$\boldsymbol{g l}(\infty)$ and Geometric Quantization

Martin Bordemann, ${ }^{1}$ Jens Hoppe, ${ }^{2}$ Peter Schaller ${ }^{3}$ and Martin Schlichenmaier ${ }^{4}$
${ }^{1}$ Department of Physics, University of Freiburg, Hermann-Herder-Str. 3, W-7800 Freiburg, FRG
${ }^{2}$ Institute for Theoretical Physics, University of Karlsruhe, P.O. Box 6380, W-7500 Karlsruhe 1, FRG
${ }^{3}$ Institute for Theoretical Physics, Technische Universität, Wiedner Hauptstraße, A-1040 Wein, Austria
${ }^{4}$ Department of Mathematics and Computer Science, University of Mannheim, A5, W-6800 Mannheim 1, FRG

Received April 11, 1990; in revised form September 20, 1990

Abstract

An axiomatic approach to the approximation of infinite dimensional algebras is presented; examples illustrating the need for a rigorous treatment of this subject. Geometric quantization is employed to construct systematically $s u(N)$ approximations of diffeomorphism algebras which first appeared in the theory of relativistic membranes.

1. Introduction

Over the past years several authors [1] have studied (and used) the approximation of diffeomorphism groups by $S U(N)$. They started from the observation made in the context of membrane theories [2,3], that in a specific basis of $\operatorname{su}(N)$ the corresponding structure constants converge to those of $\operatorname{diff}_{A} S^{2}$ (the Lie algebra of infinitesimal area preserving diffeomorphisms of the 2 -sphere) in the limit $N \rightarrow \infty$. Later it was found [4-7] that the same holds for the Lie algebra of infinitesimal (nonconstant) diffeomorphisms of the 2-torus $\operatorname{diff}_{A} T^{2}$.

A naive identification of $\operatorname{diff}_{A} S^{2}$ and $\operatorname{diff}_{A} T^{2}$, however, with the well known $s u_{(+)}(\infty)$ [8] would be false. Although the three algebras (or rather certain subalgebras) may all be approximated by $s u(N)$ in the above sense, they are pairwise non-isomorphic. This we will show in Appendix A. Moreover, in [9] the members of an infinite family of algebras (including $\operatorname{diff}_{A} T^{2}$) have been proven to be pairwise non-isomorphic although all of them can be approximated by $s u(N), N \rightarrow \infty$.

This ambiguity clearly shows the need for an additional concept, and appears to be worthwhile studying without reference to membrane theory. Interesting questions arising from the subject are its relation to $\hbar \rightarrow 0$ limits of quantum theories on compact phase spaces and its role in the construction and classitication of infinite dimensional Lie algebras.

In Sect. 2 of the present paper we discuss the approximation scheme using $g l(N)$ as an example. Starting from a particular basis one obtains (by the standard embedding) $g l_{+}(\infty)$ [8] for $N \rightarrow \infty$. Allowing for arbitrary base transformations $C^{(N)}$ non-isomorphic infinite dimensional algebras may be obtained, if $C^{(N)}$ at $N=\infty$ does not exist as a transformation between infinite dimensional vector spaces. Several examples are given.

In an attempt to get this ambiguity under control we introduce in Sect. 3 a rigorous concept for the approximation of algebras (L_{α}-approximations), based on three axioms, and formulate a weak uniqueness theorem for the limit algebras (called quasilimits). The examples of the preceding section are used to illustrate this concept.

In Sect. 4 we systematically construct $s u(n)$-approximations for algebras of infinitesimal area preserving diffeomorphisms of compact Kähler manifolds: Regarding the manifold as a classical phase space, a geometric quantization scheme is applied in order to approximate the algebra of infinitesimal canonical transformations by a sequence of (finite dimensional) algebras of quantum operators. In an addendum to this section we compare our approach to techniques involving F. A. Berezin's coherent states [29-31] that have recently been mentioned in the context of symplectic geometry and membranes by A. S. Schwarz [32]. In this comparison we use a global formulation due to J. H. Rawnsley et al. [33, 35, 36].

The calculus developed in Sect. 4 fits into the framework of L_{α}-approximations and is carried out explicitly for the $2 n$-dimensional torus in Sect. 5. The result generalizes the sine-algebra which was used in [4-7] to approximate diff $A_{A} T^{2}$.

In Appendix A we present the proofs of some statements contained in Sects. 1-3 concerning the non-isomorphy of certain infinite dimensional algebras. Appendix B contains technical details of the calculations in Sect. 5, involving theta functions.

2. Remarks on $g l(N \rightarrow \infty)$

Here and in the following sections we will replace the real algebras $u(N)$ and $s u(N)$ by their complexifications $g l(n)$, respectively $s l(n)$. To fix notation and for further reference let us give a definition of the infinite dimensional Lie algebras

$$
g l(\infty), g l_{+}(\infty), L_{\Lambda}, \operatorname{diff}_{A}^{\prime} T^{2}, \operatorname{diff}_{A}^{\prime} S^{2}
$$

and certain related algebras.
$g l(\infty)$ is the Lie algebra of complex ∞-dimensional matrices with finite support (see [8]), i.e.

$$
\begin{equation*}
g l(\infty):=\left\{\left(a_{i j}\right)_{i, j \in \mathbb{Z}} \mid a_{i j} \in \mathbb{C} \text {, all but a finite number of the } a_{i j}=0\right\} . \tag{2-1}
\end{equation*}
$$

The Lie bracket is the usual matrix commutator. A basis is given by the elementary matrices $E_{i j}$. The matrix $E_{i j}$ has 1 as the $(i, j)^{\text {th }}$ entry and 0 as all other entries. Here (i, j) ranges over $\mathbb{Z} \times \mathbb{Z}$. The commutator of the basis elements is

$$
\begin{equation*}
\left[E_{i j}, E_{k l}\right]=\delta_{j, k} E_{i l}-\delta_{i, l} E_{k j} . \tag{2-2}
\end{equation*}
$$

If we replace \mathbb{Z} by \mathbb{N} we obtain the algebra $g l_{+}(\infty)$ by the analogous definitions. Any bijective map $\mathbb{N} \cong \mathbb{Z}$ induces an isomorphism of $g l_{+}(\infty)$ with $g l(\infty)$.
(Nevertheless, we will distinguish them, because there exists no canonical isomorphism between them.) Due to the finite support of the matrices the trace is well-defined and the subalgebras $s l(\infty)$, respectively $s l_{+}(\infty)$ can be obtained by restricting oneself to matrices A with trace $A=0$.

Let

$$
V:=\left\langle T_{\vec{m}} \mid \vec{m} \in \mathbb{Z}^{2}\right\rangle_{\mathbb{C}}
$$

be the \mathbb{C}-vector space generated by the basis $T_{\vec{m}}$. This vector space carries different Lie algebra structures, e.g. the family of sine-algebras [4]. They are defined as follows: for $\Lambda \in \mathbb{R}$ with $\Lambda \neq 0$ we set

$$
\begin{equation*}
\left[T_{\vec{m}}, T_{\vec{n}}\right]^{\Lambda}=\left(\frac{1}{2 \pi \Lambda} \sin 2 \pi \Lambda(\vec{m} \times \vec{n})\right) T_{\vec{m}+\vec{n}} \tag{2-3}
\end{equation*}
$$

for $\Lambda=0$ we set

$$
\begin{equation*}
\left[T_{\vec{m}}, T_{\vec{n}}\right]:=\left[T_{\vec{m}}, T_{\vec{n}}\right]^{0}:=(\vec{m} \times \vec{n}) T_{\vec{m}+\vec{n}} . \tag{2-4}
\end{equation*}
$$

Here we use the notation $\vec{m} \times \vec{n}=\vec{m} \wedge \vec{n}=m_{1} n_{2}-m_{2} n_{1}$, where $\vec{m}=\left(m_{1}, m_{2}\right)$, $\vec{n}=\left(n_{1}, n_{2}\right)$. We denote these Lie algebras by $\mathcal{L}_{\Lambda}=\left(V,[\ldots, . .]^{\Lambda}\right)$. Obviously, the algebras \widetilde{L}_{Λ} are direct sums (of Lie algebras)

$$
\tilde{L}_{\Lambda}=\left\langle T_{(0,0)}\right\rangle \oplus\left\langle T_{\vec{m}} \mid \vec{m} \in \mathbb{Z}^{2} \backslash\{(0,0)\}\right\rangle
$$

The first summand consists of multiples of the central element $T_{(0,0)}$. The second summand we call L_{Λ}. The Lie algebra L_{0} is (by some abuse of notation) also called $\operatorname{diff}_{A}^{\prime} T^{2}$, due to its relation with the complexified Lie algebra of the area preserving diffeomorphisms of T^{2}. Of course, $\operatorname{diff}_{A}^{\prime} T^{2}$ is only the subalgebra of nonconstant vector fields generated ${ }^{1}$ by finite linear combination of the generators $T_{\vec{m}},(\vec{m} \neq 0)$. The element $T_{(0,0)}$ in \widetilde{L}_{0} does not correspond to a vector field, rather to a constant function in the Poisson algebra (see Sect. 4).

Our last infinite dimensional Lie algebra shall be the algebra generated by the elements

$$
\begin{equation*}
Y_{l m}, \quad \text { with } \quad l \in \mathbb{N}, \quad m=-l, \ldots, 0, \ldots,+l \tag{2-5}
\end{equation*}
$$

with the Lie bracket ${ }^{2}$

$$
\begin{equation*}
\left[Y_{l m}, Y_{l^{\prime} m^{\prime}}\right]=g_{l m, l^{\prime} m^{\prime}}^{l^{\prime \prime} m_{l^{\prime \prime} m^{\prime \prime}}} \tag{2-6}
\end{equation*}
$$

where the structure constants are given by
(Here $\stackrel{\circ}{Y}_{l, m}(\theta, \varphi)$ are the usual spherical harmonics [10].) This Lie algebra we will call $\operatorname{diff}_{A}^{\prime} S^{2}$. Again, $\operatorname{diff}_{A}^{\prime} S^{2}$ is only the (complexified) subalgebra of $\operatorname{diff}_{A} S^{2}$ generated by finite linear combinations of the vector fields corresponding to $Y_{l m}$ (see [3]). In the following, it will sometimes be convenient to consider also the trivial central extension $\operatorname{diff}_{A}^{\prime} S^{2} \oplus \mathbb{C} \cdot Y_{00}$ by an additional element Y_{00}. Again, this

[^0]element represents the constant function in the Poisson algebra. Note that the structure constants (2-7) will be nonvanishing only for
\[

$$
\begin{equation*}
m^{\prime \prime}=m+m^{\prime} \quad \text { and } \quad\left|l-l^{\prime}\right| \leqq l^{\prime \prime} \leqq l+l^{\prime}-1 \tag{2-8}
\end{equation*}
$$

\]

We will need this later on.
Let us now study how to obtain the above infinite dimensional Lie algebras by some limit process from finite dimensional Lie algebras. In this sense we call them just "limits" of these finite dimensional algebras. In this section we do not want to give an exact definition of a "limit," rather we want to show some interesting observation in connection with this limit process.

Let us start with $g l_{+}(\infty)$. Induced by a numbering of the basis of the vector space on which $g l_{+}(\infty)$ is operating we get an embedding of the algebra $g l(N)$ into $g l_{+}(\infty)$ by considering the operations involving only the first N basis elements. This embedding we call the standard embedding. By increasing N one obtains a chain of subalgebras

$$
g l(N) \subset g l(N+1) \subset g l(N+2) \subset \cdots .
$$

As every element of $g l_{+}(\infty)$ lies in some $g l(N)$ we can call $g l_{+}(\infty)$ a " $g l(N), N \rightarrow \infty$ limit." In fact, $g l_{+}(\infty)$ is the "direct limit" of the standard embedding in the sense of the language of categories.

Let us now consider an arbitrary basis $\left\{T_{a}^{N} \mid a=1, \ldots, N^{2}\right\}$ of $g l(N)$ with the corresponding structure constants $f_{a b}^{c, N}$. Let C^{N} be the $N^{2} \times N^{2}$-matrix describing the base change, i.e.

$$
\begin{equation*}
T_{a}^{N}=C_{a, i j}^{N} E_{i j}, \quad a=1,2, \ldots, N^{2} \tag{2-9}
\end{equation*}
$$

where the $E_{i j}$ are the generators introduced above (of course, now $i, j=1, \ldots, N$). By definition, C^{N} is invertible, and the structure constants can be expressed in terms of C^{N} as follows:

$$
\begin{equation*}
f_{a b}^{c, N}=C_{a, i j}^{N} C_{b, j k}^{N}\left(\left(C^{N}\right)^{-1}\right)_{i k, c}-(a \leftrightarrow b) . \tag{2-10}
\end{equation*}
$$

We consider the family of $g l(N)$ given by the generators T_{a}^{N}. If we assume that $f_{a b}^{c, N}$ has a well defined limit

$$
\begin{equation*}
f_{a, b}^{c}:=\lim _{N \rightarrow \infty} f_{a, b}^{c, N} \tag{2-11}
\end{equation*}
$$

for all a, b, c and that for fixed a and b the set

$$
\left\{c \in \mathbb{N} \mid \text { there exists a } N \text { such that } f_{a, b}^{c, N} \neq 0\right\}
$$

is finite then we can define a Lie algebra generated by elements $\left\{T_{a} \mid a \in \mathbb{N}\right\}$ with the bracket

$$
\begin{equation*}
\left[T_{a}, T_{b}\right]=f_{a, b}^{c} T_{c} \tag{2-12}
\end{equation*}
$$

Clearly, this Lie algebra might also be viewed as a $g l(N), N \rightarrow \infty$ limit.
Nevertheless the above condition does not imply that the family of base transformations $C^{(N)}(2-9)$ has to define a base transformation C also in the limit. For this we would have to additionally require that (for fixed i, j) the element $E_{i j}$ is only a finite(!) linear combination of the T_{a}^{N} and that the number of elements is bounded independent of N, and vice versa! Of course, if this condition is fulfilled, the limit (2-12) will be isomorphic to $g l_{+}(\infty)$. However, in most of the interesting
examples this will not be the case. Hence, we take the convergence of the structure constants (2-11) as the starting point. The resulting algebra (2-12) will then in general not be isomorphic to $g l_{+}(\infty)$ as we will see. Note however that the existence of C as a transformation between vector spaces is a sufficient but not necessary condition for the isomorphy of the resulting algebra with the $g l_{+}(\infty)$ given by (2-2).

Now let us study specific examples of the relations (2-9)-(2-12).
Example 1. Let $N, M \in \mathbb{N}, N$ odd, $1 \leqq M<N$ with M and N relatively prime and $\omega:=\mathrm{e}^{4 \pi i M / N}$ be a primitive $N^{\text {th }}$ root of unity. Define the $N^{2} \times N^{2}$-matrix ${ }^{3} C$ with indices $a=\vec{m}=\left(m_{1}, m_{2}\right), m_{1}, m_{2}=-\frac{N-1}{2}, \ldots,+\frac{N-1}{2}, i, j=1, \ldots, N$,

$$
\begin{equation*}
C_{\vec{m}, i j}:=\frac{\mathbf{i} N}{4 \pi M} \omega^{(1 / 2) m_{1} m_{2}+(i-1) m_{1}} \delta_{i+m_{2}, j \bmod N}, \tag{2-13}
\end{equation*}
$$

where $\delta_{k, l \bmod N}$ is equal to 1 if $k \equiv l \bmod N$ and 0 otherwise.
The inverse matrix can be calculated to be

$$
\begin{equation*}
\left(C^{-1}\right)_{i j, \bar{m}}=\frac{-4 \pi \mathrm{i} M^{2}}{N^{2}} \omega^{m_{1}\left(m_{2} / 2-j+1\right)} \delta_{m_{2}, j-i \bmod N} \tag{2-14}
\end{equation*}
$$

which yields the structure constants

$$
\begin{equation*}
f_{\vec{m}, \vec{n}}^{\vec{a}}=\frac{N}{2 \pi M} \sin \frac{2 \pi M}{N}(\vec{m} \times \vec{n}) \delta_{\vec{m}+\vec{n}, \vec{a} \bmod N} \tag{2-15}
\end{equation*}
$$

($\delta_{\vec{m}, \vec{n} \bmod N}$ is the obvious generalization of $\delta_{m, n \bmod N}$ to two dimensions.)
Let $M, N \rightarrow \infty$ in such a way that $M / N \rightarrow \Lambda \in \mathbb{R}$. Then we obtain as "limit" the infinite dimensional algebra \tilde{L}_{A}. For $M=1$ and $N \rightarrow \infty$ we get as a special case the "limit" $\tilde{L}_{0}=\operatorname{diff}_{A}^{\prime} T^{2} \oplus \mathbb{C}$. This example shows that the "limit" is not unique. To see this, let Λ and Λ^{\prime} be two different irrational numbers with $0<\Lambda, \Lambda^{\prime}<\frac{1}{4}$. We can approximate them by two sequences

$$
\frac{M_{k}}{N_{k}} \text { respectively } \frac{M_{k}^{\prime}}{N_{k}^{\prime}} \text { with } N_{k}=N_{k}^{\prime} .
$$

Hence we have as the $k^{\text {th }}$ element of the "sequence" the algebra $g l\left(N_{k}\right)$. But it was proven in [9] that \widetilde{L}_{Λ} is not isomorphic to $\widetilde{L}_{\Lambda^{\prime}}$ for $\Lambda \neq \Lambda^{\prime}$.
Example 2. Again let N be an odd positive integer. Let us define the matrix $C=\left(C_{l m, i j}\right)$: The range of the first index pair shall be

$$
\begin{equation*}
l=0,1, \ldots, N-1, \quad m=-l, \ldots, 0, \ldots,+l . \tag{2-16}
\end{equation*}
$$

For the second pair it is $i, j=1, \ldots, N$. The matrix element is defined by

$$
C_{l m, i j}=(-1)^{N-i}\left(\begin{array}{ccc}
\frac{N-1}{2} & l & \frac{N-1}{2} \tag{2-17}\\
-i+\frac{N+1}{2} & m & j-\frac{N+1}{2}
\end{array}\right) \cdot \delta_{i-m, j} \cdot R_{N}(l)
$$

[^1]where
\[

$$
\begin{equation*}
R_{N}(l)=\sqrt{\frac{2 l+1}{16 \pi}} \sqrt{\frac{(N+l)!}{(N-l-1)!}} \cdot\left(N^{2}-1\right)^{(1-l) / 2} \tag{2-18}
\end{equation*}
$$

\]

and $\left(\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)$ is the $3 j$-symbol [10]. The structure constants $f_{l m, l^{\prime \prime} m^{\prime}}^{l^{\prime \prime \prime}}$ with respect to the basis $T_{l m}$ have been calculated in [3] (compare also [11]). They are nonvanishing only in the range given by (2-8). Taking their limit for $N \rightarrow \infty$ yields the structure constants (2-7) (with the trivial extension).

