Generalized Chiral Potts Models and Minimal Cyclic Representations of $\boldsymbol{U}_{\boldsymbol{q}}(\hat{\mathfrak{g}}(\boldsymbol{n}, \mathrm{C}))$

Etsuro Date ${ }^{1}$, Michio Jimbo ${ }^{2}$, Kei Miki, ${ }^{3 \star}$ and Tetsuji Miwa ${ }^{4}$
${ }^{1}$ Department of Mathematical Science, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
${ }^{2}$ Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan
${ }^{3}$ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan
${ }^{4}$ Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received September 11, 1990; in revised form October 15, 1990

Abstract

We present for odd N a construction of the N^{n-1}-state generalization of the chiral Potts model proposed recently by Bazhanov et al. The Yang-Baxter equation is proved.

1. Introduction

The discovery of the chiral Potts model [1-4] opened a new phase in the theory of Yang-Baxter equations (YBE). It gave the first example of an R matrix (=solution to YBE) whose spectral parameters live on an algebraic variety other than \mathbf{P}^{1} or an elliptic curve. Through the latest developments [5-8] it has become apparent that quantum groups at roots of 1 should lead to this type of R matrices. Because of the technical complexity, this program has been worked out so far only in a few simple examples. Besides the chiral Potts model, which is related to $U_{q}(\hat{\mathfrak{s l}}(2, \mathbf{C}))$, these are the cases corresponding to $U_{q}(\hat{\mathfrak{s} l}(3, \mathbf{C}))$ ([7] for $q^{3}=1$, [9] for $q^{4}=1$) or $U_{q}\left(A_{2}^{(2)}\right)$ [8]. In a recent paper [10] Bazhanov et al. proposed a generalization of the chiral Potts model related to N^{n-1} dimensional irreducible representations of $U_{q}(\hat{\mathfrak{s} l}(n, \mathbf{C}))$ at $q^{N}=1$. The aim of this paper is to give a proof to their conjecture.

Let us formulate the problem more precisely. Throughout the paper we fix a primitive $N^{\text {th }}$ root of unity q, with N an odd integer $\geqq 3$. We shall deal with a Hopf algebra \tilde{U}_{q} (essentially the quantum double of a "Borel" subalgebra of $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$) [8]. As an algebra \widetilde{U}_{q} is a trivial extension of $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$ by central elements, with the comultiplication being twisted by them. In this paper

[^0]we shall focus on a family of N^{n-1}-dimensional irreducible representations $\left(W^{(0)}, \pi_{\xi}\right)$ of \tilde{U}_{q} parametrized by $\xi \in\left(\mathbf{C}^{\times}\right)^{3 n-1}$. Set
$$
\pi_{\xi \tilde{\xi}}=\left(\pi_{\xi} \otimes \pi_{\tilde{\xi}}\right) \circ \Delta
$$
where Δ denotes the comultiplication. Consider now an intertwiner between the two tensor representations $\pi_{\xi \xi}$ and $\pi_{\tilde{\xi} \xi}$, namely a linear isomorphism $R(\xi, \tilde{\xi}): W^{(0)} \otimes$ $W^{(0)} \xrightarrow{\sim} W^{(0)} \otimes W^{(0)}$ such that
$$
R(\xi, \tilde{\xi}) \pi_{\xi \bar{\xi}}(g)=\pi_{\tilde{\xi} \xi}(g) R(\xi, \tilde{\xi}) \quad\left(g \in \tilde{U}_{q}\right) .
$$

It is a common feature of q being a root of 1 [5] that, for the existence of $R(\xi, \tilde{\xi})$ the parameters ξ, ξ are forced to lie on a common algebraic variety S. As it turns out, in our case S is a finite cover of $\mathscr{C}_{\gamma} \times \mathscr{C}_{\gamma}$, where \mathscr{C}_{γ} denotes the algebraic curve,

$$
\mathscr{C}_{\gamma}=\left\{r=(u, v) \in \mathbf{C}^{2 n} \mid u_{i}^{N}+\lambda_{i}=v_{j}^{N}+\mu_{j} 0 \leqq i, j<n\right\},
$$

parametrized by $\gamma=\left(\lambda_{i}, \mu_{i}\right)_{0 \leq i<n}$. Following the general scheme [8] it can be shown that if $R(\xi, \tilde{\xi})$ exists, then it is unique up to a scalar multiple, and that it satisfies YBE. For $n=2$ this construction reproduces the chiral Potts model [5, 8].

Let now $\xi, \tilde{\xi}_{\in S}$ and let $\left(r, r^{\prime}\right),\left(\tilde{r}, \tilde{r}^{\prime}\right)$ be the corresponding points on $\mathscr{C}_{\gamma} \times \mathscr{C}_{\gamma}$. In the present case the intertwiner is given as a product of four matrices

$$
\begin{equation*}
R(\xi, \tilde{\xi})=S_{\tilde{r} r^{\prime}}^{-1} T_{r \bar{r}^{\prime}} \bar{T}_{r r^{r}} S_{r r^{\prime}} \tag{1.1}
\end{equation*}
$$

and each factor can be described explicitly. However the matrix elements of $R(\xi, \tilde{\xi})$ itself are rather cumbersome (if we use the standard comultiplication of \tilde{U}_{q}, see below). At this stage we received a paper by Bazhanov et al. [10] in which they proposed a simple factorized form of the matrix elements. In our notations they read as follows:

$$
\begin{equation*}
R(\xi, \tilde{\xi})_{l m, j k}=\frac{\rho_{r \tilde{r}^{\prime}}(j, l) \rho_{\dot{r} r^{\prime}}(l, m) \rho_{r r^{\prime}}(m, k)}{\rho_{r r^{\prime}}(j, k)} \tag{1.2}
\end{equation*}
$$

where $j, k, l, m \in \mathbf{Z}^{n} \bmod \mathbf{Z}(1, \ldots, 1)$, and the coefficients are given by

$$
\begin{aligned}
\rho_{r \bar{r}}(k, l) & =q^{P(k, l)} \sigma_{r \tilde{r}}(k-l), \quad P(k, l)=\sum_{i}\left(k_{i} l_{i+1}-k_{i+1} l_{i}\right), \\
\frac{\sigma_{r \tilde{r}}\left(m+v_{i}\right)}{\sigma_{r \tilde{r}}(m)} & =\frac{\delta_{i-1}\left(q^{m_{i-1}} u_{i-1} \tilde{v}_{i-1}-q^{-m_{i-1}} \tilde{u}_{i-1} v_{i-1}\right)}{\delta_{i}\left(q^{m_{i i+1}+1} u_{i} \tilde{v}_{i}-q^{-m_{i i+1}-1} \tilde{u}_{i} v_{i}\right)}, \\
v_{i} & =(0, \ldots, 1, \ldots, 0), \quad m_{i j}=m_{i}-m_{j}, \quad \delta_{i}^{N}=\frac{1}{\lambda_{i}-\mu_{i}} .
\end{aligned}
$$

Guided by this formula we then noticed that a modification of the comultiplication leads directly to the R matrix (1.1) which differs from the old one by similarity and has factorized matrix elements (1.2) in a natural basis of $W^{(0)}$.

The text is organized as follows. In Sect. 2 we describe the minimal cyclic representation, thereby fixing the notations. We introduce the "spectral variety" S arising from necessary conditions for the existence of the intertwiner. In Sect. 3 we solve the intertwining relation for the $R(\xi, \widetilde{\xi})$. In Appendix A we prove the indecomposability of tensor product representations and that the intertwiner satisfies YBE. Appendix B is devoted to some details of the proof given in Sect. 3.

2. Spectral Varieties for Minimal Cyclic Representations

2.1. $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$. Let $\mathfrak{b}_{\mathbf{Z}}$ be a free \mathbf{Z} module of rank n spanned by $\varepsilon_{i}(0 \leqq i<n)$. We introduce $\mathfrak{h}=\mathfrak{h}_{\mathbf{z}} \otimes_{\mathbf{z}} \mathbf{C}$ and a symmetric bilinear form (,) on \mathfrak{h} such that $\left(\varepsilon_{i}, \varepsilon_{j}\right)=\delta_{i j}$. We extend the definition of ε_{i} in such a way that $\varepsilon_{i+n}=\varepsilon_{i}$. We set $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$.

The quantized universal enveloping algebra $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$ is a \mathbf{C}-algebra generated by the symbols $e_{i}, f_{i}(0 \leqq i<n)$ and $q^{h}\left(h \in \mathfrak{h}_{\mathrm{z}}\right)$ with the following relations:

$$
\begin{aligned}
& q^{h+h^{\prime}}=q^{h} q^{h^{\prime}}, \quad q^{0}=1, \\
& q^{h} e_{i} q^{-h}=q^{\left(h, \alpha_{i}\right)} e_{i}, \quad q^{h} f_{i} q^{-h}=q^{-\left(h, \alpha_{i}\right)} f_{i}, \quad\left[e_{i}, f_{j}\right]=\delta_{i j}\left\{q^{\alpha_{i}}\right\}, \\
& \sum_{k=0}^{1-a_{i j}}(-1)^{k} e_{i}^{(k)} e_{j} e_{i}^{\left(1-a_{i j}-k\right)}=0, \quad \sum_{k=0}^{1-a_{i j}}(-1)^{k} f_{i}^{(k)} f_{j} f_{i}^{\left(1-a_{i j}-k\right)}=0 \quad i \neq j .
\end{aligned}
$$

Here $a_{i i}=2$, and $a_{01}=a_{10}=-2$ for $n=2, a_{i j}=-1(i \equiv j \pm 1 \bmod n)$ or $=0$ (otherwise, for $n>2$. We also use the notations

$$
\{a\}=\frac{a-a^{-1}}{q-q^{-1}}, \quad[k]=\left\{q^{k}\right\}, \quad[k]!=[k] \cdots[1], \quad a^{(k)}=\frac{a^{k}}{[k]!} .
$$

In the following the indices related to simple roots, e.g., i for e_{i}, should be understood as modulo n.

