© Springer-Verlag 1991

Erratum

A "Transversal" Fundamental Theorem for Semi-Dispersing Billiards

Commun. Math. Phys. 129, 535-560 (1990)

A. Krámli¹, N. Simányi², and D. Szász²

- ¹ Computer and Automation Institute of the Hungarian Academy of Sciences, P.O. Box 127, H-1364 Bundapest, Hungary
- ² Mathematical Institute of the Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary

Received January 22, 1991

- C. Liverani and M.P. Wojtkowski made a remark that the statement (ii) of our Lemma 2.13 is not necessarily true as formulated there. However, it remains valid if we use the norms of the operators $(D_{x,\Sigma}^t)^{-1}$, $(D_{x,\Sigma}^n)^{-1}$ (cf. (2.8) and (2.9)) as acting in $\mathscr{T}_x \Sigma$ supplied with the configuration space norm ||dq|| instead of the phase space Riemannian metric $\sqrt{(dq)^2 + (dv)^2}$. This change has several consequences which are described in detail as follows:
- 1. In Definition 5.1, the remark between parentheses is not true, but it is not used later on.
- 2. In the formula (5.2) it can be noted that $1 \le \kappa_{n,\delta}(y) \le \kappa_{n,0}(y)$.
- 3. In (ii) of Definition 5.1: the ball $B_{\delta}(-y)$ should be defined in terms of the degenerate configuration-space-metric ||dq||.
- 4. Rethinking the proof of Lemma 5.4 we see that the construction of the local invariant manifolds does not use directly the function z(.) appearing in the definition of the sets U_n^b , but, instead, it works with another function $z_{tub}(.)$ which is just the original z-function given by Sinai and Chernov in S-Ch (1987). Recall that $z_{tub}(x)$ ($x \in \partial M$) is the supremum of the radii r of all tubular neighborhoods U_r of the projected trajectory segment $\pi(\{S^tx:0 \le t \le \tau(x)\})$ in the configuration space, for which the set $\{y \in M: p(y) = p(x) \text{ and } \pi(y) \in U_r\}$ does not intersect the set of singular reflections. Notice that $z_{tub}(.)$ is closely related to the metric $\|dq\|$ being a Lyapunov one in the local orthogonal manifolds. A simple geometric argument shows that $z(x) \le z_{tub}(x)$.

The corrections of some other discovered errors are listed below:

- a) The set treated in the second paragraph after Condition 2.1 has not only measure zero, but it is actually empty.
- b) Convergence of the continued fraction (2.6) is proved in Lemma 1 of S-Ch (1982) for every $x \in M$ such that $t_n \to \infty$ as $n \to \infty$, a property valid for all phase points $x \in M^*$ because there are no trajectories with infinitely many collisions in a finite time interval.

- c) Just after Theorem 2.10: the function l(x) is not upper semicontinuous, but lower semicontinuous.
- d) In the proof of Lemma 2.13, when applying the flow S^{-t} to S^{t} , we may loose the validity of (ii). Instead of doing so, we can prove in small neighborhoods of S^{t} the statement of the fundamental theorem which is invariant under the flow, thus the whole machinery can be transferred back to x.
- e) In the part (b) of Definition 3.4: $w_i^{\delta} \in \partial M^0$ is to be written.
- f) After Lemma 4.6, in the definition of angle $(\mathcal{L}_1, \mathcal{L}_2)$ one has to write

$$\sup_{v_1 \in \mathcal{L}_1} \inf_{v_2 \in \mathcal{L}_2} \text{angle } (v_1, v_2).$$

- g) In the line before (5.10): the condition $G_i^{\delta} \in \mathcal{G}_a^{\delta}$ is to be canceled.
- h) In the last but one line of Sect. 5: ε_2 should be written instead of ε_1 .

The authors thank C. Liverani and M. Wojtkowski for their important remark.

References

- [S-Ch] Sinai, Ya.G., Chernov, N.I.: Entropy of gas of hard spheres with respect to the group of time-space translations. Trudi Seminara Petrovskovo 8, 218–238 (1982)
- [S-Ch] Sinai, Ya.G., Chernov, N.I.: Ergodic properties of some systems of 2-D discs and 3-D spheres. Usp. Mat. Nauk 42, 153–174 (1987)

Communicated by A. Jaffe