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Abstract. We investigate the polynomial equations which should be satisfied by the
duality data for a rational conformal field theory. We show that by these duality
data we can construct some vector spaces which are isomorphic to the spaces of
conformal blocks. One can construct explicitly the inner product for the former if
one deals with a unitary theory. These vector spaces endowed with an inner
product are the algebraic reminiscences of the Hilbert spaces in a Chern-Simons
theory. As by-products, we show that the polynomial equations involving the
modular transformations for the one-point blocks on the torus are not indepen-
dent. We discuss the solution of structure constants for a physical theory. Making
some assumption, we obtain a neat solution. And this solution in turn implies that
the quantum groups of the left sector and of the right sector must be the same,
although the chiral algebras need not be the same. Some examples are given.
Finally, we discuss the reconstruction of the quantum group in a rational
conformal theory.

1. Introduction

Despite the fact that much progress has been made in understanding the so-called
rational conformal field theories (RCFT’s) recently, there remain many open
problems. Moore and Seiberg, in their work motivated by seeking a proof of the
Verlinde conjecture [2], formulated an algebraic approach to RCFT’s [3]. They
refined the duality notations in the seminal work of BPZ [1] and obtained a whole
set of polynomial equations for the duality data (see also [15] for a rigorous
approach). Obviously, these data do not determine the conformal field theory
completely: there are perhaps countably many models corresponding to a solution
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to these polynomial equations'. Thus, classifying RCFT’s must consist in two
steps, the first step is to classify all solutions to the polynomial equations, the
second one is to reconstruct from a solution the whole conformal field theory.

Let us concentrate our attention on the first step. The basic duality data
introduced by Moore and Seiberg and others [4] are the fusing matrices, the
monodromy phases of three-point conformal blocks and the modular transforma-
tions S(n) for the one-point blocks on the torus. It was possible to eliminate the
latter as the basic data [5] and further in [6] it was shown that the polynomial
equations involving these data are not independent. However, the modular
property of the characters has not been eliminated from the elementary equations.
On the other hand, if one believes that to every solution of the duality data one can
associate a quantum group, this property is automatically satisfied for all known
quantum groups. Therefore, we believe that the elementary equations are those
involving only the fusing matrices and the braiding matrices. [6] is based on the
technique that various vector spaces can be represented by graphs. These vector
spaces are available in the Chern-Simons theory (CSGT) [7]. It is still a conjecture
that a rational conformal field theory corresponds to a Chern-Simons theory. So
to base [6] on a solid foundation we need to construct these vector spaces for any
rational conformal field theory. This is one of the purposes of the present work.
Our second purpose is to solve equations concerning structure constants, which
combine the left sector and the right sector. These equations are overdetermined.
We show that there are simple solutions and conjecture that these are only
solutions. Finally, we generalize Witten’s construction of quantum group in SU(2)
WZW model to more general cases, using the so-called lassoing procedure.

To start with, we give a brief summary of the present status of the algebraic
approach to RCFT’s in Sect. 2. Duality properties are described. We also present a
revised algebraic axiom system for duality data. We eliminate identities for S(n),
but supplement with the definition of S(n). For the original algebraic axiom system,
please see [3].

In studying the polynomial identities, perhaps the most basic problem is to
choose an appropriate “gauge” of chiral vertices in which some duality data take
simple form. We shall do gauge fixing in Sect. 3. There are at least two advantages
with this gauge. First, elements of fusing matrices, when represented by closed
graphs, take simpler form. This enables us to prove the tetrahedron symmetry,
which in turn proves very useful in proving independence of identities involving
S(n) and in solving identities involving structure constants, namely the coefficients
used to combine the left sector to the right sector. Second, such a normalization of
elements of fusing matrices allows us to compare directly to the normalization
introduced in the framework of the Chern-Simons gauge theory [7] and proves
useful in study of the quantum group. Some facts concerning the normalization of
fusing matrices chosen in our construction are undoubtedly known to some
experts, but have not been exposed systematically.

Construction of various types of graphs from duality data was introduced in
[15] and [14]. Reidemeister moves (taking braiding phases into account) were
verified mainly in [14]. In Sect. 4, we shall construct tetrahedra representing
elements of fusing matrices based on these works. We also prove tetrahedron
symmetries there. Although it is widely believed that there should be such
symmetries, this is perhaps the first time to prove them. Construction of open
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graphs then inspires us to construct various vector spaces in Sect. 5, these vector
spaces in some sense are isomorphic to various Hilbert spaces in the CSGT,
therefore isomorphic to spaces of conformal blocks in the RCFT. We show that
for a unitary RCFT, we can define an inner product for the vector space. The
inner products are represented by closed graphs. These graphs are needed in
proving independence of identities involving S(n) in [6]. For an illustration, we
present the proof for one of them in Sect. 6. We supplement Proposition 5 to
show that S(n) (together with T) actually generates a projective representation of
the modular group of genus one.

In Sect. 7, using the gauge fixed in Sect. 3 and tetrahedron symmetries, we give
a solution for structure constants. However, at present we are unable to eliminate
an assumption for couplings of chiral vertices, which is not necessary when all
fusion rules N}kgl. The main result is that there should be an automorphism
among fusing matrices in two sectors. In our previous work [5], we obtained a less
strong similar result. This result suggests that our assumption is reasonable. We
give several examples at the end of Sect. 7.

Our second purpose of this paper is to reconstruct the quantum group [8]. It is
generally believed that for each solution to the polynomial equations, there is a
hidden quantum group. By investigating the monodromy property of solutions to
the Knizhnik-Zamolodchikov equations, one finds that the universal #-matrix
naturally appears as the monodromy matrix [9]. Alvarez-Gaumé et al. argued that
the quantum group as an algebra is the centralizer algebra of the braid groups
acting on the spaces of conformal blocks [10]. Moore and Reshetikhin proposed
some new chiral vertex operators and the quantum group acts on these operators
naturally [11]. In their construction, one has to invoke some so-called phenome-
nological observations. Still, a conceptual explanation is lacking. Starting from the
Chern-Simons theory, Witten has been able to define the relations among
generators of the quantum group by the so-called lassoing procedure [12]. The
drawback is that one must work with a Chern-Simons theory.

In [13], Alvarez-Gaumé et al. defined another kind of quantum group, which
we shall call the IRF quantum group. It has a close relationship with the quantum
group in the original sense (which sometimes we call the vertex quantum group).
We show in Sect. 8 that the algebra defined in [13] is actually a quasitriangular
Hopf algebra, the alternative name of the quantum group (a short introduction to
quasitriangular Hopf algebras is given in Appendix A). We also show that
candidates for the irreducible representation spaces of this algebra, by definition,
also obey restricted tensor product property. This indicates its relation to the
vertex quantum group, because in the representation theory of the vertex quantum
group, usual notation of tensor products must be replaced by the one of restricted
tensor product when the deformation parameter is a root of unity. Based on this
observation, we generalize Witten’s lassoing procedure for an arbitrary WZW
model, we give a systematic approach which applies to any WZW models. The
quantum groups obtained in this way are the ones one expects. For example, for
the SU(2) WZW model, the quantum group is U (SU(2)). Note that Witten worked
out the quantum group which is dual to U, (SU(2)) by a special prescription. We
just give some evidence for the existence of some limits of the duality data, instead
of proving it. However, we give two examples in which the lassoing procedure
works. In Appendix B, we show that if the existence of these limits is granted, what
we have constructed is actually the quantum group. Perhaps the most important
thing which needs to be done is to construct the quantum group without using the
Witten’s lassoing. In performing Witten’s lassoing, one has to analytically extend
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some parameters to the complex domain and take an infinite limit of certain
indices for some duality data. However, our work on relating the IRF and vertex
quantum groups strongly suggests that it is possible to construct the vertex
quantum group from the duality data without invoking the limiting procedure.
This remains a problem in our future work [21].

2. Some Preliminaries for RCFT’s

Let 2 be the Hilbert space of a rational conformal field theory in which the chiral
algebra o/ ® & is assumed. Here we use .« to denote the holomorphic part and o/
the anti-holomorphic part. The term rational is due to the finiteness of the
decomposition of # into irreducible representations of o/ ® o/

H = @(i,_i)'}fi@%% » (2‘1)

where . and % are irreducible representations of algebras & and .o/ respectively.
In particular, we identify #, with o/ and #, with </.

We concentrate our attention on the holomorphic part, but the results are also
valid for the anti-holomorphic part. The correlation functions on the sphere
decompose into terms factorizing into holomorphic and anti-holomorphic parts.
The independent holomorphic factors are named conformal blocks and can be
built from the chiral vertices. The chiral vertex is a certain coupling among three
representation spaces of &/. Here we use the notation of Frohlich et al. We will not
repeat the axioms [3,15] in defining the chiral vertices which are linear maps

HR,H .

We denote the space of all such maps by V}; with the finite dimension N%, this is the
fusion rule. A chiral vertex is specified by linear maps

VI, 2): > 4 2.2)

where |£;> € ;.

Suppose that we have a one to one map from the set (i) to itself, i—i",i" is the
charge conjugate of i. Let |[0) be the vacuum. Then we have the following
properties of the chiral vertices:

1. There is only one coupling

Vo't H®. Hw —>Hy .
Here we use 0 to denote the unique vertex.
2. We have
H®,10)=|0)®, #= A,
such that
V5110, 2) 1> = V5212, 00> =, .

The last two equations give a normalization of corresponding vertices involved.
Let | be a basis for . By property 1, we can choose a basis | ) for H#v
such that

C&=1im <O V(&N ), 2220 (23)
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Here ((£V])is dual to (J¢N)). This also fixes the normalization of the vertex V' once
the bases for s and #,v are chosen.

We come to the duality properties. Define the braiding matrices B [] ’l(] (+)
i
as

. i 1] .
V(133,20 V™ (1€, 22)] « =n§63mn [J k] ﬁ(i)%"‘(lfO,Zz)%""(lf 2221 2.4)

i
where signs + are used to denote two ways of analytic continuation of operator
Va1, 22 V™M1E), 21) to Vi€, 21)V5™(E1), 2,). Equation (2.4) states that the
dimensions of spaces ®,,V},,® Vi and @, V;,® V};, are the same, namely Y N}, Ni
=Y N},N%. Pictorially, we can rewrite (2.4) as "

1 1 j
\\ J I ~8
\__ =TBm|] 4] @ 29
ia mpBEk o iy n 6k

The fusing matrices can be defined as the structure constants of products of
chiral vertices:

Vazim(lfj>a21)V/;m’((|ft>,22)
. yé
-3 an[’. ,i] SCEIVHED 22O VMEZ). (26)
n,y,8 1 g N

This again means that the dimensions of two spaces ®,, V5, ® Vir and @, V;® Vi
are same. The graphic representation of (2.6) is

1 j 1 j
Y
l . 196
= ZF'mn l: i i jl n (2.7)
Ta m Ak of 6k

Note that objects represented by graphs in (2.5) and (2.7) are linear
independent, so both B(+) and F as matrices are invertible. So far we have used
open graphs with vertices of ¢ type to represent the conformal blocks. We will
not do so further, however, we shall use these graphs to represent quantities

constructed from B’s and F’s, following Frohlich and King.
iV j—ﬂO
_ L0 klos
For the spaces Vj; and V%, we can choose bases such that

Finally, notice that F ;v ,as matrix with indices « and f, is invertible.