Hence the algebra diff $A_{A} S^{2} \oplus \mathbb{C}$ is another $g l(N), N \rightarrow \infty$ limit. In Appendix A we will prove, that $g l_{+}(\infty)$, $\operatorname{diff}_{A}^{\prime} S^{2}$ and $\operatorname{diff}_{A}^{\prime} T^{2}$ (respectively their trivial central extensions) are pairwise non-isomorphic.

Note that what (2-13) and (2-17) have in common (despite their different appearance) is the factor $\delta_{i+\cdot, j}(\bmod N$, in the case of $(2-13))$. This means that all matrices C_{a}, defined by $\left(C_{a}\right)_{i j}=C_{a, i j}$ with $a=\vec{m}$ or $a=(l, m)$ have non-zero elements only at one $(\bmod N)$-diagonal. If we rewrite $(2-10)$ as

$$
\begin{equation*}
f_{a b}^{c, N}=\operatorname{Tr}\left(\left[C_{a}, C_{b}\right], \tilde{C}_{c}\right) \tag{2-19}
\end{equation*}
$$

with $\tilde{C}=\left(C^{-1}\right)^{\text {tr }}$ one can easily see that in this case (2-19) is well defined, as $N \rightarrow \infty$. One could take (2-19) as a starting point and guess some other structures which could leave $f_{a b}^{c, N}$ finite, as $N \rightarrow \infty$.

The simplest "new" solutions of (2-19) however, can be found by a direct product Ansatz for C :

$$
\begin{equation*}
C_{a_{1} a_{2}, i j}=R_{a_{1} i} \cdot S_{a_{2} j} \tag{2-20}
\end{equation*}
$$

yielding

$$
\begin{equation*}
f_{\vec{a} \vec{b}}^{\bar{c}}=\delta_{c_{1}, a_{1}} \delta_{c_{2}, b_{2}}\left(R S^{\operatorname{tr}}\right)_{b_{1} a_{2}}-(\vec{a} \leftrightarrow \vec{b}) . \tag{2-21}
\end{equation*}
$$

As long as $X^{(N)}=X=S R^{\text {tr }}$ has a well defined limit in $g l_{+}(\infty)$ as $N \rightarrow \infty$, the structure constants (2-21) will lead to a well defined $g l(N), N \rightarrow \infty$ limit with the Lie bracket

$$
\begin{equation*}
\left[T_{i j}, T_{k l}\right]=X_{j k} T_{i l}-T_{k j} X_{l i} \quad i, j, k, l \in \mathbb{N} \tag{2-22}
\end{equation*}
$$

which is in general not isomorphic to the usual $g l_{+}(\infty)$.

3. \boldsymbol{L}_{α}-Approximations

In the last section we have shown that the concept of " $g l(\infty)$ " or "su(∞)" becomes troublesome if one simply assumes that there is some sort of "limit" at work: First of all, to define a limit of algebras in the strong sense one would need a concept of "measuring the distance" between two algebras L_{α} and L_{β} in a limit sequence to know under which conditions this sequence converges. But this could be too restrictive, since in practice the interest often lies in the approximation of structure constants. Also, a "true limit" should preferably be unique (at least up to isomorphism). But, as some of the preceding examples have shown, the same sequence $(g l(N))$ can give nonisomorphic "limits." Finally, the well-known
mathematical procedures for the "approximation of algebraic structures" like direct or projective limits (see for example [12]) in pure algebra or the approximation of C^{*}-algebra by finite dimensional matrix subalgebras [13, Chap. 12] do not apply in the preceding examples, because there exist no typical homomorphisms (like for instance subalgebra relations) between the approximating $g l(N)$-algebras and the "limit algebra."

Therefore we are going to develop a mathematical notion of what could be meant by an approximation of the structure constants of a given Lie algebra. This concept which to the best of our knowledge is new, covers and generalizes the results which have been summarized in Sect. 2. We shall first give the definitions and theorems and then discuss some examples.

We start with a given family of real or complex Lie algebras ($L_{\alpha}, \alpha \in I$) where the Lie brackets in each L_{α} is denoted by $[. ., . .]_{\alpha}$ and the index set is either \mathbb{N} or \mathbb{R}. In addition, we require that each L_{α} carries a metric d_{α}. Now let $(L,[. ., .]$.$) be$ another (real or complex) Lie algebra satisfying the following

Axiom 3.1. (i) There exists a surjective map $p_{\alpha}: L \rightarrow L_{\alpha}$ for every $\alpha \in I$.
(ii) For each $x, y \in L$ the following holds: If $d_{\alpha}\left(p_{\alpha}(x), p_{\alpha}(y)\right) \rightarrow 0$ for $\alpha \rightarrow \infty$ then $x=y$.
We call $\left(L_{\alpha},[. ., . .]_{\alpha}, d_{\alpha}, \alpha \in I\right)$ an approximating sequence for $(L,[. ., .]$.$) induced by$ ($p_{\alpha}, \alpha \in I$) and L an L_{α}-quasilimit if the following axiom is also valid

Axiom 3.2. For each $x, y \in L$,

$$
d_{\alpha}\left(p_{\alpha}[x, y],\left[p_{\alpha} x, p_{\alpha} y\right]_{\alpha}\right) \rightarrow 0 \quad(\alpha \rightarrow \infty)
$$

A few remarks are to be made:
(a) If we set $y=0$ in 3.1 (ii) and assume $p_{\alpha} x=0$ for all $\alpha \in I$, we get $d_{\alpha}\left(p_{\alpha} x, p_{\alpha} y\right)=0$, hence $x=y=0$. In particular, for $x \in L, x \neq 0$ there exists always $\alpha \in I$ with $p_{\alpha} x \neq 0$. By this the vector space L can be considered as vector subspace of $\prod_{\alpha \in I} L_{\alpha}$.
(b) The above definitions depend on the metrics d_{α} chosen. However, as can be easily checked slight deformations of the sequence of metrics $\left(d_{\alpha}\right)_{\alpha \in I}$ into a new one $\left(d_{\alpha}^{\prime}\right)_{\alpha \in I}$ in such a way that there exist positive $a, b \in \mathbb{R}$ such that

$$
a \cdot d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) \leqq d_{\alpha}^{\prime}\left(x_{\alpha}, y_{\alpha}\right) \leqq b \cdot d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right) \quad \forall \alpha \in I, \quad \forall x_{\alpha}, y_{\alpha} \in L_{\alpha}
$$

do not change the validity of Axioms 3.1 and 3.2. In these cases for all $x, y \in L$ ($d_{\alpha}^{\prime}\left(p_{\alpha} x, p_{\alpha} y\right)$) is a zero sequence if and only if $\left(d_{\alpha}\left(p_{\alpha} x, p_{\alpha} y\right)\right)$ is a zero sequence. Hence Axiom 3.1(ii) (and analogously Axiom 3.2) will be satisfied for $\left(d_{\alpha}\right)$ if and only if it is satisfied for $\left(d_{\alpha}^{\prime}\right)$. In most of the cases we are interested in metrics which will come from a norm $\|\cdots\|_{\alpha}$ on L_{α}, i.e. $d_{\alpha}\left(x_{\alpha}, y_{\alpha}\right)=\left\|x_{\alpha}-y_{\alpha}\right\|_{\alpha}$.
(c) Of course, the concept of approximating sequences is by no means restricted to Lie algebras. The Lie structure can easily be replaced by other algebraic structures, like super algebras, associative algebras,

It is shown in the Examples 2 and 3 below, that the same sequence of algebras L_{α} could approximate non-isomorphic algebras. However, we have the following

Proposition 3.3 (weak uniqueness). Let $\left(L_{\alpha},[. ., .]_{\alpha}, d_{\alpha}, \alpha \in I\right)$ be an approximating sequence for the Lie algebra $(L,[. ., .]$.$) induced by \left(p_{\alpha}, \alpha \in I\right)$. Furthermore, let L^{\prime} be
a linear subspace of L carrying a Lie product $[. ., . .]^{\prime}$ and projecting onto each L_{α}. Then: $\left(L^{\prime},[. ., . .]^{\prime}\right)$ is a Lie subalgebra of $(L,[. ., .]$.$) , i.e. [. ., . .]^{\prime}$ is the restriction of $[. ., .$.$] to L^{\prime}$ if and only if the approximating sequence for L is by restriction also an approximating sequence for L^{\prime} induced by the restriction of the p_{α}.

Proof. Clearly, L^{\prime} fulfills the Axiom 3.1 as a subspace of L, respectively by assumption. If L^{\prime} is a subalgebra then Axiom 3.2 is trivially valid, hence \Rightarrow. Conversely, we obtain by the triangle inequality for $x, y \in L^{\prime}$,

$$
d_{\alpha}\left(p_{\alpha}[x, y], p_{\alpha}[x, y]^{\prime}\right) \leqq d_{\alpha}\left(p_{\alpha}[x, y],\left[p_{\alpha} x, p_{\alpha} y\right]_{\alpha}\right)+d_{\alpha}\left(p_{\alpha}[x, y]^{\prime},\left[p_{\alpha} x, p_{\alpha} y\right]_{\alpha}\right)
$$

Because this is a L_{α}-approximation for L and L^{\prime}, we see that on the right-hand side we have two zero sequences for $\alpha \rightarrow \infty$. Hence, we have also a zero sequence on the left-hand side. By Axiom 3.2(ii) (applying it for L) it follows $[x, y]=[x, y]^{\prime}$, hence \Leftarrow.

In particular, setting $L^{\prime}=L$ we see that the Lie structure $[. ., .$.$] on the$ underlying vector space L of an L_{α}-quasilimit is unique once the linear maps ($p_{\alpha}, \alpha \in I$) are specified.

By a standard Zorn's lemma argument, using the weak uniqueness from above the following proposition can now be shown

Proposition 3.4. Every L_{α}-quasilimit is a subalgebra of a maximal L_{α}-quasilimit (L, [.....]).

We will not need this later on.
In many examples the approximating sequence fulfills also the following
Axiom 3.5. There exists a family of linear maps $\left(i_{\alpha}: L_{\alpha} \rightarrow L, \alpha \in I\right)$ and $\alpha_{0} \in I$ such that for $\alpha \geqq \alpha_{0}$,

$$
p_{\alpha} \circ i_{\alpha}=\mathrm{id}_{\alpha} \quad \text { and } \quad i_{\alpha}\left(L_{\alpha}\right) \cong i_{\beta}\left(L_{\beta}\right) \quad \beta \geqq \alpha .
$$

If an approximating sequence L_{α} fulfills also Axiom 3.5 we call $\left(L_{\alpha}\right)$ a splitting L_{α}-approximation.

Example 1. Let L and ($L_{\alpha}, \alpha \in I$) be different Lie algebras with the same underlying vector space V. If we choose as p_{α} and as i_{α} the identity map and as d_{α} a fixed metric d on V then Axioms 3.1 and 3.5 are clearly fulfilled. Axiom 3.2 reads as

$$
\begin{equation*}
d\left([x, y],[x, y]_{\alpha}\right) \rightarrow 0 \quad(\alpha \rightarrow \infty) \tag{3-1}
\end{equation*}
$$

This reflects the approximation of the structure constants. To make the example more concrete let L (and hence all L_{α}) be generated by T_{n} with $n \in \mathbb{N}$ (or $\in \mathbb{Z}$). By $\left\langle T_{n}, T_{m}\right\rangle=\delta_{n, m}$ we get a scalar product on V. If we choose $d(x, y):=\sqrt{\langle x-y, x-y\rangle}$ then (3-1) implies for the structure constants $f_{n m}^{k}, f_{n m}^{k, \alpha}$ defined by

$$
\begin{equation*}
\left[T_{n}, T_{m}\right]=f_{n m}^{k} T_{k} \quad \text { respectively } \quad\left[T_{n}, T_{m}\right]_{\alpha}=f_{n m}^{k, \alpha} T_{k} \tag{3-2}
\end{equation*}
$$

convergency

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} f_{n m}^{k, \alpha}=f_{n m}^{k} . \tag{3-3}
\end{equation*}
$$

Conversely, if for fixed n and m the set

$$
\left.\{k \in \mathbb{N} \text { (respectively } \mathbb{Z}) \mid \text { there exists a } \alpha \text { such that } f_{n, m}^{k, \alpha} \neq 0\right\}
$$

is finite then (3-3) implies (3-1).
Example 2. $\operatorname{diff}_{A}^{\prime} T^{2}$, the torus algebra. We start with the algebras \tilde{L}_{A} introduced in Sect. 2. Here we are especially interested in $\Lambda=0$ (the torus algebra) and $\Lambda=\frac{1}{N}$. We use L for \tilde{L}_{0} and L^{N} for $\tilde{L}_{1 / N}$. The subspace

$$
\begin{equation*}
\left.J^{N}:=\left\langle T_{\vec{m}}-T_{\vec{m}+N \cdot \vec{a}}\right| \vec{m}, \vec{a} \in \mathbb{Z}^{2}\right)_{\mathbb{K}} \tag{3-4}
\end{equation*}
$$

is an ideal in L^{N}. Hence we can define the factor algebra $L^{(N)}:=L^{N} / J^{N}$ with $\varphi_{N}: L^{N} \rightarrow L^{(N)}$ the canonical projection map. This Lie algebra has dimension N^{2}. A basis is given by the N^{2} elements

$$
\varphi_{N}\left(T_{\vec{m}}\right), \quad \vec{m}=(p, q) \quad 0 \leqq p, q<N
$$

By definition of the factor algebra, the Lie product is given as

$$
\begin{equation*}
\left[\varphi_{N}\left(T_{\vec{m}}\right), \varphi_{N}\left(T_{\vec{n}}\right)\right]^{(N)}=\frac{N}{2 \pi} \sin \frac{2 \pi}{N}(\vec{m} \times \vec{n}) \varphi_{N}\left(T_{\vec{m}+\vec{n} \bmod N}\right) \tag{3-5}
\end{equation*}
$$

If we compare (3-5) with (2-15) we see that for N odd $L^{(N)}$ is exactly the Lie algebra $g l(N)$ written in the basis as introduced in Sect. 2, Example 1.

Now we define an L_{α} approximation for our Lie algebra L. As index set I we take the natural numbers. We use as $L_{\alpha} s$ the algebras $L^{(N)}$, as p_{α} the canonical map φ_{N} and as metric on $L^{(N)}$ the norm induced by the standard scalar product

$$
\begin{equation*}
\left\langle\varphi_{N}\left(T_{\vec{m}}\right), \varphi_{N}\left(T_{\vec{n}}\right)\right\rangle=\delta_{m_{1}, n_{1}} \cdot \delta_{m_{2}, n_{2}} . \tag{3-6}
\end{equation*}
$$

By setting $\left.i_{N}\left(\varphi_{N}\left(T_{\vec{n}}\right)\right)\right):=T_{\vec{n} \bmod N}$ we obtain a linear map $L^{(N)} \rightarrow L$ which obeys $\varphi_{N}{ }^{\circ} i_{N}=\mathrm{id}$. Axiom 3.5 is obvious. Axioms 3.1 and 3.2 are also fulfilled as will be shown in the following. Hence, this defines a splitting L_{α}-approximation. By definition φ_{N} is surjective. For 3.1 (ii): Let $x, y \in L$. We can write them as a finite sum,

$$
\begin{align*}
& x=\sum_{\vec{m} \in \mathbf{Z}^{2}} r_{\vec{m}} T_{\vec{m}}=\sum_{m_{1}=a}^{b} \sum_{m_{2}=c}^{d} r_{\left(m_{1}, m_{2}\right)} T_{\left(m_{1}, m_{2}\right)}, \\
& y=\sum_{\vec{m} \in \mathbb{Z}^{2}} s_{\vec{m}} T_{\vec{m}} . \tag{3-7}
\end{align*}
$$

Without restriction, we can assume the same range for the summands in the representation of x and y. If $N>2 \cdot \max (|a|,|b|,|c|,|d|)$ then the $\varphi_{N}\left(T_{\bar{m}}\right)$ for the $T_{\vec{m}}$ involved will be pairwise distinct. Hence they form a subset of the basis in $T^{(N)}$ and we obtain

$$
\begin{equation*}
\varphi_{N}(x)-\varphi_{N}(y)=\sum_{\bar{m} \in \mathbb{Z}^{2}}\left(r_{\bar{m}}-s_{\vec{m}}\right) \varphi_{N}\left(T_{\vec{m}}\right) \tag{3-8}
\end{equation*}
$$

We calculate

$$
\begin{equation*}
d_{N}\left(\varphi_{N}(x), \varphi_{N}(y)\right)=\sqrt{\sum_{\bar{m} \in \mathbb{Z}^{2}}\left|r_{\vec{m}}-s_{\vec{m}}\right|^{2}} \tag{3-9}
\end{equation*}
$$

Obviously, this expression is independent of N, hence we get $\lim _{N \rightarrow \infty}\left(\varphi_{N}(x), \varphi_{N}(y)\right)=0$
if and only if $x=y$.
Axiom 3.2: We consider first the case $x=T_{\vec{m}}$ and $y=T_{\vec{n}}$. We calculate

$$
\begin{align*}
B_{N}(\vec{m}, \vec{n}) & :=\left[\varphi_{N}\left(T_{\vec{m}}\right), \varphi_{N}\left(T_{\vec{n}}\right)\right]-\varphi_{N}\left(\left[T_{\vec{m}}, T_{\vec{n}}\right]\right) \\
& =\left(\frac{N}{2 \pi} \sin \frac{2 \pi}{N}(\vec{m} \times \vec{n})-(\vec{m} \times \vec{n})\right) \varphi_{N}\left(T_{\vec{m}+\vec{n} \bmod N}\right) . \tag{3-10}
\end{align*}
$$

