ(Λ)}, μeMftΛ). (2.11)

Indeed, since h( |λ) is lower semicontinuous and convex (in fact, affine)

= sup{</,μ>-sup{</,v>-h(vμ);veM?(Λ)}:/6Co(fl;R)}.
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At the same time, for each /eC0(ί2;IR), one can construct a potential
with the property that

</,Ai>=-j5<*o,μ>, for all μeM*(Ω).

Namely, assume that feC^Ω ΊR) for some y l o c c Z d and simply set

1
?k if F = Λv

otherwise

Hence, (2.11) follows immediately when one combines these two observations.

3. The Equivalence of Ensembles

Gibbs' states turn up in statistical mechanics because they are supposed to be the
equilibrium distribution of the system under consideration, and the reasoning which
underlines this supposition is based on the following picture. Think of E as being
the phase space of an individual particle and of λ as the Liouville measure for the
dynamics of each particle when it is free (i.e., there are no forces acting on it). Next,
suppose that we place free particles at the lattice Έd and have then interact in
such a way that the energy produced by the interaction of the particle at k with
the rest of the system is given by

when the position (in Ω) of the particles is x. Finally, consider what happens when
we allow our interacting system to achieve equilibrium subject only to the
constrain^ that the average interaction energy of the particles be some specified
number Ό. To be more precise, let neZ+ be given and consider the system of
particles at the sights in Vn obtained by imposing periodic boundary conditions.
When such a system has achieved equilibrium subject only to the constraint that
its average interaction energy be ΰ, one suspects that its distribution should be
the measure μn which one gets by conditioning λ on the event

In the language of statistical mechanics, μn would be called the microcanonical
distribution of this system and what Boltzmann's principle, equivalently, the principle
of equivalence of ensembles, predicts is that, as n-» oo, μn tends to some ye®^^),
where β (the inverse temperature) is determined by the condition that

=U. (3.1)

The purpose of this section is to verify the equivalence of ensembles as an application
of the theory of large deviations (cf. Theorem 3.5 below). Besides Lanford's
ground-breaking article [L], earlier programs of this sort have been carried out
by Dobrushin and Tirozzi in the article [DT] and by Georgii in the book [G].
In [DT] the reasoning is based on the Central Limit Theorem whereas the ideas
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in [G] derive from de Finetti's theory of symmetric random variables. Moreover,
Georgii has recently circulated a preprint in which he obtains closely related results
by an information theoretic method which was introduced by Csiszar. Thus, at
best, all that is being proposed here is a new strategy for handling this sort of
question. In fact, the strategy itself is not entirely new, since it has been used
already to handle a closely related situation in [SZ] and was carried out when
d = l i n [ S ] .

In order not to get involved with problems about the existence of regular
conditional probability distributions, we will replace the true microcanonical
distribution μn by the approximate microcanonical distribution μM, (5e(0,1], which
is the conditional distribution of λ given the event (cf. part ii) in Remark 1.12)

An{ΰ,δ) = \\ xeΩ:
\keVn

(3.2)

and only at the end will we pass to the limit as δ \ 0. Note that

An(U,δ)= {xeΩ:Rn(x)eWl(U;δ)}, (3.3)

where

In addition, since

lim
n~* oo An(U,δ) An(V,δ)

= 0 (3.4)

for /e£ 0 (ί2;R), when there is no phase transition (i.e. ($$(<%) contains precisely
one element), we will have reached our goal once we show that

ϊϊm ϊϊm λ(RnφG\Rnem(U;δ)) = 0
δ\0 n-κχ>

for every open neighborhood Ge&Mί{Ω) of O^(^).
With these preliminaries, we can now state and prove our result.

3.5 Theorem (Boltzmann's principle). Set

and assume that

7 ί7 oo. (3.6)

(Implicit in (3.6) is the assumption that 2K(ί7) Φ 0.) Then, for each δe(0,1), there is
an NδeZ+ such that (cf. (3.2))

Γ ^ l for n^Nδ.

In fact, for any measurable subset A o/M^/2),

- inf \{v) g lim lim ~\og[λ(RneA\An(U,δ))]
veΛ° δ S i 0 n->oo | Vn\

^ϊmT ϊίm~ ~loglλ(RneA\An(U,δm ύ -infl*(v), (3.7)
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where

I*(v) =
h(v\λ)-m(U) if
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and

oo otherwise.