Fol b I s 2.8)
ik _0 k on a

This equation fixes the relative normalization of bases for V} and VX,
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Finally, we give the algebraic axiom system for the duality data of a RCFT [3].
The duality data are
D1. A set (i) with a one-to-one map: i—i", the charge conjugation. We therefore
define the charge conjugation matrix by C;;=4;;v. The fusion rules N, form a
commutative and associative fusion algebra [2]. In addition, N;=C;;.
D2. Fusing matrices:

. F .
O Vim®@ Vi — @, Vi ® Vi -

D3. The maps Q(+): V- V}, which are given by phases
sigj(a)eiin(hk—hi—h,-),
¢¥(«) are signs. Hence the conformal weights are determined up to integers.
The braiding matrices are not independent data [3]. Similarly, the modular
transformations of the characters and the one-point blocks on the torus are not
independent either. They are defined by

Mi.
1 (0 ii7, )
bl _ _
So.0 F,~F,-<B[j iV]( )B[j iV]‘ )>oo

= eizﬂ(hq—hi—hj)(Fq)_ qu

ijo

where

M2. Similarly

. . joi
S(y» =7y e?"ha=hi=hg, F; I qls’
q,y By

where we have used the famous relation [3]
SO 0
F,=—".
q So,q
The formula for S; ; was obtained in [3,17] and formula for S(j) was first
obtained in [5].
Now the constraint equations are
C1. Pentagon identity
T23F 13F 12 =F3F ,F 3,
the detailed form is written in (3.1).
C2. Two hexagon identities
F(£)®NF=(10Q2£)F(1®Q2(1)).
C3. (STS™1)o,;=(T7'STIT™ 1)y, ;.
Remark. In [6], using M2 and C3, we proved the independence of identities

involving S(j) introduced by Moore and Seiberg in [3]. Since the proofis based on
graph manipulations, we shall present a proof for one of those identities in Sect. 6.
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For notations in C1-3, see [3]. Note that combining the pentagon identity one
can replace two hexagon identities by two Yang-Baxter equations. All these
equations together with definitions M1 and M2 guarantee that we have a
consistent algebraic system with properties of duality and modular covariance for
any genus. By D1 and C3, it is possible to prove the Verlinde conjecture [2, 3, 17,
10] and the contraints (ST)?=S?= C, where C is the charge conjugation matrix.
We will show this in Sect. 6. In the framework of quantum groups, Alvarez-Gaumé
et al. claimed that one can lift C3 for all known quantum group [10]. It has a
natural explanation in terms of the quantum group. So we suspect that whether C3
is really independent of the rest of the constraints or not. It is interesting to see that

only in C3 the central charge appears via T=diag <exp i2n (hi— 2—64 .

3. Normalization of Fusing Matrices

In this section we shall discuss the “gauge fixing” of the fusing matrices. There are
two purposes for doing this. First, to construct the closed graphs which represent
certain duality data in a neat way, which must be similar to the way in which
Witten defined normalization of graphs in a Chern-Simons theory. We will see that
for a general rational conformal field theory, one can obtain a normalization
similar to the one given by Witten. Second, to have a convenient normalization
will prove helpful in solving equations involving structure constants (in the sense of
Moore and Seiberg). Note that several authors have used the normalization we
will discuss for models with N% <1. But a full discussion for the general cases has
not been given.

3.1. Some Useful Formulae

To begin with, we write down the general form of the pentagon identities

r k r2vs i 2V
ZFPB"Z[ ! :l szl'l I: / ]
B pl p4 Pas pl p3 oo

; k 18182 H : Jriv2 ; LEYE)
-y Fm[] ] F[ P :' Fm[ ! s] RECE))
s, By D2 Dalasas r, k B3B1 D1 Palasp,

We give the following two special cases which will prove useful later. First, let
p,=r,=0, we find only when py=j", p; =p,=i,r; =k" the corresponding F’s in
the left-hand side of the above formula are not zero. In addition, the couplings «;,
,,7,, and y; are unique, which we can denote by 0. Similarly, in the right-hand side
of the formula, s=i" and B,=0, B, =a,. Finally, we use the formulae

r] k 30 i ] 30
F-v sV =F~v ' =1 .
o _0 i:|0a3 rE [0 k:|0a3 ’ (3 2)
which come from (2.8) to obtain the special pentagon identities
i ] Ir18 kV k 00 i iV 00
Fouv F.v = F . .
L N [P N N S
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For fixed indices i,j, k, above equation states that as matrices

i jv k kY
FOk[i j] and FjOI:i ;

iV

are nonsingular provided F, [z ; :I =F, is not zero. Here we have replaced j¥
and k" by j and k respectively. The fact that F; cannot be zero and F;v =F; is
proved in [2,3]. For a unitary theory F;>0.

In (3.1), let p;=r,=0, in this case the left-hand side gives F;, and we find
another useful formula

. iv ap k kv 00
ZFOkVB ] F,-o[. ] =04,F;. (34)
ﬁ 1 00 1 1 ‘)’ﬁ
Comparing (3.3) with (3.4), we deduce
j iv]ﬁa [l jV:|aﬂ
ok [] t _loo %L J oo (3)
Again in (3.1), let p,=r; =0, we find
k ] Pa k kV 00
%FOi |:k JjY ]oo Fio [i i :Iﬂy - 5”Fk . (3.6)
Combining this with (3.4) and (3.5), we obtain an important formula,
i jv ko j
FOkI:l- J] /Fi=FOil:k jv]/st (3.7

where by the superscript T we mean matrix transposition. This formula will be
relevant in our gauge fixing of the F’s, which in turn implies tetrahedron symmetry
of the F’s.

3.2. Gauge Fixing

We first prove the following theorem.

Vv

k
Ni, x Ni, (complex) matrix, and its entry is nonvanishing only when indices o and
are such that signs ejv (o) and e} (B) are same.

Theorem 1. For the unitary theory, the matrix F; J is a non-singular

Proof. The first fact can be easily learned from (3.4) or (3.5), since for a unitary
model, F; is not zero. To prove the second fact, consider the following relation:

j k

01 = (3.8)




Duality and Modular Invariance in RCFT 481

This relation can be viewed as the fusing relation for conformal blocks, or the
relation among quantities constructed from duality data. For the latter expla-
nation, see [14] and Sect. 5 in this paper. It is convenient to work with the latter
explanation. Doing braiding twice on both sides of the above equation (amounts
to multiplying braiding matrix twice in the second explanation), we have

K\, /]

k
k" "\
It has been proved in [14] that the quantity in the left-hand side of the above
equation is just

ko

ko j
while the quantity in the right-hand side of the above equation represented by that

graph is given by the similar graph on the right-hand side of (3.8) with two
extra phases, finally we find

k k j
j kV afl . ‘ l Q
0| =X F [ ik ] v ()€l (8) (3.9)
00
kK j k i

Recall that relation (3.8) and (3.9) must be the same, this is due to the fact that
the order of indices j and k is irrelevant in our case, since there exists an involution
z—1/Z (roughly speaking, this involution exchanges points 0 and oo on the
Riemann sphere, thus (3.8) and (3.9) is the same as explained as relations among
conformal blocks. This result can be readily generalized to the other explanation).
Equating (3.8) and (3.9), we find &ju(x)e}(B)=1 for a nonvanishing entry of the
fusing matrix. [

Remark. Similar to (3.5), we can prove

k \% ] jlaﬂ |: J k \% ]aﬁ
F i . =F i .
° [kv 7Y Joo 0 Jk loo
by using the pentagon identity. The quantity on the left-hand side in the above

equation is just the coefficient on the right-hand side of (3.9). This can replace the
argument in the last paragraph.
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Now we shall show that by choosing a certain “gauge” for the chiral vertices,
these matrices can be diagonalized into the form

i v
FOiB kk ] =Fj'ke, (3.10)

with appropriate constants F%,, where e is the unit matrix. Surprisingly, in the
generic gauge, Fi, =(F;F,/F)"?, the same form given by Witten in the Chern-
Simons gauge theory!

For the space Vi, we do a “gauge transformation” given by a N4, x N, complex
non-singular matrix 4}, namely

V1D, ) =2 (APV16.). 611

k
to Theorem 1. Therefore, we also require that A% is block diagonalized, namely,
under A}, chiral vertices V* with positive e}(«) do not mix with ones with negative
&l (o). This is also quite physical, otherwise after gauge transformation, braiding
matrix may have no definite eigenvalues with new chiral vertices.

Since we have already fixed the normalization of some chiral vertices, the 4J’s
cannot be arbitrary, they are subject to

=AM =1, (3.12)

We shall use A%, to diagonalize F,, j which is block diagonalized, according

coming from property 2 in the last section, and
A= A%, (3.13)

from Eq. (2.8).
Under the “gauge transformation,” we have

. kv . - . kv .
FOiB ; ] = (A} )TFmB. ; }Afk, (3.14)

where we used matrix notation. By Theorem 1, all matrices in (3.14) are block
diagonalized in the same fashion. We see that under these transformations, F; is

j v

gauge invariant. From (3.14) one may think that F;|", can be diagonalized

k
into an arbitrary form, this is not the case as we shall see. First suppose all these
matrices are diagonalized, Eq. (3.13) then implies that we shall have

j k \ k A l \
FOil:’, k:lOCFojv [k" M (3.15)
One easily sees that this is a consequence of Egs. (3.5) and (3.7). Therefore there is

no obstruction coming from (3.15) [or (3.13)] to the simultaneous diagonalization.
Next we shall note that another matrix under the transformation involving A4}, is

ik
Foj[z, k\,:l, we have

i k U A ¢ )
FOj[i kv]=(Afk)TF0j[i kv:l }kV, (3.16)

which also contains A%, .
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Now suppose a certain F-matrix is diagonalized as in (3.10). We find from (3.16)

and (3.7) that F, ,I:; v | is also diagonalized, and

Fj [Fy=F/F;. 3.17)

This is only a restriction on possible Fi. It means that F’, cannot be arbitrary. A
generic solution of (3.17) is Fiv=f;f,v and fiv =f;. From (3.17) we find i
=F,/F;, and a typical choice of f} is f/ =(F;/F,)"/. Finally note that Fi,=F; by
definition, so fk=]/I'Tk. To summarize, we have proved the following theorem:

k

Theorem 2. It is always possible to choose a gauge for chiral vertices such that
certain fusing matrices can be diagonalized as in (3.10) with

F{k=(FiFk/Fj)l/2 ) (3.18)

and in the new gauge, braiding matrices have definite eigenvalues with new chiral
vertices.

Notice that (3.18) is the same as suggested by Witten in the framework of
Chern-Simons theory. We have not assumed F;>0. Equation (3.18) must be

understood as a product of various factors |/ F.

Remark. The gauge (3.18) is almost implied by our natural normalization for some
special chiral vertices set in Sect. 2. If we do not assume this normalization, then
Al, and A?" can be arbitrary, now any solution must obey the following

restriction: o . )
Flw [Fy=F Al /F.Al, . (3.19)

especially we can choose A}, such that in (3.18) every F; is replaced by its absolute
value.

