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Abstract. In Witten's topological theory of the generation problem, gauge groups
are identified with the E8 centraliser of the holonomy group of the internal
manifold. Here we show that this amounts to interpreting gauge groups as
generalised symmetry groups of the (internal) Levi-Civita connection. We then
give techniques for computing centralisers in exceptional groups, taking into
account the fact that holonomy groups are frequently disconnected. These
techniques allow us to deal with compact locally irreducible Ricci-flat Riemannian
manifolds of all holonomy types and dimensions.

1. Introduction

In view of the recent experimental work on determining the number of light
generations of fermions, it is timely to reconsider how the matter lies from a
theoretical standpoint. How are we to understand the existence of the two
apparently superfluous generations? Candelas et al. (1985) proposed that the
answer lies in the deep structure of the Dirac equation, in the relationship between
its solutions and the topology of (multi-dimensional) space-time. This profound
and beautiful approach to the generation problem leads to the simple relation

where # is the number of generations, and χ and τ are respectively the Euler
characteristic and the signature of the internal manifold (Green et al., 1987). These
ideas are almost invariably associated with 10-dimensional string theory; but this
is not really necessary, as the account given by Green et al. (1987) makes quite
clear. Indeed, Witten (1985) sketched the main ideas well before the advent of the
heterotic string. In view of the importance of the problem, it seems to us that the
approach of Witten (1985) and Candelas et al. (1985) is worthy of study in its own
right, independent of its association with string theory. In this work, then, we
shall study the foundations of this approach, regarding it mainly as a contribution
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to the theory of the generation problem - though the methods and results are also
relevant to string theory. For this reason, we do not confine attention to Kahler
manifolds or to six internal dimensions.

The central technical device leading to the above formula for # is usually
described by the unfortunate title of "embedding the (linear) connection in the
gauge group." The main reason for the general tendency to associate this idea with
string theory is the fact that it is a natural way of satisfying the anomaly
cancellation condition. But it is also - independently - a natural way of obtaining a
non-trivial gauge field on the internal manifold, which is necessary to solve the
chirality problem in higher dimensional theories. "Embedding the connection in
the gauge group" is therefore of considerable interest beyond the string -
theoretic applications.

It is clear from these remarks (for the details, see Green et al., 1987) that this
approach to the generation problem depends strongly on topological aspects of
gauge theory. At the same time, however, we shall argue that "embedding the
connection" throws a new light on the meaning of gauge symmetry itself. Of
course, one of the main virtues of the original multi-dimensional theories of the
Kaluza-Klein type was precisely their ability to elucidate the real meaning of gauge
"symmetries." What is a gauge "symmetry?" Kaluza and Klein reply: a gauge
group, J, is nothing but a group of symmetries - isometries - of the internal
manifold. Although the Kaluza-Klein theories have their drawbacks, the idea of
finding a concrete interpretation of gauge groups as some kind of geometric
symmetry obviously has a strong appeal.

Within the original framework given by Candelas et al. (1985), gauge groups
arise in ways which appear to have little in common with the Kaluza-Klein
interpretation. The manifolds employed in superstring compactifications are
Ricci-flat, compact, and have non-zero Euler characteristics. They have therefore
no non-trivial Killing vector fields, and so there can of course be no question of
interpreting the gauge group as a group of isometries. In fact, as we saw earlier, the
chirality problem is solved by assuming that there are non-zero gauge fields on the
internal manifold itself. To be more precise: one begins with the assumption that
all fields are assigned to an irreducible representation of the group E8. (Actually,
E8 x E8, but we can ignore the second E8 henceforth.) Then the linear holonomy
group of the internal manifold is interpreted as the holonomy group of an E8 gauge
field, and the "observable" gauge group arises as the subgroup of £ 8 that consists
of elements commuting with every element of the holonomy group. In the case of
the holonomy group SU(3\ this subgroup (the centralίser of SU(3)) is isomorphic
to E6. Notice that E8 and E6 play different roles - the latter is to be the "observed"
gauge group, but it is E8 that unifies the fields in a single representation. The two
are linked by the holonomy group of the internal manifold, M: in this way, the
geometry of M dictates the gauge interactions of the theory, just as the topology of
M determines the generation structure.

The formalism presents us with the following interpretation of the gauge group:
it is the G - centralizer of the (internal) manifold holonomy group, where G is the
group that unifies all interactions. But this raises two further problems. Firstly, this
is a merely formal interpretation of the gauge group, J - we have lost the more
meaningful interpretation of J as an automorphism group of a geometric
structure. Secondly, we now have a technical problem: how does one go about
computing the centralisers of subgroups of G? The objective of this work is to
propose techniques for dealing with these questions.
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We shall argue that the "centraliser" interpretation of J is in fact extremely
closely allied to the "isometry" interpretation. The idea of embedding the
holonomy group of M (which we denote by Ψ(M)) in some larger group G is
evidently a simple generalization of the fact that Ψ(M) is naturally a subgroup of
the orthogonal group O(ή), n = dimM. Obviously, this calls for an equally simple
generalization of Riemannian geometry. When this is duly constructed, it quickly
becomes clear that both interpretations of J amount to regarding it as an
automorphism group of the linear connection of M. In short, the "string-
motivated" account of gauge theory given above is quite as geometric as the
Kaluza-Klein approach.

As for the second problem: granted that J is the G-centraliser of Ψ(M\ we
clearly wish to know which subgroups of G can occur as the centraliser of some
Ψ(M). In general, this is no trivial exercise. Firstly, we must consider the fact that
many subgroups of G cannot be expressed as the centraliser of any other subgroup
of G- given JCG, there may exist no subgroup AcG such that CA = J, where CA
henceforth denotes the centraliser of A in G. Secondly, even if A does exist, there
may exist no Riemannian manifold M with holonomy group isomorphic to A,
particularly if - as would normally be the case in a physical application - M is
subject to some geometric constraint such as Ricci flatness. Finally, and most
importantly for the present work, the concrete problem of actually computing
CΨ(M), given G and Ψ(M) explicitly, can be surprisingly subtle. This is most
emphatically the case when G is an exceptional group. Notice that we are speaking
here of computing the full subgroup of those elements of the group E8 that
centralise the holonomy group of M: the problem is intrinsically group - theoretic,
and is not always reducible to Lie-algebra computations. In general, the centraliser
CA is sensitive to the global structure of A - connected subgroups frequently have
different centralisers to disconnected ones, and so on. Again, the topology of Ψ(M)
is of basic importance in holonomy theory; for example, a Ricci-flat four-
dimensional Riemannian manifold can have SU(2) as its holonomy group, but
never SO(3). These facts are commonly disregarded, with the result that some
statements on these matters are distinguished rather by their optimism than by the
confidence they inspire.

For example, the assertion that the centraliser of 5(7(3) in E8 is isomorphic to
E6 is generally taken to be obviously valid. The embedding is allegedly through the
"S(7(3) x £ 6 " subgroup of £ 8 . If this were indeed the correct global form of the
subgroup in question, then we could conclude, by inspection alone, only the
following: that E8 contains an Eβ which centralises S(7(3). We could not deduce
that E6 was the full centraliser of SU(3) - indeed, that would evidently not be the
case, since the centraliser would contain Έ3 x £ 6 , where Z 3 is the centre of 5(7(3).
Under these assumptions, then, C(5(7(3)) has at least one discrete factor, but it could
have many more - one simply cannot settle this by inspection. Any temptation to
declare that disconnected groups are of no interest should be firmly resisted, as the
theory of cosmic strings (for example) clearly shows (Vilenkin, 1985).

The reader will perhaps be relieved to learn that the centraliser of 5(7(3) in E89 is,
in fact, precisely E6; there are no finite factors. The necessity of proving this,
however, should now be clear. There are less innocuous examples: the assertion
(Green etal., 1987) that superstring compactification on manifolds of 50(6)
holonomy leads to an 50(10) grand unification group is, quite simply, false.
Unambiguous techniques for computing centralisers are obviously needed here.
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Completely systematic methods for computing CΨ(M) for arbitrary G and M
do not seem to exist. We shall mainly concentrate on the case G = £ 8 , partly
because of its topical interest in connection with superstrings, partly because it is
the most interesting of the exceptional groups, and partly because the techniques
we shall use to deal with E8 can readily be adapted to handle less complicated
groups.. Similarly, we shall require M to be compact and Ricci-flat (and to satisfy a
few other minor technical constraints). The extension to the case of non-Ricci-flat
manifolds is interesting but very lengthy, and involves few conceptual novelties.

We begin, however, by substantiating the claim that the "centraliser inter-
pretation" of gauge groups is geometrically natural.

2. Gauge Groups as Automorphism Groups

(General references for this section are Kobayashi-Nomizu (1963) and particularly
Fischer (1987).)

Let M be a compact connected Riemannian manifold of dimension n, and let
O(M) be the bundle of orthonormal frames over M; its structural group is the
orthogonal group O(n). If Ψ(M) is the linear holonomy group of M, then the
holonomy reduction theorem implies that O(M) admits a sub-bundle H(M) with
structural group Ψ(M\ and that the linear connection reduces to a connection on
H(M). Thus H(M\ the holonomy bundle, contains all the information needed to
reconstruct the linear connection on O(M). Indeed, it is quite possible to take the
position that H(M) is the fundamental object; then the linear connection is
regarded as a one-form ω on H(M) which takes its values in the algebra of Ψ(M).
Noticing that Ψ(M) always has a canonical embedding in O(n\ one would study
the principal O(rc)-bundles having H(M) as a sub-bundle, using perhaps the fact
that ω induces a connection on every such O(n)-bundle. From this point of view,
O(M) is but one among a family of O(rc)-bundles to which we have been led by the
fact that Ψ(M) can be embedded in O(ή) in a natural way.

Regarding Riemannian geometry in this only slightly unorthodox fashion, we
are led to the obvious generalisation: replace O(n) by some other compact Lie
group G in which Ψ(M) can be embedded, preferably in some natural manner. Then
let P be a principal G-bundle over M such that H(M) is a sub-bundle of P. Such a
bundle always exists (Husemoller, 1975), and the linear connection on H(M)
induces a connection on P, just as it does on O(M). Under these circumstances, we
shall say that the linear holonomy bundle has been extended to a G-bundle. This
construction permits us to interpret ω either as a linear connection (when Ψ(M) is
regarded as a subgroup of O(ή)) or as a gauge field (when Ψ(M) is regarded as a
subgroup of G). This dual view of ω is precisely what is meant when one speaks, in
string theory (Green et al, 1987), of "embedding the (linear) connection in the
gauge group." More generally - that is, beyond the applications to string theory -
it is certainly interesting to construct higher-dimensional theories with the
principal purpose of finding a topological explanation of the generation structure.
Such theories require (Witten, 1985) topologically non-trivial gauge fields on the
internal manifold, and again the most natural way to obtain these is to "embed the
connection in the gauge group." The above construction is relevant to all such
theories.

To recapitulate: we assume as usual that space-time has the structure
{Observed 4-manifold} x M, where M is a compact, connected Riemannian



Gauge Theory in Witten's Approach to the Generation Problem 111

manifold. The holonomy bundle H(M) is extended to a G-bundle, (P, M, G), where
G is the group that unifies all interactions, and where the embedding of the
holonomy group, Ψ(M)^G, is specified. The linear connection on M extends to a
connection on P; this gives a rigorous formulation of "embedding the linear
connection in the gauge group" and so paves the way to a solution of the chirality
problem in higher-dimensional theories.