In particular, if Ge08UΛΩ) is an open neighborhood of the set

then

ϊϊm ϊίrn-}-\oglλ(RnφG\An(ΰ,δm^ -infI*(v)<0.

Finally if°U is not trivial, there is at most one βeJR. for which

and, if such a β exists, then

In particular, i Wl(U) contains precisely one element y, then

lim lim
δ \ 0 n->ao

= lim lim
<5 \ 0

ί fdλ
An(U,δ)

λ(Λn(U,δ))
= 0

for every feCb(Ω;ΈL).

(3.8)

(3.9)

(3.10)

Proof We begin with the relationship between g($0 and the sets ®^(Φ), βeΈL.
Thus, suppose that 79©^(^)nj0i(^) for some βelR. Then, by the second equi-
valence in (2.4), for any μeSDΪ(#), h(μ| λ) ^ h(y|λ) and equality holds if and only if

). Hence, there is at most one such β, and, when it exists, %(U) =
ί7

In view of the preceding paragraph, all that remains is to check the validity of
(3.7). Actually, what we do here is simply point out that (3.7) is an immediate
consequence of the large deviation principle (1.4) and the Remark 1.12, ii). Indeed,
given (1.4) and that remark, one sees immediately that, for every δe(0,1) and

S -inf{h(v\λ):veΆnWl(U;δ)y,

and clearly (3.7) follows immediately from this, (3.3), and the easily verified fact that

inf{h(v|A):i;eInaR(i7;5)}\inf{h(v|A):v6i4naR(t7)}

as δ \ 0. •
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3.11 Remark.

i) One advantage to the line of reasoning which we have taken, is that (3.7) together
with Varadhan's lemma (cf. Theorem 2.1.10 in [DS]) leads to the statement

exp[|Kn |Φ(Rn)]Λf

lim lim
δ \ 0 n-*oo

1
log

Άn(U,δ)

λ(Λn(U,δ))
-sup{<Φ,μ>-I*(μ):μeMf{fl)} = 0

for every measurable ΦeC(M1(ί2);IR) which is bounded above,
ii) Let An(U,δ) be the set which one obtains by removing the tilde from the Rπ(x)
on the right-hand side of (3.3). By exactly the same argument as we just used, one
can then prove the statements which result from removing the tildes in (3.7). Thus,
so far as the empirical measures are concerned, the result is the same whether one
considers periodic boundary conditions (those corresponding to the quantities with
tildes) or free boundary conditions (corresponding to taking the tildes away). On
the other hand, because (3.4) fails when the tilde is removed from Rn(x), we do not
know how to prove the analogue of (3.10) when the boundary conditions are free.

The results obtained in Theorem 3.5 do not really require the potential to have
finite range and hold for all bounded potentials.

4. Further Comments

Let % be a shift-invariant, infinite range potential, and assume that °U g C 0 (β;R) .
Next, referring to Theorem 3.5, assume that 5(17) φ 0 ; and, for each neΈ+ and
δ > 0, let M ^ e M ^ M ^ β ) ) denote the distribution of x e β t - ^ R ^ e M ^ β ) under
λ( \Άn(U,δ)). In this section we will discuss the limit behavior of {Mnδ:neΈ+ and
δ > 0} as first n -> oo and then δ \ 0.

Throughout this discussion, we will be considering convergence on M ^ M ^ β ) )
with respect to the weak topology built over the weak topology on M ^ β ) (i.e., the
topology on M^M x (β)) generated by sets of the form

as M runs over M ^ M ^ β ) ) , Φ over bounded functions on M ^ β ) which are
continuous with respect to the weak topology, and α over (0, oo).) In particular, we
will say t h a t M is a limitpoint of{Mnδ:n€Z+ a n d δ > 0} as first n-+oo and then δ\0

and will write M G L ( Ϊ 7 ) if there exist {δ(l):leΈ+} g(0, oo) and {n(kJ):kJeZ+} g
Z+ such that: δ(l) \ 0, n(kj) s oo for each leZ+, and

M = lim Hm M B ( U M ( 0

in the sense that

lim ίϊm I < Φ, M Π ( M M ( O > - <Φ, M>| = 0

for every bounded Φ r M ^ β J - ^ R which is continuous with respect to the weak
topology; and we will say that Mnό tends to M and will write

M = l imlimM π < 5 if lim ϊϊm \(Φ,Mnδ) - <Φ,M>| = 0
δ\0 "-*<*> ' <5\0"^co
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for every bounded Φ:M1(f2)->]R which is continuous with respect to the weak
topology.