Finally, we note that (3.18) does not fix the gauge completely. We have residual
gauge transformations which are subject to

(AT A =e,  Afy=AY,. (3.20)

These will prove useful in Sect. 7.

4. Construction of Tetrahedra

The tetrahedron graphs can easily be constructed both within frameworks of
quantum group theory and Chern-Simons theory. The construction for a general
rational conformal field theory is believed to exist, but nobody has given such a
construction. What we will give here is a straightforward consequence of the work
of Frohlich and King [14]. By the duality property, one can show that there are
tetrahedron symmetries among entries of the fusing matrices. Both the tetrahedra
and the tetrahedron symmetries are used in the proof of the independence of the
polynomial equations involving S(n).

4.1. Definition of Graphs

We shall make use of the elegant pictorial representations of the basic data B’s and
F’s given in [14, 15]. For simplicity, we assume N <1 in this section. The results
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obtained can be generalized straightforwardly to the other cases. We will first
review the definitions of fundamental graphs, following [15,14]. All topological
moves have been proved in those references, so we shall use them freely. Under the
gauge we have chosen in Sect. 3, we show that tetrahedra have the same meaning
as in the Chern-Simons gauge theory.

The basic data are represented by a cross of two edges or a vertex at which three
edges meet. We define

le 4.1)
Bﬂ 4.2)
Fmp [ 4.3)

Here each line is oriented and marked with an index corresponding to a

representation space #,. Since these graphs are open, namely we have outer legs,

each open region is also marked. Note that in (4.1-3) all lines go downward.
Now the polynomial identities can be written in the topology language: we

construct more complicated graphs from the elementary ones in (4.1-3). If two

graphs are equivalent under Reidemeister moves, the quantities represented by

these two graphs are equal to each other [14]. We have the following rules in

constructing more complicated graphs.

Rule 1. All edges are oriented and marked.

Rule 2. All edges go downward.

Rule 3. Each open region is marked.

Rule 4. Write down a B for a cross of two edges according to (4.1-2).

Rule 5. Write down a F for a vertex where three edges meet according to (4.3).

Rule 6. Each closed region is unmarked, dictating a sum over all possible marks.
We will not prove the Reidemeister moves here, but refer to [14]. An important

example is the Yang-Baxter equations

(4.4)
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Another example is a kind of pentagon identities

4.5)

In order to construct more general graphs, in which some edges can go upward
or horizontally, we have to define more elementary graphs. Consider

k k k
NEEA _
on[k k]‘ i —m . (46)

We see from (3.4) that these quantities are not zero. Using the gauge fixed in the last
section and Eq. (3.6), we find

j jV . .
Fio[k kJ=Fk/Fi!k=F;'k‘ 4.7

We further define new graphs

i
‘ k
(Fip)™t = , 4.8)
and i
k| i —1  f NE > 0. 49)
Use (4.6), (4.7), and (4.9),
k

Fj(Fj)™" = j’/\/ = k11w
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By adding (4.8) in the construction of graphs, we can eliminate rule 2. Again
Reidemeister moves are guaranteed. For example

J J
AT A
? P I 1

as shown in [14], and

S
k S
A = }Q (4.12)
' r m i
P T

The above equation is equivalent to

ros p’' p p¥ r sV s
N R T

a special case of the pentagon identity.
By (4.8), we can construct closed graphs. The simplest one is

] .
i = Tu(F) T Fs, (414)

which is related to the element of modular transformation of the characters, and
will be discussed in Sect. 6.

It is straightforward to construct a tetrahedron from the vertices in (4.3). Our
first step is

where we have used (2.8). The second step

k
NP g r s i mY m kY
0 -F'mp[i kJFOr[l m }FOs‘:m k ]/(me)
m 4.16)
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Finally

i mY m kY
|| s,
4.17)

Where we have omitted the mark O for the outer region, we shall always do so.
Choosing the gauge (3.10) and (3.18), we have a symmetric expression for F in
terms of this tetrahedron

T 8

Frmp [ b J = (F,F,F,F,)? 4.18)

This expression is of the same form as the one by Witten defined in his original
paper on the Chern-Simons theory [7]. Here we have no factor (S, o) ~*. So, o is the
vacuum functional of CS theory. This means that our graphs defined here
correspond to the normalized ones in the Chern-Simons theory. We stress that our
construction in (4.18) does not invoke any notion of a three dimensional quantum
field theory.

4.2. Tetrahedron Symmetry

In the Chern-Simons theory, since the tetrahedron diagrams are defined by
expectation values of geometric objects [7], the tetrahedron symmetry is an
automatic consequence. In the last subsection, however, we defined the tetra-
hedron more formally for a RCFT. Hence we have to prove its symmetry. The
tetrahedron symmetry is a consequence of Reidemeister moves and the following
two braiding rules:

P P
i k =eleinhp=hh) k, (4.19)
T

m\ s e/ o\
and

P P
i k =ehe™temh ko k, (4.20)
r -~ $ rl m)Vs
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where ¢, is a sign depending on the coupling type of the corresponding chiral
vertex, h, is the conformal dimension of the highest vector in J#.
Equations (4.19-20) are implied by the three point conformal blocks. Before
showing the tetrahedron symmetry, we provide a proposition concerning signs
appearing in (4.19) and (4.20).

Proposition 1. a) If Njj=N% =N%=Nk=1 and
il
F
mn [k l:l =t= 0 ’
then s,,s Cm =
b) &fjvejm=2¢;v.

) If Ny =1, then elvefegy =1.

Proof. a) b), and c) follow from a), so we first prove a). Consider the fusing relation

Oﬂsm

j 1 J 1

1
=ZFMH } n . @2

Similarly

Resolving braidings in the above equation, we find

j 1 J 1
o
Ezlfjm = Zan l: i i :l ej'lffu n ’
k m i k i
(4.22)

where we have dropped out a common factor associated to conformal weights.
Comparing (4.21) with (4.22), we find that %, = }¢k;, since each term on the right-
hand side of (4.22) is independent. However, when the corresponding entry of the
fusing matrix is zero, the proposition needs not be valid.

b) Let in a) i=k, [=j", and n=0, since

Fmo[]l ]l] Fr+0,
SO efivel, =67 .
c) From b)

; v
8 8 8vkv, 8 v-—8”8]vkv, al(c)kv =8{c"i“£;<j’

combining these identities, we prove ¢). []
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The term tetrahedron in (4.18) means effectively one can treat it as a
tetrahedron in 3 dimensions

(4.23)

The tetrahedron symmetry in turn implies that we can do various projections of
the tetrahedron onto the plane. The resulting various graphs are equal to one
another. For example, we have

Theorem 3. There is a tetrahedron symmetry:

(4.24)

Hence, by virtue of (4.18),

iV ok r s
Fop [rv s] =F,,,p[i k]. (4.25)

Proof. We go from the right-hand side of (4.24) to its left-hand side. Using (4.19-20),
we have )

p

T .
v 1 - ~-h,
= € €y emhrthm=hi=hr) . (4.26)

m

We remark that the graph in the right-hand side of the above equation
corresponds to a B. Using (4.19-20) again, we achieve

p

T k
e—'iﬂ'(hp+hm =hp—h,) (4.27)

v \
= €gVpvEgpy
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Combining (4.26) and (4.27):

VooV v
= €$/kv€gpv€,-vp€$v

Now applying Proposition 1, whenever the quantities in (4.28) are not zero, we
must have -
&g Epveiney =1, (4.29)

thus we proved (4.24). [

5. Constructing Vector Spaces

Various operators acting on the conformal blocks and on the states in the Hilbert
space have been constructed when one treats a Chern-Simons theory. These
operators include generators for the quantum group [11], the half Verlinde
operators [13] and the Verlinde operators [2, 5]. Usually, it is not so easy to work
everything out directly in these frameworks. One main issue for the reconstruction
problem is to construct vector spaces which are isomorphic to the spaces of
conformal blocks from knowing only duality data. To compare with the Chern-
Simons theory, we shall also define an inner product for the vector space. As we
shall see, this can be done for a unitary theory. This fact is not surprising since we
know that the rational conformal field theory corresponding to a Chern-Simons
theory is unitary.

One purpose for constructing the vector spaces with inner products is that we
can express other quantities such as the modular transformations S(r) of one-point
blocks in terms of them. In this way, it is straightforward to show that the
polynomial identities involving S(n) are not independent of the set of equations
given in Sect. 2 [6]. We will provide the proof for S(n)*>=©(n) in Sect. 6.

After constructing all these vector spaces, we have explicit blocks in building a
rigid quasitensor category, which we denote as the Moore-Seiberg category (see
Appendix B). To recover the quantum group from this category, we have to
construct other vector spaces on which the quantum group acts. Mathematically,
we have to construct a functor from the Moore-Seiberg category to the category of
vector spaces.

We shall assume in this section that our theory is unitary. By the CPT theorem,
the F’s must satisfy [17]

F_ il i2 7 _F i;/ l; v (5 1)
. J k aﬁ— Y kY aVﬂV’ '

where by F we mean the complex conjugate of F. )
Given a triplet (ijk) and any p, if N, >0, we construct the vector space W;(p) of
dimension N}, which consists of states

jayiog kog

m|n .
[a)p = e w (FiF;Fi)ilm,n, a;), (5.2

Q
p
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where |m,n,a;) is an arbitrary orthonormal basis, introduced by hands. The
number of them is usually larger than NJ. By the inner product among |m, n, «;),
we associate an inner product among |« ,. By (5.1) and the tetrahedron symmetry,
it is easy to see that we have

a"p

pla] = m (FF )~ (m,n, o).
min

jal ’iag k013

The coefficients in the above formula are complex conjugate of those in (5.2). The
inner product can be easily calculated

aV

plalB)p = j( g )k (5.3)

Y
p

aV

=j ik = (FRFF) 6, (5.4)
3

the equality between the first line and the second line can be proved by lassoing the
graph in the second line by a cycle marked p. We see that all spaces Wj(p) are
isomorphic to each other for fixed (ijk). Since there are N, of o and (ja),) are
orthogonal, we have proved

Theorem 4. The vector space Wij(p) generated by () ,) is N}, dimensional.

Denote the total number of vectors |m,n,a;> by Nidp). Since all |o), are
generated by these vectors, there must be N/, (p) = N%,. This is implied by the above
theorem. However we would like to present another proof for this. From (5.2), we

learn .
Ni(p)= Y. szNﬁvam=(vaNiNk)g- (5.5

where we defined matrix (N,)j = NJ, et al. These matrices satisfy the fusion algebra
NiNk'—’ZNf'kNl- (5.6)
0

Substitute (5.6) into (5.5), we find
N{k(P)=ZI‘,N N ;v N s = Nj(N v N )b
= N3 N} NT, 2 NGN§oNE, = N,
Thus, we proved

Proposition 2. Ni(p)= Ni. o
Define matrix N,(p) by (N(p)i = Ni(p), we shall prove
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Proposition 3. Matrices N{p) form the commutative “fusion algebra”
N{p)N(p)= LN AP)N(p). (5.7)
Proof. Using the Verlinde formula

S4iSk:S;
N1= kiYkj kl’
TE Sy

we diagonalize N(p) simultaneously by S:
. 152
SN(p)S* =diag <S’l3”1) .
Sor

It is straightforward to prove (5.7) by using these diagonal matrices. []

Remark. Note that usually
Ng(p) =(NiNj)5='= Cij and N{)i(P) =(Niva)§=|= 5ij .

