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Abstract. Two-dimensional 0(ΛΓ)-invariant hierarchical Heisenberg models (of
Dyson-Wilson type) are investigated by the real space renormalization group
method. It is established that if N ^ 2, then the effective actions at long distance
scales are driven into the high temperature region by the iterative use of the block
spin transformations, thus concluding the non-existence of phase transitions in the
system. The correlation functions are also obtained and they decay at the speed
of massive gaussian field model. The driving force is geometrical and an a priori
one and stronger than the boundary effect which is bounded by 0(1) in the present
system. Thus the hierarchical formulas fail to exhibit the Kosterlitz-Thouless
transitions (at least for N = 2).

1. Introduction

Conjectures of quark confinment in four-dimensional (4D) nonabelian lattice gauge
theories and mass generations in 2D Heisenberg models are long standing problems
in modern physics [1-3]. These problems may be solved only by hard analysis
like real space renormalization group methods [4-7]. However this is difficult in
these problems because these phenomena are non-perturbative. Thus we need to
find a reason why the renormalization group flows are attracted into the
high-temperature region (if our conjectures are true), and to develop a method
which enables us to follow the trajectories in a non-perturbative way.

Our main result in this paper is that the renormalization group flow of
two-dimensional O(iV)-symmetric Heisenberg model is driven into the high-
temperature region, within the hierarchical approximation of Dyson-Wilson type,
without exhibiting the Kosterlitz-Thouless transitions for any initial go(x). This
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result holds not only for N ^ 3 but also for N = 2. Then the formula fails to exhibit
the KT transitions. We show that the driving force is geometrical and an a priori
one and is stronger in the boundary effects in the hierarchical approximation. This
model was first considered by Gawedzki and Kupiainen [6] and they gave an
explicit solution for N = oo. See also [7-9] for earlier reports on this subject.

In Sect. 2, we first propose a 2D Λ/-vector model (Heisenberg model with N
components) defined on a hierarchical lattice embedded in two-dimensional lattice
space Z2. The hierarchical lattices constructed in this paper are called Dyson-
Wilson type and believed to be close to the real system [4-7]. Essential differences
are that long-distance interactions are introduced to make the hierarchical
structures and that boundary effects are bounded by 0(1) through all the distance
scales and the magnitudes of the block spin variables.

In Sect. 3 we show that if N ^ 3, the effective actions obey some a priori bounds
which are essentially asymptotic freedom and have a probabilistic origin: balls
hardly take the same directions compared with sticks and disks. However we can
prove that the 0(2)-model equally satisfies the same type of the bound, by
considering larger blocks. Then it is difficult for the recursion formulas to find the
difference.

We first consider 0(N) models, N ^ 4, in Sects. 4 and 5, and analyze the
renormalization-group flows by the standard block - spin transformations of
Wilson-Kadanoff type. The flow consists of three parts, depending on the number
of renormalization group iterations and the typical magnitude of the field variables.
For small numbers of the iterations, the flow is slowly attracted into the high
temperature region in the large field region [4-5].

Once the flow is attracted into the high temperature region, then the flow
approaches the origin exponentialy in n. This is consistent with the well known
large deviation theory [11,12] in probability theory. There is also a transition
region between these two regions. _̂  _̂

In Sect. 6 we investigate the correlation functions and show that (φ(x)φ(y)} ~
const [φc,y)]~2, no matter how low the initial temperature is (const may depend
on it), where d(x,y) is the hierarchical distance. The inverse-square decay is due
to the built-in long-range interactions, and is consistent with the conjectured
exponential clusterings in the Heisenberg model [12]. In Sect. 7, we discuss N = 2
and 3 models in which we have weaker bounds. But we can prove the absence of
the KT phase by the same method.

In Sect. 8, we argue the possibility of the application of the present method of
analysis to the real systems, and in the appendix we prove some technical lemmas
used in the paper.

2. Construction of Model(s)

The Gibbs measure of ΛΓ-vector model in a finite volume A (= [ — Lκ/2, Lκ/2]2 n Z2,
where L is an integer larger than 2 and K is an arbitrarily large integer) is given by

Π
xeΛ

where φ(x) = '(φi(x),..., φN{x))eRN is the random (spin) variable at the lattice point
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xeΛ, and

HΛ= Σ (Φ(χ)-Φ{χ))2+Σvo(Φ2(*))
(x,y)eΛ xeΛ

o(Φ2(x)) (2.2)

is the finite volume Hamiltonian, £ stands for the pair wise sum ((x, y) is identified
(*.y)

with (y, x)), J Λ the lattice Lapladan operator and V(φ2) is the self-interaction term.
We assume that

go(φ2) = expL-Vo(φ2)l (2.3)

decreases sufficiently rapidly (faster than any Gaussian functions of φ) as
φ2 = φ2 -> oo. Define the block spin operator C by

where Π(Lx) is the square of size Lx L, with the center at LxeLZ2 nΛ. Thus the
effective interaction at the distance scale U is defined by

μn(φ) = const x exp [ - # , # ) ] = ^(μ n _ J ^ ) (2.5)

Λ Λ

where μo(^) = const exp [ - H o ] , i/ 0 = ifΛ and ylπ = L~nΛnZ2. _^
In repeating the transformations (2.6), one encounters the difficulty that Hn(φ)

contains complicated non-local terms.
Thus we approximate the system by replacing the original Laplacian (2.2) by

one of the following hierarchical ones:

model I (diagonalizable model):

= 7 7 2 J Σ Σ (Φ(y)-Φ(y'))2+ •••}• (2.7)

model II (non-diagonalizable model: general type):

<φ,(-Δ)φ)^H%L= t Σ H((Cφ)(y,),...,(C"φ)(yr)), (2.8)
n- 1 xeΛn

where yl9...,^PeΠ(^4 r = L2 and the function H satisfies

H(Gφu...,Gφr)) = H(φu...,φrl for any GeO(N\ (2.9a)

., φr + φ) = H(φ±,..., φr), (2.9b)

3 % ) ) . C ί χ H | C ( 2 9 c )

dxu
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where 0 < δ < 1 and Ct > 0. We also need the integrability though this is ensured
by e x p [ - Ko]. The property (2.9b) is needed only to approximate the Laplacian
and has no direct effects on the flow.