The idea of studying principal bundles that admit frame bundles as sub-bundles
is actually extremely natural from a purely mathematical point of view. To see this,
let P be an arbitrary G-bundle over M, and let Aut(P) be the group of all
automorphisms of P. There is a natural homomorphism α from Aut(P) onto
Diff(M), the diffeomorphism group of M, defined by

where xeM,μe Aut(P), π is the projection map and p is any element of P such that
π(p) = x. The kernel of α is clearly

VAut(P) = {μe AutP such that π ° μ = π],

the so-called group of vertical automorphisms of P. Therefore VAut(P) is a normal
subgroup of Aut(P), and furthermore Aut(P)/VAut(P) = Difif(M).

In group-theoretic language, this means that Aut(P) is an extension of Diff(M).
The first question to ask under these circumstances is this: does the extension split?
(The extension is said to split if Aut(P) has a subgroup Δ, isomorphic to Diff(M),
such that

and
zlnVAut(P) = {identity automorphism}.

Here and henceforth, K L means (if K, Lare subgroups of some group) the set {fc/,
where keK, leL}.) In general, of course, the answer to this question is "no" - we
cannot expect to "solve" the above relation so easily. The extension splits if and
only if there is a global homomorphic cross-section σ: Diff(M)-»Aut(P), with α ° σ
= identity, and of course σ will not usually exist. However, there is one particularly
natural case in which it does, as we shall now explain.

Suppose that P admits the full linear frame bundle F(M) as a subbundle. (F(M)
is the GL(n, R)-bundle of all frames over M, the appropriate object here since we do
not yet wish to discuss connections.) Then a homomorphic cross-section
σ:Diff(M)->Aut(P) is easily constructed. Let /eDiff(M) and let ueF(M). We
regard u as a non-singular linear map from RM to the tangent space at π(u). We
define σ{f) to be the natural lift of / to F(M); that is, σ(f) is the F(M)
automorphism defined by

where ξ is any element of Rw and /^ denotes the differential of /, so that uξ is a
tangent vector at π(u) and f*(uξ) is a tangent vector at /(π(w)); thus σ(f)(u) is a
frame at f(n(u)). Then σ(f) is indeed an automorphism of F(M), and hence of P,
because any element of P can be expressed as ug for some u e F(M) and g e G, so we
can define σ(f) (ug) = [σ(/) (w)]g. The fact that σ is a homomorphism is just the
"chain rule":

Λ ° fi) (u)ξ = h*{fiM)) = hMfi) (u)ξ)
= <r(f1)(σ(f2)(u))ξ,
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that is σ(/i ° f2) = σ(/i) ° σifi)- Finally, if x e M and u e F(M) with π(u) = x, then we
know that σ(/) (w) is a frame at /(π(w)) = /(x) for any / e Diff(M), so that

whence α(σ(/)) —/ and so α ° σ = identity. Hence the extension splits in this case
and we can write

Aut(P) = [σ(Diff(M))] VAut(P).

We see, then, that the idea of P admitting a frame bundle as a sub-bundle arises
quite naturally in the study of Aut(P).

Of course, Aut(P) will not usually split as an extension of Diff(M) - requiring P
to admit F(M) as a sub-bundle is a very strong condition. We are interested in the
far less restrictive case in which H(M\ rather than F(M), is a sub-bundle of P. Now
whereas every diffeomorphism of M lifts to an automorphism of F(M\ not every
such natural lift will preserve the structure of H(M); and similarly for VAut(P). (To
be precise: an automorphism of F(M) or of P may be said to "preserve the
structure" of H(M) if it maps the latter to another holonomy bundle - that is, if
every element of μ[H(M)~] can be connected to every other element by a horizontal
curve.) Since H{M) is defined by the Levi-Civita connection ω, the obvious way to
ensure that μ preserves the structure of H(M) is to impose the condition μ*ω = ω;
we leave it to the reader to verify that this has the desired effect. The analogue of
σ(Diff(M)) is therefore the group

E(ω) = {μe Aut(F(M)) such that μ is the natural lift of a

diffeomorphism of M, and μ*ω = ω},

while the analogue of VAut(P) is of course

/(ω) = {μe VAut(P) such that μ*ω = ω} ,

where we are using ω to denote either the linear connection on H(M) or the
induced connections on F(M) and P. Clearly E(ω) and I(ω) may both be regarded
as symmetry groups of ω. We shall call them the exterior and interior symmetry
groups, respectively, because every element of I(ω) induces the identity dif-
feomorphism on M, while no non-trivial element of E(ω) does so. From a general
point of view, however, these distinctions are not very important; E(ω) is the
symmetry group of ω when the latter is regarded as a linear connection, while I(ω)
is the symmetry group of ω when we think of it as a G gauge field.

The relevance of all this to our present concerns will be revealed by the
following result.

Theorem 2.1. Let M be a compact, connected Riemannian manifold which is not
locally isometric to a product of lower-dimensional manifolds, and let dim(M) > 1.
Let ω be the Levi-Ciυίtά connection on M, and suppose that the holonomy bundle
H(M) is a sub-bundle of a specified G-bundle. Then the exterior and interior
symmetry groups of ω can be characterised as follows:
(a) E(ω) is isomorphic to the isometry group of M.
(b) I(ω) is isomorphic to the G - centraliser of the holonomy group of M.

Proof (a) Kobayashi and Nomizu (1963) show that the group of natural lifts of
diffeomorphisms of M satisfying μ*ω = ω is isomorphic to the group of affine
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symmetries of M. These are diffeomorphisms f.M^M which map every parallel
vector field along an arbitrary curve γ to a parallel field along / o γ in other words,
they are symmetries of the connection rather than of the metric. Evidently, then,
E(ω) contains a subgroup isomorphic to the isometry group, but it is not clear (and
not true in general) that every element of E(ω) is an isometry. That is the case,
however, if (Kobayashi and Nomizu (1963), p. 242) (i) dim(M)>l, and (ii) M is
complete, and (iii) the holonomy group acts irreducibly on the tangent spaces of M.
In the present case, (i) is valid by assumption, (ii) follows from compactness, and (iii)
follows from the assumption that M is not locally isometric to a product, together
with the local version of the de Rham splitting theorem (see Besse, 1987). Hence
E(ω) is isomorphic to the isometry group of M under these circumstances.

(b) When ω is regarded as a connection on H(M\ its holonomy group is of
course Ψ(M\ the holonomy group of M. The induced connection on P therefore
also has a holonomy group isomorphic to Ψ(M). Now quite generally, for any
connection on an arbitrary principal bundle P, the subgroup of VAut(P) satisfying
μ*ω = ω is isomorphic (Fischer, 1987) to the G-centraliser of the holonomy group.
Hence, in our case, I(ω) is isomorphic to CΨ(M). This completes the proof.

Notice that it follows immediately from this theorem that both I(ω) and E(ω)
are finite-dimensional.

The close similarity of the Kaluza-Klein and the "string-inspired" interpre-
tations of the "observed" gauge group J is now obvious. Both kinds of theory
interpret J as a group of symmetries of the linear connection of the internal manifold
M. In Kaluza-Klein theories, P is taken to be the orthonormal frame bundle O(M),
and attention is focussed on the isometry group E(ω); the interior symmetry group
is ignored. In string compactifϊcations, M has only a finite group of isometries and
so E(ω) is ignored; but as we have seen, the extension of H(M) to an E8 bundle -
necessitated by the "embedding of the linear connection in the gauge group" -
automatically gives rise to a new symmetry group I(ω) = CΨ{M). This leads
automatically to gauge fields on M (and hence ultimately on four-dimensional
space-time). To see this, recall that the canonical metric on P is

π*g + fc(ω,ω),

where g is the metric on M and k is the Cartan-Killing form on G (which we take to
be compact and semi-simple). Now every μ e I(ω) satisfies π o μ = % and μ*ω = ω, so

μ*[π*g + k(ω, ω)] = (π ° μ)*g + k(μ*ω, μ*ω)

= π*g + k(ω, ω).

Thus I(ω) acts isometrically on P and hence manifests itself as a gauge group on M.
Let us summarise. We have argued that the interpretation of J as the centraliser

of the holonomy group actually amounts to a geometric interpretation in the spirit
of the Kaluza-Klein approach. The principal distinction lies in the kind of bundle
automorphism on which emphasis is placed, but the symmetrical object is the same
in each case: namely, the linear connection of the internal manifold, M. The real
differences lie elsewhere, in the solution of the chirality problem.

Having shown that the interpretation of the observed gauge group as CΨ(M) is
both natural and geometrically meaningful, we may turn to practical matters: how
is CΨ(M) to be computed, especially if G is an exceptional group? What are the
possibilities for JΊ
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3. Basic Methods of Centraliser Theory

Let G be a compact connected Lie group, and let H be a compact but possibly
disconnected subgroup. We wish to determine the full centraliser of H in G. When
G and H can be explicitly represented as groups of matrices, this is often possible by
inspection; otherwise, however, there can be a number of difficulties. For example,
even if both G and H are connected, one cannot deduce that CH is connected. To
see this, take G = SO(5), H = S0(3) embedded in the obvious way. Then CH is not
SO(2\ but rather the group of matrices

0

0

rn>

where m 2e0(2), and the + sign is chosen according to the determinant of m2.
Clearly CH is the disconnected group 0(2), despite the fact that both S0(5) and
S0(3) are connected. Again, let us consider the centraliser of 0(3) in S0(5). We can
embed it as

Γ n 3 0 0"

0 ± 1

0 0

But the centraliser is no longer 0(2) or even SO(2) - it is the finite group Z2 x

generated by 0

0

+ 1 and
-h o

0 - 1 . Thus C(SO(3)) and C(O(3)) are

0 0 - l j L 0 0
totally different, even though £0(3) is the identity component of 0(3). Notice that
this example shows that centralisers cannot be reliably computed using Lie algebra
techniques alone, since obviously 50(3) and 0(3) correspond to the same
subalgebra of the algebra of SO(5).

We wish to compute centralisers in Es, where such pitfalls cannot be detected
by inspection. Therefore we need techniques for proving that centralisers are
connected, for dealing with disconnected H when computing CH, for understand-
ing questions about the rank of CH, and so on. Such techniques are best explained
in the context of particular examples, but there are some general results which can
usefully be collected here.

First, the following quite trivial lemma occurs so frequently that we make note
of it.

Lemma (3.1). Let A and B be subgroups of any group G, such that AcB. Then
CBQCA.

Notice the important distinction between proper inclusion {AcB) and
inclusion with the possibility of equality.

Second, although it will not be an important issue in our computations, the
reader should bear in mind that many subgroups of G cannot be expressed as the
centraliser of any other subgroup of G. This imposes a fundamental restriction on
the range of possibilities for the gauge group. One has, for example, elementary
restrictions such as the following.

Lemma (3.2). Let H C G, and let ZH, ZG denote the respective centres. If ZH does
not contain ZG, then neither H nor any subgroup of H can be expressed as the
G-centraliser of some other subgroup of G.
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The proof follows easily from Lemma (3.1). Thus, for example, if we embed
SU(m) in SU(n), m<n, then neither SU(m) nor any of its subgroups can be
expressed as a centraliser, because Έn is not a subgroup of Έm. Hence if we pick
G = SU(n) in the discussion of the previous section, then it is impossible to obtain
SU(m) as the grand unification group. This is a simple consequence of elementary
group theory - it has nothing to do with the geometry of M.