Ni(p) cannot be fusion rules of a rational conformal field theory. Thus, the vector
space generated by vectors |m, n, o;) has no direct physical meaning. At present, we
do not know what is the use of the seemingly interesting formula (5.7).

The construction for Wj, (p) can be extended to more complicated cases. For
example, the vector space W/, (p) consists of states

Jjar tiag fpa3 130y

min |q
Il,a,B) = [m,n,q,a;). (5.8)
al f
P

Now it is easy to prove that all these vector spaces are isomorphic to the
corresponding spaces of conformal blocks, since we can define the braiding and
fusing naturally. The braiding relation and the fusing relation result from
polynomial equations, for example

jor g faa3 i304 Jjoa ilazr o3 13004
. . 76
lmlniql =an[2?z,:] mY,q ). (9
o« T A 7 e
P p

To prove that the above equation is equivalent to the pentagon identity, we need
the tetrahedron symmetry to rearrange the indices.

By the notion of the vector spaces, we can express various graphs in terms of the
fundamental ones. For example, let

2 ] a3

Vas Vas toy
l U l U |m,n,q,0;), (5.10)



Duality and Modular Invariance in RCFT 493

We have
j i ioi g
) sz, ><—-L>U ' i
o q VY
p P (5.11)

This can be proved by taking the inner product of the vector in (5.11) with the base
vectors and checking that the norms of the vectors in the two sides of the above
equation are same.

So far we have constructed various vector spaces which are isomorphic to the
corresponding spaces of conformal blocks. But for the latter we cannot define the
inner product. Recall that in the Chern-Simons theory, the Hilbert spaces have the
natural inner product, so our vector spaces defined here are the algebraic
reminiscences of the Hilbert spaces, if the correspondence between the RCFT and
the Chern-Simons theory exists.

Finally, we discuss the fusing of products of states. Let a € W, and fe W, we
can define the formal decomposition

. e [7)
Ia>®lﬁ>=k'>ZWkak[; i]ﬂlv>®l5>, (512)
s 1Y) EW [d
|6>ewt,

which preserves the inner product. To show this let us recall
(e |®@LB, o> ®IBD) =040 pp (FiF F,F,FR) ™12, (5.13)

and a similar formula for the inner product of the states appear in the right-hand
side of (5.12), and

_ i jPPcer AR A EACAR ) AR A L A A

= \ A% = v =F .

ka[l n:Iazﬂ Fm k |:lv nv Vg ka nv ] km 1 n 5
5 (5.14)

In the discussion about the quantum group we shall introduce a “restricted”
tensor product, in this sense |y) together F in (5.12) may be viewed as an
intertwiner. Formally, we can write down

. . );6
@B = % Fu [; / ] (F,F,F,)™ 1455, (5.15)
sye WL, " Jap

where the subscript y for |§) means that the state |§) is in the y-th copy of W;,. The
factor (F,F;F,)~'/* takes care of the preservation of the inner product. The
quantities appearing in the right-hand side in front of |§), serve as the intertwiner
for certain operators defined in Sect. 8. But remember that (F;F;F,)”/* plays no
role in the intertwiner, because it is a common factor. We should point out that
inspired by (5.9), which is equivalent to the pentagon identity, one can define some
variations of (5.15) [21]. This could prove helpful in studying the quantum group.

In conclusion, we have constructed various vector spaces in which a vector can
be represented by a graph in which all regions are not marked except for the outer
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one. Inner product of two vectors then is represented by a closed graph, i.e.,a graph
without outer legs. We can define fusion maps among tensor products of spaces
Wi. These maps will be used in discussing the quantum group in Sect. 8.

6. Modular Covariance for Conformal Blocks on the Torus

In this section we shall demonstrate how one can prove the polynomial equations
involving modular transformations S(r) for one-point blocks on the torus. Moore
and Seiberg proved that if the duality properties for the four-point conformal
blocks on the sphere and the modular covariance for the one-point blocks on the
torus are satisfied by the duality data, the remaining duality properties and the
modular covariance of conformal blocks on a Riemann surface of arbitrary genus
are guaranteed. We already summarized the polynomial equations for the fusing
matrices and the braiding matrices in Sect. 2. These equations are sufficient for
constructing topological invariant graphs, as we showed in Sect. 4. In this section,
we use the definition for S(n) in Sect. 2 and manipulations on graphs to show that
the equations for S(n) are not independent [6]. We only demonstrate the proof for
one of them. For the proof of remaining identities, please see [6]. Actually,
Proposition 4 and Theorem 5 were proved by the present author and Yu in [6].
We offer Proposition 5 here in order to show that actually S(n) together T(n)form a
projective representation of the modular group of genus one.

For simplicity, we assume that N% <1. We write down the definition M2 in
Sect. 2 for S(j) again:

S(n);, ; =§ e2rha=hi=hIs, (M) ;5
n i
L .=F. . 6.1
(T{n);, j=F; [ i q] (6.1)

S;,; are entries of the modular transformation for the characters on the torus?,
corresponding to t— —1/1.

Proposition 4. The above formula has a simple pictorial representation

S(n);, ;= SO,O(Fn)1/2 (6.2)

Using the vector spaces constructed in Sect. 5, it is not hard to prove (6.2). In
(6.2) we have used the famous identity [3, 17, 15] F,=S,,o/So,» (5.11) was also
used. Note that (4.14) is a special case of formula (6.2). By (6.2) we are able to prove
that S(n) is a unitary matrix and satisfies the first identity S(n)*> = @(n) required by
modular covariance. Here we define the matrix @(n) as

@(n)i’j= 8?i\/8?ive—inhnci’j . (6.3)

where C is the charge conjugation matrix, C;;=0d;;v.

2 1t should be interesting to interpret Eq. (6.1) in terms of the quantum group. We will do so in

[21]
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S(n) together with T(n), the Dehn twist along the a circle, provides a projective
representation of the modular group. If S(n) is block diagonal, then each block
corresponds to an irreducible representation. Therefore, if i and j are in the same
block, we expect that the phase in the front of C must be same, namely, &veo

"vediv. This is guaranteed by the following proposition.

=EjjvEjy

noi
Proposition 5. If there exists a q such that F; l:j qJ +0, then &}vefv =¢ved;v.

Proof. Using statement a) in Proposition 1, we find 8{g§{; = Ehiblys namelgz &)= Enge
Next, since Nj;v and N7}, are not zero, by b) in Proposition 1, we have ;v =g¢,};v
and &),y = ¢} £7;v. Combining identities we obtained, we prove the proposition. []

Now if S(n); ;# 0, there exists at least one g fulfilling the condition in the above
proposition, so the corresponding signs in the front of C in (6.3) agree.
At last, we come to prove

Theorem 5. S(n) is a unitary matrix and satisfies S(n)*> = ©(n). This implies that S(n)
commutes with @(n).

Proof. First we note that the inverse of S(n) is

S n), j=Y e2m TR TRaASy (Ty(n));, ;- (6.4)
q

It is easy to prove that S(n)S~!(n)=1, so that S(n) is actually invertible. To verify
this, one notes that matrices T(n) satisfy the fusion algebra

Ty T, () =Y Ny To(n),

asit can be verified from the pentagon identities [16]. In verifying that S ~!(n) is the
inverse of S(n), we need also the identity (ST)* =S? for the modular transforma-
tions (of the characters) on the torus. We shall show later in this section that this
equation holds provided

(STS™ Yo =(T~'S™1T ™), . (6.5)

Similar to (6.2), one can prove the following

S~ (n);,;=5So0.0o(F)''* z , (6.6)

Using the tetrahedron symmetry, we can prove
T (n)=Tp(n"), THm=Tn"), (6.7)

Subsequently we have T}}(n)= T,v(n). Substituting this into S*(n) and noting that
So.4v=35S0,, we find S'(n)=S""'(n), namely S(n) is a unitary matrix.
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We are ready to prove S(n)2=@(n). Consider the graphic representation of
S~ 1(n) in (6.6). Rotating the right cycle labeled by the index i (rotation can be
achieved by simple moves), we find

S™Yn);, j=So,0(Fn) "/ ?e™nefiveiy ) (6.8)
=e™nened Sy, i

this means S~ '(n)=0"'(n)S(n), and S(n)>=O(n). This also implies that S~ !(n)
=S(n)® ~(n), namely S(n) commutes with @(n). More generally, one can prove
that T(n)®(n)=O(n)T,«(n). This is a consequence of the fact that T,(n) can be
diagonalized by S(n), as showed in [6]. [

Other equations can be proved also by manipulating graphs [6]. Besides the
duality property, we need use only (ST)* = S? which is ensured by (6.5), as we shall
show shortly. It is a natural conjecture that (6.5) is satisfied by any quantum group.

Atlast, we would like to point out that by similar graph manipulations one can
prove the Verlinde conjecture, using the definition for S in M1 of Sect. 2 [we need
not assuming (ST)3 = S2 here, unlike in the proof for S(j)*> = @(j)]. A special case of
the Verlinde conjecture is SST = 1, by the property of the fusion rules. We then have
S%=C. Further, using definition M1 for S, we find

TST= z ei2n(7nq +50)S0’qu ,
q

where N, is the matrix of the fusion rules and h;=h;—c/24. Now substitute the
Verlinde formula for the fusion rules into the above equation. We deduce

S™ITSTS =diag(e’™(STS ™ )y;/So. ) (6.9)

we see that provided (6.5) is valid, the above equation implies that (ST)* = S2. So all
the mess equations concerning modular transformations are eliminated except for
(6.5). This is why we include only (6.5)as item C.3 in our whole system of identities
in Sect. 2.

Finally we make some remarks on Eq. (6.5). If we have a hidden quantum
group structure which organizes all those duality data. Equation (6.5) has a
natural interpretation in terms of the quantum group [10]. Notice that in our
algebraic axiom system (cf. the end of Sect. 2), (6.5) is the only equation containing
the central charge. For a quantum group, the central charge can be defined via an
invariant.

7. A Solution for the Structure Constants

In this section we discuss the solution of the polynomial equations for the structure
constants for a unitary theory. For a physical rational conformal field theory, we
have to combine left and right sectors to obtain physical correlator and field
operators. Before writing down the formula for the physical fields, let us recall
some results obtained before.

Suppose that we already have the largest chiral algebra. Let (i) be the set of
labels of primary fields in the left sector and (i) the set in the right sector. A result
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obtained by Dijkgraaf and Verlinde and by Moore and Seiberg states that there is
one-one map IT from (i) to (i). Sometimes we will denote i=II(i), such that the

physical Hilbert space is _
H =@ ; 4, H;; (7.1)

remember that 0 is always mapped into 0. The map IT is an automorphism of the

fusion algebra, namely
Nijk=N'i'ch~ (7.2)

In addition, we have F;=F;.
Bearing this result in mind, we can write down the formula for a physical field

O\ ad

brexnlz2)= ¥ d ( ;J) VA&, VA8 2), (7.3)
i,i,j,j,a,a&

where d’s are called the structure constants, they are not the structure constants in

the BPZ sense [1].