Our main conclusion does not depend on the choice of the hierarchical
Hamiltonians. As is seen from the construction, Λn (n = 0,1,...) is decomposed
into (Lκ~n)2 squares of size Lx L, and the interaction at distance scale Ln is restricted
to these squares. To see that the hierarchical Laplacians approximate the real one,
we consider

$exptϊa(Φ(x)-φ(ymdvh

o

cL (2.10)

dvh

o

cL = (Zy * exp [ - Hh

o

cLl Π dφ(x). (2.11)
xeΛ

Here x,yeΛ and Z is the normalization constant (introduce a mass term and
remove it after taking the thermodynamic limit). Let

d(x,y) = min {Lk; both L~kx and Γ f c y G D W for some meZ2}. (2.12)

d(x, y) play the role of distance (hierarchical distance) and is the size of the smallest
hierarchical square containing x and y.

Assume d{x, y) = Lw, and consider the change of the variables:

(2.13)

where xeΛk+ι is chosen so that XGQ(LJC), and thus (Ck + 1φ)(x) is independent
of xe[](Lic), and z(x) are the fluctuation fields around (Ck+1φ)(x) satisfying
(Cz)(ic) = 0. If k ^ n, then both x and y are contained in the same hierarchical
square and thus (Ckφ){x) = {Ckφ)(y) and there exist no contributions from larger
distance scale parts, see (2.7). Thus in the case of model I in which dvhQL is Gaussian,
we find

Eq. (2.10) = /n-2)r0 = e x p [ - const(α)2(logLd{x9y) + 0(1))],

where const > 0 and

weΠ(0)

l Γ α , 7 ( i ) - : ? ( . / ) ) - I k Σ (z(w)-
weΠ(0)

with Uz = Y\ d~z(w). Here we have used the facts that the fluctuation fields are
weΠ(0)

not coupled if they belong to different hierarchical squares and that all points in
the square are identical, and finally i and j in the second equation are relative
positions of x and y in •(0)cz/lπ. Then dvhQL for the model I approximates the
original one with a reasonable accuracy. The measure dvh

o

cL for model II can be
similarly discussed and it will be easily seen that Eq. (2.10) behaves like
exp [ - const log d{x, y)~\.

Remarks 1. (1) Because of the hierarchical structure in //QCL, there exists a long-range
interaction: Add a mass term Yjm

2φ2(x) to H*QL, where m2 > 0 . Note that γ 2
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equals

L2 x (cφ)2(χ)+2 x (cφ)(χ)

where Σ ^00 = ° τ h u s

<φ(x)φ(y)) = 0{L-2n) =

(2) By replacing l(Cnφ)(y)-(Cnφ)(y')-]2 in Eq. (2.7) by

one has the d-dimensional model [6,7], where {Cφ){x) = L~dYjφ(Lx + ζ). Then
C = C for d = 2. Set L = 21 / d so that Ld = 2. Then L d " 2 = 21 ~2 / d and this model has
been considered by Bleher and Major for d > 2. They established that there exists
spontaneous magnetization if d > 2 and the inverse temperature is sufficiently large
[7]. The parameter 2 1 " 2 / d is written c in [7].

3. Recursion Formulas and Probabilistic A Priori Bounds

Our recursion formulas for the hierarchical system are now:

- Y Σ H((Ckφ)(yι\...ΛCkΦ(yr))]u^n(Φ2(χ)\
(3.1a)

gn(ψ2) = {JTΛy' \δ\_ψ -L'2ΣΦ(ydlexp[- H(φ(yi),...,φ(yrm

1 = 1

where r = L2, {ifM} and {J^n} are the normalization constants and we set

φ = (φ, 0), φ = \φ\ > 0 by the rotational invariance.
For simplicity, we assume that supp# 0 ci [0, κ\ and thus suppgn a [0, K] for all

n. Then go(x) = δ(κ — x) belongs to this class. This is needed just for the a priori
bound discussed below, and it is easy to see that g0 can be extended to functions
decreasing rapidly for x = φ2 >κ.

We first consider model I: using

Σ 2(φ(x) - φ(y))2 = 2
(x,y)eΠ(0)

= 2

where φ = '(ψ, 0,..., 0)eRN, we have

i-\ fί fn-i(ψ2(xk)), (3.2a)
k= 1

(3.2b)

Thus gn(φ2) is the probability density (except for exp(-L 2 φ 2 /4)) that the average
of L2 spins with distribution fn-ι(φ ) takes its value at ~φ (or (φ,0)). The correction
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term exp[(L2φ2 -£</>2(x))/4] comes from the Laplacian part, and enhances the
probability that φ takes larger values.

For N ^ 3 it is enough to set L2 = 2, and we have:

^(φ 2 ) = ( ^ - 1 β - ^ 2 ί 5 [ φ - i ( 0 1 4 - φ 2 ) ] Π Λ - i ( Φ 2 ) # ί (3.3a)

fn-Λφ2) = dn-Λφ2)e-φ2/4 (3.3b)

Theorem 1 (A priori bound for 2 balls.) Assume N^.3. Then for απy/ π _ 1 (x)^0
such that supp / ^ j c [0, K], gn(x) is monotone decreasing in x such that xe[κ;/4, K].

^.4, then gn(x) satisfies the following a priori bound for xe[κ/4, κ\\

W + ^ l + ^ , (3.4)

where k = (N- 3)/2.

Proof By the rotational invariance, set φί=(φ + s9~ϊί) and φ2 = (φ — s,—ΊΪ)
to find that

const κ κ

j j dpdqθ(μ(p,q;x))[μ(p,q;x)ffn. Λp)L-i(q), (3.5)
IX

by a trivial change of variables, where

k = {N- 3)/2. (3.6c)

Now p and <?e[0,κ;], and μ(p,q;x) is decreasing in x > | p - g | / 4 . Thus so are
θ(μ(p,q;x)) and [μ(p,^;x)]fc. Since κ^\p — q\, the former half of the theorem is
clear. Next for N ^ 4,

2 +

^ + feinf
2x D μ(p,q;x)

where

«x)]*/»- i(P)/.-1(«)

(3.7a)

(3.7b)

(3.8)
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(see Fig. la in Sect. 4 in advance). 1 — (p — q)2/16x2 is positive if x ̂  κ/4 and the
infimum of (3.7b) is taken by p = q = K. Q.E.D.

For N < 4, we improve the bounds by taking larger blocks (L = 2).