For N big enough we obtain

$$
\begin{equation*}
\left\|B_{N}(\vec{m}, \vec{n})\right\|=\left|\frac{N}{2 \pi} \sin \frac{2 \pi}{N}(\vec{m} \times \vec{n})-(\vec{m} \times \vec{n})\right| \tag{3-11}
\end{equation*}
$$

and hence $\lim _{N \rightarrow \infty} d_{N}\left(B_{N}(\vec{m}, \vec{n})\right)=0$. Because arbitrary x and y are finite sums of such $T_{\bar{m}}$ the claim is also valid in these cases.
Example 3. $\operatorname{diff}_{A}^{\prime} S^{2}$. Let L be the algebra diff ${ }_{A} S^{2} \oplus \mathbb{C} \cdot Y_{00}$ introduced in Sect. 2. Take $I=\mathbb{N}$ and as L_{α} the algebras $L_{(N)}$ introduced in Example 2 of Sect. 2. We have again $L_{(N)}=g l(N)$ for N odd. Let us denote the generators of this algebra by $T_{l m}^{N}$. We use as linear map $p_{N}: L \rightarrow L_{(N)}$ the map induced by the map

$$
p_{N}\left(Y_{l m}\right)=\left\{\begin{array}{lll}
T_{l m}^{N}, & \text { if } & l<N \tag{3-12}\\
0, & \text { if } & l \geqq N
\end{array}\right.
$$

on the basis. As $i_{N}: L_{(N)} \rightarrow L$ we take the linear map induced by the inverse of (3-12). As metric d_{N} in $L_{(N)}$ we take the metric induced by the scalar product

$$
\begin{equation*}
\left\langle T_{l m}^{N}, T_{l^{\prime} m^{\prime}}^{N}\right\rangle=\delta_{l, l^{\prime}} \cdot \delta_{m, m^{\prime}} \tag{3-13}
\end{equation*}
$$

Again, Axiom 3.1(i) and Axiom 3.5 are obvious. Axiom 3.1(ii) can be shown in exactly the same way as above (replacing \vec{m} by (m, l). To show Axiom 3.2 we have to make some minor modifications. We start with $x=Y_{l m}$ and $y=Y_{l^{\prime} m^{\prime}}$. Similar to (3-10) we get for

$$
B_{N}\left(l m, l^{\prime} m^{\prime}\right):=\left[T_{l m}^{N}, T_{l^{\prime} m^{\prime}}^{N}\right]-p_{N}\left(\left[Y_{l m}, Y_{l^{\prime} m^{\prime}}\right]\right)
$$

by using the result (2-8) on the range of the indices (with $m^{\prime \prime}=m+m^{\prime}$)

$$
\begin{equation*}
\|\left(B_{N}\left(l m, l^{\prime} m^{\prime}\right) \|^{2}=\sum_{l^{\prime \prime}=\left|l-l^{\prime}\right|}^{l+l^{\prime}-1}\left(f_{l m, l^{\prime} m^{\prime}}^{l^{\prime \prime} m^{\prime \prime}, N}-g_{\left.l m, l^{\prime} m^{\prime}\right)^{\prime \prime}}^{l^{\prime \prime} m^{\prime \prime}}\right.\right. \tag{3-14}
\end{equation*}
$$

Now the range of the summation is independent of N. Because every summand vanishes for $N \rightarrow \infty$ [3], the same is true for (3-14). Hence, we can conclude the argument as in Example 2.
In Examples 2 and 3 we showed (using as index set only the odd numbers) that both $\operatorname{diff}_{A}^{\prime} T^{2} \oplus \mathbb{C} \cdot T_{00}$ and $\operatorname{diff}_{A}^{\prime} S^{2} \oplus \mathbb{C} \cdot Y_{00}$ have as a L_{α}-quasilimit the same sequence of $g l(N)$. Nevertheless, as will be shown in Appendix A they are nonisomorphic.

Example 4. $g l_{+}(\infty)$. We take as L the algebra $g l_{+}(\infty)$ as L_{α} the $g l(N)$, considered as subalgebras of $g l_{+}(\infty)$ via the standard embedding, and as p_{α} the linear maps
induced by

$$
p_{N}\left(E_{i j}\right)= \begin{cases}E_{i j}, & 1 \leqq i, j \leqq N \\ 0, & \text { otherwise }\end{cases}
$$

The map p_{N} is the projection onto $g l(N)$. As $i_{\alpha}=i_{N}$ we take the obvious inverse linear map. As $d_{\alpha}=d_{N}$ we take the norm induced by the scalar product

$$
\left\langle E_{i j}, E_{k l}\right\rangle=\delta_{i, k} \cdot \delta_{j, l}=\operatorname{Tr}\left(E_{i j}^{t r} \cdot E_{k l}\right) .
$$

Axiom 3.1(i) and Axiom 3.5 are valid by definition. Let x and y be 2 elements of $g l_{+}(\infty)$. If we choose N big enough (depending on the range of the nonvanishing coefficients of x and y with respect to the basis $E_{i j}$) we see that x and y are elements of

$$
\begin{equation*}
g l(N) \subset g l(N+1) \subset g l(N+2) \subset \cdots \tag{3-15}
\end{equation*}
$$

Because we have $[. ., . .]_{N}=[. ., . .]_{\mid g l(N)}$ Axiom 3.2 is now immediate. The embedding (3-15) is an isometric embedding, i.e. $d_{N+k_{\mid g l(N)}}=d_{N}$ for $k \geqq 0$. Hence,

$$
d_{N+k}(x, y)=d_{N}(x, y)
$$

This shows Axiom 3.1(ii). Hence, the above data defines a L_{α}-approximation. The base change (2-9) in $g l(N)$ can be described as an isomorphism φ_{N}. This gives again maps of $g l_{+}(\infty)$ to $g l(N)$ defined as the composition

$$
g l_{+}(\infty) \xrightarrow{p_{N}} g l(N) \xrightarrow{\varphi_{N}} g l(N) .
$$

Now we choose a metric d_{N} on the second copy of $g l(N)$. For example, the metric induced by $\left\langle T_{a}, T_{b}\right\rangle=\delta_{a, b}$ might be a standard choice with respect to the new basis. The above axioms with respect to the maps $p_{N}^{\prime}=\varphi_{N}{ }^{\circ} p_{N}$ are also valid with the exception of Axioms 3.1(ii). In general, the chain (3-15) will not be an isometric embedding anymore. Hence, we cannot conclude as above that the Axiom 3.1(ii) is necessarily valid. In fact, if we apply the above to Example 1 of Sect. 2 then

$$
\lim _{N \rightarrow \infty} d_{N}\left(p_{N}^{\prime}\left(E_{00}\right), p_{N}^{\prime}\left(E_{11}\right)\right)=0
$$

if we choose the metric induced by $\left\langle T_{\vec{m}}, T_{\vec{n}}\right\rangle=\delta_{\vec{m}, \vec{n}}$.
Of course, if we choose as metric the pullback metric $\left(\varphi_{N}^{-1}\right)^{*} d_{N}$ on the second copy everythings works again.

4. Geometric Quantization and diff $V_{V} M$

In this section we consider compact Kähler manifolds which in the context of geometric quantization seems to be the natural generalization of compact two-dimensional manifolds (like S^{2} and T^{2}) to higher dimensions. Indeed, well-known theorems $[15,16]$ state that every orientable two-dimensional manifold carries a complex structure and a Hermitian structure whose real part is a Riemannian metric g and whose imaginary part is a nondegenerate closed volume form $\omega=\sqrt{\operatorname{det} g} d x^{1} \wedge d x^{2}$.

In general, any manifold carrying a nondegenerate closed 2 -form ω (a symplectic form) is the differential geometric arena for classical mechanics [17]. Such manifolds
(M, ω) are called symplectic manifolds. Necessarily, they are orientable and even dimensional, i.e. $\operatorname{dim} M=2 n$ and

$$
\Omega:=(-1)^{\left(\frac{n}{2}\right)} \frac{1}{n!} \omega^{n}
$$

defines a volume form.
For the following, let (M, ω) be a symplectic manifold. By diff ${ }_{V} M$ we denote the Lie algebra of all divergence-free vector fields on M (with the usual Lie bracket of the vector fields). In the case of $\operatorname{dim} M=2$ we use also the symbol diff ${ }_{A} M .{ }^{4}$ The elements are characterized by

$$
\begin{equation*}
X \in \operatorname{diff}_{V} M \text { if and only if } L_{X} \Omega=0 \tag{4-1}
\end{equation*}
$$

where L_{X} is the Lie derivative with respect to X. (In the case of surfaces $\Omega=\omega$.) Equivalently, $\operatorname{diff}_{V} M$ can be given as the set of vector fields which correspond to the volume-preserving diffeomorphisms of M [14].

On p-forms we have [17]

$$
\begin{equation*}
L_{X}=i_{X} \circ d+d \circ i_{X} \tag{4-2}
\end{equation*}
$$

(here i_{X} is the interior product, i.e. $i_{X} \alpha(\cdots)=\alpha(X, \ldots)$) and thus $L_{X} \omega=d i_{X} \omega$. To each smooth real valued function H on M one assigns its Hamiltonian vector field X_{H} defined by $i_{X_{H}} \omega=d H$. In certain local coordinates ($q^{1}, q^{2}, \ldots, q^{n}, p_{1}, p_{2}, \ldots, p_{n}$) (which in general have nothing to do with complex coordinates) one has $\omega_{1}=\sum_{i} d q^{i} \wedge d p_{i}$. In these coordinates X_{H} can be expressed as

$$
X_{\boldsymbol{H} \mid}=\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\sum_{i=1}^{n} \frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial p_{i}}
$$

Obviously, Hamiltonian vector fields are divergence-free, moreover

$$
\begin{equation*}
L_{X_{H}} \omega=0 \text { for all smooth functions } H \text { on } M \tag{4-3}
\end{equation*}
$$

Any vector field X obeying $L_{X} \omega=0$ is called locally Hamiltonian.
The Poisson bracket $\{f, g\}$ of two smooth real valued functions f and g on M is defined as

$$
\begin{equation*}
\{f, g\}:=d f\left(X_{g}\right) \tag{4-4}
\end{equation*}
$$

It establishes a Lie structure on the space of all smooth real valued functions. This Lie algebra is called the Poisson algebra $\mathscr{P}(M)$. One has the important relation

$$
\begin{equation*}
\left[X_{f}, X_{g}\right]=-X_{\{f, g\}} \tag{4-5}
\end{equation*}
$$

More generally, for two vector fields X, Y on M obeying $L_{X} \omega=L_{Y} \omega=0$ one has

$$
[X, Y]=-X_{\omega(X, Y)}
$$

(See [17] for proofs.) These relations show that the space of locally Hamiltonian vector fields is a subalgebra of $\operatorname{diff}_{V} M$ denoted by $L H a m M$. The space of

[^2]Hamiltonian vector fields $\operatorname{Ham} M$, is an ideal of it. If $\operatorname{dim} M=2$, then $\operatorname{diff}_{A} M$ is identical to $L \operatorname{Ham} M$ and the quotient $\operatorname{diff}_{A} M / \operatorname{Ham} M$ can be identified with the first de-Rham cohomology class $H^{1}(M, \mathbb{R})$ of M via $X \mapsto i_{X} \omega$.

Furthermore, the map

$$
\begin{equation*}
\mathscr{P}(M) \rightarrow \operatorname{Ham} M, \quad f \mapsto-X_{f} \tag{4-6}
\end{equation*}
$$

is a surjective homomorphism of Lie algebras having kernel equal to the constant functions, i.e. $\mathscr{P}(M)$ is a central extension of Ham M. In case M is compact, which we will assume in the following, this extension is trivial as can be seen by the Lie isomorphism $(\operatorname{dim} M=2 n)$

$$
\begin{equation*}
\mathscr{P}(M) \rightarrow \mathbb{R} \oplus \operatorname{Ham} M, \quad f \mapsto\left(\int_{M} \Omega f,-X_{f}\right) \tag{4-7}
\end{equation*}
$$

Note, if we use (4-4) and the identity

$$
\begin{equation*}
\int_{M} d f(X) \cdot \Omega=-\int_{M} f \operatorname{div} X \cdot \Omega \tag{4-8}
\end{equation*}
$$

which is valid for arbitrary vector fields X and functions $f[17$, p. 153] we see that $\int_{M} \Omega\{f, g\}$ vanishes. For noncompact $M,(4-7)$ in general is false as is best illustrated by $M=\mathbb{R}^{2}$ and $\{q, p\}=1$. But for compact M all these arguments show that one can investigate the Poisson algebra $\mathscr{P}(M)$ in order to study an essential part of $L \operatorname{Ham} M\left(=\operatorname{diff}_{A} M\right.$ for $\left.\operatorname{dim} M=2\right)$ and simply "omit the constants at the end."

We shall now relate the Lie algebra $\mathscr{P}(M)$ to a geometric quantization scheme. We assume M to be a compact Kähler manifold of arbitrary (real) dimension $2 n$. First we recall some basic facts about this procedure (cf. [18, 19, 20], \cdots for details). We write g for the Kähler metric and $I \in \operatorname{End}(T M)\left(I^{2}=-1_{T M}\right)$ for the complex structure on M which form together the symplectic form ω

$$
\begin{equation*}
\omega(X, Y)=g(I X, Y) \tag{4-9}
\end{equation*}
$$

Here X and Y are vector fields on M. One then needs a complex line bundle L over M, a sesquilinear fibre metric h in L and a covariant derivative ∇ in L. These data have to be compatible among themselves and with the symplectic form ω in the following sense. For two smooth sections s_{1} and s_{2} of L and two vector fields X and Y on M the following should hold:

$$
\begin{gather*}
h\left(\nabla_{X} s_{1}, s_{2}\right)+h\left(s_{1}, \nabla_{X} s_{2}\right)=d\left(h\left(s_{1}, s_{2}\right)\right)(X), \tag{4-10}\\
F(X, Y) s_{1}:=\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) s_{1}=-\mathbf{i} \omega(X, Y) s_{1} . \tag{4-11}
\end{gather*}
$$

F is the curvature 2 -form of the covariant derivative and (4-11) is called the pre-quantum condition.

For every smooth real (or complex) valued function f on M the following prequantum operator P_{f} acting on the complex vector space $\Gamma(M, L)$ of all smooth sections of L is formed

$$
\begin{equation*}
P_{f}:=-\nabla_{X_{f}}+\mathbf{i} f \cdot 1 \tag{4-12}
\end{equation*}
$$

This defines a map

$$
P: \mathscr{P}(M) \rightarrow O p(\Gamma(M, L)), \quad f \mapsto P_{f}
$$

The prequantum condition (4-11) guarantees that P is an injective Lie algebra homomorphism

$$
\begin{equation*}
P_{\{f, g\}}=\left[P_{f}, P_{g}\right] . \tag{4-3}
\end{equation*}
$$

Defining a scalar product $\langle. . \mid .$.$\rangle in \Gamma(M, L)$ by

$$
\begin{equation*}
\left\langle s_{1} \mid s_{2}\right\rangle:=\int_{M} \Omega h\left(s_{1}, s_{2}\right), \tag{4-14}
\end{equation*}
$$

we see by using (4-3), (4-8) and condition (4-10) that P_{f} becomes an antihermitian operator in $\Gamma(M, L)$ for real valued f. Our unphysical convention to have the P_{f} antihermitian rather than hermitian is more advantageous for the formulation of (4-13) where else one would have a factor of i. The prequantum Hilbert space \mathscr{H} is then defined to be the completion of $\Gamma(M, L)$ with respect to $\langle. . \mid .$.$\rangle . Note that$ the prequantum condition (4-11) strongly restricts the possible symplectic forms on M : Since for each complex line bundle over any manifold the Chern form $c:=\frac{\mathbf{i}}{2 \pi} F$ is integral [21, p. 99] (i.e. gives integers when integrated over any closed 2 -surface in M) ω must be a " $2 \pi \times$ integral" form.

A second step in a geometric quantization scheme is the choice of a polarization. I.e. one would like to have only those wave functions in the prequantum Hilbert space \mathscr{H} that depend on "only one (certain) half of the phase space variables." For Kähler manifolds there is a canonical concept. L should be a holomorphic line bundle. One then has for each fibre metric h in L a unique covariant derivative ∇ in L which is compatible with h in the sense of (4-10) and obeys the following additional condition: for each holomorphic section s of L and each complex vector field X on M of type $(0,1)$ [21, p. 78]

$$
\begin{equation*}
\nabla_{X} s=0 . \tag{4-15}
\end{equation*}
$$

In other words, holomorphic sections become covariantly constant in antiholomorphic directions. In a local holomorphic chart $\left(z^{1}, \ldots, z^{n}\right)$ this means the following: if the holomorphic section s is represented by a holomorphic function \hat{s} and the fibre metric h by a positive smooth real function \hat{h}, then ∇ can be expressed in the following way [21, p. 78]

$$
\begin{equation*}
\nabla \hat{s}=\partial \hat{s}+\bar{\partial} \hat{s}+\partial \log \hat{h} \cdot \hat{s} . \tag{4-16}
\end{equation*}
$$

The above $\log \hat{h}$ is often denoted as (local) Kähler potential. Starting with a Kähler form ω which is a $2 \pi \times$ integral form there exists always a holomorphic line bundle with connection ∇ and metric h such that (4-10), (4-11) and (4-15) are fulfilled.