We add n central elements $z_{i}(0 \leqq i<n)$ and their inverses z_{i}^{-1} to $U_{q}(\hat{\mathfrak{g} l}(n, \mathbf{C}))$ and denote the extended algebra simply by \tilde{U}_{q}. We use the comultiplication Δ of the form

$$
\begin{align*}
& \Delta\left(e_{i}\right)=e_{i} \otimes q^{-\varepsilon_{i}}+z_{i} q^{\varepsilon_{i}} \otimes e_{i}, \\
& \Delta\left(f_{i}\right)=f_{i} \otimes q^{\varepsilon_{i+1}}+z_{i}^{-1} q^{-\varepsilon_{i+1}} \otimes f_{i}, \\
& \Delta\left(q^{h}\right)=q^{h} \otimes q^{h}, \quad \Delta\left(z_{i}\right)=z_{i} \otimes z_{i} . \tag{2.1}
\end{align*}
$$

Remark. This differs from the standard comultiplication $\tilde{\Delta}$ for which we have

$$
\begin{aligned}
& \tilde{\Delta}\left(e_{i}\right)=e_{i} \otimes 1+z_{i} q^{\alpha_{i}} \otimes e_{i} \\
& \tilde{\Delta}\left(f_{i}\right)=f_{i} \otimes q^{-\alpha_{i}}+z_{i}^{-1} \otimes f_{i} .
\end{aligned}
$$

Denote by σ the automorphism of \tilde{U}_{q} such that $\sigma\left(e_{i}\right)=e_{i+1}, \sigma\left(f_{i}\right)=f_{i+1}$, $\sigma\left(q^{\varepsilon_{i}}\right)=q^{\varepsilon_{i+1}}$ and $\sigma\left(z_{i}\right)=z_{i+1}$. We define the root vectors $e_{i j}$ and $f_{i j}$ inductively by

$$
\begin{array}{rlrl}
e_{i i+1} & =e_{i}, \quad f_{i+1 i}=f_{i} & & (0 \leqq i \leqq n-1), \\
e_{i j} & =e_{i k} e_{k j}-q e_{k j} e_{i k} & & (0 \leqq i<k<j \leqq n-1), \\
f_{i j} & =f_{i k} f_{k j}-q^{-1} f_{k j} f_{i k} & & (0 \leqq j<k<i \leqq n-1), \\
\sigma\left(e_{i j}\right) & =e_{i+1 j+1}, \quad \sigma\left(f_{i j}\right)=f_{i+1 j+1} .
\end{array}
$$

Then we have

$$
\begin{aligned}
\Delta\left(e_{i j}\right)= & e_{i j} \otimes q^{-\varepsilon_{i}-\cdots-\varepsilon_{j-1}} \\
& +\left(1-q^{2}\right) \sum_{i<k<j} z_{i} \cdots z_{k-1} q^{\varepsilon_{i}+\cdots+\varepsilon_{k-1}} e_{k j} \otimes e_{i k} q^{-\varepsilon_{k}-\cdots-\varepsilon_{j-1}} \\
& +z_{i} \cdots z_{j-1} q^{\varepsilon_{i}+\cdots+\varepsilon_{j-1}} \otimes e_{i j}, \quad(0 \leqq i<j \leqq n-1),
\end{aligned}
$$

$$
\begin{aligned}
\Delta\left(f_{i j}\right)= & f_{i j} \otimes q^{\varepsilon_{i}+\cdots+\varepsilon_{j+1}} \\
& +\left(1-q^{-2}\right) \sum_{i>k>j}\left(z_{i-1} \cdots z_{k}\right)^{-1} q^{-\varepsilon_{i}-\cdots-\varepsilon_{k+1}} f_{k j} \otimes f_{i k} q^{\varepsilon_{k}+\cdots+\varepsilon_{j+1}} \\
& +\left(z_{i-1} \cdots z_{j}\right)^{-1} q^{-\varepsilon_{i}-\cdots-\varepsilon_{j+1}} \otimes f_{i j}, \quad(0 \leqq j<i \leqq n-1) .
\end{aligned}
$$

2.2 Invariants. In this paper we consider the case $q=e^{2 \pi i / N}$ with $N \geqq 3$ odd. In this case \widetilde{U}_{q} has a large center [11]. We define the following central elements:

$$
\begin{aligned}
\alpha_{i j} & =\left(\left(1-q^{2}\right) e_{i j} q^{\varepsilon_{i}+\cdots+\varepsilon_{j-1}}\right)^{N} & & (0 \leqq i<j \leqq n-1), \\
\phi_{i j} & =\left(z_{i} \cdots z_{j-1} q^{2\left(\varepsilon_{i}+\cdots+\varepsilon_{j-1}\right)}\right)^{N} & & (0 \leqq i<j \leqq n-1), \\
\beta_{i j} & =\left(\left(1-q^{-2}\right) f_{i j} q^{-\varepsilon_{i}-\cdots-\varepsilon_{j+1}}\right)^{N} & & (0 \leqq j<i \leqq n-1), \\
\psi_{i j} & =\left(z_{i-1} \cdots z_{j} q^{2\left(\varepsilon_{i}+\cdots+\varepsilon_{j+1}\right)}\right)^{-N} & & (0 \leqq j<i \leqq n-1), \\
\alpha_{i+1 j+1} & =\sigma\left(\alpha_{i j}\right), \quad \phi_{i+1 j+1}=\sigma\left(\phi_{i j}\right), & & \\
\beta_{i+1 j+1} & =\sigma\left(\beta_{i j}\right), \quad \psi_{i+1 j+1}=\sigma\left(\psi_{i j}\right) . & &
\end{aligned}
$$

Then we have

$$
\begin{array}{ll}
\Delta\left(\alpha_{i j}\right)=\alpha_{i j} \otimes 1+\sum_{i<k<j} \phi_{i k} \alpha_{k j} \otimes \alpha_{i k}+\phi_{i j} \otimes \alpha_{i j} & (0 \leqq i<j \leqq n-1), \\
\Delta\left(\beta_{i j}\right)=\beta_{i j} \otimes 1+\sum_{i>k>j} \psi_{i k} \beta_{k j} \otimes \beta_{i k}+\psi_{i j} \otimes \beta_{i j} & (0 \leqq j<i \leqq n-1) .
\end{array}
$$

Consider representations π and π^{\prime}. Suppose that any central element is represented by a scalar in these representations. We use the comultiplication (2.1) to form the tensor products. In general, two representations $\left(\pi \otimes \pi^{\prime}\right) \circ \Delta$ and $\left(\pi^{\prime} \otimes \pi\right) \circ \Delta$ are not equivalent. The reason is as follows. Take an element of the center of \tilde{U}_{q}, say $\alpha_{i i+1}$. Then we have

$$
\Delta\left(\alpha_{i i+1}\right)=\alpha_{i i+1} \otimes 1+\phi_{i i+1} \otimes \alpha_{i i+1}
$$

Therefore, if two representations $\left(\pi \otimes \pi^{\prime}\right) \circ \Delta$ and $\left(\pi^{\prime} \otimes \pi\right) \circ \Delta$ are equivalent, the following identity follows.

$$
\frac{\pi\left(\alpha_{i i+1}\right)}{\pi\left(1-\phi_{i i+1}\right)}=\frac{\pi^{\prime}\left(\alpha_{i i+1}\right)}{\pi^{\prime}\left(1-\phi_{i i+1}\right)} .
$$

Introduce the following element in the field of quotients of the center of \tilde{U}_{q},

$$
\Gamma_{i i+1}=\frac{\alpha_{i i+1}}{1-\phi_{i i+1}}
$$

Then $\Gamma_{i i+1}$ is invariant in the sense that its images under π and π^{\prime} coincide. In general, if we define $\Gamma_{i j}$ and $\bar{\Gamma}_{i j}$ inductively by

$$
\begin{align*}
\alpha_{i j} & =\sum_{\substack{s>0 \\
i<k_{s}<\cdots<k_{1}<k_{0}=j}} \Gamma_{i k_{s}} \cdots \Gamma_{k_{1} j}\left(1-\phi_{i k_{s}}\right) \quad(0 \leqq i<j \leqq n-1), \\
\beta_{i j} & =\sum_{\substack{s \geq 0 \\
i>k_{s}>\cdots>k_{1}>k_{0}=j}} \bar{\Gamma}_{i k_{s}} \cdots \bar{\Gamma}_{k_{1} j}\left(1-\psi_{i k_{s}}\right) \quad(0 \leqq j<i \leqq n-1), \\
\Gamma_{i+1 j+1} & =\sigma\left(\Gamma_{i j}\right), \quad \bar{\Gamma}_{i+1 j+1}=\sigma\left(\bar{\Gamma}_{i j}\right), \tag{2.2}
\end{align*}
$$

they are invariant: $\pi\left(\Gamma_{i j}\right)=\pi^{\prime}\left(\Gamma_{i j}\right), \pi\left(\bar{\Gamma}_{i j}\right)=\pi^{\prime}\left(\bar{\Gamma}_{i j}\right)$.