4.1 Lemma. For each <5 > 0, the sequence {Mn δ}™= x is relatively compact. Moreover,

if

Wϋ,δ) = {ve9K(i/^):h(v|λ) g m(U)}

and Ίu(U,δ) is the set of all subsequential limit points of {Mnδ)™=u then

Mδ{%{Ό,δ))=\ for every MδeL(U,δ). (4.2)

Hence, (J h(ΰ, δ) is relatively compact, and MeL(C) if and only if there are sequences

{<5(0}r=Γ^(0,oo) and { M ^ ^ i S M A ί f l ) ) such that: δ(l)_\0, Mδ(l)eUU,δ(l))
for each leZ+, and Mm=>M in M ^ M ^ β ) ) . In particular, L(U) Φ 0, M(g(£/)) = 1
for every Meh(U), and

M = lim lim MΆιδ if and only if L(Ϊ7) = {M}.

Proof. Because the level sets of h( | λ) are compact in the weak topology, everything
comes down to proving that {Mnδ}™=1 is relatively compact for each (5>0 and
that (4.2) holds. But, by precisely the same argument as was used to prove (3.8), one
can show that for every weakly open neighborhood G of g(ί7, δ), lim Mnδ(Gc) = 0.

Hence, the required relative compactness becomes an application of the
Prokohorov-Varadarajan compactness criterion, and (4.2) follows from the fact
that (because % g C0{Ω;R)) %{ΰ, δ) is weakly closed. •

As a consequence of the considerations in Lemma 4.1, we see that

lim lim Mnδ = δ
δ\0n~*co

when g(ΪJ) = {γ}. On the other hand, when g(ίJ) contains many elements, the
situation is not so clear. Nonetheless, we will close with an example which indicates
the sort of phenomena which one might expect in general.

Let E be the two point space {— 1,1}, take d = 2, and therefore Ω = {— 1, \}π2.
Next, let λ be the standard Bernoulli measure (i.e., λ{{ ± 1}) = £) and consider the
Ising potential °U given by

Ψ* fM f = {k i) w"h |k-i1-'
otherwise.

As Lebowitz showed, Onsager's famous result can be used to see that when
β> βc = log(l + y/ϊ) the associated set ^>β{^ί) contains more than one element. In
fact, Aizenman [A] and Higuchi [H] each showed that ®^(Φ) = <&p(<%) and that

(4.3)

where y£ is characterized as that element of ©^(^) for which

m+(β) = (x0,y;y^(x0,y) for all ye®J(«), (4.4)
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and jβ = jβ °T~ \ where T:Ω-+ ΩΊs the spin-flip transformation given by Tx = — x.
In particular, this means that, for a given β, the number U(β) = (%0,y} is
independent of the choice of ye©^(^). In addition, one can show that /?eR(—•
U(β)e[0, GO) is a strictly decreasing, continuous function.

4.5 Proposition. Referring to the preceding paragraph, let αe(βc, oo) be given, take
ΰ=U(a)9 and define {Mnδ:neZ+ and ^ O l g M ^ f l ) ) accordingly. Then

l
. (4.6)

δ\0n~*co

Proof That g(ί7) = (5«W is clear from Theorem 3.5 and the remark immediately
preceding the statement of this proposition. Thus, in view of Lemma 4.1, what we
have to show is that every element M of L(ί7) is the measure on the right-hand
side of (4.6). To this end, first note that corresponding to M there is a unique

J - 1,1]) for which

Moreover, since both °ll and λ are T-invariant, it is clear that p^ must
be an even measure on [—1,1]. Hence, our problem comes down to checking
that PM{(— 1,1)) = 0; which will certainly follow once we show that, for every
0 ^ α < m + ( α ) ,