Next we state a basic result in Lie theory, which is useful to us because it gives
some control over the topology of centralisers.

Theorem (3.3). Let Gbea compact, connected Lie group, let T be any torus in G, and
let g be any element of CT. Then there exists a torus in G containing T and g.

The proof may be found, for example, in Curtis (1984). This theorem has the
following very useful consequence. Let Mτ denote a maximal torus in G containing
T, and let [jMτ denote the union of all such. Then the above theorem implies that
CT is contained in \JMT. But the mere fact that Mτ is abelian implies that [JMT is
contained in CT; hence CT={JMT. But each Mτ is connected, and they all
intersect in T Hence we arrive at the following conclusion.

Theorem (3.4) Let Gbea compact, connected Lie group. Then the centraliser of any
torus is connected.

For example, the centraliser of S0(2), embedded in any way in any SO(ή), is
connected; this distinguishes 50(2) sharply from 50(3).

We are now in a position to prove a result which is of crucial importance in
dealing with centralisers in the exceptional Lie groups. Although the theorem itself
is somewhat technical, the basic strategy is rather simple. Suppose that if is a
proper subgroup of a group G, and that CH cannot be computed directly - as is
usually the case if G is an exceptional Lie group. Now suppose also that we can find
a group K, with HQKcG, such that CHQK. Then clearly CH = CK(H), where CH
denotes the centraliser in G, while CK(H) denotes the centraliser in K. The point, of
course, is that it will frequently be very much easier to find CK{H) than CH itself.
The following theorem gives simple criteria for the existence of such K.

Theorem (3.5). Let G be a compact, connected Lie group and let H be a connected
proper subgroup of G. Let Kbe a connected subgroup of G satisfying the following
conditions:

(i) HQKCG
(ii) ZKQZH

(iii) For any connected subgroup L with KcLQG, ZK is not contained in ZL. Then

CH = CK(H).

Proof First we shall demonstrate that any connected subgroup of G which satisfies
condition (iii) can be expressed as

where Co denotes the identity component of the centraliser. To see this, note that
obviously KQCZK, and since K is connected, KQC0ZK. Hence ZKQC0ZK.
Obviously every element of C0ZK commutes with every element oϊZK, so in fact
ZKQZC0ZK. Set L=C0ZK. Then we have KQL, ZKQZL, and L is connected.
By hypothesis, L cannot contain K properly, so we have K = L = C0ZK as asserted.
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Now let T be any maximal torus in H. Since H is connected and compact, we
can apply Theorem (3.3). From the fact that T is maximal, it follows easily that
ZHQT. By hypothesis, we now have ZKQT. Hence we can write

ZKQTQH.

Lemma (3.1) now yields

CHQCTQCZK.

But T is also a torus in G, and so by Theorem (3.4) CT is connected. (This is the
whole purpose of introducing T: it is a subgroup with a centraliser which is known
to be connected.) Hence CT is contained not only in CZK but also in C0ZK. Thus
CH Q C0ZK. But we saw earlier that C0ZK = K. Hence every element of G which
centralises H is contained in K; that is, CHQCK(H). But obviously CK(H)QCH,
and so CK(H) = CH. This completes the proof.

We shall now explain some applications of these ideas.

4. Application: The Centraliser of SU(3) in Es

The grand unification group in string compactifications is identified with the
interior symmetry group of the Levi-Civita connection of a compact manifold with
holonomy group SU(3). The holonomy bundle is extended to an E8 bundle, where
E8 is the compact exceptional Lie group of rank 8. We therefore need to know the
full centraliser of SU(3) in E8. First, however, we need to understand the
embedding of SU(3) in E8. There are actually several ways of embedding SU(3) in
E8, and the centraliser depends on the choice. One might argue, for example, that
SU(3) only occurs in holonomy theory through its real representation, so that the
natural way to embed SU(3) is through SO(6). From a purely group-theoretic
point of view, however, there is a more natural embedding which we now
describe (and to which we adhere henceforth, because it is the one used by
Candelas et al. (1985)).

The algebra LE8 (notation: LG denotes the Lie algebra of a Lie group G) has a
maximal sub-algebra isomorphic to L(SU(3))($)LE6. This sub-algebra does not
generate a subgroup of E8 isomorphic to SU(3)x E6, however. The group in
question is actually [SU(3) x £ 6 ]/Z 3 , where the Έ3 is diagonal between the centres
of SU(3) and E6. The easiest way to see this is to examine the decomposition of the
fundamental 248-dimensional representation of E8 with respect to this subgroup:
in the notation of Slansky (1981), we have

248 = (8,l) + (l,78) + (3,27) + (3,27).

Now in the 27-dimensional representation of E6, the centre must appear (by
irreducibility and Schur's lemma) as Έ3 multiples of the identity matrix, just as
happens in SU(3). The fact that the decomposition contains the term (3,27)
therefore implies that the Έ3 in E6 must be identified, in E8, with the Έ3 in SU(3).
Hence the subgroup in question is indeed [Sl/(3) x E6]/Z3 rather than SU(3) x E6.
(This is entirely analogous to the fact that the combined gauge group of
electromagnetism and chromodynamics is [U(l) x SU(3)]/Z3, not (7(1) x SU(3).)
Similarly, E8 contains [SU(5) x SC7(5)]/Z5 rather than SU{5)xSU(5); less obvi-
ously, E8 contains not SU(9) but rather SU{9)/Z3.

In any case, we now have a natural embedding St/(3)-»[S£/(3) x E6]/rE3^E8.
We now wish to compute the full centraliser of SU(3) in E8. As pointed out earlier,
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it is rather clear that C(SU(3)) contains E6, but it is not at all clear that C(SU(3))
contains no other element of E8. We can settle this with the aid of Theorem (3.5).
We take K = [SU(3)xE6]/Z3. Then condition (i) of Theorem (3.5) is satisfied.
Condition (ii) is satisfied, because Z(SU(3)) = Z3 = ZK in this case. For condition
(iii), note that since the algebra of K is maximal in that of E8, it follows that Es itself
is the only connected subgroup of E8 containing K properly. (Note the word
"connected"; without this condition, we would need to investigate discrete factors,
and the statement would in fact be false. Happily, Theorem (3.5) only requires that
we check the connected groups between K and G.) Now the centre of E8 is Z 1 ? the
group consisting of a single element (Helgason, 1978), and this obviously does not
contain Z 3 . Theorem (3.5) now allows us to compute the centraliser in K instead
of E8; in other words, nothing outside K centralises SU(3). In K, the centraliser is
obviously [Z 3 x E6]/Z3 = E6. Thus, the centraliser of SU(3) in E8 is precisely E6.
Similarly, SU(2) (embedded through [5(7(2) x £7]/Z2) has centraliser E7, SU(5)
has centraliser SU(5\ and so on; in each case, one can use Theorem (3.5) to shift the
computation from E8 to a more tractable subgroup.

It is curious that the centres of SU(3) and E6 are not merely isomorphic, but
rather identical as subsets of E8. As is well known, E6 can be broken to (an
approximation of) the standard group, S, by the "Hosotani mechanism" (Green
et al., 1987). This is simply a second application of the above formalism, where now
G is taken to be E6, and ω is a flat gauge connection with discrete holonomy group;
S is the centraliser of the latter in E6. According to Lemma (3.2), therefore, ZS
must contain Z 3 ' the centre of E6. But the TL3 in the centre of the "standard" group
is related to the electric charge assignments of quarks (Chan and Tsou, 1981). On
the other hand, the Έ3 in the holonomy group is related to the fact that the
manifold is 3 complex-dimensional, or has six real dimensions. In a sense,
therefore, it can be said that in string compactifications, quark charge assignments
are related to the hypothesis that the universe is 10-dimensional. We leave it to the
reader to judge whether this is a satisfactory outcome.

5. Application: Ranks of Centralisers

The "standard" gauge group, which governs the electroweak and strong interac-
tions, is of rank 4. Grand unified theories, however, typically involve groups of
larger rank, such as E6. If we wish to obtain the standard group (with, perhaps, one
additional (7(1) factor) as a centraliser in E6, then it is of interest to study the
circumstances under which CH is not of maximal rank in G. For example, Ellis
etal. (1988) have studied Calabi-Yau spaces with non-abelian fundamental
groups, the objective being to break E6 to a subgroup of rank 5. (See also Mclnnes
(1990a).)

Ideally, one should have general results which, given G and H, would permit a
direct specification of rk CH, the rank of CH. In fact, very little is known in this
direction, apart from elementary inequalities such as

In addition, there is apparently a widespread belief that CH is of maximal rank in
G (that is, rk CH = rk G) if and only if H is abelian. This is actually incorrect. Let us
investigate this question using the methods of Sect. 3.
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We claim that the centraliser of a finite Abelian group in a compact, connected
Lie group G can sometimes be of less than maximal rank; so that Hosotani
symmetry breaking on a manifold with an abelian fundamental group can break G
to a subgroup of lesser rank. The basic result is as follows:

Theorem (5.1). Let G be a compact, connected Lie group, and let H be a subgroup
ofG.
(i) // H is non-abelian, then CH cannot be of maximal rank.

(ii) // H is abelian, and if either H or CH is connected, then CH is of maximal rank.

Proof, (i) Let H be non-abelian and suppose that CH is of maximal rank in G. Let T
be a maximal torus in CH. Then TQCH and so by Lemma (3.1),

CCHQCT.

But T is also a maximal torus in G. It follows easily from Theorem (3.3) that
CT= T. On the other hand, obviously HQ CCH, so we have H Q T. But Tis abelian,
so we have a contradiction. Hence CH cannot be of maximal rank,
(ii) Suppose that H is abelian and that CH is connected. Then CH is closed in G,
hence compact, and so we can apply Theorem (3.3) to CH. Let T be a maximal
torus in CH. Then T contains the centre of CH, ZCHQT. Since H is abelian,
HQCH; in fact, HQZCH, so H Q T. Let Mτ be a maximal torus in G containing T.
Then HQMT, so that CMTQCH. But as we saw earlier, CMT = MT, so that
Mτ Q CH and CH is of maximal rank. Finally, if H is assumed abelian and
connected, then either CH = G, or H is a torus so that (Theorem 3.4) CH is
connected. In either case CH is of maximal rank. This completes the proof.

The only case not covered by this theorem is that in which neither H nor CH is
connected, and H is abelian. It is in this case that one can find examples of abelian
groups with centralisers of non-maximal rank. In the case of finite abelian groups,
we have the following general result. (Recall that the rank of a finite abelian group
is the smallest possible number of factors in its expression as a product of cyclic
groups.)

Theorem (5.2). Let G be a compact, connected Lie group. Then G admits a finite
abelian subgroup A of rank 2 with CA not of maximal rank if and only if there exists
geG such that Cg is disconnected.

Proof We use the following lemma.

Lemma (5.3). Let Gbea compact, connected Lie group, and let geG be such that Cg
is disconnected. Then there exists geG such that Cg is disconnected and g is of finite
order.