Remark. From

$$
\operatorname{tr}\left(\pi \otimes \pi^{\prime}\right) \circ \Delta\left(e_{0} \cdots e_{n-1}\right)=\operatorname{tr}\left(\pi^{\prime} \otimes \pi\right) \circ \Delta\left(e_{0} \cdots e_{n-1}\right)
$$

we have another necessary condition for the equivalence of two representations $\left(\pi \otimes \pi^{\prime}\right) \circ \Delta$ and $\left(\pi^{\prime} \otimes \pi\right) \stackrel{\Delta}{ }$;

$$
\begin{aligned}
& \left(\pi^{\prime}\left(z_{0} \cdots z_{n-1} q^{\varepsilon_{0}+\cdots+\varepsilon_{n-1}}\right)-\pi^{\prime}\left(q^{-\varepsilon_{0}-\cdots-\varepsilon_{n-1}}\right)\right) \operatorname{tr} \pi\left(e_{0} \cdots e_{n-1}\right) \\
& \quad=\left(\pi\left(z_{0} \cdots z_{n-1} q^{\varepsilon_{0}+\cdots+\varepsilon_{n-1}}\right)-\pi\left(q^{-\varepsilon_{0}-\cdots-\varepsilon_{n-1}}\right)\right) \operatorname{tr} \pi^{\prime}\left(e_{0} \cdots e_{n-1}\right) .
\end{aligned}
$$

This condition is satisfied if the central element $z_{0} \cdots z_{n-1} q^{2\left(\varepsilon_{0}+\cdots+\varepsilon_{n-1}\right)}$ is represented by 1 in both representations π and π^{\prime}.
2.3 Minimal Representations. We call a representation of \tilde{U}_{q} cyclic if e_{i}^{N}, f_{i}^{N} are represented by non-zero scalars. Recently cyclic representations of the quantized universal enveloping algebras have been investigated by several authors [11-13]. In this paper we consider the following family of N^{n-1} dimensional cyclic representations with the parameters $\xi=\left(\left(x_{i}, a_{i}\right)_{0 \leqq i<n},\left(c_{i} / c_{i+1}\right)_{0 \leqq i<n-1}\right) \in\left(\mathbf{C}^{\times}\right)^{3 n-1}$ $[14,7]$. Consider $W=\bigotimes_{i=0}^{n-1} V_{i}$, where $V_{i} \cong \mathbf{C}^{N}$. Let Z_{i}, X_{i} be invertible linear operators on W such that

$$
\begin{aligned}
& Z_{i}=1 \otimes \cdots \otimes Z^{i \text { th }} \otimes \cdots \otimes 1, \\
& X_{i}=1 \otimes \cdots \otimes X \otimes \cdots \otimes 1
\end{aligned}
$$

where $X, Z \in \operatorname{End}\left(\mathbf{C}^{N}\right), Z X=q X Z, Z^{N}=1, X^{N}=1$. Set

$$
W^{(0)}=\left\{w \in W \mid Z_{0} \cdots Z_{n-1} w=w\right\} .
$$

Note that $\operatorname{dim} W^{(0)}=N^{n-1}$. We fix the canonical bases $\left\{u_{i}\right\} \subset \mathbf{C}^{N},\left\{w_{m}\right\} \subset W^{(0)}$ as follows.

$$
\begin{aligned}
Z u_{i} & =u_{i-1}, \quad X u_{i}=q^{i} u_{i}, \\
w_{m} & =\sum_{k=0}^{N-1} u_{m_{0}+k} \otimes \cdots \otimes u_{m_{n-1}+k}, \quad m=\left(m_{0}, \ldots, m_{n-1}\right) .
\end{aligned}
$$

Consider the following representations on $W^{(0)}$ with the parameter $\xi=$ $\left(\left(x_{i}, a_{i}\right)_{0 \leqq i<n},\left(c_{i} / c_{i+1}\right)_{0 \leqq i<n-1}\right)$.

$$
\begin{aligned}
\pi_{\xi}\left(e_{i}\right) & =x_{i}\left\{a_{i} Z_{i}\right\} X_{i} X_{i+1}^{-1} \\
\pi_{\xi}\left(f_{i}\right) & =x_{i}^{-1}\left\{a_{i+1} Z_{i+1}\right\} X_{i}^{-1} X_{i+1} \\
\pi_{\xi}\left(q^{\varepsilon_{i}}\right) & =a_{i} Z_{i}, \quad \pi_{\xi}\left(z_{i}\right)=\frac{c_{i}}{c_{i+1} a_{i} a_{i+1}}
\end{aligned}
$$

This representation is irreducible for generic ξ. This choice of $\pi_{\xi}\left(z_{i}\right)$ satisfies the condition in the Remark at the end of Subsect. 2.2. The expressions of the root vectors $e_{i j}$ and $f_{i j}$ in this representation are given by

$$
\begin{array}{rlr}
\pi_{\xi}\left(e_{i j}\right) & =x_{i} \cdots x_{j-1}\left\{a_{i} Z_{i}\right\}\left(a_{i+1} Z_{i+1} \cdots a_{j-1} Z_{j-1}\right)^{-1} X_{i} X_{j}^{-1} & (0 \leqq i<j \leqq n-1), \\
\pi_{\xi}\left(f_{i j}\right) & =\left(x_{i-1} \cdots x_{j}\right)^{-1}\left\{a_{i} Z_{i}\right\} a_{i-1} Z_{i-1} \cdots a_{j+1} Z_{j+1} X_{i} X_{j}^{-1} & (0 \leqq j<i \leqq n-1) .
\end{array}
$$

The weight space

$$
W_{m_{0}, \ldots, m_{n-1}}^{(0)}=\left\{w \in W^{(0)} \mid Z_{i} w=q^{m_{i}} w(0 \leqq i \leqq n-1)\right\}
$$

where $m_{0}+\cdots+m_{n-1} \equiv 0 \bmod N$, is one dimensional. For this reason we call this representation the minimal cyclic representation.

The quantum R matrix is an invertible linear operator on $W^{(0)} \otimes W^{(0)}$ which intertwines two representations $\pi_{\xi \xi}$ and $\pi_{\tilde{\xi} \xi}$:

$$
\begin{equation*}
R(\xi, \tilde{\xi}) \pi_{\xi \tilde{\xi}}(g)=\pi_{\tilde{\xi} \xi}(g) R(\xi, \tilde{\xi}), \quad g \in \tilde{U}_{q} \tag{2.3}
\end{equation*}
$$

As was discussed previously, for arbitrary ξ and $\tilde{\xi}$ there is no such intertwiner. The invariants $\Gamma_{i j}, \bar{\Gamma}_{i j}(0 \leqq i \neq j \leqq n-1)$ should have the common value for π_{ξ} and $\pi_{\tilde{\xi}}$. For the minimal cyclic representation we have

$$
\begin{align*}
& \pi_{\xi}\left(\alpha_{i j}\right)=\left(1-a_{i}^{2 N}\right)\left(x_{i} x_{i+1} \cdots x_{j-1}\right)^{N}, \\
& \pi_{\xi}\left(\phi_{i j}\right)=\left(\frac{c_{i} a_{i}}{c_{j} a_{j}}\right)^{N}, \\
& \pi_{\xi}\left(\beta_{i j}\right)=\left(1-a_{i}^{-2 N}\right)\left(x_{i-1} x_{i-2} \cdots x_{j}\right)^{-N}, \\
& \pi_{\xi}\left(\psi_{i j}\right)=\left(\frac{c_{i} a_{j}}{c_{j} a_{i}}\right)^{N} . \tag{2.4}
\end{align*}
$$

Fix $\left(\Gamma_{i j}^{0}, \bar{\Gamma}_{i j}^{0}\right)_{0 \leqq i \neq j \leqq n-1} \in\left(\mathbf{C}^{\times}\right)^{2 n(n-1)}$. Consider a subvariety (maybe void)

$$
\mathscr{S}=\left\{\xi \in\left(\mathbf{C}^{\times}\right)^{3 n-1} \mid \pi_{\xi}\left(\Gamma_{i j}\right)=\Gamma_{i j}^{0}, \quad \pi_{\xi}\left(\bar{\Gamma}_{i j}\right)=\bar{\Gamma}_{i j}^{0}\right\}
$$

If it is not void, we call it a spectral variety. If an intertwiner (2.3) exists, then ξ and $\tilde{\xi}$ should lie on the same spectral variety.