Theorem 2 (A priori bound for 4 balls.) Set L=2 and N > 5/3. Then for any
/ π _ 1 ( x ) ^ 0 such that suppfn-x c: [0, κ\ gn(x)e~x is decreasing in xe[/c/4, K] and
satisfies the following bounds:

T- + -TΓ-. f°r ^ 3 >
x ) * - * ] ' ^ X K X r (3.9)

C ^ C ^ N 2

fc = (3N — 5)/2, αn</ C, > 1 uniformly in xe[κ/4, κ]

Proof. It is enough to assume N = 2 or JV = 3. For L = 2, we have

-^Φ, + Φ 2)]

, -WΦl+ΦlΏfn-ΛΦDfn-ΛΦl)

(3-10)

by introducing radial variables pt = φf (i = 1,..., 4). Here by putting p = Φ\ and
q = φ^ the kernel Xjy has the expression

(3.11a)

p4,q)']k. (3.11b)

The region 0 is the set of {p,q)e[0,κ]2 in which all μ's are positive: 9 = DnΔ,
where Z) is given by (3.8) and

ύ*PS(y/fi + jF2)\(P^<l,Pi^Pi + 2)}. (3.12)

Obviously Q) = φ if £ v/p^ < 4^/x and zl is not in D if x > κ/4, and only one corner
ofzlis6Difx>(3/4) 2/c.

For N = 3, the XN is explicitly obtained:

constJKΣ^V^, « M ] f ( 3 1 3 )

3 /Γ S Λ Γ ί v / ^ 4 / ί \ XG[K/4,(3/4)V]Σ
where we assumed that pί = min {/?J* in the second equation.

For JV = 2, we have μ's include (p*pc)~1/2 in Eq. (3.11b) and set μ(p,q;x) =

8x(p-\-q)-x2-(p-q)2. We furthermore set p = po-ζ, q = qo-ξ (ζ,ξ^0) with

Po = (y/ΐh + \/P^)2/4 and q0 = (^/p^ + y ^ ) 2 / 4 , and define

2 - p 0 , τ(x, {) = p 0 -
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M(PI,P2;P) = - C], μ(p3>P4; q) =

Introduce two parameters se[0,1] and ίe[0,1], and let C = τ(x, £)£ and

ξ = £maχS, where ξmax = q0- (2jx - y/p^)2. Then we have

Γ/(x;s,ί),

; S, ί) =

m a x is monotone decreasing in xe\_κ/4,κ] and so is τ(x,ξmaxs) = p 0 —
«o ~ £maXs)1/2)2. Moreover

(3.14a)

(3.14b)

τ(*> ίmax 5)* = C 4 x - Pθ • - 0 + - ξmaxs(\ + t)

is monotone increasing. Thus I(x;s, t) is monotone decreasing for any s and t.
Thus KN=2 decreases faster than £max. By symmetry K2 decreases faster than
[p0 — (2y/x — ^/ίfo)2]172 and thus faster than

{[<?o - (2 sfi - V^) 2 ] [Po - (2 sfc ~ V^) 2 ] ) 1 / 4

= [ V ^ + V ^ - 2 λ A ] 1 / 2 [ 4 x - ( V ^ - V ^ ) 2 ] 1 / 4 . (3.14c)

For xe[/c/4, (3/4)2/C], we assume p1 = min {pjί and set p = /?0 — ζ and q = qo — ξ.
Then ζe[0, V & ] , and ξe[0,^0 - (2^x - V P ^ ) 2 ] = [0, £max(C)]. Set Cmax =
J and ξ = ξmaxί. Thus we have

1
dt-

1
--J(t,ζ;χ), (3.15a)

(3.15b)

and thus

-[ lnK N = 2 ] '>inf-[ lnJ(t ,ζ;x)J

Ήί4 - 2 ^ ί
xj

l

= 47' (3.15c)

using YJBif^jAι ^ min {B;/A;} in the second line. Q.E.D.
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Finally we consider model II. Again set L = 2(r = 4) and φ = (φ, 0).

gn(x) = \δ[_φ-(Φ1 + Φ2)iτ\άΦxάΦ2

-(φ3 + φ4)/2]

). (3.16)

SetΦi = '(φ±s, ±ωu)(+ for ( = 1 , - for i = 2 and |ω | = l) and insert 1 = $dpdqδ\_p-
(φ + s)2-u2]δ[q-{φ-s)2-u2]. Define the orthogonal matrices Rt and R2 by
Λ Φ. = (φh0), where φι=Jp and φ2 = ̂ /q. Then

We again set φt = (Λ/p ± su ± S ^ J (+ for i = 1, — for i = 2) and φ} = {•sfq±s2,
±ω2u2) (4- for = 3, - for j = 4), and insert

We thus explicitly have

gn(x) = idωΠdωijΠdpig^^Pi) j dpdqJfN({Pi};p,q;x)

~u...,R2~φt)l (3.17a)

"J ' ι

and etc. Note that only JfN and Rt depend on x. By (2.9a)

Let R = 1 -f δR. Then we have:

1
δR =

pq
0

where ω,T73,H4.,...,HN (GRN 2) are orhogonal unit vectors. So \d(δRu)/dx\ are
bounded by 2(pq)~1/2 and terms containing (φ ±s) are also bounded by Oip'1)
or by O ^ " 1 ) . Risky terms containing u = y/μ are off-diagonal, and connecting
{φi)! and (07)2 or (0 f ) l f 2 and ( φ ^ ( / ^ 3). Then singular terms of μ~1/2 do not
appear in dH(φu φ2, Rφ^ Rφ*)ldx after integrating over ω and ω '̂s. Thus by taking
the derivative of (3.17a)

Theorem 3. ////({φj) satisfies the conditions (2.9a,b) then {gn+1(x)} again satisfy
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the a priori bound for xe[κ — δ, k]:

k
- [In 0 Λ + 1 ( x ) ] ' ^ const -

κ — x

4. Trajectories of {gn(x)}; (I) Large Field Region

Throughout Sects. 4,5 and 6, we assume L2 ^ 2, N > 3 and K > 0((N - 3)2) + 1
without loss of generality. Let k = %(N — 3) and define

A = J dpdqμ(p, q; x)kθ(μ)fn(p)fn(q% (4-1)
D

B = J rfpd J 1 - ^ = ^ l μ ( p , ς ;

We introduce a strictly positive constant ω = const fc and let

κn = κ-nω, n = 0,l,...,JVo, (4.3)

where Λ/Q is defined so that κNo = O(k2). Then the behaviors of {gn} are classified
into three regions:

(1) scaling region: n = 0,1,..., Nθ9

(2) transitive region: n = Λf0, No + 1,..., N'o = JV0 + O(fe2),
(3) high-temperature region: n>Nf

0.

Theorem 4. Assume that κ»k = (N — 3)/2 ^ 1/2. T/ien ί/ierβ ^xisί α constant
ω — C^k and poisitive increasing and convex functions {απ(x); n= 1,2,..., ΛΓ0}, where
No is the largest integer less than (K — 0(k2))/ω and each (xn(x) is defined on
In — ίκn> K\> κn = κ — nω, and satisfies:

(1) - [ ln^(x) ] '^α M (x) , xeln9 (4.4a)

( 2 ) α l l ( x ) ^ [ 2 - 5 J α l l _ 1 ( x ) , for χeIH.u (4.4b)

(3) [ 2 - < 5 k ] α m i n ^ α π ( x ) ^ α m i n for x e f c f c ^ J , (4.4c)

(4) αn(κw) = α m i n ^ 2 . (4.4d)

Here δk«l,δk< const/fc and (2 — δk) can be made arbitrarily close to 2 by choosing
ω small. Moreover there exists εk« 1 such that

2ωα m i n ^fc(l-ε f c ). (4.4e)

If x€[κn-nQ>κn-no-ι\ t^ιen ^ e ^k in (4.4b) can be replaced by

δn

k{x)< const 2no~\ (4.4f)

Remark 2. αm i n will be chosen so that

i n + i ] - 4 > α m i n (4.5)

for some δk<δk. Then δk->δk as αmin-> oo and this yields the lower bound about
1/4 for αm i n.

We use the following technical lemma (see the appendix):



2D Hierarchical Heίsenberg Model

Lemma 5. Letf(ζ) be a positive function defined on R + . Let
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0

where m,Λ,s,ί,fc-l and t are positive and s + ζ-tζ2^0 for Ce[O,A]. Then
<ζm>(Λ,s,ί,/c-l,/) is monotone increasing in λ, and decreasing in s and t. If

Thus if - [In/(£)]' ^ α(> 0), the upper bound is realized by β~αζ.

Proof of Theorem 4. For n = 1, this is trivial from Theorem 1:

k ) 1 K

2x ' κ-x
!
2'

Then set KJ = fc - Cxk, where C t g 1/2 (later we choose Cx « 1). It is also clear
that αx(x) can be chosen to be convex and increasing in the region lx = \κ - ω, κ\.

Assume that the theorem holds for 1,..., n. Then for n -h 1, we encounter three
cases depending on the magnitudes of x = Φ2:

(1) xe[fcB,ιcn_Λ], transitive region,
(2) x e [ f c π + 1 = κ π - ω , κM], small field region,

(3) x > κn_Λ, large field region,

where ή ^ 1 is a suitable small integer.

(case 1) x = φ2e[κn,κn_Λ\\

Decompose D into two regions D1 and D2 (see Fig. la):

{ ; * ^ fl S P ̂  K) (4.6a)

^q^x}. (4.6b)

Fig. la. Domain D = {(p,<z)e[0,κ]2;μ(p,g;x)^0} and its decomposition into Dj,D2 By the
p<^q symmetry it suffices to consider the region q < p



56 K. R. Ito

Let

At = J ipdqμip, q; xffn(p)fn(q)dpdq, (4.7a)

B^μpdq^l^-^^μip^xf-'fMfMdpdq. (4.7b)

Then we have

Lemma 6. Let k> 0. T/ien

(l)fc^2[«n(x) + | ] - i (4.9)

fe^^Kl-Oίx^nCα^ + i] for fc=l/2. (4.10b)

Proo/. (1) First note that

Then the left-hand side of Eq. (4.9) is equal to

Pmax Γ<3 Ί

) f dp - /
Pmin L ̂ " J

k(P)

7
Pmin

X Pmax

f ^ Λ t e ) ί dpμkfn(p)

where p m i n = pmin{q) = (2^/x - v ^ ) 2 ^ ^, Pmax = min {κ9 {ijx + v ^ ) 2 } , and (?min = 0
if x < κ/4 and f̂min = (2^/x — y^c) 2 otherwise. Therefore using the integration by
parts and the fact that μ{pyq\x)kfn{p) vanishes at p m a x and p m i n , one obtains

L.H.S. of Eq. (4.7) ^ - i - + inf 2(3/3p)[ - In /Λ(p)]
2x p^χ

^ - ^ + 2[α,(x) + i ] . (4.11)

(2) Set p = x + ζ and q = x + ξ. Then for fc^l,

where

(4.12b)
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and ε = (ζ-ξ)2βx. Then « ε » = 0{^2χ-1\ To evaluate «••», set ζ = rcos(0)/

j ΐ cos {θ - π/4) and ξ = r sin (θ)/y/2 cos (θ - π/4) with the Jacobian r/2 cos2 (0 - π/4)

(0 < θ < π/2). Apply Lemma 5 for each 0:

^iL, (4,3a)
α + 1/4

2 / c

rcos(θ)

β

For fe= 1/2 one easily finds:

where «•» is defined here by setting μ = (ζ + ξ)/2. Use the previous method.
Q.E.D.

For /c = l and 1/2, we need to calculate kB1/Λί a bit carefully by taking the
smallness of ω and αm i nω into consideration. Assume that our assumption holds
for 0, l,...,n. Then for XE[/CΠ, jcn_β] (n> 1) and for C>0, we have

[In gn(x + 0 ] ' ^ - exp (C[ζ/ω])αn(x),

where (2 — δk) = exp(C) and [ζ/ω] is the largest integer less than or equal to ζ/ω.
This differential inequality implies that

+ ζ) Z gn(x)exp [ - ^(ζ)αn(x)], (4.15a)

-*(ζ) = — ^ - { β c l ζ / ω l - 1} + e c ^ ( ζ - ω [ ζ / ω ] ) (4.15b)
1 ί?

(including the derivative) and thus

Then if ωα is small (C is less than 1), C/2ωα is large and « ζ + O> can be made
arbitrarily small, and thus kBι/Λί can be made arbitrarily large.

(k=l) The integral (4.12a) is one-dimensional:

( 4 1 6 )

( }<c>o

'Ά
where σ = [2ωαΛ(x)]" 1. This can be made arbitrarily larger than α Π +l/4 by
choosing ω small. (This argument does not work if ocn(x) is too large, and then ή
cannot be too large.)
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(fe= 1/2) We introduce the polar coordinate as before. Then

and we choose α m i n ω small.

(case 2) xe[κπ + 1 =κn-ω, /cj:

We decompose D into four pieces D 0 , D 1 , D 2 , D 3 (see Fig. lb):

(4.17)

(4.18a)

(4.18b)

(4.18c)

(4.18d)

Fig. lb. Decomposition oίD into Do to D3. The a priori bound is used to calculate the contribution
from Do and the previous methods for the contributions from Dx to D3

Define Ao to A3 and Bo to B3 as before. We already have the a priori bound
kB0/A0 ^ k/Δ = k/(κn - x) and Lemma 6(1), kB2/A2 ^ - (2x)~1 + 2(αmin + 1/4).
We estimate kBijAi (i = 1,3). As for feB^,

Άl

(4.19a)

where «•» denotes the expectation value (4.12a) with the replacements fn{x + ζ) -•
/„(*, + 0 and μ(x + ζ,x + ξ; x)->μ(κn + ζ,κn + ξ; x). Here - [In /„(*„ + ζ)J ^ an(κn) +
1/4. Again set ζ = rcos(0)/^/2cos(0-π/4) and etc., and take the maximum over θ.
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Then for fc>l,

^ 1, (4.19b)

and for small k (1/2,1) we already have:

\ Q«l (4.19c)

by choosing ω small. (This can be applied to any k.)
As for kB3/A3, if k ^ 1, we have:

o T fn(Q)dq ϊ dp(l -εMμ
fc 3 > fc fain Kn

4 " Ύ ]fn(q)dq]

= infΊ : x ^ }

7k

(4.19d)

where ε = (κn + ζ—q)2/ί6x and

<• > Ξ ^ - » ζ J X ( )μ(κn + ζ,q;x)k~ ιfn(κn + ζ)dζ. (4.20)
o

Thus by Lemma 5, <ζ> is maximized when μ is equal to μ{κn + ζ, κn; κn) and thus

kThis also holds for k= 1/2 with a correction (1 — 0(x~x)) in front of the right-hand
side of Eq. (4.21). In fact μ(p,q;x) is increasing in ge[gm i n,gm a x = κn\ and then
putting g = κn yields the lower bound.

The self-consistency condition is obtained be insisting that the lower bound of
kB/Λ is bounded by αm i n + 1/2 for x = κn — ω = κn +1, and the most strong condition
comes from kB1/A1: for large k

2 / c > k

which is equivalent to

2ω(αmin + i ) + k +

from which Eq. (4.4e) follows. Use (4.19c) for small k.



60 K. R. Ito

Thus the properties (4.4a-e) are inherited by gn + 1. As for the convexity of an + u

note that αn(x) is convex and increasing in x. Thus kB2/Λ2 is bounded from below
by an increasing and convex function. And moreover the lower bounds for other
kBJAi are obviously increasing and convex in x. Thus αn + 1(x) can be defined to
be positive, increasing and convex on J n + 1 .

(case 3) x ^ κn_n\

Lemma 7. Assume the same conditions in Theorem 4. Then

(1) For fixed x (^κn_n\ the (2-δk) in Theorem 4 can be replaced by [2-(5£°(x)]
that converges to 2 exponentially fast in n.
(2) For xe[0(/c2),k], let the integer n0 be defined by xe[κ;-(n 0 + l)ω, κ — nQώ].
Then for n>n0 there exists a strictly positive constant C such that

- [ l n ^ ( x ) ] ^ C 2 " - " 0 . (4.23)

Proof (1) We use the fact that (xn(x) can be chosen as convex functions: an(x + ζ) +
ocn(x — ζ) ̂  2ocn(x) in the present region. Decompose D into D0,Dι and D 2, where

;0^qSx}, D1=D\(DouD2),

where x = x — d/^Jl + d2βx and d will be chosen in such a way that A2/(A0 + Ax)
becomes minimum. Define

D = {(p,q)eD;x^q^p,- (d/dp){ln [μ(p,q9x)kfn(p)} < L}>

where ocn(x)» L » 1. Then

DczDE = {(p,q)eD;(l^fi - ^q)2 Spύ (l^β - Jq)2 + ε},

where ε < const. /c[αM(x)4-1/4 — L] ~1. Then there exists a d such that

AJ(A0 H- A2) < const α^x)" 1. (4.24)

See Fig. 2.

Fig. 2. Large x and large n region in which - [ l n ^ x ) ] ' grows like const 2". The rectangle
containing the line p — q is thin and may be of order <xn(x) ~1
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We estimate kBJA0 for this Do. Let p = x + ζ + ξ, q = x + ζ — ξ, where

£2/4x Ξ ζmin(ξ) < ζ < ζmax(ξ) = κ-x-\ξ\.

Letting μ(ζ,ξ)=μ(p,q;x), we remark that dpdq = coΏSLdζdξ, M i , O*"1 =(
and μ(ζ,0V,,(x + C +£)/„(* + ζ - 0 vanishes at ζ = ζ m i n and ζ = ζ m a x . Thus by
integration by parts, one obtains

m

which together with estimate (4.24) establish Lemma 7 (1).
(2) For x > O(fc2), n0 = [(K - x)/ω] + 0(1). Then for n > nΌ9

an+ t(x) ̂  Γ2 - ^ ] [ α . W + i ] - i (4.25)

(C = constant) which implies that

with a suitable constant C. Q.E.D.

5. Trajectories of {#„(*)}; (II) Transition and High-Temperature Regions

Iterating the recursion formulas, we reach the region in which κn is no larger than
0(k2) and thus O(l//c) < k/kn ~ k/x. Thus ω = C1k depends on x in this region.

For 0(1) < x < 0(k2\ we may assume ω = ω t r = 0(1) (< 1) for simplicity at the
cost of the speed of the convergence of {gn} to zero. On the other hand αJJin = ocn(κn)
may be large:

Theorem 8. (Transition Region) Let No = [(K - O(fc2))/ω] and let ίc = κNo = O(k2).
Assume N0^nSN0 + O(k2\ and let κn = κNo — (n — N0)ωtn where 0 < ω t r = 0(1).
Then there exist positive monotone increasing and convex functions {an(x)}, where
each Oίn(x) is defined on ln = \κn, κ\ and satisfies:

(1) -[ ln0 π (x)] '^α π (x), (5.2a)

(2) <xn(x)^ [2 — δjjoίn-^x), for xsln_1, (5.2b)

(3) [ 2 - ( 5 k ] α m i n ^ α n ( x ) ^ α ^ i n , for X G ^ ^ . J , (5.2C)

(4) an(κn) = a^ιn = 0(k) + 1 ( » k). (5.2d)

Here δk < 1, δk < const/^, and there is a constant εk« 1 such that

2(Cinω^k(l-εk). (5.3)

Remark 3. We can refine this theorem as follows:
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(1) For fixed x (> 0(1)), δk is replaced by δ(

k

n)(x) which converges to 0 exponentially
fast as n—κχ).
(2) For fixed x > 0(1), there exist positive constants n0 = no(k, K) and C such that
αn(x)>C2"~Π 0.

Proof. Since the proof is essentially equivalent to that of Theorem 4, we sketch
the proof. Difficulties lie in the largeness of (p — q)2/16x for x~l which is the
reason why we set 0Ln(κn) ~ O(fc)+1. (i) For κn ^ x, we again decompose D into Dx

and D 2 , s e e Fig. 2a. As we have seen already, the contribution kB2/Λ2 is given by
(4.11) and then safe and

B 1 2 ί L

where «•» is again the expectation value (4.12b). The point is that α£ i n = 0(k) + 1
(»1) and ω t r is small (but the relation α£ i nω t r = 0(k) may be kept.) Namely f(ζ)
decreases rapidly in this region to such an extent that we can use the previous
method in the proof of Theorem 4. The remaining discussion is rather clear and
therefore omitted.

(ii) xe[κn+ί = κn — ωXτ, κM]. One can apply the proof of Theorem 4 in this case
by decomposing D into four regions D o , . . . , D3 as in Sect. 4 (see Fig. 2b). Q.E.D.

Remarks 4. (l)ωtΓ may depend on x sensitively in this region. But we have neglected
it and thus the convexity of an(x) seems to be lost at x = κNo = 0(k2) but is obviously
kept for 0(1) < x < κNo. Therefore there is no difficulty in obtaining the refined
version of this theorem which uses the convexity of the function. The reader may
choose ω t r in such a way that it depends on x smoothly and otn(x) is convex on
'the whole region.

(2) We have chosen αn so that an(κn) > 0(k) + 1. But otn(κn) increases rapidly in
this region and thus there is no essential difference between this and our previous
choice otn(κn) = 0(1).

Now let N1 {>No) be a positive integer such that κnι = κNo — {N1 — N0)ωtr.
For n>Nl9x is so small and we have to change our method of the proof. The
essential point is that κn decreases to zero exponentially in this region.

Theorem 9. (High Temperature Region.) For n> Nl9 there exist positive increasing
and convex functions {ocn(x}} and constants τe[l/2,1) and [2 —<5fc]e(l,2]. Here τ can
be chosen close to 1/2 and δk < min {2/3,1/fe} converges to 0 exponentially in n as
before. Each cnn(x) is defined on In = [κn = τκ:n_ ί9K] and satisfies:

(1) -[}ngn(x)J^an(x). (5.5a)

,. (5.5b)

(5.5c)

(5 5d)

(5) 2 ^ 2 - Λ = l/τ>l. (5.5e)

Proof, (i) case of xe[κn,κπ_s = κ:nτ~"] (n = small integer): Decompose D into

(3) [

(4) c

k >

k

k
if
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£>! and D2 as before, see Fig. la. Then kB2/Λ2 is bounded from below by
2[αn(x) +1/4] - l/2x. As for fc^/A^ we have:

1 ifc*1 1 I/: W < g Q > > / 1 6 x ( 5 6 )

where «•» denotes the expectation value (4.12b) and - [ln/π(x + Q]' ^ α π

1/4 > k/κn (^ k/x). Then by (4.13a) «C + ξ» ^ 2x if k> 1 and thus

2/c 2/c

which is larger than απ(x)-f 1/4 for k > 1. For fc = 1 and 1/2, we choose τ close to
1 and (2 — δk)<2 close to 2 at the cost of speed of the convergence. From (5.6a-e),
we have:

ocn(xτ')e [(τ(2 - a)/*/*,,, (2 - <5)(2τ//0cJ (5.8)

for xe[κ:π = Cτn

9 κn-ι = Cτn~*] (C is a positive constant). Then if τ < 1 is chosen
close to 1 and (2 — δ) < 2 is chosen close to 2, αn(x + Q increases rapidly as ζ increases.
This implies that if xe[κn,κn_S\, then both /c/<ζ> and fc/«ζ + ξ » are larger than
2απ(x).

(/c= 1) Let < >0 be the expectation value (4.16). Then we have

Since <C>0 «αM(x) by the choice of τ and (2 — δ), we have

>

A, = <C>o + [<ί>§ - <C2 >o]/8x = <Do'
The right-hand side can be made larger than 2[αw(x) + 1/4], and the constraint
comes from kB2/A2 + l/2x ^ 2[απ + 1/4].

(fe=l/2) It suffices to consider B1/2A1 only,

+ ^ 3 ( 5 1 O a )

where ε0 = [cos(0-π/4)/cos(θ + π/4)]2. We again choose τ < l close to 1,2 —<5
close to 2. Then this again can be made larger than 2[αΠ +1/4].

(ii) case of xε[κn+ι = τκn,κn]: Decompose D into four pieces D 0 , . . . , D 3 as
before. Here kB0/A0 ;> k/(κn - x) and kB2/A2 obeys the bound in Lemma 6(1).
Moreover

B, _ 2 f e [ l - « £ l » / 1 6 x ]
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where A = κn - x, βt = (ζ-ξ)2, ε3 = ζ2. If

± ( 5 . 1 2 a )

(5.12b)

then we can omit « £ ! » and <ε3> to obtain the lower bounds and we find:

2k 2k

αn(κπ) + 1/4],

By

B3 2k 2k
T ~ 2Δ + <ζ> - 2Δ + /c/[αn(κπ) + 1/4]' ( 5 > 1 3 b )

If k> 1, we have

This is less than x if x > [(3/c + l)/4fc]jcn: there exists τe[l/2,1) such that our
assertion holds if k > 1. We now show that τ approaches 1/2 as k tends to infinity.
By applying Lemma 5 and the lemmas in the appendix, we see that for k > 1,

Uζy^Δ + W

fe-1

α n (κ n )+l/4 J an{κn

fc- i 1 Vfe
+ l / 4 j + αn(Kn

where c^k) are of order o(κn/y/ΐc). Thus if fe is large, then both Zl + <C>/2 and
^ + «C + O)/2 are close to κn/2, which means that τ can be taken as small as 1/2.
This is consistent with the standard theory of large deviations in probability theory.
Remark that the right-hand-sides of Eqs. (5.1 la, b) and (5.13a, b) are all increasing
and convex functions of x.

We again improve the bounds for small k (1,1/2) by choosing τ close to 1 and
2-δ close to 2.

(k = 1) Let < >0 be the expectation value (4.16). Then we have:

^>i

if Y > K

otherwise

Note that since τ is close to 1, then 0 < κn — x < Cτn(l —τ)«κn+1 and moreover
<C>0 is smaller than l/an(κn). Then

1 B l > 1 1 ^ 1
 J-

 1

AX A i AX Kn X
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The analysis of B3/Λ3 is similar and gives the lower bound larger than that of
B1/A1. Note that α is chosen increasing and convex on [κ n + 1 ,κ; n ] .

(k = 1/2) It suffices to consider Bί/2A1 only. We consider

2i + -

where x > κJ2 and

with A = κn — x. Again by choosing τ close to 1 and (2 — δ) close to 2, we can make
« ζ + O> very small.

(iii) case of x > κn_n: Note that (αn(x)} are chosen convex and increasing. Then
we apply Lemma 7. Q.E.D.

Since the Hamiltonian part becomes negligible (0(τ")) in the high-temperature
region, one expects that τ can be chosen as small as 1/2 (see [10,11]). But the
present estimate using a priori bound of two-ball-overlap is weak for this. Refined
inductive estimates may enable us to prove this conjecture.

Remarks 5.(1) The values of 2 — δk and τ are far from the optimal values 2 and
1/2 respectively for small k. For this, we estimate AJA2 which turns out to be
0(1). Then we can know to what extent B2/A2 contributes to B/A, see (4.8).

(2) From these discussions, it is now clear that we can extend g0 to functions
which decrease faster than any Gaussian functions for large x.

6. Correlation Functions

Without loss of generalities, we set L = ^fϊ and consider the two-point correlation
functions only. Let x.yeZ2 and consider sufficiently large hierarchical lattices
containing x and y. Let < > be the expectation values with respect to the probability
measure of the present system. We have the decompositions

φ(x) = (Cφ)(xί)±7(x1), (6.1a)

( C φ ) ( x x ) = (C2φ)(x2) ± z(x2\.... (6.2b)

Here for xe[2i,2i + 2)x {j} we set x1=(iJ)eZ2, and similarly for xίe{i} x
[2/, 2 ; + 2) we set x2 =(iJ)eZ2 and so on, C the block spin operator and z's are
the fluctuation field. Thus in the present system of the hierarchical structure,

lim (φ(x)φ(y) >Ϊ L = ± Hm + £ HH9 (6.3)
A\Z2 m+1

where

H^limJί^ (6.4)

(6.5)
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for £ = 0,1,... and especially

K0) = C ( ( Φ - z)2,T2) = gn((Φ -?)2yz2.
m is the smallest integer such that xm = ym. We set dist (x, y) = 2m/2. and we normalize
{gJLΦ2)} so tint $gJLφ2)d$= I.

Theorem 10. For £^l and for large n such that κn«l,

H^<C(κ)2~n (6.7a)

uniformly in £, and thus

Hn<C(κ)2-n. (6.7b)

Proof We first prove that

$φ2gn(φ2)dφ<C1(κ)2~n (6.8)

uniformly in n. In fact

f g.-i(Φ?)g,-i(Φ!)(^i +Φ2)
2dφidφ2

where ε(φί,φ2) = 1 — exp[— (φx — φ2)
2/8] < πiin {(φ\ + φ2)/4,1}. Thus using

\{ΦιΦi)Gn-ι(Φ\)dφ\ = 0 and our previous estimates, we have

jφ2gn(φ2)dφ< [1 + C2τ
n~1~\\\φ2gn-ι{φ2)dφ,

and thus we next use indication.
We turn to H ^ = \Ui\φ)dφ.Integrate the right-hand side of Eq. (6.6) over ~φ.

Repeating the above arguments, we have

XA —^ I JL ι~ V T T illy.

and thus by induction we finally have

~~ ί = i

where i/^0) is the quantity obtained by replacing (0X -h 0 2 ) 2 i n the numerator of
Eq. (6.9) by {φι — φ2)

2/4. Then the previous arguments directly show that
H (

0

π ) <const2" n . Q.E.D.

Therefore the two point correlation function is given by

= o(l)d(x9y)-2.

This is a pathology due to the hierarchical structure, and this decay rate is saturated
by the hierarchical massive gaussian model [Remark 1(1)].

This may be seen from another point of view: Consider an averaged spin
Φ = |Λ |- 1 (X0 i ) . Then < Φ 2 > ^ < c o n s t | Λ Γ ι . Then if (φ{x)φ(y)) is monotone
decreasing in \x — y\ (this is not satisfied in the hierarchical system but is satisfied
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by the usual Heisenberg or by sigma model), this roughly means (φ(x)φ(J)) <
(\x ~y\2 + I ) " 1 - The Aizenman-Simon inequality [12] means exponential cluster-
ings. What is important to get this main result is that gn(φ2) converges to zero
exponentially fast in n, like τn, no matter how τ is close to 1.

7. Small N Models (N= 2,3)

For N = 2,3, we have Theorem 2 and thus have the same results:

Theorem 11. For N = 2 or for N = 3, the flow {gn} is attracted into the high
temperature region by the renormalization group recursion formulas of Dyson- Wilson
type for any g0 (supp g0 a [0, /c]). The two-point correlation functions decay like
ίd(χ,y)T2.

We sketch the proof which is almost equivalent to the previous one except that
we have to integrate over D = {(p l 5... ,p4)e[0, κ] 4 ; min |]Γ + ^fpt\ i^A^Jx rg£ \/Pi}
which is convex, see (3.8), (3.12). Note that we also have the integration by parts
formula:

Assume the large field region and let x ^ κn. Then we decompose D into several
pieces including Dx = {pi^x\i=\~ 4}. Introduce the polar coordinate and choose
ω small to make B1/Aί large. For other regions, use the integration by parts to
get the factor 4. This is the method used for N = 3,4. For xe[κn+1 = κn — ω,κn],
decompose D into several pieces including Do = {pi<κn\i= 1 ~4}. Then kB0/Λ0

is bounded by the a priori bound. Thus our previous analysis implies that the flow
{gn} is driven into the high temperature region.

To extend Lemma 7, we first define Do = {{pJeD; |p f — pj\ ̂  -y/2d} and next
D 2c:Z)\D 0, region separated by hyperplanes which contain dDndD0 and are
parallel to the coordinate planes. The contributions from Do and D2 are estimated
by the integration by parts which yields factor 4. We choose d so that the
contribution from D\(D0uD2) becomes minimum.

In the small field region, since the hierarchical Hamiltonian is small, the system
is essentially a sum of independent spins. The {gn(x}} are controlled by choosing
τ close to 1 and (4 — δ) close to 4, as was done for the JV = 4,5 models. Thus gn(x)
converges to zero like const τn in this region and then the two-point correlation
functions decay like [φc,j;)]~ 2 . The point to get this result is that the boundary
effect is bounded by 0(1) uniformly in A.

8. Conclusions and Discussions

We have shown that the two-dimensional O(N) vector (Heisenberg) model with
hierarchical interactions is driven into the high temperature region by the
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Wilson-Kadanoff block spin transformations if N ^ 2, and thus the (truncated)
correlation function decay with the velocity of the massive free model.

Therefore the present approximate formula fails to exhibit the Kosterlitz-
Thouless transition (for N = 2 at least). This is because the boundary effects, which
works ferromagnetically are bounded by 0(1) (with unit of φ2) for all distance
scales and magnitudes of block spins in the present system. Thus the probabilistic
force wins through all the distance scales.

In [7], Bleher and Major discussed a similar model (d-dimensional hierarchical
model with d > 2) in which the strength of the effective Hamiltonian is as strong
as O(|d/l|ε) = O(2επ/2). Namely they consider the model in which the correction
term exp[(L2φ-£(/>2(x))/4] is replaced by exp [c%L2<p2 - £ </>2(x))/4], where
c = 21~2/d and L = 21/d. They showed that the system exhibits the spontaneous
magnetization whenever d > 2, if the parameter K (inverse temperature) is sufficiently
large.

So what about our results for N ^ 3? To what extent is asymptotic freedom
stronger than the boundary effects? What we have shown is that the perturbative
asymptotic freedom is purely geometric and even the N = 2 model has this property.
Therefore the difference between the abelian one and non-abelian ones is, even if
it exists, very subtle. Therefore our conventional wisdom is not yet established
and remains to be investigated from several possible points of view [13-17].

Appendix

Lemma A.I. Let f(x) and g(x) be positive functions such that —
— [In f{x)J and supp / = supp g = [0, k]. Define

\{a + bx-cx2)\')f{x)dx

[a + bx - cx2)kf(x)dx

where fc^O, α,fo,c^O and a + bx-cx2>0 for O ^ x ^ l Then for m^O, <xw>
(/; α, b, c; λ) is monotone decreasing in c, and is increasing in b and λ. If c = 0, then

f; α, ft, 0; λ) is monotone decreasing in a. Moreover

(xmy (/; α, b, c; λ) ̂  (xmy (g; a, b, c; λ).

Proof. Set μ(x) = a-\-bx — ex2, <x>χ = <x> (/; α, b, c\ λ) and etc. For m = 1,

^(x)f = C1kμxdyf(x)f(y)μ(x)k-1μ(y)k-1[a(x - y)2 + cxy(x - y)2]

by using the symmetry, where Cί>0. Same for m > 1. Similarly

- a(x + y)(x - y)2 - bxy(x - y)2] < 0,
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where C2 > 0. Moreover

jχ(x)s = C3μ(λ)λf(λ) jμ(x)k(l - x/λ)f(x)dx ^ 0.

It is obvious that <x>y is decreasing in a if c = 0. Finally

<x>f - <x>9 = CAI dxdyμ(xfμ(y)k(x -

where C4>0and [...] ^0 if x^y. In fact

[•••] = /(J%(x)[exp ( j [In f(t) - In g(t)Jd?j - 11,

and then the integrand is positive. Q.E.D.

This lemma applies also for f(ζ) = ζf f{ζ) and g(ξ) = ξ'g(ξ) since / and g again
satisfy [/(x)#(y) - /

Lemma A.2. In Lemma A.I, seta=l,b = α//c and c = 0. Assume that — [In / ( x ) ] ' ^
α > 0 . Then

1 1 (A.1)

+ c2(fc))-, (A.2)

α

where c^k) is a constant less than 1 for all k ̂  1/2.

Proo/. We may assume λ = oo. Introduce a new variable ζ = αx and let
ζ\k

«2 1

The lower bound is attained when f(x) = e~*xlk. We need to estimate

= I exp [-(ζ2/2fc)]( )dζ + } dt j exp [-(ζ2/2fe) + tfe«5(C//c)] W(ζ//c)( )dζ,

where the first integral is gaussian and the second one is bounded by
00

$ exp[-ζ2/2k + kδ{ζ/k)]kδ(ζ/k){-)dζ. This integral is estimated by decomposing

[0, oo) into /! = [0, k) and I2 = [fc, oo). On I, exp [ - ζ2βk + kδ(ζ/k)] - exp [ - ζ2/2k +
^3/3k2] and on I2 expl-ζ2/2k + kδ{ζ/k)]~2ke-ζ = (2/e)ke~iζ-k\ Thus Ci(fe) are
bounded by a constant uniformly in k and tend to zero as k -• oo. Easy calculations
show that Cj(fc) are < 1. Q.E.D.

Lemma A.3. Jrc Lemma A.l. set λ = oo, b = 1 and c = 0. Assume ί/iaί — [In /(£)]' ^
/c

ooO and ζo=--a^0. Then
a
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where δζt (respectively δζ2) is bounded from above by the right-hand side ofEq. (AΛ)
(respectively the right-hand side of Eq. (A.2)).

Proof, exp [fc In (a + ζ) - αζ] = exp \k In I - + (ζ - ζ0)) - aζ . Expand the right-

L \α / J
hand side and use Lemma A.2. Q.E.D.
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