Proof of Lemma. It can be shown (Fischer, 1987) that Cg is closed, so it is compact.
Therefore Cg has a finite number of connected components; thus, Cg/Cog is a finite
group. Let m be the order of this finite group. Then it is clear that for any x e Cg,
xmeCog, so we have a local diffeomorphism f:Cg^>Cog defined by /:x->x m .
Now elements of finite order are dense in Cog, because every compact, connected
Lie group is covered by its maximal tori (Curtis, 1984). Since f(x) is of finite order if
and only if x is of finite order, we can conclude that if D is a connected component
of Cg other than Cog, then D contains an element g of finite order. We claim that
Cg is disconnected. For suppose the contrary. Notice first that for any p e G, C0(p)
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is precisely the union, []MP, of all maximal tori Mp containing p; this is a
straightforward consequence of Theorem (3.3). Therefore, if Cg is connected, then

= (JM r By definition, geCg, hence geCg, so that for some maximal
torus containing g. But this means geMg, a maximal torus containing g, and so
geCog. But geD, so we have a contradiction. Hence Cg is disconnected.

Returning to the proof of Theorem (5.2): suppose that G contains an element g
such that Cg is disconnected. By the above lemma, we can assume that g is of finite
order. Let D be a connected component of Cg other than Cog, and let ft be an
element of finite order in D. Then we claim that the finite abelian (because
he DC Cg) group A generated by g and ft has a centraliser of non-maximal rank.
For suppose that CA is of maximal rank. Then a maximal torus T in CA is also
maximal in G, so TQCA implies

AQCCAQCT=T.

Hence ft is an element of a maximal torus containing g, so ft e \J Mg = Cog, a
contradiction. Hence CA is not of maximal rank. Now obviously the rank of A is
either 2 or 1. But if the rank were 1, then since G is covered by its maximal tori,
there would be a maximal torus containing A, and CA would be of maximal rank.
The rank of A must therefore be 2.

Conversely, if A is a finite abelian rank-2 subgroup of G, and if CA is not of
maximal rank, then G must contain an element g such that Cg is disconnected. For
let g, ft be the generators of A, and assume that Cg is connected. Then since ft e Cg,
there is a maximal torus containing g and ft, hence containing A; this leads to a
contradiction, as above. This completes the proof.

An easy way to find examples of abelian groups with centralisers not of
maximal rank is to examine disconnected subgroups H of compact connected Lie
groups, such that H can be expressed as CZH. For then G evidently contains g such
that Cg is disconnected (pick any element of ZH which is not an element of ZG\
and then the above theorem applies. For example, the 0(2) subgroup of S0(3) is
clearly the centraliser of its centre, and so S0(3) must contain a finite abelian
subgroup with centraliser of non-maximal rank. Indeed,

l o oΊ Γ-i o oΊ Γi o oΊ Γ-i o o
0 1 0

0 0 1 .

is such a subgroup.

0 - 1 0

0 0 1

0 - 1 0

0 0 - 1

0 1 0

0 0 - 1

6. Holonomy Classification Theorems

We now return to the principal theme of this work. In Sect. 4 we justified the
familiar claim that "embedding the connection (of a manifold with holonomy
5(7(3)) in the gauge group (E8)" leads to E6 grand unification. Here, however, we
regard this as a particular example of a new approach to the generation problem
and to the foundations of gauge theory. This example therefore prompts the
following question: which subgroups of £ 8 can arise as gauge groups in this
picture? Obviously, not every subgroup can be so obtained. As we have seen, there
is a purely group-theoretic obstruction - not every subgroup J can be expressed in
the form CA for some AcE8. However, this is a relatively weak obstruction. Far



120 B. Mclnnes

stronger is the geometric condition that A should be the holonomy group of some
manifold. This is the question to which we now turn: which groups occur as
holonomy groups?

For the compact, Ricci-ίlat manifolds in which we are interested here, no
completely satisfactory answer to this question is known (Salamon, 1989). The best
that can be done at present is to display lists of "candidate" groups, and to search
for examples of manifolds with such groups as holonomy groups. The classical
result in this direction is Berger's Theorem (1955). In the case of interest to us, this
may be stated as follows. (See also Besse (1987).)

Theorem (6.1). Let M be a connected, simply connected Rίemannian manifold with
dimM = n > 1. Suppose that M is Ricci-flat and is not isometric to a product of lower-
dimensional manifolds. Then the holonomy group Ψ(M) must be isomorphic to one of
the following:

(i) SO(n) (n^4),
(ii) SU(m) (n = 2m, m^3),

(iii) Sp(k) (n = 4k, fc^l),
(iv) G2 (W = 7),
(v) Spin(7) (n = 8).

Here Sp(k) is the compact symplectic group of rank k, G2 is the exceptional
group of rank 2, and Spin(7) is the subgroup of SO(S) isomorphic to the universal
covering group of SO(Ί). For our purposes, the restriction to simply connected
manifolds is much too severe. Methods for dealing with the holonomy theory of
compact, Ricci-flat, but not simply connected manifolds have been explained
elsewhere (Mclnnes, 1990b). The classification theorem in this case may be stated
as follows.

Theorem (6.2). Let M be a compact, connected, Ricci-flat Rίemannian manifold with
dim(M) = n > l . Suppose that M is not locally isometric to a product of lower-
dimensional manifolds and that M is not simply connected. Then Ψ(M) is isomorphic to
one of the following groups:

(i) n^4: (a) SO(n), (b) O(n).
(ii) n — 2m, moάd, m ^ 3 : (a) SU(m), (b) SU(m)^Z2. n = 2m, meven, m^.4: (a)

Z2m SU{m), (b) SU(m) x Z 2 , (c) \Έ2m • SU{m)] x Z 2 .
(iii) n = 4k, k even, r divides k + 1 , r + 1 : (a) Έr x Sp(k). n = 4k, k odd, r divides k + ί,
r Φ 1 : (a) Έγ x Sp(k) (r odd), (b) Έ2r. Sp(k) (r even), (c) β 4 r Sp(k), (d) B 4 r Sp(k) (r = 6,
12, 30).
(iv) n = l\ (a) G2,(b)Z2xG2.
(v) n = 8: (a) Spin(7).

The proof (Mclnnes, 1990b) is based on the Cheeger-Gromoll and Riemann-
Roch theorems. The notation requires some explanation. The symbol x> denotes
the semi-direct product; in detail, if ζ is the generator of TL2, then Ad(C) acts on U(m)
and its subgroups SU(m) and Έ2m SU(m) by complex conjugation. For example, in
case (ii) (b), SU(3) xi Z2 is a group with two connected components, one of which is
SU(3), the other being the set {ζs, s eSU(3)}, where ζs = sζ for every s. The meaning
of the dot notation, as in Έ2m SU(m), was explained in Sect. 2; but in Theorem (6.2)
it can also be interpreted as the direct product factored by the intersection. For
example, Έ2m SU(m) is isomorphic to [ Z 2 m x SC/(m)]/Zm5 where the TLm is diagonal
between Έ2m and SU(m). This makes it clear that Έ2m • SU(m) has two connected
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components. Finally, Q4r and B4r denote respectively the quaternionic and binary
polyhedral groups. These are non-abelian finite groups of order 4r, where Q4r is
defined for every integer r ̂  2, but B4r exists only for r = 6,12,30. (See, for example,
Wolf (1967).) Notice that Q4r Sp(k) = [Q4r x Sp(k)]/Z29 and similarly for B4r Sp(k).
Notice too that Q4r Sp(k) is not a subgroup of U(2k), so that a manifold with this
holonomy group is not a Kahler manifold, despite the fact that the identity
component is Sp(k) - which is a subgroup of U(2k), through SU(2k). Similar
comments hold for manifolds of holonomy SU(m) xi Έ2: these are subgroups of
0{2m) (as for any Riemannian manifold), but not of U(m). On the other hand,
Z2m SU(m), Zr x Sp(k), and Z2r Sp(k) are all subgroups of U(m) or U(2k), so these
do correspond to Kahler manifolds.

The groups listed in Theorems (6.1) and (6.2) are the ones of interest to us. Our
task is to embed these groups in £ 8 and to compute their centralisers. Again, it
must be emphasised that this is a group-theoretic, and not a Lie-algebraic problem.
The algebra of E8 contains the algebra of S(7(9), but it does not follow that the
group E8 contains the group SU(9) - and, in fact, it does not. The subalgebra must
exponentiate to a unique connected subgroup (Helgason, 1978), but this subgroup
is SU(9)/Z3. According to Theorems (6.1) and (6.2), none of the manifolds in which
we are interested has holonomy S(7(9)/Z3 in fact, to belabour the point a little, one
can prove that there exists no manifold of any kind with this holonomy group. To
take a quite different kind of example: we know that E8 does contain SU(3), but it is
very far from obvious that it contains 5(7(3) * TL2. We shall prove that it does, and
we shall see that the centraliser of 5(7(3) xi Z 2 is not E6. All of these points must be
taken into account. It is advisable to begin with a brief discussion of selected
subgroups of the compact exceptional groups.

7. Some Connected Subgroups of the Exceptional Groups

A readily accessible source of information on the subalgebras of the exceptional
algebras is Slansky (1981). From there we abstract the following (incomplete) list of
inclusions. (Recall that LG denotes the Lie algebra of the group G.)

L(SU(2))®L(E7)CLE8,

L(SU(3))@L(E6)CLE8, L(SU(3))®L(SU(6))CLE7,

L(Sί/(5))φL(S(7(5))cL£8, L(5p(3))0LG2CLE7,

L(SU(9))CLE8, L(5O(10))ΘRCLE6,

L(SO(16))CLE8, L(Sp(4))QLE6,

L(G2)@L(F4) C LE8, L(F4) C LE6,

L(S U(2))®L(Sp(3)) C LF4, L(SO(4)) C LG2,

L(S(7(2))0L(G2) C LF4, L(SU(3)) C LG2,

L(SO(9))CLF4.

Each of these inclusions is maximal, in the usual sense. Each subalgebra
corresponds to a unique connected subgroup of a given group with an exceptional
algebra. The precise structure of these subgroups cannot be deduced from the
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above table alone; one needs also certain representation - theoretic techniques of
the kind explained in Sect. 4. The results are as follows:

[ E / ( l ) x £ 6 ] / Z 3 c E 7 ,

[St/(3) x E6yZ3 CE 8, [5(7(3) x SE/(6)]/Z3 CEΊ,

[51/(5) x SC/(5)]/Z5 C £ 8 , Sp(3) x G 2 c £ 7 ,

Sl/(9)/Z3 C £ 8 , [1/(1) x Spin(10)]/Z4 C £ 6 ,

Spin(l 6)/Z2 C £ 8 , 5/?(4)/Z2 C £ 6 ,

G 2 x F 4 c £ 8 , F 4 C £ 6 ,

[5 ί/(2) x Sp(3)]/Z2 C F 4 , 50(4) C G 2 , 50(3) x G2 C F 4 ,

Sί/(3)cG 2, Spin(9)cF 4.

These can either be found in or deduced from the book of Wolf (1967).
One of these inclusions is of such importance - and has been the source of so

much confusion - that it requires further discussion. We refer to Spin(16)/Z2 C Es.
This group is not isomorphic to 50(16). A brief explanation of this fact will allow us
to fix our notation for Clifford algebras.

For our purposes, the very simple formulation given by Curtis (1984) is quite
adequate. We take the Clifford algebra Ck to be generated by elements 1,
eue2,...,ek subject to the usual relations. Then Pin(fc) is defined as the group

k k

generated by the (k — l)-sphere Sk~1 consisting of all elements Σ aίei with ^αf = 1,
1 1

the at being real. Let p denote the canonical projection homomorphism from Pin(fc)
onto 0(k). Then the kernel of p is (+ 1), and Spin(fc) is defined as p~1(SO(k)). Each
element u e Sk~1 is mapped by p to a reflection in the hyperplane (in the Euclidean
space of which the ei are a basis) perpendicular to u. It follows that Spin(fc) cannot
contain any product of an odd number of elements oϊSk~ι. The centres of the Spin
groups may now be found by straightforward algebra. They are as follows.