Set

$$
K_{i}=\pi_{\xi}\left(\Gamma_{i i+1}\right) \pi_{\xi}\left(\bar{\Gamma}_{i+1 i}\right), \quad H_{i}=\frac{\pi_{\xi}\left(\Gamma_{i i+2}\right)}{\pi_{\xi}\left(\Gamma_{i i+1}\right) \pi_{\xi}\left(\Gamma_{i+1 i+2}\right)} .
$$

These are rational functions of $A_{i}=a_{i}^{N}(0 \leqq i \leqq n-1)$ and $C_{i}=\left(c_{i} / c_{i+1}\right)^{N}(0 \leqq i \leqq n-2)$.
Lemma 2.1. For generic A_{i}, C_{i}, the Jacobian of the map

$$
\left(A_{0}, \ldots, A_{n-1}, C_{0}, \ldots, C_{n-2}\right) \mapsto\left(K_{0}, \ldots, K_{n-2}, H_{0}, \ldots, H_{n-3}\right)
$$

has rank $2 n-3$.
Proof. In the neighborhood of $C_{i}=0(0 \leqq i \leqq n-2)$ we have

$$
K_{i}=C_{i}\left(A_{i}-A_{i}^{-1}\right)\left(A_{i+1}-A_{i+1}^{-1}\right)+O\left(C^{2}\right), \quad H_{i}=\frac{A_{i+1}^{2}}{1-A_{i+1}^{2}}+O(C)
$$

At $C_{i}=0$ the Jacobian matrix

$$
J=\frac{\partial\left(K_{0}, \ldots, K_{n-2}, H_{0}, \ldots, H_{n-3}\right)}{\partial\left(C_{0}, \ldots, C_{n-2}, A_{1}, \ldots, A_{n-2}\right)}
$$

is upper triangular with nonzero diagonal. This shows rank $J=2 n-3$.

Define the projections

$$
\begin{aligned}
& p_{1}:\left(\mathbf{C}^{\times}\right)^{3 n-1} \rightarrow\left(\mathbf{C}^{\times}\right)^{2 n-1}, \quad p_{2}:\left(\mathbf{C}^{\times}\right)^{2 n-1} \rightarrow\left(\mathbf{C}^{\times}\right)^{2 n-1}, \\
& p_{1}(\xi)=\left(\left(x_{i}, a_{i}\right)_{0 \leqq i<n},\left(c_{i} / c_{i+1}\right)_{0 \leqq i<n-1}\right), \\
& p_{2}\left(\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i} / c_{i+1}\right)_{0 \leqq i<n-1}\right)\right)=\left(\left(A_{i}\right)_{0 \leqq i<n},\left(C_{i}\right)_{0 \leqq i<n-1}\right) .
\end{aligned}
$$

Then $\left.p_{1}\right|_{\mathscr{\varphi}}, p_{2}$ are finite maps, and $p_{2}{ }^{\circ} p_{1}(\mathscr{S})$ is contained in the variety $\left\{K_{i}=\right.$ const., $H_{i}=$ const. $\}$. Lemma 2.1 shows that the latter (more precisely every irreducible component of it passing through a point near $C_{i}=0$) has dimension $\leqq(2 n-1)-$ $(2 n-3)=2$. In fact there is a two dimensional component of $p_{1}(\mathscr{S})$ given by an explicit parametrization. Fix $\tilde{\gamma}=\left(\kappa_{i}, \lambda_{i}, \mu_{i}\right)_{0 \leqq i<n} \in\left(\mathbf{C}^{\times}\right)^{n} \times \mathbf{C}^{2 n}$. Define a two dimensional subvariety $S_{\tilde{\gamma}}$ in $\left(\mathbf{C}^{\times}\right)^{3 n}$ with coordinates $\left(x_{i}, a_{i}, c_{i}\right)_{0 \leqq i<n}$ by the following substitutions:

$$
\left(\frac{a_{i}}{c_{i}}\right)^{N}=\frac{s-\lambda_{i}}{s^{\prime}-\lambda_{i}}, \quad\left(a_{i} c_{i}\right)^{N}=\frac{s^{\prime}-\mu_{i-1}}{s-\mu_{i-1}}, \quad x_{i}^{N}=\kappa_{i} \frac{s^{\prime}-\lambda_{i}}{s^{\prime}-\mu_{i}} .
$$

Then the invariants are constant on $S_{\hat{\gamma}}$:

$$
\begin{aligned}
& \pi_{\xi}\left(\Gamma_{i j}\right)=\left(\prod_{i \leqq l \leqq j-1} \kappa_{l} \frac{\lambda_{l}-\mu_{j-1}}{\mu_{l-1}-\mu_{j-1}}\right) \frac{\mu_{i-1}-\lambda_{i}}{\lambda_{i}-\mu_{j-1}}, \\
& \pi_{\xi}\left(\bar{\Gamma}_{i j}\right)=\left(\prod_{j \leqq l \leq i-1} \kappa_{l}^{-1} \frac{\mu_{l}-\lambda_{j}}{\lambda_{l+1}-\lambda_{j}}\right) \frac{\lambda_{i}-\mu_{i-1}}{\mu_{i-1}-\lambda_{j}} .
\end{aligned}
$$

We introduce new parameters $u_{i}, v_{i}, u_{i}^{\prime}, v_{i}^{\prime}(0 \leqq i<n)$ in such a way that

$$
\begin{array}{rlrl}
u_{i}^{N} & =s-\lambda_{i}, & & v_{i}^{N}=s-\mu_{i}, \\
u_{i}^{\prime N} & =s^{\prime}-\lambda_{i}, & v_{i}^{\prime N}=s^{\prime}-\mu_{i}, \\
\frac{a_{i}}{c_{i}} & =\frac{u_{i}}{u_{i}^{\prime}}, & a_{i} c_{i}=\frac{v_{i-1}^{\prime}}{v_{i-1}}, \quad x_{i}=\kappa_{i}^{1 / N} \frac{u_{i}^{\prime}}{v_{i}^{\prime}} .
\end{array}
$$

Note that $r=\left(u_{i}, v_{i}\right)_{0 \leqq i<n}, r^{\prime}=\left(u_{i}^{\prime}, v_{i}^{\prime}\right)_{0 \leqq i<n}$ lie on the curve

$$
\mathscr{C}_{\gamma}=\left\{\left(u_{i}, v_{i}\right)_{0 \leqq i<n} \in\left(\mathbf{C}^{\times}\right)^{2 n} \mid u_{i}^{N}+\lambda_{i}=v_{j}^{N}+\mu_{j}(0 \leqq i, j<n)\right\},
$$

where $\gamma=\left(\lambda_{i}, \mu_{i}\right)_{0 \leqq i<n}$. Thus S_{γ} is a finite covering of the product of curves $\mathscr{C}_{\gamma} \times \mathscr{C}_{\gamma}$.
The $\kappa_{i}, \lambda_{i}, \mu_{i}(0 \leqq i<n)$ are the parameters of moduli and r, r^{\prime} are the spectral parameters. If we fix the moduli parameters, the R matrix (if it ever exists) depends on two sets of spectral parameters: $R=R\left(r, r^{\prime}, \tilde{r}, \tilde{r}^{\prime}\right)$. In Appendix A we show that for a generic choice of $\tilde{\gamma},\left(r, r^{\prime}\right)$ and $\left(\tilde{r}, \tilde{r}^{\prime}\right)$ the R is unique up to a scalar multiple.

There is some redundancy in the moduli parameters. The change of κ_{i} makes no change in R (see 3.1). Furthermore, the simultaneous projective transformation of $s, s^{\prime}, \tilde{s}, \tilde{s}^{\prime}$ and $\lambda_{i}, \mu_{i}(0 \leqq i<n)$ also preserves R. Therefore the number of essential moduli parameters is $2 n-3$.

3. Intertwiner for Minimal Cyclic Representations

In this section we shall give an explicit solution to the intertwining relation (2.3).
3.1. The Case $g=e_{i}$. First we solve (2.3) with $g=e_{i}$ for $i=0, \ldots, n-1$. In terms

Fig. 1. R matrix factorized into four operators
of u_{i}, v_{i} and $\kappa_{i}, \pi_{\xi \xi}\left(e_{i}\right)$ is given by

$$
\begin{aligned}
\eta_{i} \pi_{\xi \xi}\left(e_{i}\right)= & v_{i-1}^{\prime} \tilde{v}_{i-1} u_{i} \tilde{v}_{i}^{\prime} Z_{i} X_{i} X_{i+1}^{-1} \otimes Z_{i}^{-1}-v_{i-1} \tilde{v}_{i-1} u_{i}^{\prime} \tilde{v}_{i}^{\prime} Z_{i}^{-1} X_{i} X_{i+1}^{-1} \otimes Z_{i}^{-1} \\
& +v_{i-1}^{\prime} \tilde{v}_{i-1}^{\prime} v_{i} \tilde{u}_{i} Z_{i} \otimes Z_{i} X_{i} X_{i+1}^{-1}-v_{i-1}^{\prime} \tilde{v}_{i-1} v_{i} \tilde{u}_{i}^{\prime} Z_{i} \otimes Z_{i}^{-1} X_{i} X_{i+1}^{-1}
\end{aligned}
$$

where $\eta_{i}=\left(q-q^{-1}\right) a_{i} \tilde{a}_{i} v_{i-1} \tilde{v}_{i-1} v_{i}^{\prime} \tilde{v}_{i}^{\prime} /\left(\kappa_{i}\right)^{1 / N}$. Therefore $R(\xi, \tilde{\xi})$ can be chosen independently of κ_{i}. Set

$$
\begin{aligned}
& \delta_{i}^{N}=1 /\left(\lambda_{i}-\mu_{i}\right), \quad \Omega_{i}=\left(X_{i} X_{i+1}^{-1} \otimes X_{i}^{-1} X_{i+1}\right)^{(1-N) / 2} \\
& C_{i}=\left(Z_{i}^{2} \otimes 1\right)\left(\Omega_{i} \Omega_{i-1}\right)^{-1}=\left(\Omega_{i} \Omega_{i-1}\right)^{-1}\left(Z_{i}^{2} \otimes 1\right) \\
& \bar{C}_{i}=\left(1 \otimes Z_{i}^{-2}\right) \Omega_{i} \Omega_{i-1}=\Omega_{i} \Omega_{i-1}\left(1 \otimes Z_{i}^{-2}\right)
\end{aligned}
$$