The polynomial equations originate from the requirements that for three-point
correlators and four-point correlators there are no nontrivial monodromies, and
the one-point function on the torus must be modular invariant [17]. Moore and
Seiberg proved that these structure constants are not zero, provided the
corresponding fusion rules are not zero. This is called the naturality theorem [17].

From the three-point correlators, one finds

iaa 1 tin(hy—hr+h;—hj—h;+ hy) iaﬁ
d () (@) T b —hrthy—hi=hith) — g ; 7.4
(rj) (@)55(@) iy (74)
this means that after the braiding, the correlator remains unchanged. There is
essentially one phase on the left-hand side of the above equation, since from the
two-point correlators we must have

gi2mhi=h) =1 (7.5)
Hereafter we shall use the notation
& o, @) = &) ()T (@)e* O T het by TRy Rk, (7.6)
Similar to (7.4), we have
d(rlj)m B (o, &)=d<fivv ) (7.7)
Consider the four-point correlators. The following equality
i 1i il 1
m,zﬂl ='§ﬂ ’ (7.8)
il min kk il L

can be understood in two ways. Firstly, by fusing, we obtain the left-hand side from
the right-hand side, secondly, both sides must be equal to each other without doing
fusing. We thus have

iN2  (m\PB i J’T?B a\? [ \%®
IR P A I T W R K .
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where all labels with bar are the ones under the map except for 72. This equation is
equivalent to

a /i \BB jol nvv i \% _ l-_vjag
a%d(,m> (lk) F"‘"[i klﬂ ?st<> (nk> Fme I:Ev 1—17, (7.10)

where all the labels with bar are the ones under the map I1. We have used the fact

that
TV ~1ap
— 1 ]
F—,;, [E Y ;J?Ssv ’

as a matrix in indices {(7, &, f), (1, 0,7)} is the inverse of

7T
Fﬂlﬂl:l_ EiLB‘

We can obtain a relation among d’s by considering the braiding of the four-point
correlators. This relation is not independent of (7.4), (7.7), and (7.10). So we will
investigate only these equations.
Now consider the one-point functions on the torus. The one-point conformal
block is represented by the graph
i

Let 7 be the modular parameter, under the modular transformation t— —1/z and
logz—logz/z, the conformal blocks transformed by a matrix S(j). The entry is
S(j)**-*= Combining the left sector with the right sector, the modular invariance of
the one-point functions implies [17, 3]

] BB _
llZﬂd() S(j)e- =5~ LGP a—d<jll> O, > (7.11)

or equivalently
P\oa BB
Zd<.’.> S(i)’”"'“=zd<.l) S (7.12)
a Ji B ]l

Note that (7.10) and (7.12) are invariant under the gauge transformation (3.11),
provided we scale the d’s simultaneously. After making some reasonable
assumption, we will get a solution to (7.4), (7.7), and (7.10). In this case, (7.12) are
automatically satisfied. So we doubt if (7.12) are independent of other equations.

Before investigating (7.10), we make the following assumption, which is
motivated by Eq. (7.20) and a reason presented after (7.26).

0\ a&
Assumption. Signs defined in (7.6) are independent of o and &, if d <rl]> *0.

Remark. It is conceivable that the coupling « and & is not random. We assume that
we have only two cases. The first case is that even? (odd) « is always coupled to even

3 By evenness we mean that &,(«)=1, and it is —1 if the coupling is odd
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(odd) a. The second case is that even (odd) « is always coupled to odd (even) &. In
both cases &,,(«, &) defined in (7.6) does not depend on « and &. Currently we are not
able to prove this assumption from investigating polynomial equations. It is clear
that this assumption is true in case all Ni <1.

Theorem 6. Under the above assumption and the gauge fixing set in Sect. 3, namely
(3.10) and (3.18), we can use the residue gauge transformations satisfying (3.20) to get
a diagonal solution to (7.10),

1

>\ ad
=34, g (o, @)=1,
d<r]> éa,H(a)a ‘gr](cC a)

j 17 _ j—v T bR A
an[i k:lat;:Fmvﬁv l:i-v EV ava.

Moreover, (1.12) is automatically satisfied by (7.13).

(7.13)

Proof. We divide our proof into several steps.
Step 1. In (7.10), let k=k=0, we find

GG e

. Iy, . . .
where since the entry of d < ] 0) is unique, we neglected the indices. By the naturality

theorem, d’s are not always zero in the above equation, so we have

! i
(1) =a(2) w9

if there exists a j such that Ni;>0. This is true. Suppose that there is nojcoupled toi
and /, we should have N'N, =0, where matrix N,, for example, is (N*)' = N},. But let
us consider

(N'N)jv =3 NinNitvZ NigNjv =1,
this contradicts our assumption. So for any pair i, [, (7.15) is valid. This means that

)=1.

d(ii)) =const. Let us rescale ¢, gz, such that d i:)

Step 2. In (7.10), let i=1=0, we find

0 jv vl?_ 0 kY\"B
(o)) =) ()" 719

Using (7.4) and (7.7), the above equation reads

0 jV vB 0 jV B
d d = .
<n> (m) d(k“k)”’(lk ’ .17
C . 0. .
this implies again d<ii"> is a constant. Let us denote it by d.
Step 3. We come to an important case. Let n=r=0, we have

i\ m avp . .
;d . d 'Vi Fij=dF7j5H.Bv' (7.18)

m
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In our gauge
Fij=(F\F/F,)'?=(F;F;/Fs)'*=Fj.

Now we have to assume that we are treating a unitary theory. By the CPT
theorem, we must have [17]

ivo\ea ﬁ
d<jvmv> =d<jm> . (7.19)

Combining this condition and the symmetry (7.7), we can cast (7.18) into a simple
form -

T/ NeB /i \aa
géi.vi(a, /?)d<ﬁ’n> d<j:n) =db, 3. (7.20)

In addition to the above equation, we can obtain various similar equations by
considering other simple cases of (7.10). We find they are not independent of the
above equation.

Now we use our crucial assumption. We simply drop indices « and Bin the sign
& (a, B). Equation (7.20) reads in the matrix notation

. 1' -
g{'nvid<,’> d(,’>=d~e, (7.21)
jm) "\ jm

where by the superscript T we mean the hermitian and eis the identity matrix. Since

AEA
oo Ya( 1)) o
J jm
we find &,v,d > 0. Consider the special case that i=0 and m=j" in (7.21), we have

d*=d, namely d=1. Thus
Fo=1. (7.22)

Substitute these results into (7.21), we find that d <]rln> is a unitary matrix.

Recall that in Sect. 3, the gauge is not completely fixed. To retain the form of
some special F’s in (3.10) and (3.18), which are assumed here, we still have
“residual” gauge transformations A}, satisfying

Al =A%, (Al Ai,=e. (7.23)

Now we perform a “residual” gauge transformation only in the left sector. Under
the gauge transformation, the structure constants transform according to

i ; i
d (jm> =(43,)7d <Jm> (7.24)

To preserve the CPT condition (7.19), we must have
Ay = Ay = Al

Substituting the above condition to (7.23), we see that 4}, is also a unitary
matrix. If we do not want to mix the various coupling types in the space V},, the

matrix A%, must be block diagonal. Notice that d rln is also block diagonal, by
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our assumption. Since these two matrices are unitary and have the same symmetry
[cf.(7.7),(7.22), and (7.23)], we can use A}, to rescale d <nln) into a unit matrix. This

unit matrix defines a map I from V}, to V... Let us denote & =I1(x). Feeding back
this result to (7.10), we find the condition on the fusing matrices

j 1 124 _ i_V ]_ ap
=F -v a0 I 7.25
an [l k]aﬂ Fﬁm [EV l B’y ( )
By the tetrahedron symmetry, we rewrite the above condition as
j 1778 . JTv TV 7 8V
F,. [i klﬂ =Favuv [fv R Ly (7.26)

This means that the composite map IT-v is an automorphism of the fusing
matrices. Equation (7.26) is the generalization of the automorphism of the fusing
rules. It also generalizes the results in [5], where by some other argument we find
IT-v must be an automorphism among squares of braiding matrices. This
independent result suggests that our assumption made before is reasonable.
Using the formula for S(j), we shall show that Eq.(7.12) is automatically
satisfied. Because of the gauge invariance, this implies that (7.12) is not an
independent equation. Substituting our solution for d’s into (7.12), we obtain a
simple equation L
S(j)#-= =S8y 1. (7.27)

We prove the above equation by going from the right-hand side to the left-hand
side. Using the formula for S(j), we proceed

Sy & Y ei2tha—hi=mg P []T ?]a?

7.7 9 1py
_ Y 2V TJav Y
FoF_, e !
= z elZn(hq h; hl)SO,qFlviVIi‘;V V:l
4.y A
. i j lv ﬂydf N7
=3 ethah h»so,qF,-v,v[.’v Sy, (128)
a7 l q lup

in the last line we used the tetrahedron symmetry. From the last line in the above
equation, using again the tetrahedron symmetry, we find

v ) A By
S(I)l Biva Z e:2n(hq—h;—h1)SO,quvlv iV v

qv,yv q Jayv

_ i21z(hq—hi—h,)S F .] l Ay =S NB, i 729
=)e oatit) ol = o, (7.29)
q,7

ay
Finally we proved (7.27), hence (7.12). [
Note that @(j) commutes with S(j), so
()= =(O(SHOUNE = efv el (i el (BISG) 1. (7.30)
This together with (7.29) implies that if S(j)"**40, then

e el (@)eqv e (B)=1. (7.31)
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This is just the statement that an irreducible representation of the modular group
extracted from S(j) is indeed a projective representation, since the phase in the
corresponding block of @(j) is a constant. We have proved this fact in
Proposition 5 in case all Ni <1.

For a diagonal theory, namely I = v, (7.26) hence (7.27) are trivially satisfied.
Then we claim that this theory is local and modular invariant, provided we have
the duality for both sectors.

Equation (7.13) in Theorem 6 implies that there is an automorphism among all
duality data for the left and right sectors. If we believe that duality data determine a
quantum group, this in turn implies that the quantum groups originating from the
two sectors must be the same. If, a priori the chiral algebras are the same, we
automatically have the same quantum groups. Then our results imply that there is
a non-trivial automorphism of the quantum group, if the map IT is non-diagonal.

Examples. We illustrate our results obtained above by several examples. Our first
example is the rational torus model, or rational Gaussian model [22, 17]. Consider
a scalar field compactified on a torus with radius R?=p/q, suppose q is an odd
integer. The chiral algebra in this case is enlarged [17,6]. The primary fields
labelled by integers —2pg <r < 2pq, we have 4pq primary fields. The central charge
is 1 and the modular transformations for the characters are

1

— i2nrs/4
S — ¢ /4pq ,

rs— /~—4pq

Tr"s — 5rsei2n(r2/4pq— 1/24) .

(7.32)

The conjugate of ris —r and the fusion rules are r x s=r + smod4pq. In addition to
the diagonal model, we have a nondiagonal model in which the map I1 is given by
2ps+qr—qr—2ps. It is easy to check that this map is an automorphism of the
fusion rules.

Next we have to check conditions (7.22) and (7.26). Since in our case fusion
rules are equal to or less than 1, (7.22) can be obtained without the assumption
made about £ First we note that if s+ = —r, s and r couple symmetrically [3]
(the third field is unique). If s=r", we have ¢5v=e """, In both cases we have

et =1
so we have to check the formula
exp(in(hy +hy —h3—hgy—hgoy +hpg))=1. (7.33)
Let the field 1 be labelled by 2ps, +qr, and field 2 by 2ps, +qr,. We find
(hy +hy—h3)—(hga)+hay—hae) =2(s172 +7152)

which is a even integer, so (7.33) is satisfied. As for condition (7.26), we recall the
result obtained in [3] that in a certain gauge it is possible to have all nonvanishing
F’sbeequal to 1. This is consistent with our gauge set in Sect. 3. We see that (7.26) is
trivially satisfied.

Our second example is the level k SU(2) WZW model. According to the A.D.E.
classification [25], we have many nondiagonal theories in this case. We consider
D-type models first. The modular transformation matrix for t— —1/7 is

_I/ 2 . Qi+1)Qj+1)r
Siy= kr2om k+2 ’
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where i,j are half integers or integers, it is not hard to see that we have an
automorphism of the fusion algebra for k=4n+2:

HG)=i ieZ, (734
ko 1 '
H(z)=§—z lEZ+§.

This corresponds to D,,_, case. It also corresponds to SO(3) level 4n+2 WZW
model. With the automorphism (7.34), one constructs a modular invariant of the
partition function on the torus.

We know that the ¢’s are given by

ey=(—1)"*"1 (7.35)
Under the map (7.34), we have

Again in this case we must have condition (7.33). But unfortunately (7.33) cannot
be always fulfilled. We conclude that we cannot construct a theory with locality
with D,,_, model. This is not a surprise, however. Moore and Seiberg in [23]
showed that for SO(3) WZW model, one has only level 4n. This is confirmed in [24]
by investigating the Chern-Simons theory. If one introduces the spin structure on
the manifold, one can have level 4n+ 2. To construct a local theory with D,,,_ ;, one
must allow some twisted fields to be anti-selfconjugate rather than selfconjugate,
then one has to modify (7.35). As for D,, model, the chiral algebra is again
extended, this corresponds to SO(3) level 4n WZW model. Since for this enlarged
chiral algebra, the theory is diagonal, we need not to check all those conditions.

Next we consider E; model when k=16. We have a nondiagonal modular
invariant

Z=lyo+xsl* +x2+ x6l* + 13 + xsI* + xal* + [t + x)Ta+cc1,  (7.37)

where we use y; to denote the character of representation #; of the Kac-Moody
algebra. Obviously here the chiral algebra is enlarged, we have two representations
with the same character y,. Denote these primary fields by ¢,+ and ¢,-. Denote
fields corresponding to xo+xs, X1+ X7 X2+ Xe and x3+xs by 1, ¢, ¢, and ¢4
respectively. The corresponding conformal weights are 0, 3, 4, 2. The conformal
weights of ¢, . are £2. From (7.37), we see that there is a nontrivial map ¢, <> ¢, .
Dijkgraaf and Verlinde found the fusion rules [2]. Fusion rules which are of
interest to us are those involving ¢; and ¢,. and the ones larger than 1. For the
latter, we have N3;=N3;=2. For the former, we have

N111=N112=N122=N123=N133=N134+ =N134— =N14-4+ =1, (7~38)

and those under the map I1. Note that all fields are selfconjugate. We first examine
the spaces V3 and V4. It is not hard to see that two couplings in V3 originate from
coupling #;3 Q H#, — H, D Hs and H5 Q Hs — H3 D H#5. The argument for this is the
following. Now the chiral algebra is enlarged with the additional current ¢g(z)
corresponding to xg. Under the action this new current the original spaces J#; and
Hs are exchanged, due to the old fusion rules. Under the original chiral algebra we
have

(3@ H5)Q(H3 @ Hs)=HADH )+ ...,
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namely we have four intertwiners. Since under ¢4(z) #; and # are exchanged,
only two of the 4 intertwiners survive which are invariant under this new current.
These two couplings are antisymmetric. Similar argument applies to Vi, in which
all couplings are symmetric. We have no additional condition derived in these
cases, because the map IT is identical here. To check condition (7.22) for
nonvanishing fusion rules in (7.38), note that h, —h,+ = —1 and (—1)' "*=—1
when we use Eq. (7.35). The condition can be easily checked to be fulfilled.

8. Some Remarks on Quantum Groups in RCFT

Itis by now widely believed that the duality properties of a rational conformal field
theory are encoded neatly in the representation theory of a quantum group [8].
There have been many discussions on the hidden quantum group in a rational
conformal field theory [10, 13,11, 15, 19]. For a WZW model, say, of group SU(N),

. 2 .
the quantum group is U (SU(N)), where q is a root of unity exp #ﬁ . Despite

these discussions, a full proof of the existence of a hidden quantum group for a
RCFT is still lacking. The work of Alvarez-Gaumé et al. [10] only provides
evidence for the WZW model, while the discussion of Moore and Reshetikhin [11]
is purely phenomenological. One can also reveal the structure of the quantum
group by studying the Knizhnik-Zamolodchikov equations. But in general, we
have no corresponding set of differential equations for an arbitrary RCFT. Most
recently, Majid [19] gave a formal construction of the quantum group, starting
from a rigid quasitensor category (see Appendix B). Still this is not a complete
proof, since one must assume existence of a functor from this category to the
category of vector spaces which provide the representations of the quantum
group. It seems plausible that the final and perhaps most important step is to
construct such a functor, which includes the knowledge of the representation
spaces and Clebsch-Gordon coefficients. This section is devoted to such a goal.
The goal is partly achieved here, in the sense that for those models for which one
can perform Witten’s lassoing we can obtain the needed CG coefficients. Indeed
we also construct the generators for the vertex quantum explicitly. Although we
cannot prove that certain limits do exist, we give some evidence for them to exist.
Moreover, if such a lassoing prescription indeed works, we show in Appendix B
that it actually gives rise to a quantum group.

As the first step, we discuss some aspects of work in [13] in the sense of the
quasitriangular Hopf algebra. A few points are clarified. Note that the quasitrian-
gular Hopf algebra discussed in the next subsection is not the one we hope to find.

8.1. The IRF Quasitriangular Hopf Algebra

The exact definition of a quasitriangular Hopf algebra (quantum group) is given in
Appendix A. In this subsection we shall construct an IRF quantum group for a
rational conformal field theory. This quantum group was first introduced in [13].
The term IRF means that the representation matrix of an element has indices of i
and so on, which are just used to label the representations of the underlying
quantum group which corresponds to the vertex model [8, 12, 18]* Here we

4 We name it the vertex quantum group. For the WZW model of group SU(N), it is U ,(SU(N))
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introduce various vector spaces W, on which the IRF quantum group acts. These
are the prototypes of ¥; on which the vertex quantum group acts. We also define
the antipode and counit and all properties of a quantum group follow. Thus we
complete the study in [13].

Alvarez-Gaumé et al. [13] defined a set of operators acting on the following
vector space:

W= @i,j,k I/Vii:’ (8.1)

where W is the vector space constructed in Sect. 5. We have already seen that this
space is isomorphic to the space of chiral vertices; in addition we can define an
inner product in this case (Sect. 4). Actually, the following vector spaces are
invariant under the action of the operators we will define later

W/i:‘@j,kmi!
W= @iVVi'

As we shall see later, by the Brauer’s theorem, the representation space V; of the
vertex quantum group is a subspace of W, when we consider the WZW model.

Ja) when ¢, € Wi. The braiding

k
u™u/ ay,
matrices can be written in terms of indices u, v et al.

— i,
\ =B(i)st.uv (83)
—(—A/—@ i iLk .
js ks kt u k“ v

Explicitly, we have

8.2)

Let @, denote a state in W, we write u= |

iy iy [
B(% )st,u0 = 6k, 501,105, 1.0k kO ju Ok i Bresk l:’ kt ] . (8:4)
s t_Jasoe
We define two matrices B(+) acting on the tensor space W@ W by
B(£)(¢:@¢) =3, B(%)st,usPu® P, 8.5)

As maps B(+)have no inverse, because many vectorsin W® W are sending to zero.
Only when they are defined on the “restricted” tensor product space which we will
define shortly, they have inverse. For our present purpose, we will not define the
restricted tensor product for W.

The two Yang-Baxter equations can be easily written in terms of B(+).
Consider the tensor product space W@ W@ W, let B, ,(+) be the corresponding B’s
acting on the first two W’s, and so on. We have the Yang-Baxter equations

Blz(i)st(i)B12(i)=st(i)B12(i)st(i‘)- (8-6)

Let 7 be the twist map: W® W—W® W, defined by exchange of the order of the
tensor product. Define R(+)=1B(+), the above Yang-Baxter equations can be
written as

Rlz(i)Rla.(i)Rza(i)=R23(i)R13(i)R1z(i)- (8-7)
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Observing these equations, we soon find that if we view R 5(+) as operator valued
matrices with the operator acting on the third W and do so for R,;(+), we can
rewrite the Yang-Baxter equations as operator equations

R(E)T(£)@N IR T(+) =1 T(L)(T(£)@DR(Z), (8.8)
where entries of matrices T(+) are T,(+) which are operators acting on W:
”-’}t(i‘)(¢u)=§3(i)su, wtPo- 8.9)

In this way we recover the operators defined in [13]°. Before proceeding to check
all the properties of a quasitriangular algebra defined by T,(=), we first consider
the vector spaces on which these operators act.

The key point we find is new is that W is not the irreducible representation
space of the operators T, rather, the subspaces W, themselves form possibly
irreducible representation spaces of these operators. This is easily seen by the
definition (8.9) and the formula (8.4). Namely, under T,(+) a state ¢, in W, is
mapped into W, To define the coproduct, we first define the “restricted” tensor
product of W, ‘and W, Let ¢,eW, and ¢,e W, We define ¢,®'¢,=¢, 89,
whenever k,=j, (see the graph on the right-hand side of (8.3)), otherwise it is zero.
By fusing, we have

—@m,z,nWén@W,':: @k L ®W,m @, (8.10)

In the second line we used the map F defined in Sect. 5. Thus we see that the
restricted tensor product of two vector spaces W, and W; decomposes into a direct
sum of W’s, which is the desired result for the representation theory of a Hopf
algebra. To clarify this point, we shall define the coproduct of the algebra A
generated by T,,(+). The coproduct 4 is a map from A to A® A. We define

AT(1) =L T(+)O T L) 8.11)
To show that this definition of the coproduct is consistent with decomposition of

(8.10), namely the elements in W} are intertwiners of the representations of the
algebra, we have to show that the following diagram is commutative

W@'I’V} A(Tse( 1)) VV,@'VV]
\F F (8.12)
@;:W’i?@)Wk—Ti(L S VVJ@VV,‘

This is guaranteed by the pentagon identity. The above diagram is the refined
version of condition (2.19c¢) in [13] for defining properties of operators T’s. By
definition, it is straightforward to check the coassociativity (4®id)4 =(id® 4)4,
where id is the identity map from A4 to A.

The relations (8.8) among T’s are equivalent to the following relations:

R(+)Ty(+)T(+)=T(+)Ti(+)R(+),

(8.13)
R(+)T1(—)Tz(—)= Tz(_)T1(_)R(+),

5 Note that in [13] only one set of T, is introduced
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where we use T;(73) to denote T®1(1® T). Note that the first relation is the old
one. To prove the second one, we start from the Yang-Baxter equation

R3((—)R35(—)Ry2(=)=R5(—)R35(—)R3:(—);

this is just (8.7) with re-enumerated indices. As we mentioned before, R(—) is not
invertible. But effectively if we view it acting on the restricted tensor product, it is
invertible and we find

Ri5(+)R5(—)Ry3(—)=Ry3(—)R3(—)R5(+), (8.14)

where we have used R(+)=1tR™'(—)t. The above equation is equivalent to the
second identity in (8.13). So the two identities in (8.13) are equivalent to the two
Yang-Baxter equations. We can derive some other formulas for the T’s, but they
are not independent. For example

R(+)T(+)Ty =)= T(=)T,(+)R(+). (8.15)

We stress that although the above identity is not independent of (8.13) when we
know the definition (8.9) of the representations W, it should be an independent
defining relation when we treat the algebra A abstractly. Associated with a matrix
R(+)and generators T(+), we have a Hopf algebra with relations (8.13) and (8.15),
provided we define the proper coproduct, the antipode and the counit [18].

To cast the algebra A4 into a Hopf algebra, we still have to define the antipode S
and the counit ¢. These are defined by

S(TEN)=T(F), T (£)=0q. (8.16)

The above formulas can be deduced from the consistency conditions (presented in
Appendix A) for a Hopf algebra.

We claim that the Hopf algebra A we have defined is a quasitriangular Hopf
algebra. First of all, all conditions on the coproduct, the antipode and the counit
are satisfied. The universal R-matrix can be found in a sophisticated way.
Remember that, although superficially what relations® we have checked are the
same for the definition of algebra U(R(+)) defined in, say [18], this algebra is
essentially not U(R(+)). The reason is that T,(+) are not always nonzero for any
pair s,t. They are not zero only when i;=i, as can be seen from (8.4). The
decomposition property (8.10) strongly suggests that besides W, we have no more
essentially new representations, since usually all other representations can be
generated by taking the tensor products of some “fundamental” representations,
as in the representation theory of a group.

8.2. The Vertex Quantum Group — Witten’s Lassoing

As we mentioned previously, the missing key point in the work of Majid on the
reconstruction of the vertex quantum group is the reconstruction of the
representation spaces. If, however, we have a family of solutions to the polynomial
equations which are parametrized by some discrete parameters, as for the WZW
models, we can analytically extend the parameters to the complex domain. In this
case, we take infinite limit of some indices in certain quantities and construct the
missing ones in the reconstruction of the quantum group. This was first pointed

5 (8.13) and (8.15) together with the definitions of the coproduct, the antipode and counit
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out by Witten for the SU(2) WZW model [12]. We call this procedure the lassoing
procedure, since this is based on the observation that the value of a closed graph
does not depend on the mark of the outer region so that we can take the infinite
limit of this mark.

Now suppose we are dealing with a WZW model. Each representation label i is
the highest weight of this representation of the corresponding Lie algebra. Let us
consider the triplet (ijk) when NJ, > 0. By the Brauer theorem, j — k is a weight in the
representation i. And in fact j—k together with o corresponds to a vector in this
representation, mark this vector by a. For simplicity we assume here N, =1, so we
will neglect the index a. Note that by the “phenomenological” observation for
WZW models, we find the space W, is larger than the representation space V; of the
vertex quantum group’. The restricted tensor product among the W}’s defined in
(8.10) is the analogy of the restricted tensor product among the ¥}’s defined in [10].
We believe that the IRF quantum group and its representations encode all
information for constructing the vertex quantum group. However, at present we
have to use the lassoing procedure introduced by Witten in [12]. This method has
some drawbacks. First of all, we can provide only some evidence that certain limits
exist, we cannot prove that they exist. However at the end of this subsection we
demonstrate some examples in which our lassoing procedure works. Second, we
do not know whether or not any given RCFT is one in a series of RCFT’s.

Our first observation is that we can recover the Clebsch-Gordon coefficients
from the F’s lassoing. Suppose ¥, and V; are the irreducible representation spaces of
the quantum group. Let |i,a) be a state in V; and |j,b) a state in V. By the C-G
coefficients we can decompose the tensor product of these states into the states in
the irreducible representations

i, a>®1j, b> =§K;}‘Z""’Ik, ), (8.17)

The weight is conserved, namely we have c=a+ b. Now the fusing matrix is the
map from V,®@(V;®V,)—(V.®V)®V,, we must have

S Kl ™Kjik= 3. Foy [; {(] Kig PR, (8.18)

If we denote K by the following diagram

i i,

Kiaib = (8.19)
kc

then (8.18) can be written in terms of diagrams

in . jb k ia jb k

_ i j .
/ =F,, [1 k] n (8.20)
1, 1

7 The representation V; is the deformation of the corresponding representation of the ordinary
group
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We find that this equality is similar to (5.9). In fact let us define

k i j

s
K@ = lim (Fi,F5Fg)'/? , (8.21)

p~

P

wherea=s—t,b=t—p,and c=s—p. We will argue later that the limit exists. Note
that for the fixed triplet (ijk), since c=a+b, we have only two independent
parameters in the C-G coefficient. However in the right-hand side of the above
equation, since we have taken limit p—oo, we also have two independent
parameters. Multiplying an appropriate factor on both sides of (5.9), summing
over s and taking the limit p— oo, it is not hard to see that (8.18) is a consequence of
(5.9). We find that the functor property of F: V,®(V;® V)~ (V@ V)@V, follows
from the pentagon identity, since (5.9) is equivalent to the pentagon identity.

Now we argue that the limit defined in (8.21) seems to exist. First we consider
the following limit

k i j
lim (8.22)
) 2ud

P

These quantities are components of a vector in the space Wi(p) defined in the
Sect. 5, so we have

Y square of the absolute value of r § =(F,F;F)™'. (823

P

The above equation implies that the quantities in both sides are positive. After
analytically extending the parameter, these quantities become complex. When p is
sufficiently large, the numbers of s and of t depend only on (ijk), as one can see from
the fusion rules. So the sum contains finitely many terms. The quantity in the right-
hand side of the above equation is finite, so each term in the sum is bounded. This
suggests that the limit exists except for the ambiguity in the phase. Next we check

lim F%,. (8.24)

Since
Y Fi(Fy) '=YFJ/F,=F ', (8.25)
t t
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again the finite sum has a finite value even when s is large; this suggests the limit
lim F/F, exists, so does lim F%. Combining our results, we have argued that the

S§—> 00 §— o0
limit in (8.21) exists.
Thus, by the lassoing procedure, we have defined the maps

K:V®@V,-V,
and the maps
F:V@V,®@V}->(V:@V)®V

which are consistent with K. These enable us to define the forgetful functor from
the Moore-Seiberg category to the category of the vector spaces (see Appendix B).
By the formal approach in [19], we can recover the quantum group.

However, without invoking the formal approach in [19], we can define the
generators of the quantum group intuitively. As we have pointed out in the end of
the last subsection, i;=i, for the operators T,(+) defined previously. So let us
consider here only those Ty(+) with i;=i,=1, here iis fixed. Thus s and ¢ take values
in the vector space W,. Next we consider the operators B(+ ) acting on W,® W.. By
the definition, B(+) map W,® W into itself, so do R(+). Now (8.8) is valid when
restricted to act on W,@ W, We also see that the coproduct, antipode and the
counit are well-defined when we consider only the operators mentioned above. So
we obtain a Hopf algebra generated by these operators.

Let ¢, be an element in W,. Consider T,,(+) acting on ¢,. We rewrite (8.9) here

T £) () =% Bou, u®s - (8.26)
We take an infinite limit for k,; again. All of the following become the infinite
kS = .u 'S = ‘1} >
} Ju Js= (8.27)
Ji=k, k=k,.
We define
.s_ks= CE] .—k=a7
J a Ji—Ke=0a, (8.28)

ju_kuzau’ jv—kv=av'

These values are finite. Similarly, we can argue that the following limit exists (see
also [12])
lim B (8.29)
ks— o0
We denote this quantity by B, ..., this also means that the above quantity
depends only on these indices. Now we define the operators T;_, () by using these
R’s. Since now the entries of these new operators depend only on indices a’s, we
shall reduce W, to ¥, and the representation space W;to V;. The actionof T, ,(+£)is
defined as

su, vt *

L., a(£)(@0)=Y B(£)sa,,0,0Pa.> (8.30)
and the coproduct
AT, o (£)=F T, o (£)QT,, o(£)- (8.31)

Again we have equations similar to (8.8) with R-matrix defined by
(8.32)

Rasat. audy Basac,auau ’
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here all indices a are in V. In this way, we found a set of Hopf algebras (when i
varies) with the same representation spaces.

It is not hard to show that the generators of the vertex quantum group
commute with the intertwiners K’s defined before. This is a consequence of the
pentagon identity after taking the limit. We present the details in Appendix B.
Note that the K’s define the functor from the Moore-Seiberg category to the
category of vector spaces (see Appendix B). In the spirit of [19] one actually
reconstructs the vertex quantum group.

For example, let us consider the WZW model with group SU(N). Let i be the
fundamental representation. Now the Hopf algebra defined before is just
U, (SU(N)). We thus extend the consideration for SU(2) WZW model in [12] to
more general cases. An example for SU(2) WZW model is given below, where we
find that the vertex quantum group is actually U, (SU(2)). Finally, note that our
presentation is different from the one in [12], where the generators T,, the
deformations of the generators of Lie algebra are defined. These operators
generate the algebra, loosely speaking, dual to U (SU(2)).

Our discussion also reveals the relationship between the quantum group
considered here and the IRF quantum group introduced in the last subsection.
Obviously. further study is needed in order to understand the relation among
various quantum groups better. And one also hopes to avoid using the lassoing
procedure, since we cannot presumably assume that there is a set of solutions
parametrized by some discrete parameters to the polynomial equations.