\im\imλ(\Sn\^a\AnJ(ΰ,δ)) = 0, (4.7)

where, for each neZ+, we define

X G ^ S » E — X xk = <x0,Rn(x)>.
I Vn\ keF n

In order to prove (4.7), we first partition An(ΰ, δ) into the sets ΛnA(ΰ, δ\ —2n^
I ̂  In + 1, where

Λn,2n+ i(U, δ) = Λn(U + {An + l ) ^ , ^ ) ,

ΆnJ(U,δ) = A(ϋ + (21 - l)δn9δn)\Λn(ΰ + (21 + 1)^,δH)9 -2n^l^2n,

and δn = - - . We then have, by Bayes's Law, that

λ(\Sn\^a\An(U,δ))= 2tΣ λ(\Sn\^a\Aι

n(ϋ,δ))λ(AnΛ(ϋMAnΦ,δ)\
l=-2n

and so (4.7) will follow from

limϊϊϊn max λ(\Sn\^a\Anl(ΰ,δ)) = 0. (4.8)
^ Q H - ^ O O -2ngl^2n+l

In proving (4.8), we will make use of the probability measures y^^
given by:
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where ZβtVn{%) is the normalizing constant making yβ Vn a probability measure.
Clearly,

λ(-1 AKtl(U9 δ)) ^ exp [_(2n + \)%βδ~\yβtVn{; \ AnΛ(U9 δ)) (4.9)

for all /JeR, neZ+, and - 2n ^ / g 2n + 1. The importance of (4.9) to us derives
from two estimates on the measures yβVn. The first of these is the estimate in
[CCS] from which one can show that there exists an ε > with the properties that

e-(2n+l)ε

m+(β)>a and γPtVn(\Sn\^a)^ for all jβe[α-ε,α + ε]; (4.10)
ε

and the second is the estimate in [N] saying that

M ^ 7β.vn(\<%X>'U(β)\<δΛ)>0. (4.11)

(Actually, the result, Theorem 2 in [CCS], on which (4.10) is based is stated when
the boundary conditions are free, not periodic. However, Schonmann assures us
that the same techniques apply to the periodic case as well. Also, (4.10) is not
explicitly stated in [N], but is implicit in the Central Limit Theorem which
Newman derives from Theorem 3 and Proposition 4 of [N].) In particular, since
β\-> ΰ(β) has a continuous inverse and ΰ(oc) = (7, we can find a δ0 > 0 with the
property that, for each δe(0,δo\ n e Z + , and — 2n S I ύ 2n -f 1, there is a unique
β(n9 /, <5)e[α - ε, α + ε] such that U(β(n, /, δ)) = Ό + (21 - l)δn and, therefore,

AnΛ(ΰ9δ)^{x:K%X(x)}-ΰ(β(n9l9δ))\<δn}.

Hence, by combining (4.9), (4.10), and (4.11), we see that there exists a Ke(0, oo)
such that

λ(\SH\£a\ΆHA(ΰ9δ))

gexp[(2rc+l)8jS(rc,/,
P , K > - U(β(nJ,δ))\ <δn)

g K exp [ - (2n + l)(ε - 8(α

for all neZ+, - 2 n ^ / ^ 2 n + l , and 0<δ<δo; and clearly (4.8) follows from
this. •

4.12 Remark.

i) It is hardly necessary to point out that (4.6) certainly implies that, as first n -> oo
and then δ \ 0, (cf. the notation in Sect. 3) μ M tends to ̂ yβ + ̂ yβ . Of course this
same conclusion can be reached much more easily and directly by simply observing
that every limit of μntδ must be the (unique) y e © ^ ) for which (xo,y} = 0. In this
connection, note that a similar line of reasoning, based on the classification of
Gibbs' states in [FP], can be applied to the three dimensional Heisenberg to see
that in that case also μ M converges, this time to the unique rotation invariant
Gibbs' state. On the other hand, we are unable to say what happens' to the MnJs
in this case.

ii) The result contained in Proposition 4.5 suggests that it is reasonable to expect
that elements of L(Ϊ7) ought to be concentrated on the set of extreme points in g(l/).
Certainly, for those potentials when this is known to be the case, considerations
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of the sort in Proposition 4.5 would be far simpler. Indeed, if we had known this
ahead of time for the two dimensional Ising model, then the argument in the proof
of Proposition 4.5 would have ended after we had remarked that (cf. the beginning
of that proof) p^ must be even.
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