Proposition 3.1. Suppose S, T and \bar{T} satisfy the following equations for all i :

$$
\begin{align*}
& S_{r \bar{r}}(\Omega) C_{i} \delta_{i}\left(u_{i} \tilde{v}_{i} \Omega_{i}-\tilde{u}_{i} v_{i} \Omega_{i}^{-1}\right) \\
& \quad=\delta_{i-1}\left(u_{i-1} \tilde{v}_{i-1} \Omega_{i-1}-\tilde{u}_{i-1} v_{i-1} \Omega_{i-1}^{-1}\right) C_{i} S_{r \bar{r}}(\Omega) \tag{3.1a}\\
& T_{r \tilde{r}}(C)\left(q^{-1} \delta_{i-1} \tilde{u}_{i-1} v_{i-1} C_{i}+\delta_{i} u_{i} \tilde{v}_{i}\right) \Omega_{i}^{2} \\
& \quad=\left(q^{-1} \delta_{i-1} u_{i-1} \tilde{v}_{i-1} C_{i}+\delta_{i} \tilde{u}_{i} v_{i}\right) \Omega_{i}^{2} T_{r \tilde{r}}(C) \tag{3.1b}\\
& \bar{T}_{r \tilde{r}}(\bar{C})\left(q \delta_{i-1} u_{i-1} \tilde{v}_{i-1} \bar{C}_{i}+\delta_{i} \tilde{u}_{i} v_{i}\right) \Omega_{i}^{-2} \\
& \quad=\left(q \delta_{i-1} \tilde{u}_{i-1} v_{i-1} \bar{C}_{i}+\delta_{i} u_{i} \tilde{v}_{i}\right) \Omega_{i}^{-2} \bar{T}_{r \tilde{r}}(\bar{C}) \tag{3.1c}
\end{align*}
$$

Then

$$
R(\xi, \tilde{\xi})=S_{\tilde{r} r^{\prime}}(\Omega)^{-1} \bar{T}_{r \tilde{r}^{\prime}}(\bar{C}) T_{r \tilde{r}^{\prime}}(C) S_{r \tilde{r}^{\prime}}(\Omega)
$$

satisfies (2.3) with $g=e_{i}$ for all i.
The proof is left to Appendix B.
The solutions to (3.1) are given as follows. First note that Ω_{i}, C_{i} act on the base elements $w_{m} \in W^{(0)}$ as

$$
\begin{aligned}
& \Omega_{i} w_{2 k} \otimes w_{2 l}=q^{(k-l)_{i i+1}} w_{2 k} \otimes w_{2 l} \\
& C_{i} w_{2 k} \otimes w_{2 l}=q^{-(k-l)_{i-1 i+1}} w_{2\left(k-v_{i}\right)} \otimes w_{2 l}, \\
& \quad v_{i}=(0, \ldots, 1, \ldots, 0), \quad k_{i j}=k_{i}-k_{j} .
\end{aligned}
$$

Set

$$
S_{r \tilde{r}}(\Omega) w_{2 k} \otimes w_{2 l}=\sigma_{r \tilde{r}}(k-l)^{-1} w_{2 k} \otimes w_{2 l} .
$$

Then (3.1a) is reduced to the recurrence relations

$$
\begin{equation*}
\frac{\sigma_{r \tilde{r}}\left(m+v_{i}\right)}{\sigma_{r \tilde{r}}(m)}=\frac{\delta_{i-1}\left(q^{m_{i-1}} u_{i-1} \tilde{v}_{i-1}-q^{-m_{i-1}} \tilde{u}_{i-1} v_{i-1}\right)}{\delta_{i}\left(q^{m_{i i+1}+1} u_{i} \tilde{v}_{i}-q^{-m_{i i+1}-1} \tilde{u}_{i} v_{i}\right)} \tag{3.2}
\end{equation*}
$$

which determine the $\sigma_{r \dot{r}}(m)$ uniquely up to an overall scalar multiple. Next let

$$
\begin{aligned}
& T_{r \bar{r}}(C)=\sum_{m} \sigma_{r \bar{r}}(m) \prod_{i=0}^{n-1}\left(Z_{i}^{2 m_{i}} \otimes 1\right) \prod_{i=0}^{n-1}\left(\Omega_{i} \Omega_{i-1}\right)^{-m_{i}} \\
& \bar{T}_{r \bar{r}}(\bar{C})=\sum_{m} \sigma_{r \tilde{r}}(m) \prod_{i=0}^{n-1}\left(1 \otimes Z_{i}^{-2 m_{i}}\right) \prod_{i=0}^{n-1}\left(\Omega_{i} \Omega_{i-1}\right)^{m_{i}}
\end{aligned}
$$

Substitute the above expression for T into (3.1b) and equate the coefficients of $\prod_{j=0}^{n-1}\left(Z_{j}^{2 m_{j}} \otimes 1\right) \prod_{j=0}^{n-1}\left(\Omega_{j} \Omega_{j-1}\right)^{-m_{j}} \times \Omega_{i}^{2}$; do likewise for \bar{T} and (3.1c). Then we find that $(3.1 \mathrm{~b}, \mathrm{c})$ are reduced to the same relation (3.2).
3.2. Remaining Cases. The above $R(\xi, \tilde{\xi})$ clearly satisfies (2.3) with $g=q^{\varepsilon_{i}}, z_{i}$ ($i=0, \ldots, n-1$). Finally we consider (2.3) with $g=f_{i}(i=0, \ldots, n-1)$. Let

$$
R_{j}^{\prime}=R(\xi, \tilde{\xi})^{-1}\left(R(\xi, \tilde{\xi}) \pi_{\xi \tilde{\xi}}\left(f_{j}\right)-\pi_{\tilde{\xi} \xi}\left(f_{j}\right) R(\xi, \tilde{\xi})\right)
$$

We can easily show that this R_{j}^{\prime} satisfies the following relations:

$$
\begin{aligned}
& {\left[\pi_{\xi \xi}\left(e_{i}\right), R_{j}^{\prime}\right]=0,} \\
& \pi_{\xi \xi}\left(q^{\varepsilon_{i}}\right) R_{j}^{\prime}=q^{\delta_{i j+1}-\delta_{i j}} R_{j}^{\prime} \pi_{\xi \xi}\left(q^{\varepsilon_{i}}\right) .
\end{aligned}
$$

Then from Proposition A. 2 it follows that R_{j}^{\prime} vanishes.
Therefore the obtained $R(\xi, \tilde{\xi})$ is the intertwiner of the two representations $\pi_{\xi \tilde{\xi}}$ and $\pi_{\xi \xi}$. We shall show in Appendix A the following
Theorem 3.2. The intertwiner R satisfies the Yang-Baxter equation,

$$
\begin{equation*}
(R(\eta, \zeta) \otimes 1)(1 \otimes R(\xi, \zeta))(R(\xi, \eta) \otimes 1)=(1 \otimes R(\xi, \eta))(R(\xi, \zeta) \otimes 1)(1 \otimes R(\eta, \zeta)) \tag{3.3}
\end{equation*}
$$

In the base $\left\{w_{m}\right\}$ this R matrix has factorized matrix elements:

$$
R(\xi, \tilde{\xi}) w_{2 j} \otimes w_{2 k}=\sum_{l, m} \frac{\rho_{r^{\prime} \tilde{r}^{\prime}}(j, l) \rho_{\tilde{r} r^{\prime}}(l, m) \rho_{r \tilde{r}^{\prime}}(m, k)}{\rho_{r \tilde{r}^{\prime}}(j, k)} w_{2 l} \otimes w_{2 m},
$$

where

$$
\rho_{r \tilde{r}}(k, l)=q^{P(k, l)} \sigma_{r \tilde{r}}(k-l), \quad P(k, l)=\sum_{i=0}^{n-1}\left(k_{i} l_{i+1}-k_{i+1} l_{i}\right)
$$

3.3. Symmetries. In this section we shall give certain symmetries which simplify some of the computations in the previous sections.

Define $\tilde{U}_{q}(\hat{\mathfrak{g} l}(n, \mathbf{Q}))$ to be an associative algebra over $\mathbf{Q}(q)\left(q=e^{2 \pi i / N}\right)$ with the generators $e_{i}, f_{i}, q^{ \pm \varepsilon_{i}}, z_{i}^{ \pm 1}(0 \leqq i<n)$ and the defining relations given in 2.1. Let θ be a \mathbf{Q}-linear involutive automorphism of $\tilde{U}_{q}(\hat{\mathfrak{g} l}(n, \mathbf{Q}))$ such that

$$
\theta\left(e_{i}\right)=f_{n-i}, \quad \theta\left(q^{\varepsilon_{i}}\right)=q^{-\varepsilon_{n-i+1}}, \quad \theta\left(z_{i}\right)=z_{n-i}^{-1}, \quad \theta(q)=q^{-1} .
$$

Fig. 2. Boltzmann weights of the generalized chiral Potts model

Fig. 3. Matrix element of the R matrix

Then we have

$$
(\theta \otimes \theta)^{\circ} \Delta=\Delta \circ \theta
$$

Recall the definition of $W^{(0)}$ in 2.3. Let us denote by $W^{(0)^{\prime}}$ the $\mathbf{Q}(q)$ vector space defined similarly with \mathbf{C} replaced by $\mathbf{Q}(q)$.