The quantum Hilbert space is then defined to be the subspace $\Gamma_{\text {hol }}(M, L)$ of all holomorphic sections in \mathscr{H}. For compact manifolds it is always finite dimensional [21, p. 147]. Hence, $\Gamma_{\text {hol }}(M, L)$ is a closed subspace and it follows that the orthogonal projection

$$
\rho: \mathscr{H} \rightarrow \Gamma_{\mathrm{hol}}(M, L)
$$

is a bounded Hermitian operator. In order to define quantum observables or quantum operators Q_{f} acting on $\Gamma_{\text {hol }}(M, L)$ one simply takes "the holomorphic part" of the prequantum operators P_{f}

$$
\begin{equation*}
Q_{f}:=\rho \circ P_{f} \circ \rho . \tag{4-17}
\end{equation*}
$$

Q_{f} clearly is an antihermitian operator for real valued smooth functions f but in general

$$
\begin{equation*}
Q_{\{f, g\}} \neq\left[Q_{f}, Q_{g}\right] . \tag{4-18}
\end{equation*}
$$

To get an explicit expression for Q_{f} one can choose any orthonormal basis $\left|s_{1}\right\rangle, \ldots,\left|s_{d}\right\rangle\left(d=\operatorname{dim} \Gamma_{\text {hol }}(M, L)\right)$ of $\Gamma_{\text {hol }}(M, L)$ and set

$$
\begin{equation*}
Q_{f}:=\sum_{a, b=1}^{d}\left|s_{a}\right\rangle\left\langle s_{a}\right| P_{f}\left|s_{b}\right\rangle\left\langle s_{b}\right| . \tag{4-19}
\end{equation*}
$$

Hence it suffices to compute the matrix elements $\left\langle s_{a}\right| P_{f}\left|s_{b}\right\rangle$ of $P_{f} . \rho$ is sometimes called "generalized Bergman kernel" [19]. To calculate the matrix elements the following result by Tuynman [20] is quite useful. We shall give a coordinate free proof.

Proposition 4.1. (Tuynman) Let (M, ω) be a compact Kähler manifold, L a holomorphic prequantum line bundle over M, h a fibre metric in L, ∇ the associated compatible connection in L and s_{1} and s_{2} two holomorphic sections of L then the following equation holds:

$$
\begin{equation*}
\left\langle s_{1}\right| P_{f}\left|s_{2}\right\rangle=\mathbf{i}\left\langle s_{1}\right| f-\frac{1}{2} \Delta f\left|s_{2}\right\rangle . \tag{4-20}
\end{equation*}
$$

Proof. Because $P_{f}=\mathbf{i f} \cdot 1-\nabla_{X_{f}}$ it suffices to compute the term containing the covariant derivative. Let I be the complex structure of M. For any vector field X on $M \frac{1}{2}(X \mp \mathbf{i} I X)$ is the holomorphic respectively antiholomorphic part of X. Hence (with condition (4-15))

$$
\nabla_{1 / 2(X+\mathrm{i} I X)} s_{2}=0
$$

It follows that $\nabla_{I X} s_{2}=\mathrm{i} \nabla_{X} s_{2}$. Furthermore, from Eq. (4-9) we get for the Hamiltonian vector field $X_{f}=-I \operatorname{grad} f$. It follows that

$$
\begin{equation*}
h\left(s_{1}, \nabla_{X_{f}} s_{2}\right)=-h\left(s_{1}, \nabla_{I \operatorname{grad} f} s_{2}\right)=-\mathbf{i} h\left(s_{1}, \nabla_{\operatorname{grad} f} s_{2}\right) \tag{4-21}
\end{equation*}
$$

and from (4-10)

$$
\begin{equation*}
d\left(h\left(s_{1}, s_{2}\right)\right)\left(X_{f}\right)-h\left(s_{1}, \nabla_{X_{f}} s_{2}\right)=h\left(\nabla_{X_{f}} s_{1}, s_{2}\right)=+\mathbf{i} h\left(\nabla_{\operatorname{grad} f} s_{1}, s_{2}\right) . \tag{4-22}
\end{equation*}
$$

Subtracting (4-22) from (4-21) we get

$$
h\left(s_{1}, \nabla_{X_{f}} s_{2}\right)=\frac{1}{2} d\left(h\left(s_{1}, s_{2}\right)\right)\left(X_{f}\right)-\frac{\mathbf{i}}{2} d\left(h\left(s_{1}, s_{2}\right)\right)(\operatorname{grad} f) .
$$

Integrating this identity over M and using (4-8) we see with $\operatorname{div} X_{f}=0$ and $\operatorname{div} \operatorname{grad} f=\Delta f$ that

$$
\left\langle s_{1}\right| \nabla_{X_{f}}\left|s_{2}\right\rangle=\frac{i}{2}\left\langle s_{1}\right| \Delta f\left|s_{2}\right\rangle .
$$

Here the laplacian has to be calculated with respect to g.
As explained in [18] one should add a "half-form correction" to the above quantization scheme to obtain the correct physical values. Because this correction would not change anything essential in the following we decided to ignore it here.

In order to achieve an L_{α}-approximation for Ham M we would like to have the afore-mentioned geometric quantization scheme dependent on a parameter α. This can be done by fixing a holomorphic line bundle L, a fibre metric h and a covariant derivative ∇ which fulfills the compatibility by Eqs. (4-10), (4-11) and (4-15) and then considering arbitrary m-fold tensor powers of L

$$
\begin{equation*}
L^{m}:=L^{\otimes m}:=L \otimes \cdots \otimes L \quad(m \text { factors }) \tag{4-23}
\end{equation*}
$$

For the holomorphic line bundle L^{m} one can now construct a canonical fibre metric $h^{(m)}$ with compatible covariant derivative $\nabla^{(m)}$ by

$$
\begin{align*}
& h^{(m)}:=h \otimes \cdots \otimes h \quad m \text { factors. } \tag{4-24}\\
& \nabla^{(m)}:=\sum_{k=1}^{m} 1 \otimes \cdots \otimes(\nabla)_{k} \otimes \cdots \otimes 1 \tag{4-25}
\end{align*}
$$

where in the $k^{\text {th }}$ summand the ∇ is at the $k^{\text {th }}$ position. If L is given by transition functions $c_{\sigma \tau}$ with respect to a trivializing covering, then L^{m} can be given by the transition functions $\left(c_{\sigma \tau}\right)^{m}$ and the same trivialization. In this trivialization one has

$$
\begin{align*}
& \hat{h}^{(m)}=(\hat{h})^{m}, \tag{4-26}\\
& \nabla^{(m)}=\hat{o}+\bar{\partial}+m \partial \log \hat{h} . \tag{4-27}
\end{align*}
$$

The role of the exponent m becomes clear when we check the prequantum condition (4-11) for the bundles L^{m}

$$
\begin{equation*}
F^{(m)}(X, Y)=m F(X, Y)=-\mathbf{i} m \omega(X, Y) \tag{4-28}
\end{equation*}
$$

Now, $m \omega$ is also a symplectic form on M being clearly $2 \pi \times$ integral, and one can compare the formulae for Hamiltonian vector fields and Poisson brackets

$$
\begin{gather*}
X_{f}^{(m)}=\frac{1}{m} X_{f}, \quad f \in \mathscr{P}(M) \tag{4-29}\\
\{f, g\}^{(m)}=\frac{1}{m}\{f, g\}, \quad f, g \in \mathscr{P}(M) . \tag{4-30}
\end{gather*}
$$

If we now took the usual prequantum operators

$$
P_{f}^{(m)}:=-\nabla_{X_{f}^{(m)}}^{(m)}+\mathbf{i} f \cdot 1
$$

we would have

$$
\begin{equation*}
\left[P_{f}^{(m)}, P_{g}^{(m)}\right]=P_{\{f, g\}^{(m)}}^{(m)}=\frac{1}{m} P_{\{f, g\}}^{(m)} \tag{4-31}
\end{equation*}
$$

and $\frac{1}{m}$ can be interpreted as \hbar. But since we are looking for a representation of $\mathscr{P}(M)$, i.e. the Poisson algebra w.r.t. ω and not w.r.t. $m \omega$ we have to rescale the prequantum operators as follows

$$
\begin{equation*}
\hat{P}_{f}^{(m)}:=m P_{f}^{(m)}=-\nabla_{X_{f}}^{(m)}+\mathbf{i} m f \cdot 1 \tag{4-32}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\left[\hat{P}_{f}^{(m)}, \hat{P}_{g}^{(m)}\right]=\hat{P}_{\{f, g\}}^{(m)} . \tag{4-33}
\end{equation*}
$$

If we denote by $\mathscr{H}^{(m)}$ (respectively $\Gamma_{\text {hol }}\left(M, L^{(m)}\right)$, respectively $\rho^{(m)}$) the Hilbert space generated by all smooth sections of L^{m} (where we choose the volume form on M to be equal to Ω and not $m^{n} \Omega$) (respectively the subspace of the global holomorphic sections of L^{m}, respectively the orthogonal projection on this subspace) we can form the (rescaled) quantum operators in $\Gamma_{\text {hol }}\left(M, L^{(m)}\right)$

$$
\begin{equation*}
\hat{Q}_{f}^{(m)}:=\rho^{(m)} \circ \hat{P}_{f}^{(m)} \circ \rho^{(m)} \tag{4-34}
\end{equation*}
$$

Now we set

$$
\begin{gather*}
L_{m}:=\left\{\text { antihermitian linear operators in } \Gamma_{\mathrm{hol}}\left(M, L^{(m)}\right)\right\}, \tag{4-35}\\
p_{m}: \mathscr{P}(M) \rightarrow L_{m}, \quad f \rightarrow \hat{Q}_{f}^{(m)}, \tag{4-36}\\
d_{m}: L_{m} \times L_{m} \rightarrow \mathbb{R}, \quad(A, B) \mapsto r_{m} \cdot \sqrt{\operatorname{Tr}(A-B)^{+} \cdot(A-B)}, \tag{4-37}
\end{gather*}
$$

where the r_{m} are positive real numbers. We formulate the following
Conjecture. Let (M, ω) be a compact Kähler manifold with symplectic form ω. Then there is a ω-compatible complex structure I in M, with respect to which M is also a Kähler manifold, a holomorphic prequantum line bundle L compatible with I, a fibre metric h with compatible covariant derivative ∇ and a sequence of positive real numbers $r_{m}, m \in \mathbb{N}$ such that the Poisson algebra $\mathscr{P}(M)$ admits $a\left(L_{m}, d_{m}\right)$ approximation induced by p_{m}. Here L_{m}, p_{m} and d_{m} are defined as in (4-35)-(4-37).

If one thinks of m as $1 / \hbar$ this concept can be interpreted as $\hbar \rightarrow 0$ limit. Note that we leave the complex structure to be adjustable because the main interest lies in the symplectic structure of M.

For technical reasons which will become clear in the forthcoming example it is more convenient to work with

$$
\mathscr{P P}^{c}(M):=\mathscr{P}(M)+\mathbf{i} \mathscr{P}(M),
$$

the complexification of the Poisson algebra. Since for each

$$
f=f_{1}+\mathbf{i} f_{2} \in \mathscr{P}^{c}(M), \quad f_{1}, f_{2} \in \mathscr{P}(M)
$$

we clearly have $P_{f}=P_{f_{1}}+\mathbf{i} P_{f_{2}}$ and thus $Q_{f}=Q_{f_{1}}+\mathrm{i} Q_{f_{2}}$ the above conjecture can be extended to $\mathscr{P}^{c}(M)$ being a (L_{m}^{c}, d_{m}) approximation (quasilimit) induced by p_{m}^{c}. Here L_{m}^{c} is the complexification of L_{m} which is isomorphic to $g l(n, \mathbb{C})(n$ depending on m) and p_{m}^{c} is the complexification of p_{m}.

The above conjecture can be related to work of F. A. Berezin concerning the concept of quantization [29-31] ${ }^{5}$. In the following addendum we will therefore give an overview of his techniques in the more general formulation due to J. H. Rawnsley et al. [33, 35, 36].

Addendum on Berezin's Coherent States. An interesting approach to quantization where $\hbar \rightarrow 0$ limits can be dealt with is a sort of $*$-product quantization based on F. A. Berezin's coherent states. This concept was invented and outlined in general terms by F. A. Berezin in [29] and applied mainly to symmetric bounded domains

[^3]in [30]. The basic idea is to relate the classical phase space to a quantum Hilbert space by an overcomplete system of states in that Hilbert space (the so-called system of coherent states) which is parametrized by the phase space ${ }^{6}$. Taking expectation values of a bounded operator with respect to the coherent states leads to a complex function on phase space and the associative noncommutative product of operators can thus be transferred to a subspace of classical observables where it becomes a *-product. In the case of Kähler manifolds F. A. Berezin was able to introduce a parameter \hbar in order to get a family of Hilbert spaces and coherent states parametrized by \hbar such that the *-product of two functions is the ordinary (pointwise) product up to $O(\hbar)$ and the $*$-commutator times $1 / \hbar$ is the Poisson bracket up to $O(\hbar)$ which reflects the correspondence principle of quantum theory.

What makes it a little difficult to compare Berezin's approach to the method of geometric quantization is the fact that he always works in one holomorphic chart and constructs everything in local terms. For such Kähler manifolds having global holomorphic charts like \mathbb{C}^{n} or bounded (symmetric) domains this is perfectly suitable. For more general Kähler manifolds (like higher genus compact Riemann surfaces) he does not give a general recipe how to obtain the correct Hilbert spaces. In some examples he uses the following method: He removes a divisor ${ }^{7} D$ from the manifold M and considers as Hilbert space the space of holomorphic functions on the open dense subset $M \backslash D$ which are integrable with respect to some \hbar depending metric. In this context he mentions some global features related to compact Kähler manifolds, like the fact that the space of such admissible functions is finite dimensional and that \hbar is quantized (i.e. \hbar takes only a discrete set $\left\{\hbar_{n} \mid n \in \mathbb{Z}\right\}$ of values of \mathbb{R}^{+}and $\lim _{n \rightarrow \infty} \hbar_{n}=0$). From the global viewpoint of geometric quantization the above space of functions can be related to the space of holomorphic sections of a suitable (\hbar depending) line bundle. The quantized nature of \hbar can be interpreted as the fact that one uses tensor powers of just one fixed line bundle.

Of course, Berezin's procedure of removing a divisor D is not unique. As we want to avoid the examination under which conditions the derived objects are invariant under different choices of D, we prefer to sketch Berezin's idea in a global formulation due to J. H. Rawnsley et al. (cf. [33, 35, 36]). We use the same notation as in Sect. 4. Let L be a holomorphic prequantum line bundle (with hermitian metric h), which we assume to be very ample ${ }^{8}, M$ the compact Kähler manifold and $\chi: L \rightarrow M$ the bundle projection. Let L_{0} be L minus the image of the zero section. Now for each $q \in L_{0}$ the "evaluation" of a holomorphic section s

$$
\begin{equation*}
s \mapsto s(\chi(q))=\hat{q}(s) \cdot q, \quad \hat{q}(s) \in \mathbb{C} \tag{4-38}
\end{equation*}
$$

defines a linear form $s \mapsto \hat{q}(s)$ on $\Gamma_{\text {hol }}(M, L)$, and hence by Riesz's theorem ${ }^{9}$ one and only one holomorphic section $e_{q} \in \Gamma_{\text {hol }}(M, L)$ such that

$$
\begin{equation*}
\left\langle e_{q} \mid s\right\rangle=\hat{q}(s) . \tag{4-39}
\end{equation*}
$$

[^4]Using a orthonormal base $\left(s_{\alpha}\right)$ of $\Gamma_{\text {hol }}(M, L)$ one has an equivalent formula

$$
\begin{equation*}
e_{q}=\sum_{\alpha} \bar{q}\left(s_{\alpha}\right) \cdot s_{\alpha} \tag{4-40}
\end{equation*}
$$

where the - denotes complex conjugation.
This shows that the map

$$
\begin{equation*}
L_{0} \rightarrow \Gamma_{\mathrm{hol}}(M, L), \quad q \mapsto e_{q} \tag{4-41}
\end{equation*}
$$

is smooth. Also note the following transformation property of e_{q} under \mathbb{C}^{*},

$$
\begin{equation*}
e_{c q}=\bar{c}^{-1} e_{q}, \quad \forall c \in \mathbb{C}^{*} \tag{4-42}
\end{equation*}
$$

The bundle L being very ample, there is no point in M where all holomorphic sections simultaneously vanish. Hence all the e_{q} are different from zero. Because of (4.42) the following operators in $\Gamma_{\text {hol }}(M, L)$ depend on the points $\chi(q) \in M$ only ,

$$
\begin{equation*}
P_{\chi(q)}:=\frac{\left|e_{q}\right\rangle\left\langle e_{q}\right|}{\left\langle e_{q} \mid e_{q}\right\rangle}, \quad P_{\chi(q), \chi\left(q^{\prime}\right)}:=\frac{\left|e_{q}\right\rangle\left\langle e_{q^{\prime}}\right|}{\left\langle e_{q^{\prime}} \mid e_{q}\right\rangle}, \tag{4-43}
\end{equation*}
$$

where the second operator is defined only on some open neighbourhood of the diagonal in $M \times M$. Furthermore, for two holomorphic sections, s_{1} and s_{2} one has

$$
h(\chi(q))\left(s_{1}(\chi(q)), s_{2}(\chi(q))\right)=\left\langle s_{1} \mid e_{q}\right\rangle\left\langle e_{q} \mid s_{2}\right\rangle \cdot|q|^{2}
$$

with $|q|^{2}:=h(\chi(q))(q, q)$. If one integrates this over M and notes that the function

$$
\begin{equation*}
\varepsilon(\chi(q)):=|q|^{2}\left\langle e_{q} \mid e_{q}\right\rangle \tag{4-44}
\end{equation*}
$$

is well-defined on M because of (4-42) one gets the "over completeness property"

$$
\begin{equation*}
\left\langle s_{1} \mid s_{2}\right\rangle=\int_{M} \Omega(x) \varepsilon(x)\left\langle s_{1}\right| P_{x}\left|s_{2}\right\rangle \tag{4-45}
\end{equation*}
$$

The sections e_{q} are called coherent vectors. Note that in contrast to Berezin's local theory the coherent vectors are parametrized by L_{0} and not by M. The associated elements $\left\langle e_{q}\right\rangle$ in $\mathbb{P}\left(\Gamma_{\text {hol }}(M, L)\right)$ are called coherent states. They and the coherent projectors P_{x} depend on M only.