Examples. We shall show that the lassoing procedure actually works in several

cases. First let us consider SU(2) WZW model. The main thing we want to

calculate is lim B, ,, which is called R, ... and plays the key role in the
ks—> 0

defining relation (8.8) of the quantum group. Let all a’s be in the fundamental

representation, there are just two possible values, 1/2 and —1/2. The limit of By, ,,

in this case can be represented by the graph

Qs Qy

N
N

as Ay

All braiding matrices are known in this case. What we need can be found, for
example, in Witten [7]

1 1 S So.i1/S0.i
B — 1/45 N..N.. 0,1 0,j 0,i
sl l:] l:I q sl Y 1jst Y 1si SO,O So,o So,o
S S S
— NN s s &3

Using this formula and substituting

& —sin2i+1 7/sin T
So.0  k+2 k+2’
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we find
R 11m B, .

asay, atdy
s> 0

as—a

=(q1/46a a —q_1/4q 2 téauv_at)aavyas*'au_at’ (8.34)

where we have used [g] <1, analytically extended from g=exp < k2 2) The last

delta-function in the above formula takes care of the conservation of weights. The
R matrix is a 4 x 4 matrix. It is illustrative to write it in the matrix form:

q'? 0 0 o0

- 0 —1 0 o0
R=gq 14 0 gP_g i 1 0 (8.35)

0 0 0 gq'2

This matrix serves for the definition of U, (SU(2)) as is well known. Some signs
differ from the ones in the standard definition. These can be absorbed into a
redefinition of the generators.

Next consider the rational torus. The index i of the “integrable” representa-
tions of the current algebra runs in the set Z,,. The fusion rule is simply i+j
=Imod2k. By our lassoing prescription, there is only one independent vector in
each space V,. The weight is also denoted by i. R, ,_ ,.., can be non-vanishing only
when a,=a,=i and a,=a,=j. The relevant quantities in our calculation are

S B

B"*’““"’[mw K, —J =ity ThencTh - (836)
Note that we have taken all non-vanishing elements of fusing matrices to be one.
Using formula h;=i?/(2k), we find

R, ;i=q", (8.37)

2mi
where g= exp( T . The relevant quantity in defining the quantum group is

R, 11 =q. But note that this matrix is just a number so the defining relation (8.8)
for the generator does not give rise to any constraint. Therefore we learned that the
quantum group is just the algebra generated by a single free generator T together
with its inverse. So any irreducible representation space is one dimensional. The
deformation parameter g plays no role in the structure of the quantum group.
However, we suppose that for the fundamental representation T|1)=gq|1). Now
representation |/ is constructed by taking the j® tensor product of |1). Since the
co-product is given by 4(T)=T®T, the action of T on [j) is just T|j>=¢’|jD,
compatible with (8.30) and formula (8.37) when we take i=1. Here we encounter
a special case that the deformation parameter g enters only in representations,
each set of representations is characterized by a complex number q. Different sets
are disconnected in the sense that any representation in one set does not appear
in the tensor products of representations of another set. Our quantum group
presented here is different from the one in [10].

Our calculation for SU(2) WZW model can be easily extended to the general
case of SU(N), where relevant B’s have been calculated, see for example Witten [7].
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A. Quasitriangular Hopf Algebras

In this appendix we describe the exact definition of a quasitriangular Hopf algebra
[8, 18] and work out the universal Z-matrix for the IRF quantum group. Similar
consideration applies to the vertex quantum group.

A Hopf algebra A is an associative algebra with a unit # and the product -,
together with the coproduct 4, the antipode S and the counit ¢. The product - is an
algebra map from A®A to A and the unit may be viewed as a map # from the
complex numbers C to 4. Conversely, the coproduct is an algebra map from 4 to
A® A and the counit is a map from A to C. The antipode, as the reminiscence of the
inverse in group theory, is a map from A to itself. Now we require that the
coproduct is associative, namely we must have (id® 4)® 4 =(4®id)® 4, where id
is the identity map from A to itself. For the counit, we have g(1) = 1. The antipode is
an anti-algebra map, namely we have S(ab)=S(b)S(a). Besides, we have the
consistency condition

-(S®id)4=-(iId®S)4=ne.
This completes our definition for a Hopf algebra [8]. In Subsect. 8.1 we have
defined the coproduct and the counit for the generators of the IRF quantum group,
the definitions are extended to the whole algebra by the morphism property of

these maps. It is easy to see that the definitions for the antipode and the counit
in (8.16) follow directly from the above consistency condition.

We define the quasitriangular Hopf algebra. Consider the Hopf algebra A. Let
2 be an element in A® A, having an inverse, and let ¢ be the twist map from A® 4
to itself. If the following identities

(AR R=R13%,3 (dRNR=R13%12> (A1)
tAa@)=R(Ma)R~', VaeA,

are satisfied, then A is a quasitriangular Hopf algebra. Above we use the notation
%;;to denote the corresponding # taking values in the i** copy tensoring j™* copy of

. To find the universal #-matrix for the Hopf algebra A defined in Subsect. 8.1,
we follow the method in [18]. Associated to A, we can define the dual Hopf algebra
A* generated by generators U, We define the following pairing:

Usp Tee(4)> =R(+ )ssr,er = B(+)ss, 00 »
Usp Ty =) =R(=)ssr,e0r = B(—)ssr, 0~

Again these generators are subject to the identity
R(+H)(UN(1IRU)=(1®U)(URDR(+), (A.3)

where we used the same notation in (8.8).
The algebra generated by U, is also a Hopf algebra. To see this, let us define the
product, coproduct, counit, and antipode by the following requirements:

Cuv,a) =<u®v, 4(a)y, <4(wu),a®@b)=<{u,ab},
gu)=<u,1>, {(Sw),ay=<u,S),

where u,ve A* and q,be A.

(A2)

(A4)
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If there exists a universal #-matrix for A4, it can be viewed as a map from A* to
A by the pairing. By the general construction [18], we can prove that the universal
R-matrix is given by the map #:U,— T, (+), or

A= ¥ RY“T(+)QT.-), (A5)

st,uv
where R, satisfies
Y RYPR(+ ux, 0y =Y, RY™B(+ )ux, yo =501 - (A.6)
xy

xy

It is not hard to see that R, exists and is uniquely determined by the above
equation, when we use the tetrahedron symmetry to write B(+),,.,, in terms of
B(+)sy,ur The explicit solution can be written in terms of B but we will not write it
down here.

As for the universal Z-matrix for the vertex quantum group, we can either find
it by applying a method similar to the one used here for the algebra generated by
T, or by applying the lassoing method to the universal #-matrix obtained above.

B. Moore-Seiberg Category

We briefly review the definition of the Moore-Seiberg category for a rational
conformal field theory in this appendix. Indeed mathematicians have studied the
similar category for some time [20], they call this kind of category the rigid abelian
quasitensor category. However, we prefer to call the category associated with a
RCFT the Moore-Seiberg category for the following reason: usually the rigid
abelian quasitensor category defined by mathematicians has infinitely many
building blocks. Namely the number of elementary objects is infinite. This is
because there is a functor from this category to the category of vector spaces. For a
RCFT, we have finitely many elementary objects and we need modify the notation
of the category of vector spaces, since usually the notion of the restricted tensor
product is needed.

For the definition of the category and abelian quasitensor category, see [3, 18].
The Moore-Seiberg category is built from the elementary objects S;. Here to each
highest weight i of the chiral algebra, we associated an object C;, We need not
assume there is a chiral algebra here, we just suppose that we have a set (i).
Abstractly, we define the morphism set Mor(S;, S;) contains only one morphism
O;;, and the abelian group is defined by O;+0;;=0;. Define various tensor
products of the basic objects, and the morphisms are given by tensoring O’s. One
also defines the tensor product of the objects with vector spaces. This enlarges the
set of objects. Now we impose a condition on the tensor product by

5:®5;= @ W;®S;. (B.1)

Here the vector space is the one defined in Sect. 5. As a quasitensor category, we
shall define the map F

S,®(8;@8) = (S,®S)® Sy (B2)
this is provided by the map

F
~
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In addition these F’s must satisfy the pentagon identity. We should have another
map Q:5,®8;—-S;®S,, and this is provided by Q: Wi—W}. Q must satisfy two
hexagon identities. Our category is quasitensor because usually we have not
Q2 =1, instead this is a pure phase. To cast the category into a rigid one, we must
have an object Hom(X, Y) for a pair objects (X, Y). This is achieved by letting
S; =Hom(S; 1) and Hom(S;,S;)=5;®S;". Now we have the Moore-Seiberg
category. So far it is an abstract notion, although in defining it we need some
practical objects such as the maps F, 2. These maps contain the whole knowledge
of the duality data. Moore and Seiberg have been able to define the rank of S;
abstractly; the striking point is that this rank is given by 1/F; It should be
interesting to explain the formula M2 for S(j) in this way.

Now if we have a vector space V; to each S, and for these spaces we can define
the restricted tensor product

V®'V,= & W@V, (B.4)

then the map w: S;— V; constitutes a functor from the Moore-Seiberg category to
the category of vector space equipped with the restricted product. Since for these
vector spaces we also have maps F,Q which are well-defined in terms of the
restricted tensor product, w is called as the forgetful functor.

Majid in a recent paper [19] showed that one can reconstruct the quantum
group by the forgetful functor w. However the tensor product of the vector spaces
are not the restricted one, namely the dimensions of the vector spaces must be
conserved. It is not hard to generalize Majid’s result to the restricted case. The
main point in the reconstruction is that a generator T of the quantum group is
defined by a set of linear maps T;: V,— V,, which are covariant in the sense of [19],
with an appropriate notion of coproduct 4 such that the following diagram is
commutative:

vev, —— eV,
Lk 1 S (B.5)
DWERV,—— B WA,

Thus, the key point is that we must have a set of K’s, namely the Clebsch-Gordan
coefficients. This can be easily extended to the restricted case.

We found that actually we still do not have the reconstruction theorem for the
quantum group, since usually we do not know how to extract CG coefficients from
the duality data. However, in Sect. 8, we show that for the WZW models, or more
generally for those models for which one can perform Witten’s lassoing, one can
construct these desired CG coefficients. Also we constructed the generators
explicitly. We show here that these generators and CG coefficient satisfy the above
commutative diagram. For simplicity, let us assume that N%<1. Consider

A(T,, . (1)) acting on ¢, ®¢,,, where d)aue V; and ¢, €V, (B.5) implies
Y Bunowns Bunana K= ¥ B LKl (B
Ast, Qyr, Ayr
where a,, and a,,. are indices in V.

To prove (B.6), note that the commutative diagram for the IRF quantum group
in 8.12 implies
“Z , Bsu,u’s s'v,v t Z sw’, wt uv s (B7)

s u’', v w’
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where
i j -
F%=F,, [j,. ;{] (F.F;F) ™14 (B.3)
It is not hard to see that (B.7) is equivalent to the pentagon identity. Now after

taking the infinite limit in (B.7), all the B’s go to B’s in (B.6). By the tetrahedron
symmetry and the definition for the CG coefficients, we find that

lim Fy, =(F)~ V2 K& (B.9)
Jw=©
So multiplying a factor (F,)'/? to both sides of (B.7) and taking the infinite limit, we

reach (B.6).

In Sect. 8, we mentioned that the CG coefficients and the F-matrix satisfy the
desired equations. Thus, by construction, we have a functor w from the Moore-
Seiberg category to the category of vector spaces. Here we showed that the
generators defined in Sect. § commute with the intertwiners K, by the reconstruc-
tion theorem in [19]. These generators are the ones for the quantum group. To
summarize, we give the following theorem.

Theorem. If all those limits defined in Sect.8 exist, then actually we have
reconstructed generators of the quantum group by (8.30) and CG coefficients in the
representation theory of the quantum group by (8.21).
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