Denote by A the rational function field over $\mathbf{Q}(q)$ in the variables

$$
\left(\lambda_{i}, \mu_{i}, \kappa_{i}^{1 / N}, \delta_{i}, x_{i}, \tilde{x}_{i}, a_{i}, \tilde{a}_{i}, c_{i}, \tilde{c}_{i}, u_{i}, \tilde{u}_{i}, v_{i}, \tilde{v}_{i}, u_{i}^{\prime}, \tilde{u}_{i}^{\prime}, v_{i}^{\prime}, \tilde{v}_{i}^{\prime}\right)_{0 \leqq i<n}
$$

Let J be the ideal of A generated by the following relations.

$$
\begin{aligned}
\delta_{i}^{N}\left(\lambda_{i}-\mu_{i}\right) & =1, \\
u_{i}^{N}+\lambda_{i} & =v_{j}^{N}+\mu_{j}, \quad u_{i}^{\prime N}+\lambda_{i}=v_{j}^{\prime N}+\mu_{j}, \\
\tilde{u}_{i}^{N}+\lambda_{i} & =\tilde{v}_{j}^{N}+\mu_{j}, \quad \tilde{u}_{i}^{\prime N}+\lambda_{i}=\tilde{v}_{j}^{\prime N}+\mu_{j}, \\
a_{i} u_{i}^{\prime} & =c_{i} u_{i}, \quad a_{i} c_{i} v_{i-1}=v_{i-1}^{\prime}, \quad x_{i} v_{i}^{\prime}=\kappa_{i}^{1 / N} u_{i}^{\prime}, \\
\tilde{a}_{i} \tilde{u}_{i}^{\prime} & =\tilde{c}_{i} \tilde{u}_{i}, \quad \tilde{a}_{i} \tilde{c}_{i} \tilde{v}_{i-1}=\tilde{v}_{i-1}^{\prime}, \quad \tilde{x}_{i} \tilde{v}_{i}^{\prime}=\kappa_{i}^{1 / N} \tilde{u}_{i}^{\prime} .
\end{aligned}
$$

Set $B=A / J$. We denote by E the B subalgebra of $B \otimes_{\mathbf{Q}(q)}$ End $W^{(0)^{\prime}}$ generated by $\left(Z_{i}, X_{i}\right)_{0 \leqq i<n}$. Define a \mathbf{Q}-linear involutive automorphism * of E by

$$
\begin{array}{rlrl}
Z_{i}^{*} & =Z_{n-i+1}^{-1}, & X_{i}^{*} & =X_{n-i+1}, \\
\lambda_{i}^{*} & =\mu_{n-i}, & & q^{*}=q^{-1}, \\
x_{i}^{*} & =x_{n-i}^{-1}, & a_{i}^{*} & =\kappa_{n-i}^{-1 / N}, \\
& & \delta_{n-i+1}^{-1}, & \\
\tilde{x}_{i}^{*} & =\tilde{x}_{n-i}^{-1}, & \tilde{a}_{i}^{*} & =\delta_{n-i}, \\
u_{n-i+1}^{-1}, \\
u_{i}^{*} & =v_{n-i}, & & \tilde{c}_{i}^{*}=\tilde{c}_{n-i+1}^{\prime}, \\
& u_{n-i}^{\prime *}, & & \tilde{u}_{i}^{*}=\tilde{v}_{n-i}^{\prime}, \quad \tilde{u}_{i}^{*}=\tilde{v}_{n-i}^{\prime} .
\end{array}
$$

Note that $\pi_{\xi}\left(\xi=\left(x_{i}, a_{i}, c_{i}\right)_{0 \leqq i<n}\right)$ and $\pi_{\tilde{\xi}}\left(\tilde{\xi}=\left(\tilde{x}_{i}, \tilde{a}_{i}, \tilde{c}_{i}\right)_{0 \leqq i<n}\right)$ are $\mathbf{Q}(q)$-linear homomorphisms

$$
\pi_{\xi}, \pi_{\tilde{\xi}}: \tilde{U}_{q}(\hat{\mathfrak{g} l}(n, \mathbf{Q})) \rightarrow E
$$

The following symmetry is valid.

$$
\left(\pi_{\xi} \circ \theta(g)\right)^{*}=\pi_{\xi}(g), \quad\left(\pi_{\tilde{\xi}^{\circ}} \theta(g)\right)^{*}=\pi_{\xi}(g), \quad \text { for } g \in \tilde{U}_{q}(\hat{\mathfrak{g} l}(n, \mathbf{Q}))
$$

Suppose that $R \in E \otimes E$ satisfies

$$
R\left(\pi_{\xi} \otimes \pi_{\tilde{\xi}}\right) \circ \Delta(g)=\left(\pi_{\tilde{\xi}} \otimes \pi_{\xi}\right) \circ \Delta(g) R
$$

for some $g \in \tilde{U}_{q}(\hat{\mathfrak{g}}(n, \mathbf{Q}))$. Then we have

$$
\begin{aligned}
\left(R\left(\pi_{\xi} \otimes \pi_{\tilde{\xi}}\right) \circ \Delta(g)\right)^{*} & =R^{*}\left(\left(\pi_{\xi} \circ \theta \otimes \pi_{\tilde{\xi}^{\circ}} \circ \theta\right) \circ \Delta \circ \theta(g)\right)^{*} \\
& =R^{*}\left(\pi_{\xi} \otimes \pi_{\tilde{\xi}}\right) \circ \Delta \circ \theta(g) \\
& =\left(\pi_{\tilde{\xi}} \otimes \pi_{\xi}\right) \circ \Delta \circ \theta(g) R^{*} .
\end{aligned}
$$

It is easy to check that

$$
R(\xi, \tilde{\xi})^{*}=R(\xi, \tilde{\xi})
$$

Therefore, the intertwining equation (2.3) for f_{i} follows from that for e_{i}.

Appendix A. Proof of the Yang-Baxter Equation

The goal of this appendix is to prove that the intertwiner of Sect. 3 satisfies YBE (3.3).
A.1. Trigonometric Limit. We begin with the discussion of the minimal cyclic representations in the trigonometric limit. This means the case where the moduli $\kappa_{i}, \lambda_{i}, \mu_{i}$, and hence $a_{i}=a, c_{i}=c, x_{i}=x$, are all independent of i. In fact c does not enter the representation. Denoting this representation by π_{x} we have

$$
\begin{align*}
\pi_{x}\left(e_{i}\right) & =x\left\{a Z_{i}\right\} X_{i} X_{i+1}^{-1} \\
\pi_{x}\left(f_{i}\right) & =x^{-1}\left\{a Z_{i+1}\right\} X_{i}^{-1} X_{i+1} \\
\pi_{x}\left(q^{\varepsilon_{i}}\right) & =a Z_{i}, \quad \pi_{x}\left(z_{i}\right)=a^{-2} \tag{A.1}
\end{align*}
$$

The following Proposition will be of use later.
Proposition A.1. Let $\left(W^{(0)}, \pi_{x}\right)$ be as above, and let $\left(V^{\prime}, \pi^{\prime}\right)$ be a finite dimensional representation of \widetilde{U}_{q}. Consider the linear equation for $F \in \operatorname{End}\left(W^{(0)} \otimes V^{\prime}\right)$:

$$
\begin{align*}
{\left[\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(e_{i}\right), F\right] } & =0 \text { for all } i, \\
\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(q^{\varepsilon_{i}}\right) F & =q^{m_{i}} F\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(q^{\varepsilon_{i}}\right) \text { for all } i . \tag{A.2}
\end{align*}
$$

Here the m_{i} are given integers satisfying $\sum_{i} m_{i}=0$. Then, for generic x, F has the form $F=\prod_{i} Z_{i}^{k_{i}} \otimes F^{\prime}, F^{\prime} \in \operatorname{End}\left(V^{\prime}\right)$, with $k_{i}-k_{i+1}+m_{i}=0$ and

$$
\begin{align*}
{\left[\pi^{\prime}\left(e_{i}\right), F^{\prime}\right] } & =0 \text { for all } i, \\
\pi^{\prime}\left(q^{\varepsilon_{i}}\right) F^{\prime} & =q^{m_{i}} F \pi^{\prime}\left(q^{\varepsilon_{i}}\right) \text { for all } i . \tag{A.3}
\end{align*}
$$

Proof. Clearly F of the form (A.3) satisfies (A.2). Therefore it is sufficient to show that the only solutions are of this form at some special value $x=x_{0}$. We shall take $x_{0}=\infty$.