In [33] and [36] J. H Rawnsley et al. showed that there are many situations where the function $\varepsilon(4-44)$ is constant. This is for example the case if M is a homogeneous Kähler manifold and L is a homogeneous bundle. It is also true if M is embedded into some projective space \mathbb{P}^{N} and the symplectic structure on M is equivalent to the pullback of the symplectic structure of \mathbb{P}^{N}. In these cases one gets by setting $s_{1}=s_{\alpha}=s_{2}$ in (4-45) and summing over α the formula

$$
\begin{equation*}
\varepsilon=\varepsilon(x)=\frac{\operatorname{dim} \Gamma_{\mathrm{hol}}(M, L)}{\operatorname{vol} M} \quad \text { with } \quad \operatorname{vol} M:=\int_{M} \Omega . \tag{4-46}
\end{equation*}
$$

Now Berezin's covariant symbol [29] $\sigma(B)$ of a (bounded) linear operator B in the Hilbert space $\Gamma_{\text {hol }}(M, L)$ is a well-defined smooth complex-valued function on M. Let $x \in M$ and take any $q \in \chi^{-1}(x) \cap L_{0}$ then it is defined by

$$
\begin{equation*}
\sigma(B)(x):=\operatorname{Tr} B P_{x}=\frac{\left\langle e_{q}\right| B\left|e_{q}\right\rangle}{\left\langle e_{q} \mid e_{q}\right\rangle} . \tag{4.47}
\end{equation*}
$$

It can be shown that in our situation the map $B \mapsto \sigma(B)$ is injective (see [29, p. 1122,

Remark 1] for the local case and [36] for the case of compact Kähler manifolds). Hence on the space of covariant symbols a star product can be introduced

$$
\begin{equation*}
\sigma(B) * \sigma(C):=\sigma(B C) \tag{4-48}
\end{equation*}
$$

where B and C are (bounded) linear operators in $\Gamma_{\text {hol }}(M, L)$. This product is associative. If one writes out (4-48) with the help of the projectors P_{x} one will need the "two point covariant symbols" (which again are only defined in a neighbourhood of the diagonal)

$$
\begin{equation*}
\sigma(B)\left(\chi(q), \chi\left(q^{\prime}\right)\right):=\frac{\left\langle e_{q^{\prime}}\right| B\left|e_{q}\right\rangle}{\left\langle e_{q^{\prime}} \mid e_{q}\right\rangle} \tag{4-49}
\end{equation*}
$$

(compare [29, p. 1118, Eq. 2.6]). It is shown in [36] that in case $\varepsilon=$ const and M is compact one has the relation

$$
\begin{equation*}
\sigma\left(Q_{f}\right)=\mathbf{i} f \tag{4-50}
\end{equation*}
$$

for the symbols of the quantum operators (4-17) related to the so-called quantizable functions f on M, i.e. those functions for which the associated Hamiltonian vector fields preserve the Kähler polarization or equivalently for which the (1,0)-part of the Hamiltonian vector fields are holomorphic. In this way contact is made to geometric quantization.

In order to bring in an \hbar dependence of the concept, Berezin considers the Hilbert space F_{\hbar} of those holomorphic functions on a holomorphic chart which are square integrable with respect to a fibre metric $\exp \left(-\frac{1}{\hbar} \Phi(z)\right)$, where Φ is some fixed Kähler potential and $\hbar \in E \subseteq R^{+}$with $0 \in$ closure of E (see [29]). All the concepts discussed above will depend on \hbar. In particular, one gets a space A_{\hbar} of covariant symbols for each value of \hbar and a *-product also depending on \hbar. Under some technical assumptions, Berezin is able to prove a correspondence principle in the following form: Let f be a function on $E \times \mathbb{C}^{n}$ which is given in the form

$$
f(\hbar \mid z)=f(0 \mid z)+\hbar f_{1}(z)+\hbar^{2} f_{2}(\hbar \mid z)
$$

with suitable smooth functions $f(0,),. f_{1}$ and f_{2} such that the map $z \mapsto f(\hbar \mid z)$ is in A_{\hbar} for every \hbar. Let g be another such function. Then for $\hbar \rightarrow 0$,

$$
\begin{align*}
(f * g)(\hbar \mid z) & \rightarrow f(0 \mid z) \cdot g(0 \mid z) \\
\frac{1}{\hbar}(f * g-g * f)(\hbar \mid z) & \rightarrow \frac{1}{\mathbf{i}}\{f, g\}(0 \mid z) \tag{4-51}
\end{align*}
$$

(cf. [29, Eqs. (2.38) and (2.39)]).
In [36] the situation is analysed for compact Kähler manifolds: Here for each tensor power m of the complex holomorphic line bundle L chosen at the begining one has coherent states $\left(e_{q}\right), q \in\left(L^{\otimes m}\right)_{0}$ and a finite-dimensional space $A_{1 / m}$ of covariant symbols on M. This sequence of spaces $\left(A_{1 / m}\right)$ is shown to be nested, i.e. $A_{1 / m} \supseteq A_{1 / m^{\prime}}$ for $m \geqq m^{\prime}$ if ε is constant. On the union of all the $A_{1 / m}$ a star product $*$ is defined with similar asymptotic properties as above (see [36] for details).

An important relationship to the L_{α} quasilimits described in Sect. 4 is the
following: In the next section we shall calculate in detail that

$$
\begin{equation*}
\frac{1}{m^{n}} \frac{1}{m^{2}} \operatorname{Tr} \hat{Q}_{f}^{(m)+} \hat{Q}_{g}^{(m)} \rightarrow \frac{1}{(2 \pi)^{n}} \int_{T^{2 n}} \Omega f^{+} g \quad(m \rightarrow \infty) \tag{4-52}
\end{equation*}
$$

for the $2 n$-torus which will establish the validity of Axiom 3.1(ii). The calculation of the above trace can be alternatively be done using coherent states: $\left(\hat{P}_{f}^{(m)}\right.$ is the prequantum operator (4-32))

$$
\begin{aligned}
\frac{1}{m^{n}} & \frac{1}{m^{2}} \operatorname{Tr} \hat{Q}_{f}^{(m)+} \hat{Q}_{g}^{(m)} \\
= & \frac{1}{m^{n}} \frac{1}{m^{2}} \sum_{\alpha, \beta} \overline{\left\langle s_{\beta}\right| \hat{P}_{f}^{(m)}\left|s_{\alpha}\right\rangle}\left\langle s_{\alpha}\right| \hat{P}_{g}^{(m)}\left|s_{\beta}\right\rangle \\
= & \frac{1}{m^{2}} m^{2} \sum_{\alpha, \beta}\left(\int_{M} \Omega(x) \int_{M} \Omega\left(x^{\prime}\right)\left(\overline{f(x)}-\frac{1}{2 m} \overline{\Delta_{x} f(x)}\right)\left(g\left(x^{\prime}\right)-\frac{1}{2 m} \Delta_{x^{\prime}} g\left(x^{\prime}\right)\right)\right. \\
& \left.\cdot \frac{1}{m^{n}} h^{(m)}(x)\left(s_{\beta}(x), s_{\alpha}(x)\right) h^{(m)}\left(x^{\prime}\right)\left(s_{\alpha}\left(x^{\prime}\right), s_{\beta}\left(x^{\prime}\right)\right)\right) .
\end{aligned}
$$

Using the equation preceding (4-44) one has for $q \in \chi^{-1}(x) \cap\left(L^{\otimes m}\right)_{0}$ and $q^{\prime} \in \chi^{-1}\left(x^{\prime}\right) \cap\left(L^{\otimes m}\right)_{0}:$

$$
\begin{align*}
& \frac{1}{m^{n}} \sum_{\alpha, \beta} h^{(m)}(x)\left(s_{\beta}^{(m)}(x), s_{\alpha}^{(m)}(x)\right) \cdot h^{(m)}\left(x^{\prime}\right)\left(s_{\alpha}^{(m)}\left(x^{\prime}\right), s_{\beta}^{(m)}\left(x^{\prime}\right)\right) \\
& \quad=\frac{1}{m^{n}} \sum_{\alpha, \beta} \frac{\left\langle s_{\beta}^{(m)} \mid e_{q}^{(m)}\right\rangle\left\langle e_{q}^{(m)} \mid s_{\alpha}^{(m)}\right\rangle}{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle} \varepsilon^{(m)}(x) \frac{\left\langle s_{\alpha}^{(m)} \mid e_{q^{\prime}}^{(m)}\right\rangle\left\langle e_{q^{(m)}}^{(m)} \mid s_{\beta}^{(m)}\right\rangle}{\left\langle e_{q^{\prime}}^{(n)} \mid e_{q^{\prime}}^{(m)}\right\rangle} \varepsilon^{(m)}\left(x^{\prime}\right) \\
& \quad=\frac{1}{m^{n}} \varepsilon^{(m)}(x) \varepsilon^{(m)}\left(x^{\prime}\right) \frac{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle\left\langle e_{q^{\prime}}^{(m)} \mid e_{q}^{(m)}\right\rangle}{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle\left\langle e_{q^{\prime}}^{(m)} \mid e_{q^{\prime}}^{(m)}\right\rangle} . \tag{4-53}
\end{align*}
$$

For the $2 n$-torus being homogeneous, $\varepsilon^{(m)}$ is a constant function and equals $m^{n} / \operatorname{vol}\left(T^{2 n}\right)$. The remaining factor in (4-53) (which depends on M only) equals up to an m independent rescaling to Berezin's kernel function $G_{h}, \hbar=\frac{1}{m}$ (cf. [29, p.1119, p. 1128]). For G_{\hbar} he derives $G_{\hbar} \rightarrow \delta\left(x, x^{\prime}\right)$ for $\hbar \rightarrow 0$ [29, p. 1131, Theorem 2.4]. Hence one gets in the limit (4-52).

The main difference between our approach of L_{α}-quasilimits and the BerezinRawnsley procedure (besides our different goals) is that at each value of $\hbar=\frac{1}{m}$ we quantize all smooth functions on M and not only the corresponding covariant symbols (which form a finite-dimensional vector space). Furthermore, the notion of $\hbar \rightarrow 0$ (respectively $m=\frac{1}{\hbar} \rightarrow \infty$) limit in the correspondence principle of Berezin is that of pointwise convergence of the symbol functions as \hbar goes to zero (compare the proof of Theorem 2.2 in [29, p.1128]). In contrast to that we use the norm convergence for the quantum operators: Let $\left(B_{m}\right)$ be a sequence of operators. (An example which occurs in our situation is $B_{m}=\left(\left[\hat{Q}_{f}^{(m)}, \hat{Q}_{g}^{(m)}\right]-\hat{Q}_{\{f, g\}}^{(m)}\right)$ for two smooth complex valued functions f and g on M.) Then $B_{m} \rightarrow 0$ for $m \rightarrow \infty$ means
that

$$
\begin{equation*}
\frac{1}{m^{n+2}} \operatorname{Tr} B_{m}^{+} B_{m} \rightarrow 0 \quad(m \rightarrow \infty) \tag{4-54}
\end{equation*}
$$

Using coherent states $e_{q}^{(m)}$ this can be written as

$$
\begin{aligned}
\frac{1}{m^{n+2}} \operatorname{Tr} B_{m}^{+} B_{m}= & \frac{1}{m^{n+2}} \sum_{\alpha}\left\langle s_{\alpha}^{(m)}\right| B_{m}^{+} B_{m}\left|s_{\alpha}^{(m)}\right\rangle \\
= & \frac{1}{m^{n+2}} \sum_{\alpha} \int_{M} \Omega(x) \varepsilon^{(m)}(x) \frac{\left\langle s_{\alpha}^{(m)} \mid e_{q}^{(m)}\right\rangle\left\langle e_{q}^{(m)}\right| B_{m}^{+} B_{m}\left|s_{\alpha}^{(m)}\right\rangle}{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle} \\
= & \frac{1}{m^{n+2}} \int_{M} \Omega(x) \varepsilon^{(m)}(x) \frac{\left\langle e_{q}^{(m)}\right| B_{m}^{+} B_{m}\left|e_{q}^{(m)}\right\rangle}{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle} \\
= & \frac{1}{m^{n+2}} \int_{M} \Omega(x) \varepsilon^{(m)}(x) \int_{M} \Omega\left(x^{\prime}\right) \varepsilon^{(m)}\left(x^{\prime}\right) \frac{\left\langle e_{q}^{(m)}\right| B_{m}^{+}\left|e_{q^{\prime}}^{(m)}\right\rangle\left\langle e_{q^{\prime}}^{(m)}\right| B_{m}\left|e_{q}^{(m)}\right\rangle}{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle\left\langle e_{q^{\prime}}^{(m)} \mid e_{q^{\prime}}^{(m)}\right\rangle} \\
= & \int_{M} \int_{M} \Omega(x) \varepsilon^{(m)}(x) \Omega\left(x^{\prime}\right) \varepsilon^{(m)}\left(x^{\prime}\right) \\
& \cdot \frac{1}{m^{n}} \frac{\left\langle e_{q}^{(m)} \mid e_{q^{\prime}}^{(m)}\right\rangle\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle}{\left\langle e_{q}^{(m)} \mid e_{q}^{(m)}\right\rangle\left\langle e_{q^{\prime}}^{(m)} \mid e_{q^{\prime}}^{(m)}\right\rangle} \frac{\sigma\left(B_{m}\right)\left(x, x^{\prime}\right)}{m} \frac{\sigma\left(B_{m}\right)\left(x, x^{\prime}\right)}{m} .
\end{aligned}
$$

Hence, up to multiplication with Berezin's kernel function (which will give a $\delta\left(x, x^{\prime}\right)$ in the limit $m \rightarrow \infty$ in some important cases anyway) this is a L^{2}-convergence which is in general different from pointwise convergence.

5. Complex Tori (an Example)

Every $2 n$-dimensional real torus $T^{2 n} \cong U(1) \times \cdots \times U(1)(2 n$ factors $)$ carries symplectic forms ω which are invariant under $T^{2 n}$ translations. All these forms can be expressed by

$$
\begin{equation*}
\omega=\sum_{k, l=1}^{2 n} \pi \beta_{k l} d x^{k} \wedge d x^{l} \tag{5-1}
\end{equation*}
$$

where the $d x^{k}$ are (globally defined) constant 1 -forms along the $U(1)$ factors and $\beta=\left(\beta_{k l}\right)$ is any skewsymmetric nonsingular real matrix. To introduce a complex structure one alternatively describes $T^{2 n}$ as

$$
\begin{equation*}
T^{2 n}=V / \Lambda, \quad \pi: V \rightarrow T^{2 n} \tag{5-2}
\end{equation*}
$$

where V is a n-dimensional complex vector space, Λ a lattice

$$
\begin{equation*}
\Lambda=\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 n}\right\rangle_{\mathbb{Z}}, \quad \lambda_{i} \in V \tag{5-3}
\end{equation*}
$$

with the λ_{i} linearly independent over \mathbb{R} and π the quotient map. The map π carries the complex structure of V to $T^{2 n}$. In order to have prequantum holomorphic line bundles over $T^{2 n}$ the form ω has to be a $2 \pi \times$ integral 2 -form. This is equivalent to demand that β is an integral matrix, see $[22,16]$ if we choose as basis
$x_{1}, x_{2}, \ldots, x_{2 n}$ of V (over \mathbb{R}) the dual basis of the lattice basis given by

$$
\begin{equation*}
\int_{\lambda_{j}} d x_{i}=\delta_{i, j}, \quad i, j=1, \ldots, 2 n . \tag{5-4}
\end{equation*}
$$

Furthermore, one can choose the basis $\lambda_{1}, \ldots, \lambda_{2 n}$, of the lattice in such a way that the matrix β can be given as

$$
\beta=\left(\begin{array}{cc}
0 & D \tag{5-5}\\
-D & 0
\end{array}\right), \quad D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right),
$$

where the d_{i} are integers, such that d_{i} divides d_{i+1}. If all the d_{i} are equal to 1 the torus $T^{2 n}$ is said to have principal polarization. By choosing the elements $e_{k}=\left(d_{k}\right)^{-1} \lambda_{k}$ as a complex basis of the vector space V the lattice can be given as

$$
\begin{equation*}
\lambda_{k}=d_{k} e_{k}, \quad \lambda_{n+k}=\sum_{l=1}^{n} Z_{k l} e_{l}, \quad 1 \leqq k \leqq n . \tag{5-6}
\end{equation*}
$$

The $n \times n$ complex matrix $Z=\left(Z_{k l}\right)$ is called the period matrix.
Obviously, all tori are Kähler manifolds. In the following, we take as symplectic forms (5-1) only those forms which are Kähler forms. Hence, they are positive (1, 1) forms with respect to the complex structure of V. In this case the period matrix Z is a complex, symmetric matrix with positive definite imaginary part [22, p.305]. Conversely, any such matrix Z and integers $d_{1}, d_{2}, \ldots, d_{n}$ lead to those complex tori we are interested in. These tori can even be embedded into projective space (use Kodaira's embedding theorem), hence they are abelian varieties.

In order to perform the L_{m}-approximation scheme introduced in the preceding section it is advantageous to pull everything back to the complex vector space V. So, if we are given a holomorphic line bundle L over $T^{2 n}$ we get the pull-back bundle $\hat{L}=\pi^{*} L$ over V, where

$$
\hat{L}=\{(v, l) \in V \times L \mid \pi(v)=\mu(l)\}
$$

(μ denoting the bundle projection $L \rightarrow T^{2 n}$). Because every line bundle over $V \cong \mathbb{C}^{n}$ is trivial we have a bundle isomorphism $\Phi: \hat{L} \rightarrow V \times \mathbb{C}$. If we define Φ_{v} by $\Phi(v, l)=\left(v, \Phi_{v}(l)\right)$ then Φ_{v} is an isomorphism of the fibre of L over $\pi(v)$ to \mathbb{C}. Since $\pi(v+\lambda)=\pi(v)$ we see that $\Phi_{v+\lambda}$ is another such isomorphism. It follows that

$$
\begin{equation*}
e_{\lambda}(v):=\Phi_{v+\lambda^{\circ}} \Phi_{v}^{-1} \tag{5-7}
\end{equation*}
$$

is an isomorphism $\mathbb{C} \rightarrow \mathbb{C}$, hence a nonzero complex number. The e_{λ} considered as functions on V are nowhere vanishing holomorphic functions. The collection $\left\{e_{\lambda}, \lambda \in \Lambda\right\}$ is called a system of multipliers for the bundle L [22, p.308]. The multipliers obey the following conditions:

$$
\begin{equation*}
e_{\lambda^{\prime}}(v+\lambda) \cdot e_{\lambda}(v)=e_{\lambda+\lambda^{\prime}}(v)=e_{\lambda}\left(v+\lambda^{\prime}\right) \cdot e_{\lambda^{\prime}}(v), \quad \lambda, \lambda^{\prime} \in \Lambda, \quad v \in V \tag{5-8}
\end{equation*}
$$

Equivalently, such a system of multipliers defines a complex line bundle.
In the same sense all structures we need can be pulled back to V. They give functions with certain transformation properties under the action of Λ. We have the following prescriptions:
(a) complex valued functions f on $T^{2 n}$ correspond to Λ-invariant functions \hat{f} on V

$$
\begin{equation*}
\hat{f}(v+\lambda)=\widehat{f}(v), \quad \lambda \in \Lambda . \tag{5-9}
\end{equation*}
$$

(b) (holomorphic) sections s of L correspond to (holomorphic) functions \hat{s} on V with the transformation property

$$
\begin{equation*}
\hat{s}(v+\lambda)=e_{\lambda}(v) \cdot \hat{s}(v), \quad \lambda \in \Lambda . \tag{5-10}
\end{equation*}
$$

(c) Fibre metrics h in L correspond to positive real functions \hat{h} on V with

$$
\begin{equation*}
\hat{h}(v+\lambda)=\frac{1}{\left|e_{\lambda}(v)\right|^{2}} \cdot \hat{h}(v), \quad \lambda \in \Lambda . \tag{5-11}
\end{equation*}
$$

This is necessary for $\hat{s}_{1}^{*} \cdot \hat{s}_{2} \cdot \hat{h}$ to be a Λ-invariant function.
(d) m-fold tensor powers of L are constructed with the $m^{\text {th }}$ powers of the multiplicators e_{λ} and the metric is the $m^{\text {th }}$ power of the fibre metric \hat{h}.
(e) Integration over the torus $T^{2 n}$ corresponds to integration over the full unit cell spanned by the lattice vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 n}$ with respect to the volume

$$
\begin{equation*}
\Omega=(2 \pi)^{n}\left(d_{1} \cdot d_{2} \cdots d_{n}\right) d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{2 n} \tag{5-12}
\end{equation*}
$$

where the x^{k} are the real coordinates (5-4).
In the following we consider only principal polarization. Starting with a symplectic form ω coming from a Kähler structure we choose another complex structure compatible with ω which has as period matrix a diagonal purely imaginary one

$$
\begin{equation*}
Z=\mathbf{i} \cdot \operatorname{diag}\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right), \quad \tau_{k}>0, \quad 1 \leqq k \leqq n \tag{5-13}
\end{equation*}
$$

As a system of multiplier we choose

$$
\begin{equation*}
e_{\lambda_{k}}(v) \equiv 1, \quad e_{\lambda_{n+k}}(v)=\exp \left(\pi \tau_{k}-2 \pi \mathbf{i} v_{k}\right), \quad 1 \leqq k \leqq n \tag{5-14}
\end{equation*}
$$

By (5-8), this fixes e_{λ} for all lattice vectors λ. In (5-14) are the v_{k} the $k^{\text {th }}$ coordinate of v with respect to the basis $e_{1}, e_{2}, \ldots, e_{n}$. We set $v_{k}=x_{k}+\mathbf{i} y_{k}$. Because we have principal polarization this is not in conflict with the above use of x_{1}, \ldots, x_{n}. The other x coordinates are related to the imaginary part y_{k} by $y_{k}=\tau_{k} x_{n+k}$.

Let L be the holomorphic line bundle defined by these multipliers. It is known [22, p. 320] that the space $\Gamma_{\text {hol }}\left(T^{2 n}, L\right)$ is 1-dimensional and is generated by the Riemann Θ-function

$$
\begin{equation*}
\Theta(v)=\sum_{l \in \mathbb{Z}^{n}} \exp \left(\pi \mathbf{i} l^{\mathrm{tr}} \cdot Z \cdot l+2 \pi \mathbf{i} l^{\mathrm{tr}} \cdot v\right) \tag{5-15}
\end{equation*}
$$

As a fibre metric h we can take [22, p.310]

$$
\begin{equation*}
\hat{h}(v)=\prod_{k=1}^{n} \exp \left(-\frac{2 \pi}{\tau_{k}} y_{k}^{2}\right) \tag{5-16}
\end{equation*}
$$

and obtain the curvature

$$
\begin{equation*}
F=-2 \pi \mathbf{i} \sum_{k=1}^{n} d x_{k} \wedge \frac{1}{\tau_{k}} d y_{k} \tag{5-17}
\end{equation*}
$$

It fulfills the prequantum condition (4-11) because the symplectic form ω is given by

$$
\begin{equation*}
\omega=2 \pi \sum_{k=1}^{n} d x_{k} \wedge \frac{1}{\tau_{k}} d y_{k} . \tag{5-18}
\end{equation*}
$$

From this the Kähler metric and the Laplacian Δ are easily computed

$$
\begin{align*}
& g=2 \pi \sum_{k=1}^{n} \frac{1}{\tau_{k}}\left(d x_{k} \otimes d x_{k}+d y_{k} \otimes d y_{k}\right), \tag{5-19}\\
& \Delta=\frac{1}{2 \pi} \sum_{k=1}^{n} \tau_{k}\left(\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial y_{k}^{2}}\right) . \tag{5-20}
\end{align*}
$$

Arbitrary tensor powers L^{m} of L are constructed as mentioned before by the $m^{\text {th }}$ powers of the multipliers (5-15). They have a fibre metric $h^{(m)}$ equal to the $m^{\text {th }}$ power of (5-16). The vector space $\Gamma_{\mathrm{hol}}\left(T^{2 n}, L^{(m)}\right)$ is now m^{n}-dimensional and can be generated by certain theta functions with characteristics [23, p. 124] ${ }^{10}$

$$
\begin{equation*}
\hat{f}_{a}(v)^{(m)}=\sum_{l \in \mathbb{Z}^{n}} \exp \left(\mathbf{i} \pi m \cdot\left(l+\frac{a}{m}\right)^{\mathrm{tr}} \cdot Z \cdot\left(l+\frac{a}{m}\right)+2 \pi \mathbf{i} m \cdot\left(l+\frac{a}{m}\right)^{\mathrm{tr}} \cdot v\right) . \tag{5-21}
\end{equation*}
$$

with $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\mathrm{tr}}, a_{i} \in \mathbb{Z}$ with $0 \leqq a_{i}<m$ for $1 \leqq i \leqq n$.
The following proposition (which no doubt is known) shows that the corresponding sections $f_{a}^{(m)}$ of L^{m} are up to a global factor orthonormal.
Proposition 5.1. In the above notations we have

$$
\begin{equation*}
\left\langle f_{a}^{(m)} \mid f_{b}^{(m)}\right\rangle=\left(\frac{2 \pi}{\sqrt{2 m}}\right)^{n} \frac{1}{\sqrt{\tau_{1} \cdots \tau_{n}}} \delta_{a_{1}, b_{1}} \cdots \delta_{a_{n}, b_{n}} . \tag{5-22}
\end{equation*}
$$

The proof consists mainly of calculations which will be done in Appendix B.
As a consequence, the following holomorphic sections are orthonormal

$$
\begin{equation*}
\widehat{\Theta}_{a}^{(m)}:=\left(\frac{2 \pi}{\sqrt{2 m}}\right)^{-n / 2}\left(\tau_{1} \cdots \tau_{n}\right)^{1 / 4} \hat{f}_{a}^{(m)} \tag{5-23}
\end{equation*}
$$

Next, we calculate the matrix elements (4-21) for the rescaled prequantum operators $\hat{P}_{f}^{(m)}$ of the Fourier modes

$$
\begin{equation*}
F_{r}(v)=\exp \left(2 \pi \mathbf{i} \sum_{k=1}^{n}\left(r_{k} x_{k}+\frac{1}{\tau_{k}} r_{k+n} y_{k}\right)\right), \tag{5-24}
\end{equation*}
$$

where $r=\left(r_{1}, \ldots, r_{2 n}\right)$ is a $2 n$-tupel of integers.
Theorem 5.1. In the above notation we have

$$
\begin{align*}
\left\langle\Theta_{a}^{(m)}\right| \hat{P}_{F_{r}}^{(m)}\left|\Theta_{b}^{(m)}\right\rangle= & \mathbf{i} m\left(\prod_{l=1}^{n} \exp \left(-\frac{\pi \mathbf{i}}{m} r_{l} r_{l+n}\right)\right) \\
& \cdot\left(1+\frac{\pi}{m} \sum_{k=1}^{n} \tau_{k}\left(r_{k}^{2}+\frac{r_{k+n}^{2}}{\tau_{k}^{2}}\right)\right)\left(\prod_{s=1}^{n} \exp \left(-\frac{\pi \tau_{s}}{2 m}\left(r_{s}^{2}+\frac{r_{s+n}^{2}}{\tau_{s}^{2}}\right)\right)\right) \\
& \cdot\left(S^{m-r_{1}} T^{r_{n+1}} \otimes \cdots \otimes S^{m-r_{n}} T^{r_{2 n}}\right)_{a b}, \tag{5-25}
\end{align*}
$$

[^5]where S and T denote the $m \times m$ matrices
\[

S=\left($$
\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{5-26}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}
$$\right), \quad T=\operatorname{diag}\left(1, q, q^{2}, ···, q^{m-1}\right), \quad q=\exp \left(-\frac{2 \pi \mathbf{i}}{m}\right)
\]

Again the proof of this and a more general formula for the matrix elements of arbitrary functions can be found in Appendix B. Using this formula, we can compare the Poisson bracket and the matrix commutators. The poisson bracket of F_{r} and F_{s} is easily calculated to be

$$
\begin{equation*}
\left\{F_{r}, F_{s}\right\}=-2 \pi \sum_{k=1}^{n}\left(r_{k} s_{k+n}-r_{k+n} s_{k}\right) F_{r+s} \tag{5-27}
\end{equation*}
$$

We define the matrix

$$
\begin{equation*}
Q_{r}^{(m)}=\left(Q_{r}^{(m)}{ }_{a b}\right), \quad Q_{r}^{(m)}{ }_{a b}:=\left\langle\Theta_{a}^{(m)}\right| \hat{P}_{F_{r}}^{(m)}\left|\Theta_{b}^{(m)}\right\rangle \tag{5-28}
\end{equation*}
$$

and use the abbreviations

$$
\begin{equation*}
\varphi_{m}(r)=\left(1+\frac{\pi}{m} \sum_{k=1}^{n} \tau_{k}\left(r_{k}^{2}+\frac{r_{k+n}^{2}}{\tau_{k}^{2}}\right)\right) \cdot\left(\prod_{s=1}^{n} \exp \left(-\frac{\pi \tau_{s}}{2 m}\left(r_{s}^{2}+\frac{r_{s+n}^{2}}{\tau_{s}^{2}}\right)\right)\right. \tag{5-29}
\end{equation*}
$$

The proof of the following proposition can be found in Appendix B.
Proposition 5.2. The rescaled operators

$$
\begin{equation*}
T_{r}^{(m)}:=-\frac{1}{2 \pi \varphi_{m}(r)} Q_{r}^{(m)} \tag{5-30}
\end{equation*}
$$

obey the commutation relations of the well-known sine algebra (2-3) with parameter $\Lambda=(2 m)^{-1}$ (more precisely, the tensor product of n copies of it), i.e.

$$
\begin{equation*}
\left[T_{r}^{(m)}, T_{s}^{(m)}\right]=\frac{1}{2 \pi \Lambda} \sin (2 \pi \Lambda(r \times s)) T_{r+s}^{(m)} \tag{5-31}
\end{equation*}
$$

where

$$
\begin{equation*}
r \times s:=\sum_{k=1}^{n}\left(r_{k} s_{k+n}-r_{k+n} s_{k}\right) \tag{5-32}
\end{equation*}
$$

We are now able to formulate the main result of this section, namely that $\mathscr{P}\left(T^{2 n}\right)$ is in fact a $u\left(m^{n}\right)$-approximation in the sense made clear in Sect. 3. Again, the proof can be found in Appendix B.

As we explained in Sect. $4 L$ Ham $T^{2 n}$ consists of the noncentral part of $\mathscr{P}\left(T^{2 n}\right)$ and a (vector space) complement generated by $2 n$ additional vector fields. Moreover, if $n=1 L$ Hom T^{2} equals $\operatorname{diff}_{A} T^{2}$.
Theorem 5.2. We assume the above notation. We put the following norm on all complex $m^{n} \times m^{n}$ matrices

$$
\begin{equation*}
\|A\|_{m}:=m^{-n / 2-1} \sqrt{\operatorname{Tr}\left(A^{+} \cdot A\right)} \tag{5-33}
\end{equation*}
$$

Furthermore let

$$
\begin{equation*}
p_{m}: \mathscr{P}\left(T^{2 n}\right) \rightarrow u\left(m^{n}\right), \quad f \mapsto p_{m} f:=\left(\left\langle\Theta_{a}^{(m)}\right| \hat{P}_{f}^{(m)}\left|\Theta_{b}^{(m)}\right\rangle\right) . \tag{5-34}
\end{equation*}
$$

Then we have $\left(f, g \in \mathscr{P}\left(T^{2 n}\right)\right)$
(i) p_{m} is surjective.
(ii)

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|p_{m} f\right\|_{m}=\frac{1}{(\sqrt{2 \pi})^{n}} \sqrt{\int_{T^{2 n}} \Omega f^{*} \cdot f} . \tag{5-35}
\end{equation*}
$$

In particular, $\lim _{m \rightarrow \infty}\left\|p_{m} f\right\|_{m}=0$ implies $f=0$.
(iii)

$$
\begin{equation*}
\left\|p_{m}\{f, g\}-\left[p_{m} f, p_{m} g\right]_{m}\right\|_{m} \rightarrow 0 \quad(m \rightarrow \infty) \tag{5-36}
\end{equation*}
$$

In other words, by setting

$$
d_{m}: u\left(m^{n}\right) \times u\left(m^{n}\right) \rightarrow \mathbb{R}, \quad(A, B) \mapsto\|A-B\|_{m}
$$

the sequence $\left(u\left(m^{n}\right),[. ., .]_{m}, d_{m}, m \in \mathbb{N}\right)$ is an approximating sequence for $\left(\mathscr{P}\left(T^{2 n}\right),\{. ., .\}.\right)$ induced by the p_{m}.

1. Note that assertion (ii) of Theorem 5.2 implies that the sesquilinear form on $\mathscr{P}\left(T^{2 n}\right)$

$$
\begin{equation*}
\langle f \mid g\rangle_{m}:=m^{-n-2} \operatorname{Tr} \hat{Q}_{f}^{(m)+} \cdot \hat{Q}_{g}^{(m)} \tag{5-37}
\end{equation*}
$$

converges for $m \rightarrow \infty$ to the classical scalar product

$$
\begin{equation*}
\langle f \mid g\rangle:=\frac{1}{(2 \pi)^{n}} \int_{T^{2 n}} \Omega f^{+} \cdot g \tag{5-38}
\end{equation*}
$$

on the phase space.
2. If we had defined the quantum operators $\hat{Q}_{f}^{(m)}$ to be equal to

$$
\begin{equation*}
\tilde{Q}_{f}^{(m)}:=\mathbf{i} m\left\langle\Theta_{a}^{(m)}\right| \exp \left(-\frac{1}{4 m} \Delta\right) f\left|\Theta_{b}^{(m)}\right\rangle \tag{5-39}
\end{equation*}
$$

(following a proposal of Tuynman [20]) the factors $\varphi_{m}(r)(5-29)$ would have been equal to 1 thus giving us the "pure" sine algebra in (5-31) up to a factor of (-2π).
3. Note that for those functions $f \not \equiv 0$ on the torus for which

$$
\begin{equation*}
\int_{T^{2 n}} f \Omega=0 \tag{5-40}
\end{equation*}
$$

holds it is in general not true that $\operatorname{Tr} \hat{Q}_{f}^{(m)}=0$. For instance the Fourier modes F_{r} with $r \in \mathbb{Z}^{2 n}$ have a $\hat{Q}_{f}^{(m)}$ proportional to the identity matrix giving nonzero trace, see (5-25). On the other hand $\int F_{r} \Omega=0$ because F_{r} is for $r \neq 0$ orthogonal to the constant functions. In order to achieve a $\operatorname{su}\left(m^{n}\right)$-approximation of Ham $T^{2 n}$ ($\leqq \operatorname{diff}_{V} T^{2 n}$) one has to make all quantum operators traceless

$$
\begin{equation*}
\check{Q}_{f}^{(m)}:=\hat{Q}_{f}^{(m)}-\frac{1}{m^{n}} \operatorname{Tr} \hat{Q}_{f}^{(m)} \tag{5-41}
\end{equation*}
$$

Since for m large enough $\check{Q}_{F r}^{(m)}$ is equal to $\hat{Q}_{F_{r}}^{(m)}$ (for fixed r) the reasoning of the above theorem can be carried through (see Appendix B for some more details).

Appendix A

In this appendix we prove that the algebras $g l_{+}(\infty)(2-2), \operatorname{diff}_{A}^{\prime} S^{2}(2-6)$ and $\operatorname{diff}_{A}^{\prime} T^{2}$ (2-4) are pairwise nonisomorphic. In the proofs below we can always replace $g l_{+}(\infty)$ by its subalgebra $s l_{+}(\infty)$ without changing the argument. The same is true if we replace diff ${ }_{A} T^{2}$, respectively diff ${ }_{A} S^{2}$ by its trivial central extension $\operatorname{diff}_{A}^{\prime} T^{2} \oplus \mathbb{C}$, respectively $\operatorname{diff}_{A}^{\prime} S^{2} \oplus \mathbb{C}$.
Proposition A.1. $g l_{+}(\infty)$ is not isomorphic to $\operatorname{diff}_{A}^{\prime} S^{2}$.
Proof. Assume the existence of a Lie algebra isomorphism

$$
\begin{equation*}
\Phi:\left\{Y_{l m}\right\} \rightarrow\left\{E_{i j}\right\} \tag{A-1}
\end{equation*}
$$

Let $\Phi_{l m}$ denote $\Phi\left(Y_{l m}\right)$. To reach a contradiction it suffices to look at the relation (coming from $\operatorname{diff}_{A}^{\prime} S^{2}$)

$$
\begin{align*}
{\left[\Phi_{10}, \Phi_{l m}\right] } & =m \sqrt{\frac{3}{4 \pi}} \Phi_{l m}, \tag{A-2}\\
{\left[\Phi_{11}, \Phi_{l,-1}\right] } & =-\sqrt{\frac{3}{8 \pi}} \sqrt{l(l+1)} \Phi_{l 0} . \tag{A-3}
\end{align*}
$$

Because all $\Phi_{l m}$ are finite linear combinations of the $E_{i j} \Phi_{10}$ and Φ_{11} will be zero outside some upper left block of size $J \times J$. Now $\left(a_{i j}\right):=\left[\Phi_{10}, E_{k l}\right]$ will have vanishing entries if both indices i and j are bigger than J. Hence, this will also be true for $\Phi_{l m}$ (for $m \neq 0$ use (A-2), for $m=0$ use (A-3)). Hence Φ cannot be surjective.
Proposition A.2. $g l_{+}(\infty)$ is not isomorphic to $\operatorname{diff}_{A}^{\prime} T^{2}$.
Proof. Assume the existence of a Lie algebra isomorphism

$$
\begin{equation*}
\Phi:\left\{E_{i j}\right\} \rightarrow\left\{T_{\bar{m}}\right\} . \tag{A-4}
\end{equation*}
$$

For

$$
\begin{equation*}
\Phi_{i j}=\Phi\left(E_{i j}\right)=\sum_{\vec{m}} c_{\vec{m}}^{i j} T_{\vec{m}} \tag{A-5}
\end{equation*}
$$

we define $\hat{m}_{i j}$ as the highest double index occurring in this finite sum using lexicographical order, i.e.

$$
\vec{m}>\vec{n} \Leftrightarrow m_{1}>n_{1} \quad \text { or } \quad\left(m_{1}=n_{1} \text { and } m_{2}>n_{2}\right) .
$$

Due to the relations in $\operatorname{diff}_{A}^{\prime} T^{2}$, the highest index of a Lie bracket is the sum of the highest indices of the factors if the indices are not proportional to each other. Proportionality we denote by $\vec{m} \propto \vec{n}$. It is equivalent to $m_{1} n_{2}-m_{2} n_{1}=0$. Obviously, it is an equivalence relation. Using

$$
\begin{equation*}
\left[E_{12}, E_{i j}\right]=0, \quad \text { if } i \neq 2 \quad \text { and } \quad j \neq 1 \tag{A-6}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\hat{m}_{12} \propto \hat{m}_{i j}, \quad \text { if } \quad i \neq 2 \text { and } j \neq 1 . \tag{A-7}
\end{equation*}
$$

In just the same way it follows from

$$
\begin{equation*}
\left[E_{34}, E_{i j}\right]=0, \quad\left[E_{56}, E_{i j}\right]=0 \tag{A-8}
\end{equation*}
$$

which holds for $i \neq 4$ and $j \neq 3$, (respectively $i \neq 6$ and $j \neq 5$) that

$$
\begin{equation*}
\hat{m}_{i j} \propto \hat{m}_{34}, \quad \hat{m}_{i j} \propto \hat{m}_{56} \tag{A-9}
\end{equation*}
$$

with the same restriction for i and j.
Every index pair fulfills at least one of this 3 conditions. Because $m_{12} \propto m_{34} \propto m_{56}$ all $\hat{m}_{i j}$ are therefore proportional to each other.

Choose $\vec{m} \not \subset \hat{m}_{i j}$ and consider

$$
\begin{equation*}
T_{\vec{m}}=\sum_{i j} c_{i j} \Phi_{i j} \tag{A-10}
\end{equation*}
$$

Let $c_{k l}$ be a nonvanishing coefficient in this finite sum. We choose indices r and p in such a way that $r \neq l, p \neq k$ and $r \neq p$ and $c_{p k}=0$. Using the commutator relations of the $E_{i j}$ we calculate

$$
\begin{equation*}
\left[\left[T_{\bar{m}}, \Phi_{l p}\right], \Phi_{r k}\right]=-c_{k l} \Phi_{p r} \tag{A-11}
\end{equation*}
$$

We get

$$
\begin{equation*}
\left(\left(\vec{m}+\hat{m}_{l p}\right)+\hat{m}_{r k}\right) \propto \hat{m}_{p r} . \tag{A-12}
\end{equation*}
$$

This implies $\vec{m} \propto \hat{m}_{i j}$, which is in contradiction with the assumption.
Proposition A.3. $\operatorname{diff}_{A}^{\prime} S^{2}$ is not isomorphic to $\operatorname{diff}_{A}^{\prime} T^{2}$.
Proof. Assume the existence of a Lie algebra isomorphism

$$
\begin{equation*}
\Phi:\left\{Y_{l m}\right\} \rightarrow\left\{T_{\bar{m}}\right\} . \tag{A-13}
\end{equation*}
$$

Using that for the structure constants of diff ${ }_{A} S^{2}(2-6)$

$$
\begin{equation*}
g_{l m, l^{\prime} m^{\prime}}^{l^{\prime \prime} m^{\prime \prime}} \quad \text { only if } \quad m^{\prime \prime}=m+m^{\prime}, \quad\left|l-l^{\prime}\right| \leqq l^{\prime \prime} \leqq l+l^{\prime}-1 \tag{A-14}
\end{equation*}
$$

we see that the adjoint action of Y_{11} given by ad $Y_{11}:=\left[Y_{11}, ..\right]$ is locally nilpotent (i.e. for each finite linear combination A of $Y_{l m}$'s there exists an integer n such that $\left.\left(\operatorname{ad} Y_{11}\right)^{n}(A)=0\right)$. Clearly, $\Phi_{11}=\Phi\left(Y_{11}\right)$ has to share this property. Now (using the notation introduced above) choose $\vec{m} \not \subset \hat{m}_{11}$. Using the additivity of the highest index (if not proportional) we see that

$$
\begin{equation*}
\left(\operatorname{ad} \Phi_{11}\right)^{n}\left(T_{\bar{m}}\right) \neq 0 \quad \text { for all } \quad n \in \mathbb{N} \tag{A-15}
\end{equation*}
$$

This contradiction completes the proof.
Note however, that the above does not show that there is no embedding of $\operatorname{diff}_{A}^{\prime} S^{2}$ or $\operatorname{diff}_{A}^{\prime} T^{2}$ in the following algebras:

$$
\begin{aligned}
\overline{g l}(\infty) & =\left\{\left(a_{i j}\right)_{i, j \in \mathbb{Z}} \mid \text { there is an } r \text { such that } a_{i j}=0 \text { if }|i-j|>r\right\}, \\
\overline{g l_{+}}(\infty) & =\left\{\left(a_{i j}\right)_{i, j \in \mathbb{N}} \mid \text { there is an } r \text { such that } a_{i j}=0 \text { if }|i-j|>r\right\} .
\end{aligned}
$$

In this context it is interesting to note that Floratos $[24]^{11}$ was able to show that

[^6]L_{Λ} for $\Lambda \neq 0$ can be embedded into $\overline{g l}(\infty)$. The question whether this is true also for $L_{0}=\operatorname{diff}_{A}^{\prime} T^{2}$ remains still open.

Appendix B

In this appendix we supply the proofs of some claims in Sect. 5. We start with
Proof of Proposition 5.1. (Orthogonality of the theta functions with characteristics.) Since the volume ω^{n}, the fibre metric $\hat{h}^{(m)}$ and each section $f_{a}^{(m)}$ factorizes in n terms each depending on the coordinates of a 2-torus only one gets

$$
\left\langle f_{a}^{(m)} \mid f_{b}^{(m)}\right\rangle=\prod_{i}^{n}\left\langle f_{a_{i}}^{(m)} \mid f_{b_{i}}^{(m)}\right\rangle
$$

(the $f_{a_{i}}^{(m)}$ denote the obvious factors in (5-20)). We calculate a 2-torus integral: (using $a=a_{k}, b=b_{k}, \tau=\tau_{k}, x=x_{k}, y=y_{k}$)

$$
\begin{align*}
\left\langle f_{a}^{(m)} \mid f_{b}^{(m)}\right\rangle= & \int_{0}^{1} d x \int_{0}^{\tau} \frac{2 \pi}{\tau} d y \exp \left(-\frac{2 \pi m}{\tau} y^{2}\right) \\
& \cdot \sum_{l, k \in \mathbb{Z}} \exp \left(-\pi m \tau\left(\left(l+\frac{a}{m}\right)^{2}+\left(k+\frac{b}{m}\right)^{2}\right)\right) \\
& \cdot \exp \left(-2 \pi m y\left(l+k+\frac{a+b}{m}\right)\right) \exp \left(2 \pi \mathrm{i} m x\left(k-l+\frac{b-a}{m}\right)\right) \tag{B-1}
\end{align*}
$$

The x integral gives a factor $\delta_{0, m(k-l)+b-a}$ which is equal to $\delta_{l, k} \delta_{a, b}$ because $b-a$ is divisible by m if and only if $b=a$. It follows that (B-1) is equal to

$$
\begin{aligned}
\delta_{a, b} \cdot \frac{2 \pi}{\tau} \sum_{l \in \mathbb{Z}} \int_{0}^{\tau} d y \exp \left(-\frac{2 \pi m}{\tau}\left(y+\tau\left(l+\frac{a}{m}\right)\right)^{2}\right) & =\delta_{a, b} \frac{2 \pi}{\tau} \int_{-\infty}^{\infty} d t \exp \left(-\frac{2 \pi m}{\tau} t^{2}\right) \\
& =\frac{2 \pi}{\sqrt{2 m \tau}} \delta_{a, b}
\end{aligned}
$$

The multidimensional result is the product of n such terms.
In order to prove Theorem 5.1 we shall first give a general formula to calculate quantum operators for an arbitrary function f on the torus.
Lemma B.1. In the notation of Sect. 5 we have

$$
\begin{aligned}
\left\langle\Theta_{a}^{(m)}\right| \hat{P}_{f}^{(m)}\left|\Theta_{b}^{(m)}\right\rangle= & \mathrm{i} m \frac{(2 m)^{n / 2}}{\sqrt{\tau_{1} \cdots \tau_{k}}} \sum_{l \in \mathbb{Z}^{n}}^{1} \int_{0}^{1} d x_{1} \cdots \int_{0}^{1} d x_{n} \int_{-\infty}^{\infty} d y_{1} \cdots \int_{-\infty}^{\infty} d y_{n} \\
& \cdot \prod_{k=1}^{n} \exp \left(-\pi m\left(\frac{1}{\tau_{k}}\left(y_{k}+\tau_{k}\left(l_{k}+\frac{a_{k}}{m}\right)\right)^{2}\right.\right. \\
& \left.\left.+\frac{1}{\tau_{k}}\left(y_{k}+\tau_{k} \frac{b_{k}}{m}\right)^{2}+2 \mathbf{i}\left(l_{k}+\frac{a_{k}-b_{k}}{m}\right) x_{k}\right)\right)\left(1-\frac{1}{2 m} \Delta\right) \hat{f}(v) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\left\langle\Theta_{a}^{(m)}\right| \hat{P}_{f}^{(m)}\left|\Theta_{b}^{(m)}\right\rangle= & \int_{0}^{1} d x_{1} \cdots \int_{0}^{1} d x_{n} \int_{0}^{\tau_{1}} d y_{1} \cdots \int_{0}^{\tau_{n}} d y_{n} \frac{(2 \pi)^{n}}{\tau_{1} \cdots \tau_{n}} \\
& \cdot \exp \left(-2 \pi m\left(\frac{y_{1}^{2}}{\tau_{1}}+\cdots+\frac{y_{n}^{2}}{\tau_{n}}\right)\right) \cdot\left(\frac{2 \pi}{\sqrt{2 m}}\right)^{-n} \sqrt{\tau_{1} \cdots \tau_{k}} \sum_{l, l^{\prime} \in \mathbb{Z}} \prod_{k=1}^{n} \\
& \cdot \exp \left(-\pi m\left(\tau_{k}\left(\left(l_{k}+\frac{a_{k}}{m}\right)^{2}+\left(l_{k}^{\prime}+\frac{b_{k}}{m}\right)^{2}\right)+2\left(l_{k}+\frac{a_{k}}{m}+l_{k}^{\prime}+\frac{b_{k}}{m}\right) y_{k}\right.\right. \\
& \left.\left.+2 \mathbf{i}\left(l_{k}+\frac{a_{k}}{m}-l_{k}^{\prime}-\frac{b_{k}}{m}\right) x_{k}\right)\right) \cdot \mathbf{i} m\left(1-\frac{1}{2 m} \Delta\right) \hat{f}(v) \\
= & \mathbf{i} m \frac{(2 m)^{n / 2}}{\sqrt{\tau_{1} \cdots \tau_{k}}} \sum_{l, l_{1} \in \mathbb{Z}} \int_{0}^{1} d x_{1} \cdots \int_{0}^{1} d x_{n} \int_{0}^{\tau_{1}} d y_{1} \cdots \int_{0}^{\tau_{n}} d y_{n} \\
& \cdot \prod_{k=1}^{n} \exp \left(-\pi m\left(\frac{1}{\tau_{k}}\left(y_{k}+\tau_{k}\left(l_{k}+\frac{a_{k}}{m}\right)\right)^{2}+\frac{1}{\tau_{k}}\left(y_{k}+\tau_{k}\left(l_{k}^{\prime}+\frac{b_{k}}{m}\right)\right)^{2}\right)\right) \\
& \cdot\left(\prod_{k=1}^{n} \exp \left(-2 \pi \mathbf{i} m\left(l_{k}-l_{k}^{\prime}+\frac{a_{k}-b_{k}}{m}\right) x_{k}\right)\right)\left(1-\frac{1}{2 m} \Delta\right) \hat{f}(v) .
\end{aligned}
$$

Making the substitution $\bar{y}_{k}:=y_{k}+\tau_{k} l_{k}^{\prime}$ and $\bar{l}:=l_{k}-l_{k}^{\prime}$ and using the Λ-invariance of \hat{f} and Δ we get

$$
\begin{aligned}
& \frac{\mathbf{i} m(2 m)^{n / 2}}{\sqrt{\tau_{1} \cdots \tau_{k}}} \sum_{l \in \mathbb{Z}^{n}} \int_{0}^{1} d x_{1} \cdots \int_{0}^{1} d x_{n} \sum_{l^{\prime} \in \mathbb{Z}^{n}} \int_{\tau_{1} l_{1}^{\prime}}^{\tau_{1}\left(l_{1}^{\prime}+1\right)} d \bar{y}_{1} \cdots \int_{\tau_{n^{\prime}}^{\prime}}^{\tau_{n}\left(l_{n}^{\prime}+1\right)} d \bar{y}_{n} \\
& \cdot \prod_{k=1}^{n} \exp \left(-\pi m \frac{1}{\tau_{k}}\left(\left(\bar{y}_{k}+\tau_{k}\left(\bar{l}_{k}+\frac{a_{k}}{m}\right)\right)^{2}+\left(\bar{y}_{k}+\tau_{k} \frac{b_{k}}{m}\right)^{2}\right)\right) \\
& \cdot\left(\prod_{k=1}^{n} \exp \left(-2 \pi \mathbf{i} m\left(\bar{l}_{k}+\frac{a_{k}-b_{k}}{m}\right) x_{k}\right)\right)\left(1-\frac{1}{2 m} \Delta\right) \hat{f}(v) .
\end{aligned}
$$

Now the sum over l^{\prime} plus the \bar{y}-integration give \bar{y}-integrals from $-\infty$ to ∞ and the lemma is proved.

Proof of Theorem 5.1. If we use as f in the preceding lemma the Fourier mode

$$
\exp \left(2 \pi \mathbf{i} \sum_{k=1}^{n}\left(r_{k} x_{k}+\frac{1}{\tau_{k}} r_{k+n} y_{k}\right)\right)
$$

then the operator $\left(1-\frac{1}{2 m} \Delta\right)$ produces the factor

$$
1+\frac{\pi}{m} \sum_{k=1}^{n} \tau_{k}\left(r_{k}^{2}+\frac{r_{k+n}^{2}}{\tau_{k}^{2}}\right)
$$

(see (5-20)). The x-integration can be performed yielding factors of

$$
\delta_{l_{1} m, b_{1}-a_{1}+r_{1}} \cdots \delta_{l_{n} m, b_{n}-a_{n}+r_{n}}
$$

Hence there remain terms in the l summation (i.e. just one term) if and only if $m \mid\left(b_{k}-a_{k}+r_{k}\right)$ for all k. In this case we can replace $l_{k}+\frac{a_{k}}{m}$ by $\frac{b_{k}+r_{k}}{m}$ and substitute the l summation by the factors

$$
\begin{equation*}
\delta_{a_{1}-b_{1}, r_{1} \bmod m} \cdots \delta_{a_{n}-b_{n}, r_{n} \bmod m} \tag{B-2}
\end{equation*}
$$

These are precisely the matrix elements of

$$
\begin{equation*}
S^{m-r_{1}} \otimes \cdots \otimes S^{m-r_{n}} . \tag{B-3}
\end{equation*}
$$

After substituting

$$
\bar{y}_{k}:=y_{k}+\frac{\left(2 b_{k}+r_{k}\right) \tau_{k}-\mathbf{i} r_{n+k}}{2 m}
$$

we can perform the Gaussian y-integrations and get the factors

$$
\frac{\sqrt{\tau_{1} \cdots \tau_{k}}}{(2 m)^{n / 2}} \prod_{k=1}^{n} \exp \left(-\frac{\pi \tau_{k}}{2 m}\left(r_{k}^{2}+\frac{r_{k+n}^{2}}{\tau_{k}}\right)\right) \cdot \exp \left(-\frac{2 \pi \mathbf{i}}{m}\left(r_{k+n} b_{k}+\frac{r_{k} \tau_{k+n}}{2}\right)\right) .
$$

Here the factors

$$
\begin{equation*}
\prod_{k=1}^{n} \exp \left(-\frac{2 \pi \mathbf{i}}{m} r_{k+n} b_{k}\right) \tag{B-4}
\end{equation*}
$$

constitute the (diagonal) matrix elements of

$$
\begin{equation*}
T^{r_{n+1}} \otimes \cdots \otimes T^{r_{2 n}} \tag{B-5}
\end{equation*}
$$

and the theorem is proved.
Proof of Proposition 5.2. We calculate

$$
\begin{aligned}
Q_{r}^{(m)} Q_{s}^{(m)}= & -m^{2} \varphi_{m}(r) \varphi_{m}(s) \prod_{l=1}^{n} \exp \left(-\frac{\pi \mathbf{i}}{m}\left(r_{l} r_{l+n}+s_{l} S_{l+n}\right)\right) \\
& \cdot S^{m-r_{1}} T^{r_{n+1}} S^{m-s_{1}} T^{s_{n+1}} \otimes \cdots \otimes S^{m-r_{n}} T^{r_{2 n}} S^{m-s_{n}} T^{s_{2 n}}
\end{aligned}
$$

Because of

$$
T S=q^{-1} S T, \quad q^{-1}=\exp \left(\frac{2 \pi i}{m}\right)
$$

this is equal to

$$
\begin{aligned}
& -m^{2} \varphi_{m}(r) \varphi_{m}(s) \exp \left(-\frac{2 \pi \mathbf{i}}{m} \sum_{l=1}^{n} \frac{r_{l} r_{l+n}+s_{l} s_{l+n}}{2}\right) q^{-\left(\left(m-s_{1}\right) r_{n+1}+\cdots+\left(m-s_{n}\right) r_{2 n}\right)} \\
& \cdot S^{2 m-\left(r_{1}+s_{1}\right)} T^{r_{n+1}+s_{n+1}} \otimes \cdots \otimes S^{2 m-\left(r_{n}+s_{n}\right)} T^{r_{2 n}+s_{2 n}} .
\end{aligned}
$$

Since $q^{m}=1$ and $S^{m}=1$ this equals

$$
\mathbf{i} m \frac{\varphi_{m}(r) \varphi_{m}(s)}{\varphi_{m}(r+s)} \exp \left(-\frac{2 \pi \mathbf{i}}{m} \sum_{l=1}^{n} \frac{s_{l} r_{n+l}-r_{l} s_{n+l}}{2}\right) \cdot Q_{r+s}^{(m)}
$$

Hence

$$
\left[Q_{r}^{(m)}, Q_{s}^{(m)}\right]=-2 \pi \frac{\varphi_{m}(r) \varphi_{m}(s)}{\varphi_{m}(r+s)} \frac{m}{\pi} \sin \left(\frac{\pi}{m} \sum_{l=1}^{n}\left(r_{l} s_{n+l}-r_{n+l} s_{l}\right)\right) \cdot Q_{r+s}^{(m)}
$$

Proof of Theorem 5.2. (i) Since $p_{m} F_{r}=Q_{r}^{(m)}$ and by using Eq. (5-25), it suffices to show that the m^{2} matrices $S^{k} T^{l}$ generate all complex $m \times m$-matrices. Indeed, take an arbitrary polynomial $\sum_{a=0}^{m-1} \alpha_{a} T^{a}$. It is a diagonal matrix with $\sum_{a=0}^{m-1} \alpha_{a} q^{b a}$ as the $b^{\text {th }}$ diagonal element. Now the matrix $\left(q^{b a}\right)_{a, b=0, \ldots, n-1}$ is non-singular (its determinant is a Vandermonde determinant). Hence the linear equation $\sum_{a=0}^{n-1} \alpha_{a} q^{b a}=\delta_{b, b_{0}}$ is solvable for all $0 \leqq b_{0}<m$ and we get all diagonal matrices $E_{b_{0} b_{0}}$. But since $S^{k} E_{b_{0} b_{0}}=E_{b_{0}-k, b_{0}}$ (where the indices should always be reduced $\bmod m$) we can thereby generate all $m \times m$-matrices. Now, taking antihermitian or hermitian part of $p_{m} f$ is equivalent to taking real or imaginary part of f. Hence, for real f, p_{m} is surjective on $u\left(m^{n}\right)$.
(ii) We need the following little lemma

Lemma B.2.

$$
\operatorname{Tr} Q_{r}^{(m) *} Q_{s}^{(m)}= \begin{cases}0, & r \not \equiv s \bmod m \mathbb{Z}^{2 n} \\ m^{n+2} \varphi_{m}(r) \varphi_{m}(s) \varepsilon_{m}(r, s), & r \equiv s \bmod m \mathbb{Z}^{2 n}\end{cases}
$$

where $\varepsilon_{m}(r, s)$ takes values +1 or -1 and is equal to 1 for $r=s$.
Proof of the Lemma. Since

$$
\operatorname{Tr}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=\operatorname{Tr} A_{1} \cdots \operatorname{Tr} A_{n}
$$

it suffices to calculate $\operatorname{Tr} S^{k} T^{l}$. Now $S^{m}=1=T^{m}$ and clearly $\operatorname{Tr} S^{k} T^{l}=0$ for $m \nless k$ because then $S^{k} T^{l}$ has zeros on the diagonal. If $m \mid k$ then $S^{k}=1$ and

$$
\operatorname{Tr} S^{k} T^{l}=\operatorname{Tr} T^{l}= \begin{cases}m, & \text { if } m \mid l \\ \frac{1-q^{l m}}{1-q^{l}}=0, & \text { if } \quad m \nmid l\end{cases}
$$

Hence

$$
\operatorname{Tr} S^{k} T^{l}=\left\{\begin{array}{lll}
m, & \text { if } & (k, l) \equiv(0,0) \bmod m \mathbb{Z}^{2} \\
0, & \text { if } & (k, l) \not \equiv(0,0) \bmod m \mathbb{Z}^{2}
\end{array}\right.
$$

Now

$$
\begin{aligned}
\operatorname{Tr} Q_{r}^{*} Q_{s}= & m^{2} \prod_{l=1}^{n} \exp \left(\frac{\pi \mathbf{i}}{m}\left(r_{l} r_{l+n}-s_{l} s_{l+n}\right)\right) \cdot \varphi_{m}(r) \varphi_{m}(s) \\
& \cdot \prod_{k=1}^{n} \operatorname{Tr}\left(\left(T^{*}\right)^{r_{k+n}}\left(S^{*}\right)^{m-r_{k}} S^{m-s_{k}} T^{s_{k+n}}\right)
\end{aligned}
$$

Since S and T are unitary matrices we get the result using the cyclic property of the trace.

In particular, we get the formula

$$
\begin{equation*}
\left\|Q_{r}^{(m)}\right\|_{m}=\varphi_{m}(r) \tag{B-6}
\end{equation*}
$$

Now we take an arbitrary $f \in \mathscr{P}\left(T^{2 n}\right)$ and expand it in a Fourier series

$$
\begin{equation*}
f=\sum_{r \in \mathbb{Z}^{2 n}} \lambda_{r} F_{r} \tag{B-7}
\end{equation*}
$$

Because $\varphi_{m}(r)$ goes very fast to zero for increasing $r \in \mathbb{Z}^{2 n}$ we have

$$
\begin{align*}
\left\|p_{m} f\right\|_{m}^{2} & =\left\|\sum_{r \in \mathbb{Z}^{2 n}} \lambda_{r} Q_{r}^{(m)}\right\|^{2}=m^{-n-2} \sum_{r, s \in \mathbb{Z}^{2 n}} \lambda_{r}^{*} \lambda_{s} \operatorname{Tr}\left(Q_{r}^{(m) *} Q_{s}^{(m)}\right) \\
& =\sum_{r, k \in \mathbb{Z}^{2 n}} \lambda_{r}^{*} \lambda_{r+m k} \varphi_{m}(r) \varphi_{m}(r+m k) \varepsilon_{m}(r, r+m k) \\
& =\sum_{r \in \mathbb{Z}^{2 n}}\left|\lambda_{r}\right|^{2} \varphi_{m}(r)^{2}+\sum_{r, k \in \mathbb{Z}^{2 n}, k \neq 0} \lambda_{r}^{*} \lambda_{r+m k} \varphi_{m}(r) \varphi_{m}(r+m k) \varepsilon_{m}(r, r+m k) \tag{B-8}
\end{align*}
$$

In the limit $m \rightarrow \infty$ we may take the limit inside the sum because it converges uniformly. Since

$$
\lim _{m \rightarrow \infty} \varphi_{m}(r)=1, \quad \lim _{m \rightarrow \infty} \lambda_{r+m k}=0,(k \neq 0), \quad \lim _{m \rightarrow \infty} \varphi_{m}(r+m k)=0
$$

by Eq. (5.29), respectively the pointwise convergency of the Fourier series (B-7) we get

$$
\lim _{m \rightarrow \infty}\left\|p_{m} f\right\|_{m}=\sqrt{\sum_{r \in \mathbb{Z}^{2 n}}\left|\lambda_{r}\right|^{2}}
$$

On the other hand, since the Fourier modes are orthogonal

$$
\int_{T^{2 n}} \Omega F_{r}^{*} F_{s}=(2 \pi)^{n} \delta_{r, s}, \quad r, s \in \mathbb{Z}^{2 n}
$$

we get the result (5-35). In particular, since $f^{*} f$ is a nonnegative function, the zero sequence criterion is an obvious consequence.
(iii) Taking $f=F_{r}, g=F_{s}$ we get the equation

$$
\left\|p_{m}\left\{F_{r}, F_{s}\right\}-\left[p_{m} F_{r}, p_{m} F_{s}\right]\right\|_{m}=\left\|p_{m}\left\{F_{r}, F_{s}\right\}-\left[Q_{r}^{(m)}, Q_{s}^{(m)}\right]\right\|_{m}
$$

By (5-27) and Prop. 5.2 this is equal to

$$
\begin{aligned}
\| & -2 \pi\left(\sum_{k=1}^{n}\left(r_{k} s_{k+n}-r_{k+n} s_{k}\right)-\frac{\varphi_{m}(r) \varphi_{m}(s)}{\varphi_{m}(r+s)} \frac{m}{\pi} \sin \left(\frac{\pi}{m} \sum_{k=1}^{n}\left(r_{k} s_{k+n}-r_{k+n} s_{k}\right)\right)\right) Q_{r+s}^{(m)} \|_{m} \\
& =2 \pi\left|(r \times s)-\frac{\varphi_{m}(r) \varphi_{m}(s)}{\varphi_{m}(r+s)} \frac{m}{\pi} \sin \left(\frac{\pi}{m}(r \times s)\right)\right| \varphi_{m}(r+s)
\end{aligned}
$$

(see (B-6)). Now, because

$$
\lim _{\varepsilon \rightarrow \infty} \frac{\sin (\varepsilon(r \times s))}{\varepsilon}=r \times s \quad \text { and } \quad \lim _{m \rightarrow \infty} \varphi_{m}(t)=1
$$

the result follows for the Fourier modes and extends to all functions in $\mathscr{P}\left(T^{2 n}\right)$ by linearity and Fourier expansion.
Sketch of the proof of the $s u\left(m^{n}\right)$-approximation for $\operatorname{Ham} T^{2 n}$: The commutator relations (the analog of Prop. 5.2) are valid because the multiples of the identity vanishes on the left-hand side of (5-31) whereas the sin-factor on the right-hand side equals zero for $(r+s) \in m \cdot \mathbb{Z}^{2 n}$. In the analog of Lemma B. 2 the factor $\varepsilon_{m}(r, s)$ is to be replaced by

$$
\varepsilon_{m}(r, s)-\delta_{0, r \bmod m} \cdot \delta_{0, s \bmod m}
$$

Here $\delta_{a, b \bmod m}$ denotes the obvious generalization of the Kronecker δ for $a, b \in \mathbb{Z}^{2 n}$ On the right-hand side of Eq. (B-6) an additional factor of $\sqrt{1-\delta_{0, r \bmod m}}$ appears. Finally Eq. (B-8) is modified by the factor $1-\delta_{0, r \bmod m}$ in the first sum and by replacing $\varepsilon_{m}(r, r+m k)$ by

$$
\varepsilon_{m}(r, r+m k)-\delta_{0, r \bmod m}
$$

in the second sum. Hence, in the limit $m \rightarrow \infty$ the second sum vanishes by the same argument as used above. The first sum may be broken up into a sum up to $r=(m, \ldots, m)$ and a remaining summand. This shows that in the limit $m \rightarrow \infty$ this will also converge to $\sum_{r}\left|\lambda_{r}\right|^{2}$.

Acknowledgements. We would like to thank A. S. Schwarz for suggesting the use of theta functions in the approximation of $\operatorname{diff}_{A} T^{2 n}$ and H. Ewen, T. Filk, O. Kegel, H. Römer and U. Schäper for valuable discussions. In addition, we thank the referee for reminding us of the work of F. A. Berezin.

References

1. See e.g. the contributions to and references in: Supermembranes and Physics in $2+1$ Dimensions, 1989 Trieste Conference. Duff, M., Pope, C. N., Sezgin, E. (eds.) Singapore: World Scientific (1990)
2. Goldstone, J.: unpublished
3. Hoppe, J.: Quantum theory of a relativistic surface..., MIT PhD Thesis 1982, Elem. Part. Res. J. (Kyoto) 83, 3 (1989/90)
4. Fairlie, D. Fletcher, P., Zachos, C. N.: Trigonometric structure constants for new infinite algebras. Phys. Lett. B218, (1989), 203
5. Hoppe, J.: Diff T^{2} and the curvature of some infinite dimensional manifolds. Phys. Lett. B215, 706 (1988)
6. Hoppe, J.: Diffeomorphism groups, Quantization, and $S U(\infty)$. Int. J. Mod. Phys. A4, 5235-5248 (1989)
7. de Wit, B., Marquard, U., Nicolai, H.: Area preserving diffeomorphisms and supermembrane Lorentz invariance. Commun. Math. Phys. 128, 39-62 (1990)
8. Kac, V. G.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press 1985
9. Hoppe, J., Schaller, P.: Infinitely many Versions of $S U(\infty)$. Phys. Lett. B237, 407 (1990)
10. Messiah, A.: Quantum Mechanics. Vol. II. Amsterdam: North Holland 1965
11. Judd, B. R.: Operator techniques in atomic spectroscopie. New York: McGraw-Hill 1963
12. Jacobson, N.: Basic Algebra Vol. II. San Francisco: Freeman and Company 1980
13. Kadison, R. V., Ringrose, J. R.: Fundamentals of the theory of operator algebras Vol. II. Orlando: Academic Press 1986
14. Arnold, V.: Sur la geometric différentielle.... Ann. Inst. Fourier 16, 1 319-361 (1966)
15. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. I and Vol. II. New York: John Wiley 1969
16. Schlichenmaier, M. An introduction to Riemann surfaces, algebraic curves and moduli spaces, SLN in Physics Vol. 322, Berlin, Heidelberg, New York: Springer 1989
17. Abraham, R., Marsden, J. E.: Foundations of Mechanics. Benjamin/Cummings, Reading 1978
18. Woodhouse, N.: Geometric quantization. Oxford: Clarendon Press 1980
19. Tuynman, G. M.: Generalized Bergman Kernels and Geometric Quantization. J. Math. Phys. 28, 573-583 (1987)
20. Tuynman, G. M.: Quantization: towards a comparison between methods. J. Math. Phys. 28, 2829-2840 (1987)
21. Wells, R. O.: Differential Analysis on Complex Manifolds. Berlin, Heidelberg, New York: Springer 1980
22. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley 1978
23. Mumford, D.: Tata Lectures on Theta I, Boston: Birkhäuser 1983
24. Floratos, E. G.: Spin wedge and vertex operator representations of trigonometric algebras... Phys. Lett. B232, 467-472 (1989)
25. Floratos, E. G., Iliopoulos, J.: A note on the classical symmetries of the closed Bosonic membrane. Phys. Lett. B201, 237 (1988)
26. Floratos, E. G., Iliopoulos, J., Tiktopoulos, G.: Phys. Lett. B217, 282 (1989)
27. Floratos, E. G.: The Heisenberg-Weyl group on the $\mathbb{Z}_{N} \times \mathbb{Z}_{N}$ discretized torus membrane. Phys. Lett. B228, 335 (1989)
28. Floratos, E. G.: Representations of the quantum group $G l_{q}(2)$ for values of q on the unit circle. Phys. Lett. B233, 395 (1989)
29. Berezin, F. A.: Quantization. Math. USSR Izv. 8 5, 1109-1165 (1974)
30. Berezin, F. A.: Quantization in complex symmetric spaces. Math. USSR Izv. 9 2, 341-379 (1975)
31. Berezin, F. A.: General concept of quantization. Commun. Math. Phys. 40, 153-174 (1975)
32. Schwarz, A. S.: Sympletic, contact and superconformal geometry. Membranes and strings, prepprint IASSNS-HEP 90/12 (Jan. 90)
33. Rawnsley, J. H.: Coherent States and Kähler manifolds. Quart. J. Math. Oxford(2) 28, 403-415 (1977)
34. Perelomov, A. M.: Generalized coherent states and their applications. Berlin, Heidelberg, New York: Springer 1986
35. Rawnsley, J. H.: Talk presented at the Colloque International en l'honneur de Jean-Marie Souriau Géométrie symplectique et physique mathématique Aix-en-Provence, 11-15 juin 1990
36. Cahen, M., Gutt, S., Rawnsley, J. H.: preprint Bruxelles and Warwick Univ., part I (to appear in J. Geom. and Phys.) and part II

Communicated by N. Yu. Reshetikhin

[^0]: ${ }^{1}$ We use the word "generated" in the sense of generated as a vector space
 ${ }^{2}$ Here and in the following summation convention is assumed

[^1]: ${ }^{3}$ To avoid cumbersome notation we drop the superscript N in the following

[^2]: ${ }^{4}$ The algebras $\operatorname{diff}_{A}^{\prime} S^{2}$ and diff ${ }_{A}^{\prime} T^{2}$ which were introduced in Sect. 2 are certain subalgebras of $\operatorname{diff}_{A} S^{2}$, respectively $\operatorname{diff}_{A} T^{2}$

[^3]: ${ }^{5}$ Note that refering to Berezin's work A. S. Schwarz [32] also points out a connection between the quantization of symplectic manifolds and ' $u(n)$-limits'

[^4]: ${ }^{6}$ See [34] for group theoretical and physical applications.
 ${ }^{7}$ For the definition see [22]
 ${ }^{8}$ For the definition see [22], e.g. L has enough sections to separate points of M.
 ${ }^{9}$ This also works if $\Gamma_{\mathrm{hol}}(M, L)$ is infinite-dimensional, i.e. M is non-compact cf. [29, 33]

[^5]: ${ }^{10}$ See also the use of theta functions in [27]

[^6]: ${ }^{11}$ Please note also several other contribution to the subject by this author [25-28]