ZSpin(2n+l) = Z 2 ' n ^ l ,

In every case, the centre contains + 1 . In the second and third cases, it also contains
Λn+2 Λn

W e{ or W et respectively. Now let us consider Spin(4rc) more closely. The centre,
1 1

Έ2 x TL2, contains three distinct TL2 subgroups: the two obvious ones (which we can
label as Έa

2 and Έb

2) and the diagonal subgroup, Έd

2. If we take Έa

2 to be generated by
Λn Λn ίΛn \ / Λn

Y\ eb and Έ\ to be generated by — γ\ eb then TLά

2 is generated by I f] et I I — γ\ et

= — 1, and so Spin(4rc)/2£2 is SO(4n). The question now is whether Spin(4n)/Za

2 and
Spin(4rt)/Z2 are also isomorphic to SO(4n).

A general result in Lie theory (Helgason, 1978) states the following. Let G be a
connected Lie group, and let A, B be distinct subgroups of ZG. Then G/A is
isomorphic to G/B if and only if there exists an automorphism β:G^>G such that β
maps A onto B. Such an automorphism must be outer, since it has a non-trivial
effect on the centre. Now the outer automorphism group of a simply connected



Gauge Theory in Witten's Approach to the Generation Problem 123

compact simple Lie group is isomorphic to the symmetry group of the
corresponding Dynkin diagram (Wolf, 1967). In the case of Spin(4w), it is therefore
clear that the outer automorphism group is ΊL2 for all n ̂  3. It follows that, modulo
inner automorphisms, Spin(4n) has a unique outer automorphism. All that
remains now is to find a explicit representative and to examine its effect on the
centre. For any i, Ad(ef) is such a representative; for we have, if weSpin(4n),
det[p(Ad(ei)u)]=det[Ad(pei)pύ]==det[pύ] = l, so that Ad(ef)we Spin(4n), and so
Ad(βf) is an automorphism of Sρin(4n). Evidently it is an outer automorphism. A
simple calculation shows that

and so we see that Spin(4n) has an automorphism which exchanges TLa

2 and Έ\.
When n ̂ 3 , however, there is no other automorphism; and since Ad(^ ) has no
effect on Z 2, we conclude that Spin(4n)/Z2 and Spin(4n)/Z2

 a r e isomorphic to each
other, but not to SO(4ή). (In the case of Spin(8), there is another outer
automorphism - triality - and so Spin(8)/Z5 and Spin(8)/Z2 are in fact isomorphic
to SO(8).) Thus, there are two distinct connected groups locally isomorphic to
Spin(4n) and with centres isomorphic to TL2\ SO(4n) and Spin(4w)/Z2, n^3 .

Now it so happens that the L(5O(16)) subalgebra of LE8 exponentiates to a
Spin(16)/Z2 - and not to an 50(16) - subgroup of E8. The subgroups of
Spin(16)/Z2 are therefore subgroups of Es, and so they are of interest to us. For
example, {el9..., e16} can be partitioned into two sets, {el9..., e6} and {e7,..., e16},
generating Spin(6) and Spin(lO) subgroups of Spin(16). These correspond, of
course, to the £0(6) x 50(10) subgroup of 50(16). But Spin(16) does not contain
Spin(6)xSpin(10), because these subgroups intersect in (±1). Hence Spin(16)
actually contains [Spin(6) x Spin(10)]/Z2. When Spin(16) is factored by Z 2, this
subgroup projects to 50(6) x 50(10) in 50(16). But when Spin(l 6) is factored by Z 2,
the outcome is quite different. Notice that Spin(6) and Spin(lO) both have centres

6 16

isomorphic to Z 4, generated respectively by fj et and f] et. On the other hand, Z 2 is
16

generated, by definition, by f] e{. Now a simple calculation shows that

1

16 \ /16 \ 16In other words, the centres of Spin(6) and Spin(lO) are identical modulo Έa

2. Hence
the [Sρin(6) x Spin(10)]/Z2 subgroup of Spin(16) must project to a subgroup of
Spin(16)/Z2 which is isomorphic to [Spin(6) x Spin(10)]/Z4. The centre of this
subgroup is Z 4 .

The situation of [Spin(5)x Spin(ll)]/Z2 in Spin(16) is somewhat different,
16

because whereas [Spin(6)x Spin(10)]/Z2 contains Y\eh [Spin(5)x Spin(ll)]/Z2

( 5 \
does not. Spin(5) does not, of course, contain f] ev I Hence we can write

\ i /

Έa

2 x [Spin(5) x Spin(l 1)]/Z2 C Spin(16),
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and so when we factor throughout by Z 2 , the result is simply [Spin(5)
xSpin(ll)]/Z2cSρin(16)/Z2; in short, this subgroup of Spin(16)/Z2 is globally

isomorphic to its counterpart in Spin(16).
It is now possible to compute the centraliser of Spin(λ ), 3 5^/c^ 14, in E8. The

strategy is to use Theorem (3.5), with K = Spin(16)/Z2. Clearly Spin(fc) is a
subgroup of Spin(16)/Z2, so that condition (i) is satisfied. Condition (iii) is satisfied
because the algebra of Spin(16)/Z2 is maximal in that of E8, and Z(Spin(16)/Z2)
= Έ2, ZE8 —Έγ. Finally, let us verify condition (ii). The centre of Spin(16)/Z2 is just

r
the centre of Spin(16) modulo f ] e / The centre of Spin(16) consists of < ± 1 ,

i ί

+ f] eΛ, and so the centre of Spin(16)/Z2 is essentially just {± 1}. This is contained

in the centre of every Spin(fc), whether the centre be Z 2 , Z 4 , or Z2 x Έ2.
Theorem (3.5) now allows us to compute the E8 centraliser of Spin(fe) by
computing it in Spin(16)/Z2 instead. This is a straightforward Clifford algebra
computation. One point deserves emphasis. The following group inclusions all
correspond to the algebra inclusion L(5O(6))ΘL(5O(10))cL(5O(16)):

50(6) x 50(10) C 50(16),

[Spin(6) x Spin(10)]/Z2 C Sρin(16),

[Spin(6) x Spin(10)]/Z4cSpin(16)/Z2.

Now the centraliser of 50(6) in 50(16) is not 50(10). Instead it is Έ2 x 50(10), where
Έ2 is the centre of 50(6); the centraliser is disconnected. Similarly, the centraliser of
Spin(6) in Spin(16) is not Spin(lO), but rather the disconnected group [ Z 4

x Spin(10)]/Z2. But the centraliser of Spin(6) in Spin(16)/Z2 is [ Z 4 x Spin(10)]/Z4,
and this is precisely Spin(lO). Of the three cases, this is the only one in which the
centraliser is connected. Similar remarks apply to Spin(7) and Spin(8): the
centralisers in Spin(l 6)/Z2 - and hence in E8 - are, respectively, Spin(9) and Spin(8)
precisely.

We conclude this section with two remarks. According to Theorems (6.1) and
(6.2), 50(6) is a candidate holonomy group for a compact Ricci-flat manifold. We
therefore wish to embed 50(6) in E8 and compute its centraliser (Green et al, 1987).
It must be stressed that the considerations of this section give us no information
whatever on this problem. The algebra embedding

L(5O(6)HL(5O(16))-+L£8

does not exponentiate to an embedding of 50(6) in E8, but rather to an embedding
of Spin(6); and no six-dimensional manifold can have Spin(6) as its linear
holonomy group. As we shall see, 50(6) can be embedded in E8 in a different way,
but then its centraliser is not 50(10), even locally. In a word, it is not correct to
assert that string compactification on a manifold with 50(6) holonomy leads to
50(10) grand unification. (Of course, one could try to use the spinor holonomy
bundle instead of the linear holonomy bundle; but then this would have to be
done consistently, i.e. the consequences for SU(3) "holonomy" would require
investigation. These and other unorthodox interpretations of the formalism will
be considered elsewhere.)

Secondly and finally, a technical remark: according to the above, the centraliser
of Spin(3) in E8 is Spin(13). But Spin(3) = 5(7(2), and we claimed in Sect. 4 that
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C(SU(2)) = EΊ. The problem here is that we are dealing with two different
embeddings of S(7(2). in Spin(16)/Z2. Very briefly, we have

Spin(3)->Spin(4)->Spin(16)/Z2.

Now Spin(4) = 5(7(2)x 5(7(2). The above Spin(3) corresponds to the diagonal
subgroup, and it contains the centre of Spin(16)/Z2 (so that Theorem (3.5) applies).
But if we choose to embed SU(2) through an explicit SU(2) factor in Spin(4), then
this SU(2) does not contain the centre of Spin(16)/Z2, and so the E8 centraliser can
no longer be computed in Spin(16)/Z2. Instead we note that since 5(7(2) cSpin(4)
and C Spin(4) = Spin(12), clearly Spin(12) c C(SU(2)). In fact [5C/(2) x Spin(12)]/Z2

C C(5ί/(2)), and this alone eliminates all possibilities save EΊ. (See Slansky's (1981)
list of maximal subalgebras of the exceptional algebras.)

The main result of this section can be stated as follows.

Theorem (7.1) Let Sρin(fc), 3^fc^l4, be embedded in E8 through the [Spin(fe)
x Spin(16 — fc)]/Z Spin(fe) subgroup of Spin(16)/Z2. Then the full centraliser of
Spin(fe) in E8 is Spin(16-fc).

8. Some Disconnected Subgroups of Es

We are now in a position to embed, and compute the centralisers of, many of the
groups listed in Theorems (6.1) and (6.2). This includes several of the disconnected
holonomy groups. For example, let M be a compact 8-dimensional manifold such
that the identity component of the holonomy group is Sp(2), and suppose that M is
not simply connected. According to Theorem (6.2), the full holonomy group must
be Z3 x Sp(2). Now Sp(2) is globally isomorphic to Spin(5) (Curtis, 1984). Hence
Sp(2) has a natural embedding in JE8, through Sρin(16)/Z2, and its centraliser is
Spin(l 1). Now the Z3 factor in the holonomy group commutes with 5/?(2), and so it
must be embedded in Spin(l 1). One way to do this is to embed Z 3 in [/(I) and then
to note that Spin(ll) contains [t/(l) x Spin(9)]/Z2, since l/(l) = Spin(2). The
centraliser of Z 3 x Sp(2) is then [(7(1) x Spin(9)]/Z2.

This strategy fails, however, when the product is semidirect rather than direct.
For example, we cannot compute the centraliser of St/(3)xZ2 [see
Theorem (6.2)] in E8 by embedding Έ2 in £ 6 , precisely because Έ2 does not
centralise every element of SU(3). We must find an element ζ in E8 which is
contained neither in SU(3) nor in E6, such that ζ2 = 1 and such that Ad(0 maps
each 5eS(7(3) to its complex conjugate. As we have no explicit way of presenting
E8, this is not a simple problem. Furthermore, we need to solve the analogous
problems for S(7(4), 51/(5) and so on. Of course, it is entirely possible a priori that
SU(3) xi Z2, SU(4) x Z 2 and so on simply cannot be embedded in E8 in any way
whatever; after all, there is no fundamental relationship between holonomy theory
and the structure of E8. It is therefore remarkable that, in fact, 51/(3) xi Z 2, SU(4)
xi Z 2, and SU(5) xi Z 2 all have natural embeddings in E8.

Recall that 5(7(2), 5(7(3), and S(7(5) all have canonical embeddings in E8

through the subgroups S(7(2) E7, SU(3) E6, and S(7(5) S(7(5). (See Sect. 6 for the
dot notation.) Thus far we have not mentioned 5(7(4). It is globally isomorphic to
Spin(6), and so the natural embedding in E8 is through Spin(16)/Z2:

5(7(4) = Spin(6)-[Spin(6) x Spi
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By Theorem (7.1), the centraliser of 5(7(4) in E8 is precisely Spin(lO). We call this
the canonical embedding of SU(4). It is now possible to establish embeddings of
SU(3) x Z 2 , SU(4) xi Z 2 , and 5(7(5) x Z 2 .

Theorem (8.1) £ 8 ^ 5 subgroups of the form 5(7(3) xiZ2, Sl/(4) x Z 2 , and 5(7(5)
x] Z 2 , where 5(7(3), 5(7(4), ami 5(7(5) are embedded canonically, and where TL2 acts
through complex conjugation. The centralisers in E8 are

C[S 1/(4) XJ Z 2 ] = [Spin(5) x Spin(5)]/Z2,

C[5(7(5)xiZ2] =

Proof The strategy is as follows. First we find an element ζ0 in E8 such that ζ o

z ίo 1

= z~ *, where z generates the centre of the Spin(lO) subgroup of E8. Then we show
that Ad(C0) induces an outer automorphism on Spin(lO). This leads us to an
element ζ e E8 such that Ad(ζ) induces complex conjugation on 5£/(3), 5(7(4), and
5(7(5). After showing that £2 = 1, we find the above centralisers by studying the
fixed point sets of Ad(Q in £ 6 , Spin(lO), and 5(7(5).

Let R be an irreducible root system in a finite-dimensional real vector space V,
and let /„ be the identity automorphism of V. By the definition of R, - Iv is an
automorphism of R. It can be shown (Humphreys, 1972) that the full automor-
phism group of R is isomorphic to the semi-direct product of W{R\ the Weyl group
of R, with D(R\ the group of automorphisms of the corresponding Dynkin dia-
gram. In the case of the root system of E8, D(R) is obviously trivial, and so W(R)
contains — Iv. In other words, the Weyl group of E8 contains an element which
simultaneously reverses the sign of every real root.

At the group level, this means the following. Let α be a real root of E8; then the
corresponding global root (Brόcker and tomDieck, 1985) is the homomorphism
given by exp(//)->exp(2π/α(if)), where Qxp(H)eT, a maximal torus. Now at the
group level, the presence of — Iv in the Weyl group of the E8 root system just means
that there is an element of the (global) Weyl group which maps each Qxp(H) to
exp( — H\ since every real root has its sign reversed. On the other hand, the action
of the Weyl group on Tis, by definition, the same as that of the normaliser N(T) of
T in E8.

Now let z be a fixed generator of the centre of the canonical Spin(lO) subgroup
of E8. (Recall that this centre is Z 4 , so it is generated by a single element.) Since E8 is
compact and connected, it is covered by its maximal tori. Let T be a maximal torus
of E8 containing z. According to the above discussion, N(T) must contain an
element ζ0 such that

Notice that we have reached this conclusion using only the fact that the Dynkin
diagram of E8 has no symmetries. A similar argument therefore works for all of the
exceptional groups except E6.

Now let s be any element of the Spin(6) Spin(lO) subgroup of E8. Clearly,
Ad(Co)z = z, so Ad(Cό1)z = z " 1 ; that is, zζo = ζoz~ι. Therefore

Ad(z) Ad(Co)* = Ad(zζo)s = Ad(£ oz ~')s = Ad(ζo)s

because z generates the common centre of Spin(6) and Spin(lO). Hence
Aά(ζo)s G CZ4, where C denotes the centraliser in E8. Since s is arbitrary and since
Ad(C0) is a continuous map, we have
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Ad(Co): Spin(6) Spin(10)->C0Z4,

the identity component of CZ4. Now in the proof of Theorem (3.5), we saw that any
connected subgroup KcG which satisfies condition (iii) of that theorem also
satisfies K = C0ZK. As Spin(6) Spin(10) does satisfy this condition, we have
C0(Z4) = Spin(6) Spin(10) and so we see that Ad(ζ0) is an automorphism of
Spin(6) Spin(10). As it has a non-trivial effect on the centre, it is an outer
automorphism. The following lemma allows us to study the restriction of this
automorphism to Spin(lO).

Lemma (8.2). Let G be a compact, connected Lie group and let K be a connected,
simple subgroup of G. Assume that rankK>\rankG. Then any automorphism of
K - CK restricts to an automorphism of K.

Proof Evidently ZK is a normal subgroup of CK. Let λ be the projection λ: CK
->CK/ZK. Given any automorphism φ.KCK-^K CK, define a homomor-
phism (fi:K^CK/ZK as follows. If feeK, set φ(k) = xy, where xeK, yeCK.
Then define

This is well-defined, because if xy = xy for some other pair x, y, then yy * eKn CK
= ZK, and therefore λ(y) = λ(y). Furthermore, $ is a homomorphism, for if φikj
= x1j;1 and φ(k2) = x2y2, then φ(k1k2)=xιx2y1y2 and so $(kίk2) = λ(y1y2)
= φ{kι)(j){k2). It therefore follows that the image $(K) of K in CK/ZK is
isomorphic to K/N for some normal subgroup TV in K. Since K is connected and
simple, we have either N = K or N is discrete. Assume the latter. Then
K/N Q CK/ZK implies rank K ^ rank CK, because ZK must also be discrete if K is
simple. On the other hand, K CK Q G implies rank K + rank CK — τank(KnCK)
^ rank G. But rank(KnCK) = rank ZK = 0, and so 2 rank K ^ rank G, contrary to
our assumption that rankK>\rankG. Therefore N is not discrete and we must
have N = K. Thus φ maps all of X to the identity in CK/ZK, and so when we write
φ(k) = xy, it must be the case that y e ZK and so y e K. Thus φ(k) e K, and this
completes the proof of the Lemma.

Returning to the proof of the Theorem, we choose K = Spin(lO), G = E8, so that
CK = Spin(6). Then K is connected and simple, and rank K = 5 while \ rank E8 = 4.
Therefore Ad(£0) restricts to an outer automorphism of Spin(lO). Now the Dynkin
diagram of Spin(lO) has a single symmetry, and so, modulo inner automorphisms,
Spin(lO) has a unique outer automorphism. Using the same argument as in Sect. 7,
one shows that Ad(θ), where θ = eίe2e3e^e5, represents this outer automorphism.
By uniqueness, it follows that there exists seSpin(lO) such that Ad(C0)°Ad(s)
= Ad(0). If we define ζos = ζ, then we have found ζ e E8 such that

Ad(Q = Ad(0)

on Sρin(lO). (Of course, θ is an element of Pin(lO), not of E8.)
Now SU(5) embeds in SΌ(10) through the real representation:
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where A and B are real 5 x 5 matrices such that A + iBeSU(5). If p:Spin(10)
-•£0(10) is the projection, consider p~1 [5(7(5)]. This subgroup of Spin(lO) cannot
be connected; for if we assume the contrary, then p~ 1(SU(5)) would be a connected
group locally isomorphic to 51/(5), with Έ2 as a normal subgroup. By continuity, a
discrete normal subgroup must be central, but no connected group locally
isomorphic to SU(5) has a Έ2 in its centre. Since this TL2 is central in Spin(lO), the
only possibility is that p-1(5(7(5)) is isomorphic to Z2xSU(5)a, where the
superscript merely indicates that SU(5)a is contained in Spin(lO) rather than
50(10).

"Complex conjugation" on the SU(5) subgroup of 50(10) is defined so that it
commutes with the embedding homomorphism - that is, by

B A )~*\-B A

Similarly, complex conjugation on 5(7(5)fl is defined by

where pa denotes the restriction of p to SU(5)a. Now let seSU(5)a. Then

p Ad(0 s = pAd(θ)s = Ad(pθ)ps.

Recall that for each eb p(e^) is a reflection in the plane perpendicular to et. Therefore

P(eie2e3e4e5) corresponds to the 0(10) matrix 5 .A simple calculation
L ^ ^5J

shows that if pse5(7(5) is L then Ad(pθ)ps is Ups, which is
\_B A J [_~B ^ J

also an element of SU(5). Hence pAd(ζ)seSU(5) for all seSU(5)a; that is,
Ad{ζ): SUiδY^p-15(7(5). By continuity, Ad(Q:5(7(5)α->5(7(5)α. Hence pAd(ζ)s
= pa Ad(C)s = Ad(pθ)ps = ps, and so

That is, the restriction of Ad(Q to 5(7(5)α induces complex conjugation.

1 «->• Eo

ϊ
SU{2) ~

1
SU(3) <->

I
SU(4) *-+

I
SU(S) ~

T
Eη

ί
E6

T
Spin(lO)

T
SU(5)

Consider the diagram. The vertical arrows denote inclusions, while the
horizontal arrows denote the centraliser. Either 5(7(5) in 5(7(5) 5(7(5) may be
identified with 5(7(5)α, and so Ad(ζ) induces complex conjugation on both. Hence it
induces complex conjugation on the canonical 5(7(2), 5(7(3), and 5(7(4) subgroups
of Eo.
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Next we show that ζ2 = 1. On Spin(lO), Ad(£) = Ad(0). But θ2 = -1, so Ad(C2) is
the identity automorphism on Spin(lO); that is, ζ2 centralises Spin(lO). Therefore
ζ2eSU(4). But since Ad(Q induces complex conjugation on SU(4), ζ2 also
centralises SU(4), and so ζ2 e St/(4)nSpin(10) = Z 4 . Thus ζ8 = 1. Applying the same
argument to SU(5)'SU(5), we obtain ζί0 = l. Therefore ζ2 = l.

Obviously ζ cannot be an element of 5(7(3), 5*7(4), or S£/(5). The groups SU(m)
uζ - SU(m% m = 3,4, 5, are therefore subgroups of E8 with structure SU(m) xi Z2.
This completes the first part of the proof.

We now compute the centralisers. The centraliser of SU(5) is just (the other)
SU(5). Therefore the centraliser of SU(5) xi TL2 is just the fixed point set of Ad(Q in
SU(5). As Ad(C) acts on 5(7(5) by complex conjugation, the fixed point set is the real
subgroup of 5*7(5), namely SO(5). Hence C[Sϊ7(5)χi Z 2 ] = SO(5). Similarly,
C[Sl/(4)] = Spin(10), and Ad(Q acts through Ad(0). Since θ = eίe2e3e4e^ an easy
calculation shows that the fixed point set is [Spin(5) x Spin(5)]/Z2. Notice that if
we embed Spin(5) in Spin(5) x Spin(5) diagonally, then

C[S17(5) x- Z 2 ) = 50(5) = Spin(5)/Z2 C [Spin(5) x Spin(5)]/Z2

= C[Sϊ/(4)χ.Z 2]

in agreement with the fact that SU{4) x Z 2 is a subgroup of SU(5) xi Z2.
Finally, C[5Ϊ7(3)] = £ 6 , so we need to find the fixed point set of Ad(£) in E6.

Notice first that if an automorphism of a group restricts to an automorphism of a
subgroup, then it also restricts to an automorphism of the centraliser of that
subgroup. Hence Ad(£) is an automorphism of E6. Since ζ2 = 1, it is an involutive
automorphism. We therefore need information on the involutive outer automor-
phisms of E6. Fortunately, the formidable task of classifying these was undertaken
by Wolf (1967), and so we merely need to interpret his results.

Theorem (8.3). There exist two distinguished involutive outer automorphisms, ψ1

and ψ2, of E6. The fixed point sets of these automorphisms are isomorphic
respectively to F4 and Sp(4)/Έ2. Every involutive outer automorphism of E6 is
Ad(Ad(£6)) conjugate either to ψx or to ψ2.

Proof Wolf (1967), p. 288.

The meaning of the final statement is as follows: if ψ is an involutive outer
automorphism of E6, then there exists geE6 such that ψ = Ad(g) o ψi o Ad(g~1) for
i = either 1 or 2. The point is this. Suppose that ψ = Ad(g) o ^ o Ad(g " x ) . Then the
fixed point set of ψ is clearly Ad(g)F4, which is another subgroup of E6 isomorphic
to F 4 . Similarly, Ad(g) o ψ2 o Ad(g~x) has a fixed point set isomorphic to Sp(4)/Έ2.
According to the theorem, then, every involutive outer automorphism of E6 has a
fixed point set isomorphic either to F 4 or to Sp(4)/Έ2.

As Ad(Q is an involutive outer automorphism of E 6, its fixed point set must be
isomorphic to either F 4 or Sp{4)/Έ2. Now clearly SU(3) x Z2cSU(4) xi Z2, and so
[Spin(5) x Spin(5)]/Z2 = C[_SU{4) xi Z 2 ] ς C[SI/(3) x Z 2 ] . But F4 contains no such
subgroup, as a glance at the list of maximal subalgebras of L F 4 immediately shows.
However, we have Sp(2) x Sp(2) c Sp(4), with the centre of Sp(4) diagonal between
those of the two Sp(2) subgroups; hence [Spin(5) x Sρin(5)]/Z2 = [Sp(2)
xSp(2)]/Z2cSp(4)/Z2. Thus Sp(4)/Z2 is the only possibility for C[Sί/(3) x Z 2 ] .

This completes the proof of Theorem (8.1).
We are now in a position to attack the classification problem.
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9. The Classification: Gauge Groups in E%

Recall that we are interested in compact, Ricci-flat Riemannian manifolds M such
that dim(M) > 1 and M is not locally isometric to a product. (We shall say that M is
locally irreducible.) The holonomy bundle is extended to an E8 bundle. The
exterior symmetry group E(ω) is finite for such M, but the interior symmetry group
I(ω) is to be identified with the gauge group of the theory. According to
Theorem (2.1), we shall therefore obtain a complete classification of all possible
gauge subgroups of E8 if we can compute the centraliser of every "holonomy
subgroup" of E8.

Here we shall not be quite so ambitious. Unfortunately, CΨ(M) depends on the
embedding of Ψ(M) in E8. However, it so happens that there is almost always a
particularly obvious and natural way of embedding the groups listed in
Theorems (6.1) and (6.2) in E8. We shall confine attention to these embeddings.
Subject to this condition, the classification below is complete; the reader will have
no difficulty in adapting our methods to other embeddings.

The possible values of n = dimM are 4-10, 12, 14, and 16. Beyond rc = 16, the
holonomy groups are too large to embed in E8. We consider each value of n in turn.

n = 4: According to Theorems (6.1) and (6.2), the candidates for Ψ(M) are SO(4),
0(4), Sp(l), Z4Sp(l), and Q8-Sp{\). Of course, Sp{\) is isomorphic to SU{2).

We know that the centraliser of SU{4) in E8 is Spin(lO). In SU(4), SO(4) is the
subgroup fixed by complex conjugation. If ζ is the element of E8 defined in the
preceding section, then SO(4) is precisely the subset of SU(4) which consists of
elements commuting with ζ. The centraliser of SO(4) in E8 is therefore Spin(lO)
uζ Spin(lO), which is the semi-direct product Spin(lO) xi Έ2 (where 7L2

 a c t s o n

Spin(lO) in the same way as Ad(e1e2e?e4e5)). Thus C[SO(4)] = Spin(lO) x Z 2 . (This
group is not, incidentally, isomorphic to Pin(lO).)

Similarly, 0(4) is the subgroup of U(4) fixed by Ad((). We can embed U(4) in
SU{5) as follows:

o ' ] • '
Then [7(4) embeds in E8 through SU{5)-SU(5). The centraliser in SU(5) SU(5)
(and hence - using Theorem (3.5) - in E8) is [7(l).S[7(5) = [[7(l)xSί7(5)]/Z5

= [7(5). Arguing as above, we find C[O(4)] = [7(5) x Z2> where Έ2 acts as complex
conjugation.

Sp(l) = SU(2) was treated in Sect. 4. (See also the end of Sect. 7.) We found that

y

In Z4 Sp(l), the Z4 factor centralises Sp(l), and so we must embed it in EΊ. The
obvious way to proceed is to embed Z 4 in the [7(1) factor of [7(1) E6CEΊ. Notice
that the Z 4 Sp(l) notation means that Z 4 and Sp(l) intersect in Z2, so we must
verify that the ΈA in [7(1) E6 does contain this Έ2. That is easy: the TL2 in question
is also the centre of EΊ, and so it must be contained in the centre of [7(1) E6 because
the latter is connected and is of maximal rank in EΊ. The centraliser of ΈA in EΊ is
the same as that of [7(1); since [7(1) is a torus, its centraliser is connected, and so we
find C [ Z 4 Sp(l)] = [7(1) E6 = [[7(1) x £ 6 ] / Z 3 .

Finally, the centraliser of Q8 - Sp(l) can be found most easily by noting that any
matrix representation of Q8 is centralised precisely by those elements that
centralise the corresponding SU{2). But Sl/(2) Sl/(2) = [Sl/(2)xSl/(2)]/Z2 is
precisely SO(4). Thus C[Q8 £/?(!)] = C[SO(4)] = Spin(lO) x Z 2 .
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n = 5: The possibilities for Ψ(M) are S0(5) and 0(5). Using the same method as for
S0(4) and 0(4), one finds that C[5O(5)] = SU(5) x Z2 and C[0(5)] = ί/(4) xi Z2.

n = 6: The possibilities for Ψ(M) are 50(6), 0(6), SC7(3), and SU(3) x Z2. The latter
two have been dealt with at length, and we have also discussed the fact that 50(6)
cannot be embedded in E8 through the "50(16)" subgroup. Instead we embed it in
the SU(6) subgroup of E7, as the real subgroup. The embedding in E8 then takes
the form

5O(6H5(7(6)-[5(7(2) x 5(7(3)] 5 (7(6)->S (7(2) EΊ-+E8,

where [51/(2) x 5(7(3)] SU(6) denotes [(5(7(2) x SU(3)) x Sl/(6)]/Z6. The centre of
this group is the common centre Z6=Z2xZ3 of 51/(2)x517(3) and S17(6). The
only connected subgroups of Es which contain [S(7(2) x 51/(3)] S(7(6) are
S(7(2) £ 7 , S(7(3) £ 6 , and £ 8 , with respective centres Z 2, Z 3, and Z l β Applying
Theorem (3.5), we obtain C(5£/(6)) = St/(2)x 5(7(3). We can determine C(5O(6))
with the aid of the following lemma.

Lemma (9.1). Es contains a subgroup of the form [S(7(9)/Z3] xi Z2, where ρ, the
generator of Z2, is such that Ad(ρ) induces the automorphism of SU(9)/Z3

corresponding to complex conjugation on 517(9).

Proof. We know that E8 contains SU (9)/Z3 as a maximal connected subgroup. As
in the proof of Theorem (8.1), let ρoeE8 be such that Ad(ρo)z = z~i, where z
generates the Z3 centre of SU(9)/Z3. Then Ad(ρ0) is an outer automorphism of
SU{9)/Z3. Now given any group G, an automorphism φ of G, and a normal
subgroup N in G, one can easily show that φ induces an automorphism on G/N if
and only if φ restricts to an automorphism of N. That is the case for the action of
complex conjugation on the Z 3 in the centre of 5(7(9), so complex conjugation
induces an outer automorphism on 5(7(9)/Z3, which we shall denote by y. The
outer automorphism group of SU(9) being Z2, we see that there exists s e SU(9)/Z3

such that Ad(ρos) = y on 5(7(9)/Z3. Let ρ = ρos. Now notice that if K is any group
satisfying the conditions of Theorem (3.5), then choosing H = K we obtain

Therefore the E8 centraliser of SU(9)/Έ3 is Z 3 . Since Ad(ρ2) = y2 is trivial on
SU(9)/Z3, it follows that ρ2 eΈ3 so ρ6 = 1. But Ad(ρ) induces complex conjugation
on the 5(7(5) subgroup of SU(9)/Z3, and this 5C7(5) is actually the canonical one in
E8. Thus ρ l o = l and so ρ2 = l. The group SU(9)/Z3κjρ SU(9)/Z3 is therefore
isomorphic to [S(7(9)/Z3] X Z2. This completes the proof.

Notice that since Z3xSU(5)cSU(9), we have SU(5)cSU(9)/Z3. Similarly
SU(9)/Z3 contains 5(7(6), S(/(7), and S(7(8), and Ad(ρ) induces complex conju-
gation on all of them. Now the SU(6)cSU(9)/Z3 is the same 5(7(6) discussed
previously. Since Ad(ρ) is an automorphism of 5(7(6), it is also an automorphism of
5(7(2) x SU(3). It is now clear that 50(6) is precisely the subgroup of SU(6)
consisting of elements that centralise ρ, and so we have

C[5O(6)] = [5£/(2) x S(7(3)] x Z2.

This is, of course, very different to C[5(7(4)] = Spin(10); the rank of C[5O(6)] is
only 3. This means, in particular, that string compactifications on manifolds of
holonomy S0(6) are of interest only if one can find another (7(1) factor in some
other way. [See Gepner (1988).]
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Finally, 0(6) can be embedded in S17(9) by

"s 0

_0 δl3

where δ = det 5, for any s e 0(6). This projects to an embedding of 0(6) in SU(9)/Z3.
The centraliser is just the projection of the 5(7(9) subgroup consisting of all

matrices of the form 6 , where a e (7(1), u e (7(3), and α 6 det(w) = 1. All such

matrices can be expressed as J* __Ί . I 6 for some 5 e 5(7(3) and so this
L 0 α 2/3J [ 0 sj

group is isomorphic to (7(1) x 5(7(3) (not (7(3)). The Έ3 in the centre of 5(7(9) is
contained in (7(1), and so the projection in SU(9)/Z3 is also isomorphic to (7(1)
x 5(7(3). Since 0(6) consists of real matrices,

C[0(6)] = [1/(1) x 5(7(3)] x TL2.

n = 7: The possibilities for <P(M) are 50(7), 0(7), G2, and Z 2 x G2. The first two may
be embedded in SU(9)/Έ3 and their centralisers computed in much the same way as
50(6) and 0(6). The results are C[5O(7)] - (7(2) x TL2 and C[0(7)] = Z 2 x 0(2).

G2 has a natural embedding in £ 8 through G2 x F 4 . We cannot use
Theorem (3.5) here directly, because Z(G2) = Z ( G 2 x F 4 ) = Z £ 8 = Z 1 . Instead we
reason as follows. G2 has maximal connected subgroups isomorphic to 517(3) and
50(4) respectively. These are also subgroups of the canonical Spin(6) in E8; indeed,
we have the following inclusions:

[See Salamon (1989); note that Spin(6) = 5(7(4) and that, since G2 is the only
connected Lie group with algebra LG2, it follows that both 50(7) and Spin(7) have
subgroups isomorphic to G2.] Hence we see that the 5(7(3) in G2 is precisely the
familiar canonical 5(7(3) in E8. Now the Dynkin diagram of G2 has no symmetries.
Proceeding just as in Theorem (8.1), we can show that there exists ξeG2 such that
Ad(£) induces complex conjugation on 5(7(3), and therefore also on its 5(7(2)
subgroup. By Theorem (3.5), the centraliser of 5(7(3) in G2 is Z 3 , while that of 5(7(2)
is SU(2) (recall 50(4) = [5(7(2) x Sl/(2)]/Z2). Hence ξ6 = ξ4 = 1, so ξ2 = 1. Thus we
have SU(3) xi Z2cG2. But this subgroup is not necessarily the same as the one
discussed in Theorem (8.1) - we do not know whether ξ = ζ. All we can say is that
since Ad(£) induces an automorphism of 5(7(3), it also induces an (involutive) outer
automorphism of E6. According to Theorem (8.3), this means that the E8 cen-
traliser of the 5(7(3) xi Έ2 subgroup of G2 is isomorphic either to Sp(4)/Z2 or to F 4 .
Hence CG2 is contained in one of these. But since G2 is embedded through G2 x F 4 ,
we have FAQCG2. As Sp(4)/Z2 does not contain F 4 , we have CG2 = FAr precisely.

Finally, we embed the Z 2 factor of Έ2 x G2 in F4 as the centre of the Spin(9)
subgroup of F 4 . We leave it to the reader to prove that the F 4 centraliser of this TL2

is precisely Spin(9) itself. Hence C(Z2 x G2) = Spin(9).

n = 8: The possibilities for Ψ(M) are 50(8), 0(8), 5(7(4), Έ8 5(7(4), 5(7(4) xi Z 2 ,
[ Z 8 SC/(4)] x Z 2 , 5p(2), Z 3 x 5p(2), and Spin(7). The first two can be embedded in
SC/(9)/Z3; 5(7(4) and 51/(4) xi Έ2 have been treated at length; Sp(2) and Z 3 x 5/?(2)
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were discussed at the beginning of Sect. 8; and Spin(7) is covered by Theorem (7.1).
Finally, TL8 SU(4) can be embedded in E8 through

TL8 S£/(4)->£/(l) SU(4)= U(4)->SU(5)->SU(5) SU(5),

and \TL8 Sl/(4)] xi Έ2 is, similarly, a subgroup of SU(5) xi Z 2 . The centralisers can
be computed by the usual methods, and they are listed in the Table below.

n = 9: SO(9) is a subgroup of [SU(9)/Έ3~\ xi Έ2\ it commutes with the Z3 centre of
SU(9)/Z3 and also, because it is real, with Z2. Hence the centraliser is Z3 XJ Z 2, the
dihedral group of order 6. On the other hand, 0(9) is ΊL2 x 50(9), and its centraliser
isz;2.

n = 10: Here we begin to find holonomy groups, namely SO(10) and 0(10), which
are simply too large to be embedded in E8. Hence we need only consider SU(5)
{with CtSϋ{S)y^Sϋ{5)) and SUiβ) πΈ2 (with centraliser

n = 12: The holonomy groups that can be embedded in E8 are 5(7(6), SU(6) xi Z 2,

These last five are the only ones that require further discussion. We know that F4

has a maximal connected subgroup of the form SU(2) Sp(3), while EΊ has a
maximal connected subgroup isomorphic to Sp(3)xG2. In fact SU(2)E7 and
G2 x F4 are the only maximal connected subgroups of E8 that contain
G2xSU(2) Sp(3). Since

G2 x SU(2) Sp(3) Q Sp(3) C[Sp(3)],

and since F4 and EΊ certainly do not centralise their Sp(3) subgroup, we have
C0[S/?(3)] = 5(7(2) x G2. All that remains is to deal with discrete factors, if any. Let c
be an element of C[5p(3)] that is not an element of C0[Sp(3)]. Then c is an element
of a disconnected group with G2 x SU(2) Sp(3) as its identity component. Since the
identity component of a Lie group is always normal, Ad(c) either acts trivially on
G2 x 5(7(2) Sp(3) or induces an outer automorphism on it. Using the method of
Lemma (8.2), one can show that, in the latter case, Ad(c) would restrict to an outer
automorphism of Sp(3). But Sp(3) has no such automorphism. Therefore c
centralises G2 x SU(2) Sp(3). In particular c centralises G2, so ceF4 and it
centralises SU(2) Sp(3) in F 4 . By Theorem (3.5), c lies in the centre of SU(2) Sp(3\
so ceSU(2). But this contradicts the definition of c; hence C[Sp(3)] = C0[Sp(3)
= SU(2)xG2. Embedding Z 4, Z 8, β 8, and β 1 6 in 5(7(2), one can now easily
compute the centralisers of the other four holonomy groups with Sp(3) as identity
component.

n = 14: 5(7(7) and S(7(7) x\ Z2 can be embedded in [S(7(9)/Z3] xi Z 2 .

n = 16: S(7(8), Z 1 6 5(7(8), S(7(8) xi Z 2, and [ Z 1 6 S(7(8)] xi Z 2 can all be embedded
in [5(7(9)/Z3] x Z J , 5p(4) can be embedded in 5(7(8); it can be characterised as the
subgroup of S(7(8) consisting of matrices 5 such that STJS = J, where

j=\ 4 I This can be written as JSJ~1=S. Let ρ be defined as in

Lemma (9.1). Then clearly Ad(ρ) induces complex conjugation on 5(7(8), and so
JSJ~ι= Ad(ρ)S for all 5 in Sp(4); in short, Sp(4) is just the fixed point set of Ad(ρJ).
Hence ρJ e C[5/?(4)], and one finds C[5/?(4)] = Z 4 (7(1), where Z4 is generated by
ρj, where (7(1) denotes the projection of (7(1) embedded in 5(7(9) by
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Γ«/β 0 1
|_0 a"8}

and where the dot indicates the product of subgroups in E8. (Z4

does not centralise U(\\ but nor is the product semi-direct, because the
intersection is non-trivial.) The final possibility, Έ5 x Sp(4\ is embedded by putting
Z5 inside (7(1). Since ρ does not commute with Z5, the centraliser is simply U(l).

To summarise, the following table lists every holonomy group sufficiently small
to be embedded in E89 together with the corresponding interior symmetry group
(that is, the centraliser in E8). For the convenience of the reader, the holonomy
groups are arranged according to whether the corresponding manifold is
hyperKahler, Kahler but not hyperKahler, orientable but not Kahler, or non-
orientable.

10. Conclusion

The list of possible gauge subgroups of E8 given in the table may seem rather
lengthy. One should bear in mind, however, that we are allowing the subgroups to
be disconnected, and that E8 has infinitely many different isomorphism classes of
disconnected subgroups. On the other hand, many of the groups that arise in this
way are of limited interest as gauge groups. Indeed, perhaps the most striking
outcome of Sect. 9 is the fact that the familiar Eβ gauge group which arises in string
compactifΐcations is actually one of the very few viable gauge subgroups of £ 8 . If
we adhere to a conventional, "grand unified" approach, then the only real
alternatives to manifolds with SU(3) holonomy are those with holonomy SO(4),
Z 4 SU(2), Q8 SU(2), Sl/(4), and TL8 Sl/(4). All other compact Ricci-flat locally
irreducible manifolds lead to gauge groups which are either of rank < 4, which
only have self-conjugate representations, or which are known to have phenomen-
ological difficulties. If we further require that the formula # =i |χ + τ| should lead
to precisely three generations, then Z4SU(2) and Q8SU(2) are ruled out, as
follows. It can be shown that the universal covering manifold of any compact
manifold with holonomy Z4. SU(2) or Q8SU(2) must itself be compact and
possess a metric with holonomy SU(2). Such a manifold must be diffeomorphic to a
K3 surface. For K3, χ + τ = 8, and so K3 cannot cover a manifold which gives rise to
precisely 3 generations.

If we go further and require that M be multiply connected (so that we can use
the Hosotani gauge symmetry breaking mechanism), then SU(4) is also eliminated,
because any compact manifold with holonomy precisely SU{4) must be simply
connected (Beauville, 1983). One should also note that a compact manifold with
holonomy Έ8 SU(4) must have ΊL2 as its fundamental group, so there is very little
leeway in that case. Finally, no example of a compact Ricci-flat 4-manifold with
holonomy SO(4) is known. It is conceivable that none exists - though in view of the
peculiarities of four-dimensional geometry, one cannot be confident of this.

We conclude, then, that within the framework of the usual assumptions, the
familiar Calabi-Yau manifolds with Ψ(M) = SU(3) are almost certainly the only
compact Ricci-flat manifolds that need to be considered. Of course, one might be
prepared to relax some of these conditions: for example, one could try to use
Witten's topological approach to account for only two of the observed gener-
ations, seeking elsewhere for the origin of the third. Again, we saw that manifolds
with holonomy SO(6) give rise to a gauge group of the form \_SU{2) x Sl/(3)] x Z2;
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Table 1. Interior symmetry groups of Ricci-flat compact manifolds with holonomy groups
extended to E8

n Ψ(M) I(ω)

HyperKahler Kahler Orientable Non-Orientable

9

10

12

14

16

51/(2)

Sp(2)

Sp(3)

Sp(4)

Z4SU(2)

SU(3)

SU(4)

SU(5)

SU(6)
Z12 SU(6)

-Sp(3)

SU(Ί)

51/(8)

SO(4)

Q8SU(2)

50(5)

50(6)

50(7)

G2

50(8)

51/(4) xi Z2

CZ8.51/(4)] x Z 2

Spin(7)

50(9)

Sl/(8)xZ2

CZ16-S(7(8)]>

0(4)

0(5)

0(6)

5L/(3)xιZ2

0(7)

0(8)

0(9)

S[/(7)xZ2

Spin(10)xιZ2

1/(5) x Z 2

£ 7

Spin(10)x>Z2

SU(5)xZ2

U(4)xZ2

[5C/(2)x5C/(3)]xiZ2

[ί/(l)x5ί/(3)]xιZ2

S6p{4)IΈ2

U(2)xΈ2

Z2x0(2)

Spin(9)

0(2)
0(2)
Spin(lO)
1/(5)
Spin(5) Spin(5)
0(5)
Spin(ll)
ί/(l) Spin(9)
Spin(9)

SU(5)
50(5)

5ί/(2) x SU(3)
U(l) x 51/(3)
50(2) x 50(3)
0(3)
SU(2)xG2

1/(1) x G 2

1/(1) x G 2

Z 2 x G 2

Z 2 x G 2

C/(2)
0(2)

1/(1)
1/(1)
z 2
z 2
Z 4 -1/(1)
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if a U(l) factor could be found in some other way, this would give us the standard
group directly, without any need for grand unification. This last possibility merits
further attention, and will be considered elsewhere.
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