First consider the case $n>2$, and define

$$
\begin{aligned}
A_{ \pm} & =\left[x^{-1}\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(e_{i}\right), x^{-1}\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(e_{i+1}\right)\right]_{q \pm 1}, \\
B & =\left[x^{-1}\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(e_{i-1}\right), A_{+} A_{-}^{-1}\right] / x^{-1}\left(1-q^{2}\right) .
\end{aligned}
$$

Here $[\alpha, \beta]_{q^{ \pm 1}}=\alpha \beta-q^{ \pm 1} \beta \alpha$. Clearly (A.2) imply the equations

$$
\begin{equation*}
\left[A_{ \pm}, F\right]=[B, F]=0 . \tag{A.4}
\end{equation*}
$$

Substituting (A.1) one finds after some calculation that

$$
\begin{aligned}
A_{+} A_{-}^{-1}= & \left(a Z_{i+1}\right)^{-2} \otimes 1+O\left(x^{-1}\right) \\
B= & \varphi(Z) X_{i+1} X_{i}^{-2} X_{i-1} \otimes \pi^{\prime}\left(e_{i} q^{\varepsilon_{i}-\varepsilon_{i-1}}\right) \\
& +\delta_{n 3} \psi(Z) X_{i+1}^{-1} X_{i}^{-1} X_{i-1}^{2} \otimes \pi^{\prime}\left(e_{i+1} q^{\varepsilon_{i+1}-\varepsilon_{i-1}}\right)+O\left(x^{-1}\right)
\end{aligned}
$$

where $\varphi(Z)$ and $\psi(Z)$ are some invertible polynomials in the Z_{i}. Specializing the Eqs. (A.2), (A.4) to $x=\infty$ one obtains

$$
\begin{align*}
& {\left[\left\{a Z_{i}\right\} X_{i} X_{i+1}^{-1} \otimes \pi^{\prime}\left(q^{-\varepsilon_{i}}\right), F\right]=0,} \tag{A.5a}\\
& Z_{i} \otimes \pi^{\prime}\left(q^{\varepsilon_{i}}\right) F=q^{m_{i}} F Z_{i} \otimes \pi^{\prime}\left(q^{\varepsilon_{i}}\right), \tag{A.5b}\\
& {\left[Z_{i+1} \otimes 1, F\right]=0,} \tag{A.5c}\\
& {\left[\varphi(Z) X_{i+1} X_{i}^{-2} X_{i-1} \otimes \pi^{\prime}\left(e_{i} q^{\varepsilon_{i}-\varepsilon_{i-1}}\right), F\right]=0,} \tag{A.5d}\\
& {\left[\psi(Z) X_{i+1}^{-1} X_{i}^{-1} X_{i-1}^{2} \otimes \pi^{\prime}\left(e_{i+1} q^{\varepsilon_{i+1}-\varepsilon_{i-1}}\right), F\right]=0 \quad \text { if } n=3 .} \tag{A.5e}
\end{align*}
$$

Here we have used the fact that $X_{i+1} X_{i}^{-2} X_{i-1}$ and $X_{i+1}^{-1} X_{i}^{-1} X_{i-1}^{2}$ are linearly independent. Equations (A.5a) through (A.5c) imply that F has the form $\prod_{i} Z_{i}^{k_{i}} \otimes F^{\prime}$ with $k_{i}-k_{i+1}+m_{i}=0$ and $\pi^{\prime}\left(q^{\varepsilon_{i}}\right) F^{\prime}=q^{m_{i}} F^{\prime} \pi^{\prime}\left(q^{\varepsilon_{i}}\right)$. From (A.5d) and (A.5e) one then concludes $\left[\pi^{\prime}\left(e_{i}\right), F^{\prime}\right]=0$.

Next consider the case $n=2$. Set

$$
D_{i}=x^{-1}\left(\pi_{x} \otimes \pi^{\prime}\right) \Delta\left(e_{i}\right), \quad E=\left[D_{0} D_{1}, D_{1} D_{0}\right]
$$

Noting that $q^{\varepsilon_{0}+\varepsilon_{1}}$ is central, one has

$$
D_{i} D_{i+1}\left(1 \otimes \pi^{\prime}\left(q^{\varepsilon_{0}+\varepsilon_{1}}\right)\right)=\left\{a Z_{i}\right\}\left\{a q Z_{i+1}\right\} \otimes 1+O\left(x^{-1}\right)
$$

$$
\begin{aligned}
E(1 \otimes & \left.\pi^{\prime}\left(q^{\varepsilon_{0}+\varepsilon_{1}}\right)\right) /\left(x^{-1} a^{-1}\left(q+q^{-1}\right)\right) \\
= & \left\{a Z_{0}\right\} Z_{0} X_{0} X_{1}^{-1} \otimes \pi^{\prime}\left(e_{1} q^{-\varepsilon_{0}}\right) \\
& -\left\{a Z_{1}\right\} Z_{1} X_{1} X_{0}^{-1} \otimes \pi^{\prime}\left(e_{0} q^{-\varepsilon_{1}}\right)+O\left(x^{-1}\right) .
\end{aligned}
$$

Using D_{i}, E in place of $A_{ \pm}, B$ and arguing similarly as above, one arrives at the same conclusion.
A.2. Indecomposability of Tensor Products. Let (V, π) be a finite dimensional representation of \tilde{U}_{q}. It is said to be indecomposable if, for $F \in \operatorname{End}(V),[F, \pi(g)]=0$ for any $g \in \widetilde{U}_{q}$ implies $F \in \mathbf{C i d}$.
For $p \geqq 1$ we set $\mathscr{S}_{p}=\bigcup_{\tilde{\gamma}} \overbrace{\tilde{\gamma}} \overbrace{\times \cdots \times S_{p} \text { times }}^{p}$, where $S_{\tilde{\gamma}}$ denotes the variety defined in Sect. 2 and $\tilde{\gamma}=\left(\kappa_{i}, \lambda_{i}, \mu_{i}\right)_{0 \leqq i<n}$. Since $S_{\tilde{\gamma}}$ is irreducible if $\tilde{\gamma}$ is generic, \mathscr{S}_{p} is also irreducible. Let $\Delta^{(p)}=(\Delta \otimes \cdots \otimes 1) \circ \Delta^{(p-1)}, \Delta^{(1)}=\Delta$. The following shows that the tensor products of the π_{ξ} are generically indecomposable.
Proposition A.2. For generic $\tilde{\gamma}$ and $\left(\xi_{i}\right)_{1 \leqq i \leqq p} \in S_{\tilde{\gamma}} \times \cdots \times S_{\tilde{\gamma}}^{p-\text { times }}$, the only solution of the equation

$$
\begin{aligned}
& {\left[\left(\pi_{\xi_{1}} \otimes \cdots \otimes \pi_{\xi_{p}}\right) \circ \Delta^{(p-1)}\left(e_{i}\right), F\right]=0} \\
& \left(\pi_{\xi_{1}} \otimes \cdots \otimes \pi_{\xi_{p}}\right) \circ \Delta^{(p-1)}\left(q^{\varepsilon_{i}}\right) F \\
& \quad=q^{m_{i}} F\left(\pi_{\xi_{1}} \otimes \cdots \otimes \pi_{\xi_{p}}\right) \Delta^{(p-1)}\left(q^{\varepsilon_{i}}\right)
\end{aligned}
$$

is

$$
\begin{aligned}
F & \approx \text { scalar } & & \text { if } m \approx 0, \\
& \approx 0 & & \text { otherwise } .
\end{aligned}
$$

Proof. It is enough to show the assertion in the case where $\pi_{\xi_{i}}$ are all trigonometric. Thanks to Lemma A. 1 the proof is reduced to the case $p=1$ by induction. But the case $p=1$ can be shown easily.

Remark. By decomposing F into joint eigenvectors of the $\operatorname{Ad}\left(q^{\varepsilon_{i}}\right)$, it is clear from the proof that the indecomposability holds with respect to the subalgebra of \tilde{U}_{q} generated by $e_{i}(0 \leqq i<n)$.
Corollary A.3. For generic $\tilde{\gamma}$ and $(\xi, \tilde{\xi})$ the intertwiner (2.3) is unique up to scalar multiple.
A.3. Yang-Baxter Equation. From the above results YBE follows by a general argument [15]. Let Q_{L} (respectively Q_{R}) denote the left-(respectively right-) hand side of (3.3). Since the $R(\xi, \eta)$ are intertwiners, $F=Q_{L}^{-1} Q_{R}$ commutes with $\pi_{\xi \eta \zeta}=\left(\pi_{\xi} \otimes \pi_{\eta} \otimes \pi_{\zeta}\right) \Delta^{(2)}:$

$$
\left[F, \pi_{\xi \eta \zeta}(g)\right]=0 \quad \text { for any } \quad g \in \tilde{U}_{q}
$$

Proposition A. 2 then shows for generic (ξ, η, ζ) that F is a scalar, namely

$$
\rho Q_{L}=Q_{R}
$$

with some scalar ρ. Comparing the determinant one finds that ρ is a root of unity, and hence is independent of the parameters (ξ, η, ζ). From the formula (3.1) it can
be checked that $R(\xi, \xi)$ is a scalar. Hence setting $\xi=\eta=\zeta$ one obtains $\rho=1$. This proves YBE.

Appendix B. Proof of Proposition 3.1.

Let

$$
\begin{aligned}
\Omega_{i} & =\left(X_{i} X_{i+1}^{-1} \otimes X_{i}^{-1} X_{i+1}\right)^{(1-N) / 2} \\
C_{i} & =\left(Z_{i}^{2} \otimes 1\right)\left(\Omega_{i} \Omega_{i-1}\right)^{-1}=\left(\Omega_{i} \Omega_{i-1}\right)^{-1}\left(Z_{i}^{2} \otimes 1\right) \\
\bar{C}_{i} & =\left(1 \otimes Z_{i}^{-2}\right) \Omega_{i} \Omega_{i-1}=\Omega_{i} \Omega_{i-1}\left(1 \otimes Z_{i}^{-2}\right), \\
Y_{i} & =X_{i} X_{i+1}^{-1} \otimes 1, \quad \bar{Y}_{i}=1 \otimes X_{i} X_{i+1}^{-1}, \quad K_{i}=Z_{i} \otimes Z_{i} .
\end{aligned}
$$

Then $C_{i}, \bar{C}_{i}, \Omega_{i}, Y_{i}, \bar{Y}_{i}$ and K_{i} satisfy the following relations:

$$
\begin{array}{rlrl}
{\left[Y_{i}, Y_{j}\right]} & =\left[\bar{Y}_{i}, \bar{Y}_{j}\right]=\left[Y_{i}, \bar{Y}_{j}\right]=\left[C_{i}, \bar{C}_{j}\right]=\left[C_{i}, \bar{Y}_{j}\right]=\left[\bar{C}_{i}, Y_{j}\right]=0, \\
{\left[\Omega_{i}, \Omega_{j}\right]} & =\left[K_{i}, \Omega_{j}\right]=\left[K_{i}, C_{j}\right]=\left[K_{i}, \bar{C}_{j}\right]=0, & & \\
\Omega_{i}^{2} & =Y_{i}\left(\bar{Y}_{i}\right)^{-1}, \quad C_{i} \Omega_{i-1}^{2}=K_{i}^{2} \bar{C}_{i} \Omega_{i}^{-2}, & & (j \neq i \pm 1 \bmod n), \\
C_{i} C_{i+1} & =q^{-2} C_{i+1} C_{i}, \quad\left[C_{i}, C_{j}\right]=0 & & (j \neq i \pm 1 \bmod n), \\
\bar{C}_{i} \bar{C}_{i+1} & =q^{2} \bar{C}_{i+1} \bar{C}_{i}, \quad\left[\bar{C}_{i}, \bar{C}_{j}\right]=0 & & (j \neq i, i-1 \bmod n), \\
C_{i} \Omega_{i} & =q \Omega_{i} C_{i}, \quad C_{i} \Omega_{i-1}=q^{-1} \Omega_{i-1} C_{i}, \quad\left[C_{i}, \Omega_{j}\right]=0 & & (j) \\
\bar{C}_{i} \Omega_{i} & =q \Omega_{i} \bar{C}_{i}, \quad \bar{C}_{i} \Omega_{i-1}=q^{-1} \Omega_{i-1} \bar{C}_{i}, \quad\left[\bar{C}_{i}, \Omega_{j}\right]=0 & (j \not \equiv i, i-1 \bmod n) .
\end{array}
$$

In terms of these operators, we have

$$
\begin{aligned}
\eta_{i} \pi_{\xi \tilde{\xi}}\left(e_{i}\right)= & v_{i-1}^{\prime} \tilde{v}_{i-1} K_{i}^{-1} C_{i}\left(u_{i} \tilde{v}_{i}^{\prime} \Omega_{i}-\tilde{u}_{i}^{\prime} v_{i} \Omega_{i}^{-1}\right) \Omega_{i-1} Y_{i} \\
& +v_{i-1}^{\prime} \tilde{v}_{i-1}^{\prime} \tilde{u}_{i} v_{i} K_{i} \bar{Y}_{i}-v_{i-1} \tilde{v}_{i-1} u_{i}^{\prime} \tilde{v}_{i}^{\prime} K_{i}^{-1} Y_{i} .
\end{aligned}
$$

Using (3.1a), we have

$$
\begin{aligned}
\delta_{i} S_{r r^{\prime}}(\Omega) \eta_{i} \pi_{\tilde{\xi} \xi}\left(e_{i}\right) S_{r r^{\prime}}(\Omega)^{-1}= & v_{i-1}^{\prime} \tilde{v}_{i-1}^{\prime} K_{i}\left(q \delta_{i-1} u_{i-1} \tilde{v}_{i-1} \bar{C}_{i}+\delta_{i} \tilde{u}_{i} v_{i}\right) \bar{Y}_{i} \\
& -v_{i-1} \tilde{v}_{i-1} K_{i}^{-1}\left(q^{-1} \delta_{i-1} \tilde{u}_{i-1}^{\prime} v_{i-1}^{\prime} C_{i}+\delta_{i} u_{i} \tilde{v}_{i}^{\prime}\right) Y_{i}
\end{aligned}
$$

Using (3.1b, c), we have

$$
\begin{aligned}
& \delta_{i} T_{r^{\prime} r^{\prime}}(C) \bar{T}_{r \bar{r}}(\bar{C}) S_{r r^{\prime}}(\Omega) \eta_{i} \pi_{\xi \bar{\xi}}\left(e_{i}\right) S_{r r^{\prime}}(\Omega)^{-1} \bar{T}_{r \bar{r}}(\bar{C})^{-1} T_{r r^{\prime}}(C)^{-1} \\
& \quad=\tilde{v}_{i-1}^{\prime} v_{i-1} K_{i}^{-1} \delta_{i-1}\left(\tilde{u}_{i-1} v_{i-1}^{\prime} \Omega_{i-1}-u_{i-1}^{\prime} \tilde{v}_{i-1} \Omega_{i-1}^{-1}\right) C_{i} \Omega_{i-1} Y_{i} \\
& \quad \quad+\delta_{i}\left(v_{i-1}^{\prime} \tilde{v}_{i-1}^{\prime} u_{i} \tilde{v}_{i} K_{i} \bar{Y}_{i}-v_{i-1} \tilde{v}_{i-1} \tilde{u}_{i}^{\prime} v_{i}^{\prime} K_{i}^{-1} Y_{i}\right) .
\end{aligned}
$$

Finally using (3.1a) again, we get (2.3) for $g=e_{i}$.

Acknowledgements. The authors would like to thank M. Kashiwara, B. M. McCoy and N. Yu. Reshetikhin for discussions. K. M. is supported in part by the Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan No. 01790204.

References

1. Au-Yang, H., McCoy, B. M., Perk, J. H. H., Tang, S., Yan, M.-L.: Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus >1. Phys. Lett. A123, 219-223 (1987)
2. McCoy, B. M., Perk, J. H. H., Tang, S., Sah, C. H.: Commuting transfer matrices for the four-state self-dual chiral Potts model with a genus-three uniformizing Fermat curve. Phys. Lett. A125, 9-14 (1987)
3. Au-Yang, H., McCoy, B. M., Perk, J. H. H., Tang, S.: Solvable models in statistical mechanics and Riemann surfaces of genus greater than one. In: Algebraic Analysis, Kashiwara, M., Kawai, T. (eds.). vol. 1, pp. 29-39. New York: Academic Press 1988
4. Baxter, R. J., Perk, J. H. H., Au-Yang, H.: New solutions of the star-triangle relations for the chiral Potts model. Phys. Lett. A128, 138-142 (1988)
5. Bazhanov, V. V., Stroganov, Yu. G.: Chiral Potts models as a descendant of the six-vertex models. J. Stat. Phys. 51, 799-817 (1990)
6. Bazhanov, V. V., Kashaev, R. M.: Cyclic L operators related with 3 -state R-matrix, preprint (1990)
7. Date, E., Jimbo, M., Miki, K., Miwa, T.: R-matrix for cyclic representations of $U_{q}(\hat{\mathfrak{s}}(3, \mathbf{C}))$ at $q^{3}=1$. Phys. Lett. A148, 45-49 (1990)
8. Date, E., Jimbo, M., Miki, K., Miwa, T.: New R-matrices associated with cyclic representations of $U_{q}\left(A_{2}^{(2)}\right)$, preprint RIMS 706 (1990). Publ. RIMS (to appear)
9. Kashaev, R. M., Mangazeev, V. V.: The four-state solution of the Yang-Baxter equation, preprint IHEP 90-73 (1990)
10. Bazhanov, V. V., Kashaev, R. M., Mangazeev, V. V., Stroganov, Yu. G.: $\left(Z_{N} \times\right)^{n-1}$ generalization of the chiral Potts model, preprint (1990)
11. De Concini, C., Kac, V. G.: Representations of quantum groups at roots of 1, preprint (1990)
12. Date, E., Jimbo, M., Miki, K., Miwa, T.: Cyclic representations of $U_{q}\left(\mathfrak{s l}(n+1, \mathbf{C})\right.$) at $q^{N}=1$, preprint RIMS 703 (1990). Publ. RIMS (to appear).
13. Arnaudon, D., Chakrabarti, A.: Periodic and partially periodic representations of $\operatorname{SU}(N)_{q}$, preprint, Center de Physique Théorique Ecole Polytechnique (1990)
14. Babelon, O.: Representations of the Yang-Baxter algebrae associated to Toda field theory. Nucl. Phys. B230, 241-249 (1984)
15. Jimbo, M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102, 537-547 (1986)

Communicated by N. Yu. Reshetikhin

[^0]: * Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists

