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Abstract. The canonical quantization of Chern—Simons gauge theory in 2+1
dimensions is generalized from the case in which the gauge group is a compact
Lie group G to the case in which the gauge group is a complex Lie group Gg¢.
Though the physical Hilbert spaces become infinite dimensional in the latter case,
the quantization can be described as precisely as for compact gauge groups and
using similar methods. The special case in which the gauge group is SL(2, C) gives
a description of 2 + 1 dimensional quantum gravity with Lorentz signature and
positive cosmological constant or with Euclidean signature and negative cosmo-
logical constant. While it is not clear whether there is a 1+ 1 dimensional
conformal field theory related to these 2 + 1 dimensional models, there are natural,
computable candidates for the central charge and the conformal blocks of such a
hypothetical theory.

1. Introduction

In Yang—Mills theory, with a gauge group G, letting A denote a connection on a
G bundle E over a space-time manifold M, the conventional action functional is

1 .
I=— | Tr(F;FY). 1.1
a3 TTEFY) (L.1)

Here “Tr” represents an invariant and non-degenerate quadratic form on the Lie
algebra g of G, customarily denoted by (a,b) = Tr(ab), and F =dA + A A A is the
Yang—Mills field strength.

In studying the theory associated with the Lagrangian (1.1), one usually requires
that the quadratic form defined by “Tr” should be positive definite, but the reason
for this requirement is not always stated accurately. If the quadratic form used in
(1.1) is indefinite, then the kinetic energy of the gauge bosons is indefinite. It is
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not the case that this leads to a non-unitary theory. In fact, canonical quantization
of a bosonic theory with a real Lagrangian always gives a unitary theory, a fact
which is evident at a very elementary level by noting that the canonical
commutation relations

[p,q]l= =i (1.2)

are compatible with unitarity for either choice of sign; in fact, these commutation
relations have the unitary representation p = + id/dg. What is wrong with (1.1) if
“Tr” is not positive definite is that the energy is unbounded below, a fact that is
evident classically and persists in the quantum theory. (In two space-time
dimensions, in which the quantum field theory defined by (1.1) is exactly soluble,
it is amusing to check explicitly that the theory determined by this Lagrangian
with a non-positive choice of “Tr” is unitary but has indefinite energy.)

It is interesting to note that for fermions the situation is reversed. The canonical
commutation relations for hermitian fermi variables y,,

YY) =my, (1.3)

are compatible with unitarity if and only if the matrix m is positive definite. On
the other hand, for fermions there is no issue of positivity of the energy. The
classical energy is always indefinite for fermions, and at the quantum level positivity
of the energy is always achieved by filling the Dirac sea. Thus, for bosons, unitarity
is automatic but positivity of the energy is a non-trivial requirement; for fermions,
unitarity is a non-trivial requirement but positivity of the energy is automatic.

It is because one usually wishes theories with positive energy that Yang—Mills
theory is usually studied only for certain types of gauge group (compact groups
times factors of R). However, for Chern—Simons gauge theory in 2 + 1 dimensions
(which is governed by a Lagrangian that we will write explicitly in the next section),
the situation is completely different. Regardless of the choice of the gauge group
G, this theory is unitary because bosonic theories with real Lagrangians are always
unitary, and it has a Hamiltonian which is bounded below because in fact — by
virtue of general covariance — the Hamiltonian in Chern—Simons gauge theory is
zero. Itis a natural problem to try to understand the unitary and generally covariant
quantum field theories determined by Chern—Simons Lagrangians for gauge groups
more general than those that have been treated hitherto.

One motivation for this investigation is that the 2 + 1 dimensional Chern—
Simons theories with compact gauge group give natural explanations [1]
for many constructions in conformal field theory and integrable lattice models
that have been intensively studied in recent years. The 2 + 1 dimensional theories
with more general gauge groups are likely to give rise to significant generalizations
of these constructions — generalizations that are not presently known and that
may be very difficult to guess from a purely 1+ 1 dimensional point of view.

A further reason for the interest of this problem is the light that it may shed
on quantum gravity. In fact [2-4], 2 + 1 dimensional general relativity (for space-
times of Lorentz signature) is related to Chern—Simons gauge theory with gauge
group SL(2,C), ISO(2,1), or SL(2,IR) x SL(2,R) depending on whether the cosmo-
logical constant is positive, zero, or negative. In each case, the possible invariant
quadratic forms are indefinite, so these gauge groups would be forbidden in
ordinary Yang—Mills theory. General relativity is of course a unitary theory (with



Quantization of Chem-Simons Gauge Theory 31

zero energy on a compact spatial slice because of general covariance), or it would
not have won physical acceptance. Its equivalence with Chern—Simons gauge
theory is possible because the latter, even with non-compact gauge groups, is
unitary, and has vanishing Hamiltonian, as we have just explained.

2+ 1 dimensional general relativity with zero cosmological constant
corresponds to an ISO(2,1) theory that is soluble in a particularly explicit way
[5]; some of the physical properties of this theory have been investigated recently
[6]. When the cosmological constant is not zero, the understanding of 2 + 1
dimensional general relativity is much more difficult. The purpose of the present
paper is to understand in detail the canonical quantization in the case that the
cosmological constant is positive, corresponding to SL(2, €) gauge group. Actually,
it turns out that (for the issues we will consider) there is no additional difficulty
to consider the more general case in which the gauge group is the complexification
G ¢ of an arbitrary compact Lie group G, and we will study this more general case.

The relation between 1 + 1 dimensional gravity and gauge theory that has been
claimed in [7] appears to be a more difficult counterpart of the relation that arises
straightforwardly in 2 + 1 dimensions. Even if one is mainly interested in 1+ 1
dimensions, it is possible that the relation between gravity and gauge theory can
be best understood by starting in 2+ 1 dimensions. This thought was the
motivation for some recent work [8] on 2 + 1 dimensional SL(2,IR) Chern—Simons
theory.

Need For A 2+ 1 Dimensional Viewpoint. The fact that the hypothetical 1+ 1
dimensional counterparts of 2 + 1 dimensional Chern—Simons theory with complex
gauge group are not already understood adds to the fascination of the 2 +1
dimensional models, but makes it much more difficult to study them. Thus, in the
case of the 2+ 1 dimensional theory with compact group, it originally seemed
natural [1] to use the 2 4+ 1 dimensional theory to explain qualitative facts in 1 + 1
dimensions, while using known results in 1+ 1 dimensions to give quantitative
results in 2 + 1 dimensions. In further developments [9, 10], many aspects of the
canonical quantization and the relation between 1 + 1 and 2 + 1 dimensions were
illuminated more precisely, but quantitative understanding of the 2 + 1 dimensional
theory still rested at crucial points on known results in 1 + 1 dimensions.

To understand a 2 4+ 1 dimensional theory whose 1 + 1 dimensional counterpart
is not yet known, it is of course necessary to have a self-contained 2 + 1 dimensional
approach. Recently [11], the canonical quantization of the 2+ 1 dimensional
theory, with compact gauge group, has been developed in a self-contained fashion
in 2 + 1 dimensions, without need for reference to already known results in 1+ 1
dimensions. Apart from giving purely 2+ 1 dimensional derivations of the
traditional 1 + 1 dimensional results, such methods make it possible to study 2 + 1
dimensional theory whose 1 + 1 dimensional counterparts are not known. What
will be done in this paper is precisely to apply the methods of [11] to the 2+ 1
dimensional theory with complex gauge group. The 2 + 1 dimensional problem
with complex gauge group also has an alternative algebra-geometric treatment
[12] which likewise may conceivably generalize to the case of complex gauge group.

Both in the case of compact gauge group, studied in [11], and in the case of
complex gauge group considered in this paper, the only properties of quantization
that are required are the most basic properties, well familiar to quantum field
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theorists, of the representations of the canonical commutation relations (for
bosons). A convenient framework for organizing the discussion is provided by
elementary concepts and terminology of the theory of geometric quantization
[13, 14] (for reviews see [15, 16]). Perhaps future developments will require deeper
aspects of this theory. In this paper, though, a substantive use of the notions of
geometric quantization is made only briefly in Sect. 6.1.

This paper is written in a considerably more informal style than [11]. However,
the considerations are precise and essentially rigorous, even by mathematical
standards. (The heuristic considerations in the early part of the paper can be
considered as a motivation and explanation for the latter sections, which are
precise.)

2. The Lagrangian

In the problem to be treated, the connection .o/ is a one form with values in the
Lie algebra g¢ of a complex Lie group g¢. G will denote a real form of G, which
unless otherwise noted with always be a maximal compact subgroup, and g will
denote the Lie algebra of G. The action is

t

I=—[Tr(f ndd +34 A A N A)
87'EM

t — — — _ —
+-8—jTr(Jz¢/\d.sz¢’+§d/\&¢'/\ﬂ) (2.1)
M

with ¢ and 7 being complex parameters. Here &/ is the complex conjugate of <7,
and for the Lagrangian to be real (which we will not necessarily require; see below)
fis the complex conjugate of t. Very naively, if one regards o/ and & as independent
variables, ignoring the fact that they are complex conjugates of each other, than
(2.1) looks like a product of two ordinary Chern—-Simons theories, with couplings
k*, =t/2 and k*, =1/2. In this paper, we will determine exactly to what extent
and in what respect such a naive statement is correct.

It is convenient to write t = k + is, f = k — is (with k and s real if 7 is the complex
conjugate of t), and &/ = A +iB, with A and B being g valued one forms. The
Lagrangian then takes the form

I=4£fTr(A/\dA-—BAdB+%AAA/\A—2A/\B/\B)
M

—;—_[Tr(A/\dB+2AAA/\B—%BAB/\B). 2.2)
M

The parameter k is subject to the same quantization law as in Chern—Simons
theory of the compact group G; if “Tr” is normalized correctly (in the case G =
SU(N), “Tr” should denote the trace in the N dimensional representation), then
k must be an integer. This requirement comes, of course, from requiring single-
valuedness of the integrand in the Feynman path integral

Z=[Dst v, 2.3)
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In particular, the topological condition means that k must be real whether or not
a reality condition is imposed on the Lagrangian. On the other hand, s is not
subject to a topological condition. The reason that k is quantized and not s is
that the group G ¢ is contractible onto its maximal compact subgroup, and therefore
the only topological quantization laws that arise are those that come from that
subgroup.

Reality Conditions. Now, let us discuss what reality condition must be placed on
s in order to obtain a unitary quantum field theory. In Minkowski space, the
physical condition is simply that the Lagrangian should be real. This corresponds
to t =7 and thus to real s, which should therefore lead to a unitary theory.

We also wish to consider the thornier issue of unitarity in Euclidean space.
The physical requirement is that under a reversal of orientation of space-time, the
argument of the Euclidean path integral should be complex conjugated. Because
of the explicit “i” in the exponent in (2.3), this means that the action I should be
odd under reversal of orientation combined with complex conjugation. This is the
case if s is real and 4 and B are invariant under reversal of orientation, since
integration of differential forms is odd under reversal of orientation. (In other
words, the use of wedge products in (2.2) could be eliminated in favor of an explicit
appearance of the Levi—Civita tensor ¢, and this is odd under parity.) So we learn
again that (2.2) should be expected to define a unitary quantum field theory if s
is real. There is, however, a second possibility for how (2.2) can be odd under
complex conjugation combined with reversal of orientation. In fact, if we consider
B to be odd under reversal of orientation, then for (2.2) to be odd under reversal
of orientation combined with complex conjugation, s must be imaginary! Thus,
the theory should have a second unitary branch at imaginary s. (The statement
that B is odd under reversal of orientation means that we are combining a reversal
of orientation of M with an involution of G¢ that fixes the real form G.)

2.1. Specialization to General Relativity. To illustrate these ideas, let us consider
the important case of 2 + 1 dimensional general relativity. There are two relevant
possibilities:

(i) SL2,C) is the gauge group that describes 2+ 1 dimensional gravity in a
space-time of Lorentz signature and with a positive cosmological constant. In
writing (2.2), it is convenient to take G to be the real form SL(2,IR) of SL(2, T).
(SL(2,R) is a double cover of the 2 + 1 dimensional Lorentz group SO(2, 1). Except
in this paragraph, we will always in this paper understand G to be a maximal
compact subgroup of G¢, even when discussing gravity.) With G = SL(2,R), A can
be identified with the spin connection @ of general relativity, and B with the
vierbein e. With this identification, the term in (2.2) proportional to s is the
Einstein—Hilbert action with a cosmological constant. In particular, s is essentially
the inverse of Newton’s constant, and the statement that the theory is unitary for
real s is simply the statement that general relativity is unitary when Newton’s
constant is real. The k coupling is a new discrete parameter [4] that is possible
in 2 4+ 1 dimensional quantum gravity when formulated as a gauge theory.

(ii)) SL(2, @) is also the gauge group that is relevant to Euclidean quantum gravity
with negative cosmological constant. In this case, it is natural to take G = SU(2)
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(which is the double cover of the Euclidean rotation group SO(3)), and to again
identify A and B with the spin connection w and vierbein e. With this interpretation,
the inverse of Newton’s constant is proportional to is, and therefore s should be
imaginary. (The reason that the i comes in is that in Euclidean quantum gravity,

the argument of the Feynman path integral should be exp{ —real constant-

j\/éR + ) rather than exp(i-real constant- | \/éR + > Since there is an
M M

“” in (2.3), to avoid an unwanted i multiplying the Einstein—Hilbert action in
Euclidean quantum gravity, s must be imaginary.) In the general discussion, we
noted that imaginary s corresponds to B —or e - being odd under reversal of
orientation. This is also natural in Euclidean gravity. In classical gravity, one
considers only vierbeins of positive determinant, that is, such that ¢7*¢,, e,% %e,* > 0.
For this condition to be invariant under reversal of orientation (which changes
the sign of £'/¥), one must consider e to change sign under reversal of orientation.
Thus, in studying (2.2), we will write formulas that depend on a free parameter
s. The formalism will be developed in a way that is natural for real s, and all the
formulas will be manifestly unitary if s is real. For gauge group G¢ = SL(2, T), the
unitary theory at real s will be interpreted as Lorentzian quantum gravity with
positive cosmological constant.! After obtaining the final formulas, we will
analytically continue to complex values of s. The definition of Hilbert space inner
products that gives unitarity at real s will not give unitarity when s is not real.
However, it might happen that at imaginary s, it is possible to find an alternative
definition of inner products that will give unitarity. If such an alternative unitary
structure exists at imaginary s, then (for G¢=SL(2,C)) we can interpret the
resulting theory as Euclidean quantum gravity. In this paper, we will find the
alternative unitary structure explicitly in the case of canonical quantization on a
Riemann suface of genus one. We will not be able to find the alternative unitary
structure explicitly for higher genus.? However, we will find a simple geometric
interpretation of the hypothetical alternative unitary structure at imaginary s. This
interpretation and other aspects of the formalism make it clear that the unitary
structure at imaginary s is a 2+ 1 dimensional analog of the “complementary
series” of unitary representations of G¢, while the unitary structure at real s is a
2 + 1 dimensional analog of the more straightforward “principal series.”
Though general relativity is an important motivation for studying the G ¢ gauge
theory, there actually are many unsolved conceptual problems connected with the
relation between general relativity and gauge theory in 2 + 1 dimensions. These

! As noted above, in the rest of this paper, the real form G will always be the maximal compact
subgroup of G¢. This is permissible even if we are studying Lorentzian quantum gravity, for it
is a simple mathematical fact that the Lagrangian (2.1) can be written as in (2.2) with G an
arbitrarily chosen real form of (2.2). However, with G the compact form, A and B do not have
the interpretation of the three dimensional spin connection and vierbein in the case of Lorentzian
gravity. In the canonical quantization that we will be developing, they probably do have a natural
interpretation in terms of the geometry of a two dimensional spatial slice

2 This is analogous to the fact that [9,11] in the case of compact gauge groups, it is easier to
understand unitarity explicitly in the case of genus one. There is probably a precise connection
between the two problems
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problems mostly have to do with the role of non-invertible vierbeins, vierbeins of
negative determinant, flat connections that define non-discrete embeddings of the
fundamental group, etc. Some of these points have been clarified in [17], and from
a completely different point of view in [18], but much remains to be understood.
This paper is mainly devoted to studying the G¢ theory as a gauge theory. We
return to the gravitational interpretation only in Sect. 6.1.

It is very unclear whether one should expect Lorentzian and Euclidean gravity
to be related to each other by Wick rotations. If so, the imaginary s theory should
go under Wick rotation into a Chern—Simons theory with SL(2,R) x SL(2,R)
gauge group (which describes Lorentzian quantum gravity with negative cosmo-
logical constant), and this would seem to imply that, in contrast to what is
presently understood, Chern—Simons theory with SL(2,R) gauge group could not
be much more difficult than the SL(2, C) case.

3. Quantization

We now turn to the problem of quantization of our basic Lagrangian

t
I=— [Tr(L NdA +3}4 A A A A)
87CM

{ _ _ - -
+8—j'Tr(JJ/\d.9/+%.sz¢/\.sz¢Ad), (3.1)
T M

on a three manifold of the form M =X x R!, with X being an oriented closed
two dimensional surface and IR! being the “time” axis; .« is of course a connection
on a G¢ bundle E over M. We will sometimes expand the connection as
of =X o/ T, where T, is a basis of the real Lie algebra G (whose complexification
is the Lie algebra of Gg) which we take to be orthonormal in the sense that
Tr(T,T,) = J,,- The o/* are complex valued one forms.

Canonical quantization will associate a Hilbert space # with the Riemann
surface X. General covariance means that J# must (up to a possible projective
factor) depend on X only as a topological surface, with no a priori choice of metric
or complex structure. ## will be obtained by quantizing an appropriate symplectic
manifold. In fact, the symplectic manifold that must be quantized is simply the
moduli space of stationary points of the Lagrangian (3.1), up to gauge trans-
formation. Since the Euler-Lagrange equations derived from (3.1) assert that the
connection & should be flat, the symplectic manifold that must be quantized is
the moduli space .#¢ of flat G¢ connections on X, up to gauge transformation
(equivalently, the moduli space of representations of the fundamental group of X
in Gg, up to conjugation). #¢ has a t dependent symplectic structure that is
deduced in the usual way from the Lagrangian.

In previous investigations of Chern—Simons gauge theory with compact gauge
group, the moduli space .# of flat G connections has been quantized. Our task is
essentially to carry out a similar quantization of #¢. If there were a completely
universal theory of quantization, we would proceed by directly quantizing the
finite dimensional moduli space .#, with the ¢ dependent symplectic structure
deduced from (3.1). Since such a theory does not exist, we will (just as in similar
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discussions of quantization of .#) proceed by regarding .#¢ as the symplectic
quotient of the space # ¢ of all G¢ connections on X, by the action of the group
of gauge transformations. Quantization of #¢ proceeds by formally quantizing
# ¢ and then picking out the G¢ invariant subspace.

The moduli space .#¢ has many remarkable properties. For one thing, it has
a family of hyper-kahler structures [19], which is likely to be important in deeper
understanding of the G¢ gauge theory, but will not be used here. It is also true
[19] that after picking a complex structure J on X and deleting a subspace of
rather high codimension (which is usually a permissible step in quantum mechanics)
M ¢ can be identified (in a J dependent fashion) with the cotangent bundle T*./.
In quantization of a cotangent bundle T*X, the physical Hilbert space consists
of I? functions (or sections of a line bundle) on X. One might therefore be inclined
to guess from the fact just cited that the physical Hilbert space of the G¢ gauge
theory would have a J dependent identification with I'(#, &) where & is a suitable
line bundlet over .# and I'(#, %) denotes the Hilbert space of L? sections of &.
This is indeed the result that we will arrive at, after a fairly straightforward though
relatively long discussion which will also give us a description of the crucial J
dependence.

3.1. Preliminary Discussion. To begin with, we consider the theory defined by the
Lagrangian (3.1) in the gauge &/, = o/ ; = 0. Before imposing any constraints, the
phase space with which we begin is the space # ¢ of all G¢ connections on E. In
the standard way, the Lagrangian determines a natural (¢t dependent) symplectic
structure w on % ¢.

In quantizing # ¢, we must impose the Gauss law constraints

F=F=0, (3.2)

where F =ds/ + o A s is the G field strength, and F is its complex conjugate.
As in [9,11], we will impose the constraints after quantization; that is, we will
formally construct a “big” Hilbert space obtained by quantization of #'¢ and then
restrict to the subspace annihilated by the constraint operators. We adopt this
approach because there is not a universal theory of quantization that would tell
us directly how to quantize the physical space that is obtained by imposing (3.2)
classically and then dividing by the gauge group.

Though we will really only be using elementary properties of the representations
of the canonical commutation relations, the discussion that follows is conveniently
organized from a viewpoint familiar in the literature on geometric quantization
[13, 14] (for reviews see [15, 16]). From this point of view, the first step is to define
a “prequantum line bundle” Z, over the phase space #'¢. &Z,, is a unitary line
bundle with a connection 4 whose curvature is dA = — iw. In the problem at hand,
Z,: can be characterized by saying that the commutators of covariant derivatives
in #'¢, acting on sections of £, are

5 5 t
ey )
[5&4#00 5a4%uo] gn 0@

5 5 P
= s T =i =——5ab 5 » W),
[&dﬂaaaym;] g 0@

(3.3)
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with other components vanishing. Here ¢;; is the Levi-Civita tensor density on
the oriented surface X.

One next defines a prequantum Hilbert space 5, which consists of all square
integrable sections of the prequantum line bundle #,,. Thus, we write #,, =
r(w,%,,), (where I'(X, &) denotes the space of square integrable sections of a line
bundle & over a space X). Acting on the prequantum Hilbert space, the constraint
operators — which are none other than the generators of the gauge group — are

0 t

,97“(2) = Di - _ina’
oL’ 8m
— o [ -
g'-a =Di———__FzEa' 3.4
(@ " 8n 34

The gauge invariant subspace of 5, is the subspace annihilated by these operators.

3.2. Choice of a Polarization. The prequantum Hilbert space is much bigger than
the desired quantum Hilbert space because it consists of wave functions that depend
on the coordinates and momenta. Thus, in a mechanics problem with a two
dimensional (p, q) phase space, the prequantum Hilbert space would consist of
functions ¥ (p,q). Quantization is carried out by choosing a “polarization” and
requiring the wave-functions to be independent of half of the variables. In this
paper, the phase spaces that we quantize are affine spaces and the polarizations
are translation invariant. For instance, in the case of a real polarization, one picks
one of the coordinates, say p, and defines the quantum Hilbert space # to be the
subspace of the prequantum Hilbert space consisting of wave functions ¥(p,q)
such that

D
0=—VY. 3.5)
Dp
In the case of a complex polarization, one picks linear combinations
z=q+ip,Z = q — ip, and declares the quantum Hilbert space # to consist of wave
functions ¥(p, q) such that

O=<£+i£> =2_'I’. (3.6)
Dgq Dp Dz

Clearly, in the first case, the quantum Hilbert space consists of functions ¥(q),
and in the second case it consists of holomorphic functions ¥(q + ip). (Actually,
these “functions” are really sections of the prequantum line bundle %,,. In the
case of a real polarization one can forget about %, in the end, since as a line
bundle with connection it is trivial when restricted to the g axis. In the case of a
complex polarization one cannot so naturally forget about %,..) The physical
Hilbert spaces defined by the polarizations used in (3.5) and (3.6) are equivalent
since they each give irreducible, unitary representations of the canonical commu-
tation relations.

The advantage of first defining the “big” prequantum Hilbert space and then
regarding the quantum Hilbert space as a subspace determined by equations such
as (3.5) or (3.6) is that this gives a natural framework for thinking about the
behavior under a change of polarization. That will be crucial in the problem at
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hand. The reason that it is crucial is that in the quantization of (3.1), there is no
natural choice of polarization.

Gauge Invariance of the Polarization. The most important desideratum in the
choice of polarization is that after defining the quantum Hilbert space by equations
generalizing (3.5) or (3.6), it should be possible to solve the Gauss law constraints.
For our goal is not just to formulate the quantum theory associated with the
classical Lagrangian (3.1), but to solve it.

If the choice of polarization is gauge invariant, then the auxiliary equations
that define the physical Hilbert space commute with the prequantum gauge
generators (3.4). In this case, the constraint operators that must annihilate gauge
invariant physical states coincide with the prequantum gauge generators. Those
operators are first order differential operators which simply say that up to a known
phase, the wave functions are independent of some of the variables.

If we use a polarization that is not gauge invariant, then the prequantum gauge
generators do not act on the quantum Hilbert space (since they are not compatible
with the auxiliary conditions (3.5) or (3.6) that define the quantum Hilbert space
as a subspace of the prequantum Hilbert space, on which the prequantum gauge
generators do act). In such a case, the constraint operators, which can be found
by quantizing the classical expression & =dof + o/ A o, differ from the pre-
quantum gauge generators by terms which compensate for the change in
polarization under a gauge transformation. The latter terms are second order
differential operators on #', so in this situation the Gauss law constraints are a
system of second order differential equations. Even in a mechanics problem
involving finitely many variables, such a system of equations would be very difficult
to solve.

Using a polarization that is not gauge invariant leads to a correct but typically
intractable formalism. (An example is the Wheeler-de Witt equation of 2+ 1
dimensional general relativity, which arises in a certain polarization that is not
gauge invariant.) As our goal is to solve the quantum field theory determined by
(3.1), not just to talk about it, we will seek a gauge invariant polarization.

3.3. Choice of Complex Structure. In 2+ 1 dimensional gravity with zero
cosmological constant, it is possible to pick a gauge invariant polarization that
also is invariant under diffecomorphisms of X [4]. This makes it possible to develop
the formalism in a manifestly “background-independent” way. In contrast, in
Chern-Simons theory of a compact gauge group, there is no such gauge invariant
and diffecomorphism invariant polarization. The best that one can do is to use a
gauge invariant polarization that depends on the choice of a complex structure J
on X [1]. With such a polarization, one defines a physical Hilbert space #; that
depends on the choice of J. One then finds a projectively flat connection on the
space of complex structures which gives a projective identification among the
as J varies.

Similarly, if we take a semi-simple complex Lie group G¢ as gauge group, there
seems to be no completely natural and gauge invariant polarization. By analogy
with the case of a compact gauge group, we will treat this problem by choosing
a polarization that is gauge invariant but depends on the choice of a complex
structure on X. As J varies, the quantum Hilbert spaces 5, then define a “quantum
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bundle” 5, over the space # of possible complex structures. We must then find
a projectively flat connection on this quantum bundle, permitting us to say that
the quantization is in fact independent of the choice of J.® This will be done using
the methods of [11].

Defining the Polarization. We now pick a complex structure J on X. Once J is
picked, the connection form can locally be written &/ = /,"dz + o/;°dz, with z
being a local complex parameter. Likewise, &/ = o/,%dz + &/;°dz. Since the &/* are
complex valued one forms, the o/, and &/, (with a=1---dim G, G being the
compact Lie group whose complexification is the gauge group G¢ of our theory)
are independent complex variables. On the other hand, as 2/ is the complex
conjugate of /% s/,% is the complex conjugate of =7,% and /;° is the complex
conjugate of o,°

If J is oriented correctly, which we now require, the commutation relations
(3.3) that characterize the prequantum line bundie become

[J_, L] = L sabs(zm)
8s2,%(z) o5 2(w) 8n

[_fhw_‘s_*] = L sz,
054,%(2) 6.4 (w) 87

A vector in the prequantum Hilbert space #, is, formally, an L[? section
Y(s2,% o/;P) of the prequantum line bundle L it is, of course, not required to
be holomorphic or antiholomorphic as a function of these variables. To quantize,
we now introduce a real polarization of the space # ¢ of complex connections by
saying that the real and imaginary parts of «/;* will be regarded as coordinates,
and the real and imaginary parts of .«7,* will be regarded as momenta. This choice
defines a valid polarization because the real and imaginary part of </;* have
vanishing Poisson brackets with one another, and are canonically conjugate to
the real and imaginary parts of .«/,°. With this polarization, the J dependent
quantum Hilbert space #”; is the subspace of #, consisting of wave functions
that obey

3.7)

= 5 'II = 5_
o,’ o
(As o7;% is the complex conjugate of =,% (3.8) is the statement that ¥ is annihilated
by the covariant derivatives with respect to the real or imaginary part of 2/,°.)
In this paper, the full quantum Hilbert space, without imposing a constraint
of gauge invariance, will be denoted as #” or as #”; to emphasize its J dependence;
its gauge invariant subspace will be called simply # or #,, the physical Hilbert
space. Similarly, the quantum connection on 5#” will be called 6, or just &', while
the quantum connection on the gauge invariant subspace # will be called 62.

0 ¥, (3.8)

3 It is interesting to note that 2 + 1 dimensional general relativity with positive cosmological
constant, like string theory, is a generally covariant theory which is very difficult to formulate
in a background independent way. In the former case background dependence of an unusual
kind enters in the choice of a polarization which is needed for quantization. In the latter case
we still do not understand the origin of the background dependence which is so prominent in
presently known formulations
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The quantum Hilbert space #”; depends on J because Egs. (3.8) depend on J.
It is convenient to make the dependence on J explicit and to think of the quantum
wave functional ¥(«/;;J) as a functional of o/ and J which for any given J obeys
(3.8). We would like to write down an equation describing how ¥(«/;;J) must
vary as J varies so that the quantum state represented by ¥ is independent of J.
The nature of this can be understood along the following lines. The representation
of the canonical commutation relations that we are using (with ¥ depending only
on the coordinates «/; and not on the momenta o/,) depends on J. As J varies,
one must make a Bogoliubov transformation on the wave function to compensate
for the change in representation of the commutation relations. The generator of
a Bogoliubov transformation is quadratic in the coordinates and momenta, so it
will be represented by a second order differential operator in the equation that
we will write.

Let ¢ denote the space of complex structures on X. # is a complex rnanifold,
so the exterior derivative 6 on # has a decomposition é = 61?4+ §©V with the
two pieces being of type (1,0) and (0, 1), respectively. Under a change in complex
structure of X, one has

51,0 0 — ié]’- 0 SO 0 = 0,
ods) 2 Fou” 84,0

5(0’”(—‘5_ ): s, 0 so 1)( 0 )=0,
ot A o5ty

where 8J7; and 8J%, can be regarded as forms of type (1,0) and (0,1) on #,
respectively. The desired connection that expresses how ¥(«/;J) must vary as J
changes in order to describe a fixed quantum state is (by analogy with Eq. (2.37
of [11]) formally

(3.9)

51,0 — 51,0 _ 217:"‘5‘]2 o ¢
s 0L OA”

5.1 - 50.1) _ 2in I 5&( a&; - (3.10)
z

The condition that the quantum state represented by a wave function ¥(s7;J) is
independent of J is simply

§¥=0. (3.11)

This equation makes sense because, using (3.7) and (3.9), one can verify that

5 ! !
[M;"é] [w. 6] (3.12)

This ensures that a physical state ¥, which obeys (3.8) at one value of J, still obeys
(3.8) (and thus still represents a physical state) after being transported via the
connection &'. Given that ¢’ differs from é by a second order differential operator,
the form of &' is uniquely determined by requiring (3.12).

Having quantized the theory, we now wish to impose the Gauss’s law
constraints and select the gauge invariant subspace of the quantum Hilbert space.
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In our chosen polarization, the generators (3.4) of the gauge group become

a(z) D“ 5 inia:
XA
_ o t
F,2)=D,—————F,;,. 3.13
@=D. e & G.L3)

For given J, a gauge invariant physical state is a functional ¥(s/;J) that obeys
(3.8) and (3.13). Such a functional represents a J-independent quantum state if it
also obeys (3.11). These equations are very similar to the equations that enter in
quantizing Chern—Simons gauge theory with a compact gauge group, and they
can be studied using the same methods.

3.4. Reduction to the Space of Unitary Connections. Before proceeding further, it
is convenient to solve Eq. (3.8), using them to reduce the problem from the space
W ¢ of complex connections with structure group G¢ to the space #~ of unitary
connections with structure group the maximal compact subgroup G.

To do so, we write o/ = A + iB, with 4 and B being g valued one forms (thus
A and B are the hermitian and anti—hermitian parts of the g¢-valued one form

/). We then have
b 1<3__ -i)
ool, 2\0A 6B

L
oo ; 5A-
i K
XA 5A- ’
1
_ = ( ) (3.14)
o , A,
So the physical state condition (3.8) becomes
0 1 1
i'{’=—i;'{’, —Y¥=4+i—Y. (3.15)
0B, 0A, 0B; 0A;

Clearly (3.15) is just sufficient to determine the B dependence of ¥ and thus to
determine ¥(4, B;J) in terms of ¥(A4,0;J). Moreover, from (3.14) it follows that
if ¥ obeys (3.8), then

) o o o

g7

(3.16)

o, OA,
This last equation permits us to rewrite the formulas derived above with B
eliminated and thereby to formulate the entire discussion in terms of ¥(4,0;J),
which we will henceforth call simply ¥(A4;J). In fact, the connection becomes
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5/(1 0)_5(1 0) 2’”!5.] 5:: a&j —
5.1 _ 50,1 _ 21-7tj.5J 4 i (3.17)

s C0A0A4°

Likewise, the constraint generators (3.13) become

a(z) D 6 LF zza’

64" 8n

— ) i
F(2)=D, ——F,.,. 3.18
@ 04, 8n (3.18)

In terms of A4, the commutation relations (3.7) become

1) 1) k
—y e | = — = 85(z, W). 3.19
[5A;(z) 5A;(w)] 4’ 0@ G19)

Here k=(t + £)/2 must be an integer for topological reasons.

By now, all of the essential equations have been expressed as equations on the
space #~ of unitary connections. This is the same space that arises in studying
Chern-Simons gauge theory with compact gauge group. Moreover, the
commutation relations (3.19) also arise in that context; their geometrical meaning
is that the quantum wave functional ¥ is a section of a line bundle .# ®¥, with &
being the fundamental prequantum line bundle over #". It was discussed extensively
in [11].* From the point of view that we are developing here, the essential difference
between the compact and complex gauge groups is that in the case that the gauge
group is the compact group G, the quantum Hilbert space consists of holomorphic
sections of £ ®*. But with gauge group G, the quantum Hilbert space consists
of arbitrary I? sections of & ¥,

Because of this difference, the (0, 1) part of the connection, which is trivial in
the case of gauge group G, is non-trivial in the case that the gauge group is G¢.

Likewise, the fact that the wave functions are L? rather than holomorphic
sections of #®* is the reason that the constraints (3.18) do not quite coincide with
the Gauss’s law constraints that arise in quantizing Chern—Simons gauge theory
with a compact gauge group. The constraints (3.18) nevertheless play a simple role
quite similar to the role that they play in the case of compact gauge group. Let
G¢ be the group of smooth maps from X to G, with pointwise multiplication
Then the space #” of unitary connections admits (once a complex structure J is
picked) a natural G¢ action. Indeed, the action of G¢ by conjugation on the
operator J 4 (that is, ,,— gd .9~ ") corresponds to a G action on the  space #~ of
unitary connections. The properly defined quotient of #” by the Gc action is
simply the moduli space .#, of stable holomorphic G ¢ bundles over X. The action

of Gg on ¥ gives a projection map (defined on a dense open set, which is good

# Thus, the prequantum line bundle %,,, when it is restricted to #°, becomes isomorphic to
&% ®* When pushed down to the moduli space .#, the topology of &£, is determined by &, but
its connection and curvature of course depend on the complex parameter t
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enough in the I? theory considered here) n: #"— .#;. The line bundle & over #°
admits a G action, and pushes down to a line bundle #; over the moduli space ..

The constraints (3.18) mean that a physical state in the G¢ theory must be
invariant under the Gc action on ¥, or more exactly, under a suitable lift of this
action to an action on the line bundle #®*. Since a G¢ invariant element of
r(w,%®" is the same as the pullback (via the projection ) of an element of
I'(M;, #;®%), we see that the physical Hilbert space of the G¢ theory can be
identified with I'(4,;, &£ ,®").

According to the Narasimhan—Seshadri theorem, as discussed for instance in
[11], the spaces .4 are as symplectic manifolds canonically independent of J, and
can be identified with the moduli space .# of flat G connections on the surface
X. Likewise, the line bundle .#;, as a unitary line bundle with connection, is
naturally independent of J; it can be regarded as a line bundle, which we will call
2, defined once and for all on .#. We have learned that the physical Hilbert space
of the G¢ theory has a J dependent identification with the fixed Hilbert space
H =T (M, L%

Therefore, the quantum Hilbert space bundle J#, over the space ¢ of complex
structures is naturally trivial; and it could be given a natural, trivial flat connection.
This possibility is realized in the G¢ gauge theory in the limit of ¢,f— co (with
fixed k), since we see in (3.17) that the connection ¢’ reduces in that limit to the
trivial connection 8. But in general, the connection that must be understood to
understand the Gg theory is not the trivial connection but a one parameter
generalization of it, depending on a parameter t. In the next section, we will use
the constraints (3.18) to reduce the connection to a concrete and manageable form
on the finite dimensional manifold ..

4. Concrete Form of the Connection

At this point, the quantum states in the G¢ gauge theory are functionals
Yel (W x §¢,%®% (werecall that % is the space of unitary, G-valued connections
and ¢ is the space of complex structures on X) which are annihilated by the
connection

5,(1,0)=5(1,0)_giﬁj5.]z b9

t s C6AS A7

. 4.1)
501 = 50,1 —2ﬂj5-ﬁ Li
i 704,047
and also obey
<D2L_inia>?,=0’
04 8=m
<D b _ Iy )sv—o @)
754, 8m . '

Of course, it is unsatisfactory to have an allegedly soluble quantum field theory
formulated in terms of functions on the infinite dimensional space #” x #. Our
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next task is to describe precisely how the Gauss law constraints (4.2) reduce the
problem from the infinite dimensional space #~ to the finite dimensional space
M= '1/// Gc.

We will follow conventions of [11] concerning the differential geometry of .Z.
In particular, the choice of a complex structure J on X determines a complex
structure on ./ that we will also call J; it can be represented explicitly as a tensor
J';. We project out the (1,0) and (0, 1) components of vector fields on .# by writing,
for instance, v = 3(6'; — iJ\;v, v = 3(6'; + iJ%)v’, and similarly for tensor fields of
other type. The symplectic structure of .# is w;;= k- w,,;, with k an integer and
w, the fundamental quantizable symplectic structure; the inverse of w, is denoted
as wy’*. We also make the frequent abbreviation 6JY = 8J"w,".

Another basic object that enters is the determinant of the Laplacian on X, in
the adjoint representation of G. Thus, if we are given a metric on X, and a connection
A on a G bundle E, then we have a Laplacian A = —g*(D,D;+ D;D,). Its
determinant, defined with zeta function regularization [20], will be denoted as
H. H is not quite invariant under a conformal rescaling of the metric of X'; under
such a rescaling, H changes by a conformal anomaly term that is independent of A.

The essential point to be noted is that the first equation in (4.1) and the first
equation in (4.2) are precisely the key equations that appear in studying
Chern—Simons gauge theory with a compact gauge group, except that where k
appears in the problem with gauge group G, it is replaced by ¢/2 in the G¢ case.
Thus, the first equation in (4.1) corresponds to Eq. (2.37) of [11], and the first
equation in (4.2) corresponds to Eq. (2.21) of [11]. The main steps in [11] were
the use of the Gauss law constraint, the first part of our Eq. (4.2), to reduce the
“upstairs” connection, the first part of our (4.1), to a concrete form given in Eq. (2.42)
of [11], and then clarified in Eq. (2.49) and (2.50) of that paper. Basically, in this
derivation one uses the first equation in (4.2) to “solve” for §/0A4;, and then one
substitutes the result in (4.1) to simplify the latter. The “downstrairs” connection
resulting from this analysis was expressed purely in terms of the differential
geometry of .4 and the functional determinant H in Eq. (3.36) of [11]. We may
simply borrow the latter formula, with k replaced by #/2.

Before writing down the result, let us note the following points:

(i) In the derivation in [11], one meets Green’s functions on the diagonal which
must be regularized. The proper incorporation of the resulting “anomalies” was
described in [11] (cf. the analogous discussion in [9]). The role played by the
anomalies in the theory with gauge group G¢ is somewhat different, since the
conditions that must be satisfied are different. We will therefore first write down
the formal expressions and then consider the effects of anomalies.

(i) Before using the Gauss’s law constraints to simplify (4.1), the quantum wave
function ¥ is defined on #" x #, with # the space of all (properly oriented)
complex structures on X. After using the Gauss’s law constraints, %~ can be
replaced by the moduli space # of flat connections, and since the resulting formulas
are invariant under diffeomorphisms that are continuously connected to the
identity, the formulas descend from the space # of all complex structures to
Teichmuller space , which classifies complex structures up to isotopy. Thus, we
will henceforth be working on a finite dimensional space 4 x .

Borrowing the essential results from [11] and replacing k by t/2, we learn that
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the (1,0) part of the connection is formally
1 i, .
52,19 = 51.0) Z(V@JUV ;+6JHV,In H)V))) + 16491n H. 4.3)

(The connection on the quantum Hilbert space was called 6% in [11]. We will
here shorten the name to 52, for quantum connection. The subscript “0” in 62,
in (4.3) reflects the fact that the considerations are still formal, and we will have
to make a modification to take account of anomalies.)

In the case of compact gauge group, the (0, 1) part of the connection is trivial.
However, for complex gauge group, we must now go on and use the second Gauss’s
law constraint equation in (4.2) to push down the formula for the (0, 1) part of the
connection, which is the second equation in (4.1). The computation is a mirror
image of the analysis of the (1,0) part of the connection, and the result is

52,01 = 50 _ % (Vi0J'V;+ 6J9(V;In H)V)) +46°VInH.  (44)

The formulas (4.3) and (4.4) are to be understood as follows. The wave functions
are sections of £ ®* over .4 x J which are square integrable when restricted to
M x t for fixed te 7. Such wave functions may be regarded as sections of a Hilbert
space bundle over J; actually, this is the trivial Hilbert space bundle whose fiber
is the fixed Hilbert space I'(.#, % ®¥). On that trivial Hilbert space bundle, (4.3)
and (4.4) are a one parameter family of connections which reduce for t — oo to the
trivial connection.

Incorporation of Anomalies; V anishing of the (2,0) Curvature. The next urgent task
is to properly incorporate the anomalies and get the correct final formulas; the
derivation of (4.3) and (4.4) has involved some formal steps borrowed from [11].
In the case of compact gauge group, the anomalies require some slight modifications
of the formal expressions. These modifications were found in [11] by requiring
that the connection should commute with the equation analogous to (3.8) which
defined the polarization. For complex gauge group, we must expect some analogous
modifications of the formulas due to anomalies, but these modifications cannot
be found in the same way, since we have already solved (3.8). Also we cannot use
physical arguments of the type used in [9], since a 1 + 1 dimensional analog of
the G¢ theory is not presently understood. We will simply find the required
modification of (4.3) and (4.4) by demanding that the connection 52 that we finally
adopt should be projectively flat. We will further assume that (as in the case of
compact gauge group) the effect of the anomalies will be to change some of the
coefficients in (4.3) and (4.4) while leaving the form of the various terms unchanged.

The first step is to require the vanishing of the (2,0) part of the curvature.
Again, the analysis is not difficult since the key elements can be borrowed from
[11]. In the analysis of the (2,0) part of the curvature for compact gauge groups
in [11], certain identities were discovered which were equivalent to the statement
that the operator

1 g y ke
510 = 51O 4 V5]V, 4+ SJHV,In HWV ) + ———— 5 OInH (4.5
p 4(k*+h)( 1074V, {ViIn H)V))) 20+ h) nH (4.5)
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obeys
(0?2 =0 4.6)

for any complex number k*. (Here h is the dual Coxeter number of G, so for
instance h = N for G = SU(N).) Applying the results of [11] for complex values of
k* may require some explanation. In [11], (4.5) was naturally regarded as an
operator on sections of the line bundle ¥ ®* over ./, and thus k* was required
to be an integer (and was called k). The standard connection on ¥ ®*" was used
in the covariant derivatives V,, etc., appearing in (4.5). However, since only
derivatives of type (1,0) appear in (4.5), and since the curvature of & with its
standard connection is of type (1, 1), the line bundle £ ®* plays no role in the
analysis of the statement (4.6). We could just as well consider §,."? to be acting
on the trivial line bundle (with trivial connection). With this formulation, continua-
tion of §,,"? away from integral k makes sense, and it is evident upon examining
the relevant discussion in sect. 4(b) of [11] that the vanishing of (2,0) curvature
for Chern—Simons gauge theory with compact gauge group is equivalent to the
assertion (4.6).

If the discussion in [11] had been carried out with a reversed complex structure
on X and on ./, then to verify the vanishing of the (0,2) curvature one would
have used the fact that the operator

1

 _(V.0JW, 4 6TV, In HWV )+ — OV InH
4(k*+h)( i (V:In H)Vy)) + n

2(k* + h)
4.7

obeys the identity that follows from (4.6) upon reversal of complex structure,
namely

5,‘*(0»1) =60 +

(6,012 =0. 4.8)

Final Form of the Connection. Comparing (4.3) to (4.5), we see that there is no
value of k* for which these coincide, and therefore the (2,0) curvature of the naive
connection 62, defined in (4.3) is not zero. We must therefore make some modi-
fication of (4.3), to reflect the “anomalies.” If vanishing of the (2,0) curvature is
the only desideratum, the solution of this problem is not unique, since one could
simply replace (4.3) by (4.5), for arbitrary k*. However, we also want the non-central
part of the (1, 1) curvature to vanish, and in the investigation of this point (see the
last part of this section) one learns that it is essential that the coefficient of the
second order operator V,6J:V, in (4.3) should not be modified.’ This forces us to
make the choice k* + h=1t/2.
So we arrive at the final form of the (1,0) part of the connection:

1(1 —2—:'>5<1’°) InH. (49)

OO = 5(1.0) 4 %(ViéJiiV STV In H)V,) +

5 The fact that this coefficient retains the value given by the formal manipulation is presumably
related to the vanishing of the canonical line bundle of .#¢, but we will not attempt to develop
that point of view here
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Now we require the analogous modification of the (0, 1) part of the connection.
To ensure vanishing of the (0, 2) part of the curvature, we modify the preliminary
form of the connection in (4.4) so that it coincides with (4.7) for some value of k*,
again in such a way that the second order term in the preliminary expression for
the connection is unmodified. Evidently, we must pick k* such that k* + h= — /2.
Upon doing this, we arrive at the final at the final form of the (0,1) part of the
connection:

1

seon — go _ Ly 55y 4 SJHV;In H)Vy) + = 1+ 2\ o010, (4.10)
2 ’ 2 f

The discussion in this paper up to this point may appear somewhat heuristic;
in particular, the ad hoc modification of the connection to ensure that the (2,0)
and (0,2) parts of the curvature vanish is quite unsatisfying. However, once we
arrive at the formulas (4.9) and (4.10) which define the connection, the remainder
of the analysis is perfectly precise and rigorous. To emphasize this point for
mathematical readers, I will now state the main result of this paper as a theorem.
In doing so, we recall that

t=k+is, t=k—is, 4.11)

where k is an integer and s is a complex number which is real in the Lorentzian
theory (and imaginary in the Euclidean theory). We recall also that we are
interpreting (4.9) and (4.10) as formulas that define a connection 62 on the trivial
Hilbert space bundle over Teichmuller space 7, with fiber # = I'(#, £ ®*).

Theorem. The connection 62 is projectively flat, with a central curvature that is of
type (1,1). It is unitary if s is real.

Concerning the proof of this theorem, the above discussion has already
established that the vanishing of the (2,0) and (0,2) parts of the curvature of 62
follows from the vanishing of the (2,0) curvature in the case of a compact gauge
group. The fact that the (1, 1) curvature is central follows by a computation which
will be presented at the end of this section. (This computation, which also gives
a simple formula for the (1, 1) curvature, is rigorous given the formulas of [21,22]
for the curvature of the Ray—Singer—Quillen metric on the determinant line bundle
of the 0 operator; the identities and methods required are exactly those used in
[11] for the case of a compact gauge group.) That the connection §¢ is unitary
for real s is elementary and will be shown in the next subsection.

4.1. Preliminary Properties. Before tackling the question of the (1, 1) curvature of
the connection 62, we will first discuss some properties that can be understood
without such an elaborate computation.

Unitarity For Real s. The first issue that we will discuss is unitarity. We first
consider the case of real s, where a simple answer can be given. Let ( , ) denote
the hermitian metric on the line bundle £ ®* over .#, and let du be the measure
on ./ determined by its symplectic structure (or by its Kahler metric). Then if s
is real, or equivalently if 7 is the complex conjugate of t, the Hilbert space structure

LY = JfﬂduH(x,t/f) @.12)
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is invariant under parallel transport by 62 This follows by straightforward
computation given the definition of §¢ in (4.9) and (4.10). One way to express the
computation is to note that y is invariant under parallel transport by 6¢ if and
only if = H*?y is invariant under parallel transport by

52 = HY252H 112, (4.13)

But one straightforwardly computes that

5ot.0 — 51.0) 4 %ViéJiiVJ_- - %H“ 2R304+ LV, 6TUV)HY?  (4.14)

(where in the last term the derivatives are all acting on H'/?) and likewise

2

gH—l/Z(hé(l,O) + %V;(SJ’“"V;)HUZ- 4.15)

soon — g0 _ Ly spiy. 4
21 !

For s real, or in other words if f=k —is is the complex conjugate of t =k + is,
021 is manifestly the adjoint of 6%¢*® with respect to the natural hermitian

structure

Ry = L du(i, ¥). (4.16)

This establishes unitarity for real s. Equations (4.14) and (4.15) will incidentally be
a useful starting point in Sect. 5 for a study of the special case of a surface X of
genus one.

Unitarity For Imaginary s. We saw in sect. 2.1 that, at least heuristically, one might
also expect a unitary structure if s is imaginary. Let us now discuss how this could
come about. Let £, be the quantum Hilbert space for given s (at fixed k). If s is
real, then (4.12) defines a unitary structure on 5#,. Even if s is not real, then for
x€H'sand Y € # (5 is the complex conjugate of s), (4.12) defines a hermitian pairing

L 04, C, 4.17)

compatible with parallel transport by <. If in addition we can find a natural
isomorphism ¢: #, = H# _, then by defining {{x, ¥ > > =<d(),¥ ), we will get a
hermitian pairing
L ONnH_QH4,-C (4.18)

invariant under parallel transport. For imaginary s, one has — § = s, so in this case
{{, >) would define a hermitian structure on s, which — if positive definite —
could serve as the sight-for unitary structure.

What could be the origin of the required isomorphism between #, and #_?
In fact, our original Lagrangian (2.1) was invariant under s« — s, combined with
o/ —of . We have lost this symmetry by using a polarization of the space # ¢ of
G ¢ connections which was defined by the equations

o’ o’

Obviously, an equally good gauge invariant real polarization would have been

0 4.19)
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defined by the equations
0 @ é

_ -9 (4.20)
osdf  oddf

The underlying symmetry s« — s is valid if quantization using the polarization
(4.19) is equivalent to quantization using (4.20). Since there is no obvious way to
interpolate between (4.19) and (4.20) via a connected family of polarizations, this
is a more difficult question than the questions that we will address in this paper
about the behavior under a continuous variation of the complex structure.

Though we will not arrive at a general answer, our results suggest that the
quantizations via (4.19) and (4.20) are in fact equivalent. For example, the formula
that we will get presently for the central curvature of 62 will be invariant under
s<>—s; in Sect. 5 it will be possible to see the symmetry under s« —s very
explicitly in genus one.

The considerations just sketeched have an interesting counterpart in the theory
of the unitary representations of complex Lie groups. The unitarity of the principal
series representations of Gy is analogous to the unitarity of 62 for real s, while
the unitarity of the complementary series representations (which depends on a less
obvious choice of hermitian structure) would be analogous to the possible existence
of a more exotic unitary structure for imaginary s. It is likely that much of the theory
of the principal and complementary series has a higher dimensional analog in the
Chern—Simons theory.

Left And Right Movers, The Central Charge. One aspect of the relation between
2 + 1 dimensional Chern—Simons gauge theory with a compact gauge group and
two dimensional current algebra is that if we write 62 = § + 0, then @ corresponds
closely to the energy-momentum tensor of the two dimensional theory. The fact
that, in the case of compact gauge groups, the (0, 1) part of the connection is trivial,
690-0 = 51 means that the energy-momentum tensor of the two dimensional
theory has only a holomorphic contribution.

On the other hand, with the gauge group taken to be complex Lie group, it is
clear from (4.9) and (4.10) that if there is a two dimensional theory related to the
2 + 1 dimensional G¢ theory, then both the holomorphic and antiholomorphic
components of the energy momentum tensor are nonzero in this theory. Writing

§2(1,0) _ 5(1,0) + (9(1,0)’ 520.1) _ 5(0.1) + (0(0,1), (4.21)

the holomorphic and antiholomorphic components of the energy momentum
tensor correspond to O® and 0%V, respectively. The fact that 0 and 01
are both nonzero is a very fundamental difference between the G¢ theory and the
theory with compact gauge group. In a sense this is the mechanism by which the
G theory manages to be unitarity despite the noncompactness of the gauge group.
If a 1 + 1 dimensional theory related to the 2 + 1 dimensional G¢ theory does
exist, there is a natural conjecture for the values of the left- and right-moving
central charges. They should simply be determined by the change of ¢**? and
0" under conformal transformations. As discussed for the compact group case
in [11] (see the discussion of Egs. (2.54) and (4.36) of that paper), this lack of
conformal invariance comes from the conformal anomaly in H. Under a conformal
transformation, §*'”1n H and 6> 1n H shift by central terms, while the rest of
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09 and 01 is conformally invariant. The left- and right-moving central charges
can therefore be read off from the coefficients of 6*?In H and 6>V In H in (4.9)
and (4.10), and are

(¢, cg) =dim G-<1 ~-2t—h,1+2?>. 4.22)
This is the analog of the well known formula
(e, c )—dimG-< k O> (4.23)
L>“R) — k+ hz .

in two dimensional current algebra with a compact gauge group.

Let us discuss now the physical implications of (4.22), first for a hypothetical
1+ 1 dimensional theory to which the present discussion may be relevant, and
then in 2 + 1 dimensions.

In 1+ 1 dimensions, one wishes ¢, and cg to be real. Evidently, this is true if
and only if s is imaginary. So it is the 2 + 1 dimensional Euclidean theory that is
most likely to be relevant to a possible 1+ 1 dimensional theory. Indeed, the
conjectured exotic hermitian structure of the 2 + 1 dimensional theory would be
used to make modular invariant combinations of conformal blocks in 1+ 1
dimensions. The conformal blocks, of course, will not be either holomorphic or
antiholomorphic, since the holomorphic and antiholomorphic parts of the stress
tensor are both non-zero. We will make these points explicit in Sect. 5.4.

The fact that the central charges depend continuously on a parameter s is
unusual in 14 1 dimensional conformal field theory. The only presently known
models with such a phenomenon are Liouville theory and its close cousins. Perhaps
the 2 + 1 dimensional G theories are related to the latter.

Now we move on to consider the implications of the central charge in 2 + 1
dimensions. In 2 + 1 dimensions (and perhaps also, from some points of view, in
1 + 1 dimensions), the key object is the difference

¢ —Cr= —2hdimG-<%+%>. (4.24)

This quantity potentially leads [23,24] to a sort of global obstruction to general
covariance in three dimensions. When ¢; — cg does not vanish modulo 24, the
Chern—Simons theory cannot be defined on a “bare” oriented three manifold but
requires a choice of framing. Under a change of framing, the amplitudes are
multiplied by an integer power of exp(27i(c;, — cg)/24). From the point of view of
gauge theory, one may consider it acceptable to require a framing of the three
manifold as part of the definition of the problem. In gravity, however, one might
consider it to be a physical principle that the physical amplitudes should be defined
for “bare,” unframed three manifolds. If that is the right interpretation, then the
quantity expressed in (4.24) is a sort of c-number anomaly, analogous to the
Virasoro central charge, in 2+ 1 dimensional general relativity with positive
cosmological constant. As in the case of the Virasoro anomaly, one would wish
to cancel this term either by choosing k and s judiciously or by coupling to
additional matter multiplets.
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The symmetry of (4.24) under s« — s suggests that the underlying symmetry
has indeed not been spoiled by the choice of polarization.

4.2. Analysis of the (1,1) Curvature. In this subsection, we will, finally, show that
the (1,1) curvature of the quantum connection 62 vanishes except for a central
term. This is only difficult calculation in the present paper. Happily, it can be
carried out using only the identities that were used in [11] to settle similar questions
for the case of a compact gauge group.

Let us recall these identities. First of all, one has the fact that the (2,0) part of
the variation of complex structure of .# is holomorphic:

VidJi=V,8J7=0. (4.25)

The other important identities can be deduced from standard considerations about
anomalies in two dimensional gauge theory, or, alternatively, from the local families
index theorem of [21,22], applied to the determinant of the d, operator (coupled
to the adjoint bundle ad(E)). The relevant anomalies are the anomalies in the two
point functions of the currents and stress tensor of a system of two dimensional
fermions coupled to the connection A. These anomalies are all related to certain
statements about the Kéhler geometry of the moduli space .#; of stable
holomorphic G¢ bundles. In formulating these statements (which are equations
(4.17-20) in [11]), R;j,; will denote the Riemann tensor of .#;, and R;, =R},
will denote its Ricci tensor. The anomaly in the current two point function is
equivalent to the statement that

ViV, In H — Ry, = — 2ih@ g (4.26)

The absence of an anomaly in the off-diagonal two point function connecting the
current and the stress tensor is equivalent to the statements that

51OV, In H) = — %Viéﬁ,;,,
, (427)
50NV, In H) = + —éviaﬂm.

Finally, the anomaly in the two point function of the stress tensor corresponds to
the statement that
8OO H — 2575607, = ¢,(Ind(T}). (4.28)

Here c,(Ind(T,)) is a two form on Teichmiiller space (or more precisely, the pullback
of such a form to .# x ) which represents the c-number central anomaly in two
dimensional conformal field theory. We will show that the (1, 1) curvature of 6¢
is central by showing that, in fact, it is a multiple of ¢, (Ind(T,)). The normalization
is such that if a projectively flat connection is related to a two dimensional
conformal field theory with left- and right-moving central charges (c;, cg), then the
curvature will be
1

(cL. —cRr) S dmG ¢,(Ind(T)). 4.29)
The factor dim G appears in the denominator here simply because of the way
¢,(Ind T,) was defined in [11].
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In addition to these identities, one should recall some more elementary facts.
The quantum Hilbert space is 3 = I'(#, % ®¥), where the line bundle ¥ ®* has
a curvature that can be described by the statement

[V, Vil = — k-, (4.30)

Since the (1,0) and (0, 1) covariant derivatives are defined by V= —(6' —iJ Vi
V;=46';+iJ*)V,, one has also
i

5(1’0)(V7) = + EéJIE;V’S,
5ODV) = — %6J’?£V,;. 4.31)

It is convenient to define
y.0 — ViéJil'Vi + 6.]”{Viln H)Vl. +2k64On H,
VO = V3J9Y 4 5J9(V,In H)V;— 2k6® D In H. (4.32)

The quantum connection is then

69‘1'°’=5‘1’°’+1V‘1'°’+(1 k+h>5u OnH,
t

2 2
5201 = 5©.1 —%_V‘o’” (%——k : h)aw YnH. (4.33)

The advantage of writing the connection this way is that one can conveniently
borrow some results from the computation in the case of compact gauge group.
For instance, the verification of holomorphicity preservation in [11] is equivalent
to the statement that

[Vi, VO] = 4(k + B[, V] = 2i(k + h)oJ4V i (4.34)
The mirror image computation with opposite complex structure would give
[V, VO] = —4(k — b6V, V, ] = — 2i(k — h)éJf,_‘V 5 4.35)

The (1,1) part of the curvature is
{6200 50O} 4 24 B_C + (k_'i'_h - Eﬂ)D + l(l — E_">

4 2 oF t £ 2t\2 t
_l_<l_ﬂ>.F (4.36)
2t\2 t

with
A= {yo oy
B = 60Dy 1.0,
C = §1-0p 0.1
D = 61950V H,
E={V%9,5001n H},
F={y©b 5001 H}. (4.37)
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With the connection 62 being given by a second order differential operator, it
appears a priori that the (1, 1) curvature might be a third order differential operator.
However, with the aid of (4.25), such a term is absent. We will now summarize in
turn the analysis of possible terms in the (1,1) curvature involving differential
operators of second order, first order, or zero™ order.

Second Order Contributions. Second order operators come from A4, B, and C. The
contributions can be evaluated using the identities above and are

oo

AP
C,=+ EéJmi(SJ!l(V Vit VaV). (4.38)

Using t + £ = 2k, the total second order contribution cancels in (4.36).

First Order Contributions. With the second order terms being written as in (4.38),
the objects A4, B,..., F have well defined first order contributions. It is obviously
enough to verify that the first order contributions proportional to differential
operators of type (0, 1) cancel. Contributions of this type come only from 4, B,
and F. (It is not obvious that one does not get such a term from C, but this is a
consequence of the analysis of the (1,1) curvature for compact gauge groups in
[11].) One finds

A0V = —2ih-((V;0JH) + 6JHV;In H))oJ™ V z,
B,OV = %-((Viéﬂi) + JH(V,In H))8J™ V5,

These again cancel when substituted in (4.36).

Zero™ Order Contributions. Finally, we must evaluate the zero™ order contribution
to the (1,1) curvature. If we let

Y =((V56°") + (V¢In H)6J57)~((Vj5ﬂ,-) +(V;In H)6J%;
+ 8J760™ R, ) (4.40)
then the zero'® order contributions turn out to be
Ao = —ikY,
By = — 2k6t950Dn H,
Co= —2k595C-V1n H,
Dy =6%950V]n H,

i -
Eo=3Y — hoJho,

Fo=— % Y + héJizb ", (4.41)
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Inserting these results in (4.36) and using (4.28), we find finally that the (1,1)
curvature is central as promised, and in fact we obtain the precise formula

{50010, 5001} = _ G + g)cl(lnd T.). (442)

In particular, we recover the resulted stated earlier in Eq. (4.24) that the central
charges of a hypothetical 1 + 1 dimensional conformal field theory related to the

present discussion obey

1 1
¢, —cg= —2h-dim G<;+E) (4.43)

5. Genus One

We will now turn our attention to the special case in which the surface X' is of
genus one. As in the analogous situation for a compact gauge group G [9,11],
the quantization of the G¢ theory can be described in a particularly explicit way
for genus one.

Let T be the maximal torus of G and W its Weyl group. Let T¢ be the
complexification of T, which is a complex maximal torus of G¢. Because the
fundamental group of a genus one surface is abelian, the holonomies of a flat G
connection on X can be simultaneously conjugated into T, in a fashion that is
unique up to the action of the Weyl group. So the moduli space .# of flat G
connections is T x T/W. Since a torus T x T, or its quotient by a finite group,
has a standard quantization, there is an obvious guess for how the moduli space
of flat G connections should be quantized in genus one. Actually, as explained in
[9,11], the correct description, which comes by specializing the genus g story to
the case g = 1, differs from the most obvious guess in some key details, such as a
replacement k— k + h in some formulas.

Flat G¢ connections whose holonomies are semi-simple can similarly be
conjugated into T¢ x T¢. Thus, if we consider only connections of semi-simple
holonomy, it would appear that the moduli space .# of flat G¢ connections would
be Tg x Te/W. This could be identified with the cotangent bundle T*(T x T)
divided by the Weyl group. (Actually, it can be shown that the effect of the flat
connections whose holonomies are not semi-simple is that .#¢ for genus one is a
smooth manifold obtained by blowing up singularities of T*(T x T)/W.) These
facts suggest that the physical Hilbert space for the G¢ theory quantized on a
genus one surface would be the W invariant subspace of the Hilbert space obtained
by quantizing T*(T x T). It turns out in the G¢ case that the naive guess is
essentially correct, without any shifts analogous to k—k + h. This is presumably
related to the fact [19] that the canonical line bundle of #¢ is trivial, since the
shift k—k + h can be interpreted [11,12] as reflecting the role of the canonical
line bundle of ./#.

5.1.1 Use of the Heat Equation. As in the treatment of the compact group case in
[11], the key fact that makes a simple treatment of the G¢ problem possible in
genus one is that the object H, the determinant of the Laplacian, obeys a heat
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equation:
(h6® + 5V, 6J4V )H'/> = 0. (5.1)

More precisely, this equation holds if 4 is defined using flat metrics on X of unit
area. Otherwise, a central term must be added to (5.1).

Equation (5.1) can be considered to be a consequence of the following facts.
In genus g, the partition function of a system of Majorana fermions in the adjoint
representation of G obeys a heat equation because the stress tensor of this system
has a Sugawara construction. In genus one, on the other hand, the partition
function for such Majorana fermions (coupled to the Dirac operator with the trivial
spin structure) is just H'/2, leading to the heat equation (5.1). This equation is
actually closely related to the MacDonald identities and so is studied in the
literature on affine Lie algebras.

In any case, once (5.1) is accepted, it is easy to see how to simplify the genus
one problem. We saw in Sect. 4.1 that to understand unitarity, it was convenient
to conjugate the quantum connection 62 by H'/? and study the new connection
02 = H'252H~'/2, which is given by

§o.0) — 51,0 zitVﬁJ”V = %H‘ 1260 + 3V 0TV )H2,
~ 1 s s
oON = 50N - V:67V;+ %H TRV +3ViSJIV R (52)

With the aid of (5.1), the conjugated connection reduces to

~ 1 . 1 k—is .
6210 = 5(1.0) 4 . 5JHY . = §(1.0) —(1 + )V.éJ“-V .
2t ! 4k k+is) * 1

~, 1 - 1 k + is =
6Q‘°'”=5‘°’”——V—5J”Vr=5‘°’”———(1 + V.0J7V,, 5.3
2 ’ 4k k—is) ' ! G3)
where we have used t =k +is, =k —is. These formulas are even simpler than
they may look, because in the genus one case, the intrinsic Kahler geometry of
A is flat, and 8J is covariantly constant. For a detailed description, see Sect. (5)
of [11].

5.2. Finding Explicit Parallel Sections. A further simplification can be obtained in
the following way. One introduces the Laplacian A on .#, defined by

A=J 0,V V,. (5:4)
Thus,
[0, A] = 6J%V V,, [6*Y,A]=0J9VV; (5.5)
Recalling also that
[V, Vil = — ikwo;; (5.6)

(with other components vanishing) and that J acts as multiplication by + i (or — i)
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on components of type (1,0) (or (0, 1)) we compute
[4,0J2V,V,] = 4k6JEV,V,,
[A,00*VV,] = — 4k3JV.V;. (5.7)

One can now compute

1 .
e TAg(L0)ra_ 5(1,0) 4 —(1 - e“”")(SJ”ViVj,
4k ST
1
e~ ra50.gra_ 50.1) _ @(1 — ) JIV.V;. (5.8)

We therefore see that if we pick r so that

ot _ k=S (5.9)
k+is
then
8 =era5-¢m4, (5.10)

This solves the problem of finding parallel sections of 8¢, As parallel section
¥ of 62 over the genus one Teichmiiller space 7 is of the form

Y =e"Y,, (5.11)

where Y, is a vector in the fixed Hilbert space # = I'(#, % ®*). The 7 dependence
in (5.11) arises because the complex structure and Kihler metric of .# and therefore
the Laplacian A depend on the choice of a point in 7.

At first sight there is a puzzling apparent non-uniqueness of the description
(5.11) of explicit parallel sections, since in (5.9), r is determined only modulo an
integer multiple of 2ri/4k. It can be seen, however, that (for k # 0) A is of the form

A=2kN, (5.12)

where N is an operator with integer eigenvalues, and that the connection &<
commutes with the operator (— 1)¥. Therefore, the indeterminacy in the formula
for r essentially factors out of the formula (5.11).

The Case k =0. The above formulas are not quite valid for k =0, since we have
divided by k at various points. In fact, it is easy to see that with k=0, t =is,
f= —is, (5.10) is still valid, but now with

1
= 5.13
’ 2is ( )

5.3. The Exotic Hermitian Structure. In Sect. 4.1, we showed that in addition to
the obvious hermitian pairing #,® #,— € which leads to unitarity for real s, it
is natural to look for an exotic hermitian pairing

LK o _@H,—>C (5.14)

compatible with parallel transport by &2, which might lead to unitarity for
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imaginary s. We saw that the key to finding such a pairing would be an isomorphism
between , and S _..

It is now easy to settle this question in°the genus one case. The quantum
connections 59 and 5Q_s (we now make the dependence on s explicit) are conjugate
to each other since in fact according to (5.10) they are both conjugate to the trivial
connection 0. Therefore, the exotic structure exists. It can easily be written down
explicitly. For ye#, and ¢pe#_, obeying 0 =62y = 62_.4, or equivalently

0=95(ey), 0=40(e "), (5.15)
we define
L Yd) =<,e” ). (5.16)
This is equivalent to
LYy =<e™p, ey, (5.17)

which makes it obvious that §<{¢,¥>> =0.

For imaginary s, one has —§=s, so (5.16) is in fact a new hermitian structure
on . Is it positive definite?

For k=0, (5.13) shows that r is real if s is imaginary, so

fe N
e2'A=<fs k>, (5.18)
is+k

where N has non-negatve integer eigenvalues. Here u = (is — k)/(is + k) is real for
imaginary s. The operator in (5.18) is bounded above by one for |u| < 1. For s
such that 1> u >0, this operator is positive definite, so (5.16) defines a unitary
structure. Actually, even for 0 >u > — 1, it would be possible to achieve positivity
in (5.16) by multiplying by hand by a factor of (— 1), since this operator commutes
with 8, 62, etc. One might suspect, however, that this last step (Which is possible
because the moduli spaces in genus one are quotients of linear spaces by discrete
groups) is unlikely to generalize to genus # 1.

In the theory of the unitary representations of G ¢, the exotic hermitian structure
exists for all k but is positive only for k = 0. In the gauge theory problem, at least
for genus one, this structure is positive (in a suitable range of s) for all k.

Looking back to the relation (4.13) between the original quantum connection

62 and the modified connection 6¢ which preserves the unitary structure (5.16),
we see that in terms of wave functions @ = H™'2¢, ¥ = H~ /2 invariant under
parallel transport by the original connection, the exotic unitary structure is

KD, ¥ Yy =D, H?>*H?¥ . (5.19)

54. Attempt at a 1 + 1 Dimensional Interpretation. We will now make a tentative
attempt at a 1 + 1 dimensional interpretation of the above results; in fact, we will
propose a candidate for the partition function of a 1 + 1 dimensional theory that
may be related to the 2 + 1 dimensional discussion.

In the case of a compact gauge group G, the relation between conformal blocks
in 1 + 1 dimensions and quantum states in 2 + 1 dimensions can be described as
follows. In 2 + 1 dimensions, a quantum state is a wave function ¥'(4;7) (4 denotes
a connection and t denotes a point in Teichmiiller space) which is annihilated by
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the quantum connection 62. The corresponding conformal block is obtained simply
by setting A =0 and is ¥(r) = ¥(0;1). The modular invariant partition function
of 141 dimensional current algebra (corresponding to the diagonal modular
invariant combination of conformal blocks) can be described as follows. Picking
a basis of orthonormal quantum states ¥ ,(4;7) (orthonormal, that is, with respect
to the unitary structure preserved by §9), the partition function of the 1+1
dimensional theory is

Z(r)= Y | L0 0)1%, (5.20)

with | ¥,(4; 7)|*> being the norm of y,(4; t) with respect to the metric on the line
bundle & ®* that is being quantized.

Imitating these steps, we can try to propose a candidate for the partition
function of a 1 + 1 dimensional theory that is related to the G¢ theory in 2 + 1
dimensions. One still has quantum states ¥, (A4;1) which are annihilated by an
appropriate quantum connection 6% setting A =0, one gets candidates
Y.(t)= ¥ ,0;7) for the conformal blocks in 1+ 1 dimensions. One even has the
explicit description (5.11) of these conformal blocks. A significant difference from
the case of a compact group is that in the G¢ case, these candidate conformal
blocks are neither holomorphic nor anti-holomorphic in 7 (since the (1,0) and (0, 1)
parts of the quantum connection 62 are both non-trivial).

The next step is to form a modular invariant combination of conformal blocks.
New issues arise, because the sum in (5.20) will be an infinite sum in the case of
the G¢ theory. It is the imaginary s theory, with its exotic unitary structure defined
in (5.19), that seems to be more suitable. The analog of (5.20) can be worked out
formally and is

Z(T.')=<A=0|H_1/2e+2'AH_1/2|A=0>, (5.21)
which is equivalent to
1
Zt)=—————CA=0[e**44=0). 5.22
@ H(A=0;1:)< le™ =4 > (5.22)

This formula raises several questions. First, H is defined as the determinant of the
Laplacian on the underlying Riemann surface X, and this has zero modes for 4 = 0.
However, it is fairly natural in (5.22) to interpret H as the determinant of the
Laplacian in the space orthogonal to the zero modes. A more serious puzzle is,
perhaps, that the matrix element (4 =0]e**4A4=0) makes sense only for
negative r. Though there is no contradiction here, and negative r does indeed arise
in a suitable range of imaginary s, this requirement is perplexing since it is positive
r that one wants in the 2 + 1 dimensional theory.

5.5. Analog of the Knizhnik—Zamolodchikov Equation. Canonical quantization of
Chern-Simons gauge theory with a compact gauge group, for a Riemann surface
X of genus g with n marked points (the marked points being labeled with additional
data such as representations of the gauge group), is naturally described by giving
a projectively flat connection on the quantum bundle over Teichmiiller space 7 .
The connection can be described in terms of differential equations. For the case
of g =0, the appropriate equations are particularly simple and were first obtained
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by Knizhnik and Zamolodchikov [25] from the point of view of 1 + 1 dimensional
current algebra. On the complex z plane (actually the Riemann sphere, including
the point at infinity), we consider configurations of n points z,,...,z, with
associated representations R,,...,R,. The quantum wave function ¥(z,...,z,)
(which has values in R; ® --- ® R,; this is not indicated explicitly) is required to
obey the Knizhnik—Zamolodchikov equation:

(ﬂ_- 1 T(i)'T(.i)>vP=0
0z; k+hjziz;—z;

—af ¥ =0. (5.23)
0z;

Here T, are the generators of the symmetry group G for the i* particle, and

Ty T, =Y. T'T,)" is an invariant bilinear expression in these generators. The

a
second equation reflects the fact that in 1+ 1 dimensional current algebra with
compact group, the (0,2) part of the stress tensor vanishes, so the correlation
functions are holomorphic. This second equation is often left implicit. The equations
in (5.23) are compatible since the operators on the left commute; this is the flatness
of the connection.

For the case of a complex gauge group G¢, we have in this paper treated in
considerable detail the case of a Riemann surface of genus g without marked
points. It would be highly desirable to extend the analysis to the general case of
genus g with n marked points. Such an extension would greatly clarify the whole
question of whether there is a 1 + 1 dimensional quantum field theory related to
the 2 + 1 dimensional G¢ theory, and would also probably make it possible to
compute many more physical properties in 2 + 1 dimensional gravity with positive
cosmological constant (and to understand the three manifold invariants and knot
invariants associated with the G¢ theory). Such an extension is beyond the scope
of the present paper. However, it is easy to guess what should be the analog
of the Knizhnik—Zamolodchikov equation in genus zero, and we will now do
this.

With each marked point z;, we associate a unitary representation R; of G¢. If
s is real, we take the R; to be principal series representations of Gg, and if s is
imaginary, we take them to be complementary series representations.

Now, G¢ is a Lie group whose complex dimension is dim G and whose real
dimension is 2-dim G. One can take a real basis of the G¢ Lie algebra in which
the generators are t,,s,, with t, being the generators of a compact subgroup and
so obeying [t,, t,] = f.;°t. (With some structure constants f), and the s, transforming
in the adjoint representation of the compact subgroup and obeying [¢,, s,] = fu°S.
and [s,,5,] = — fu't.. If one now defines t,* = (¢, + is,), one finds [t,*,1,%] =
fa't.®, while [t,*,t,”] = 0. This corresponds to the fact that if one regards the G¢
Lie algebra as a real Lie algebra and complexifies it again, one gets the Lie algebra
of G¢ X G¢. (For the case in which G¢ = SL(2, €), regarded as the Lorentz group
in 3+ 1 dimensions, this manipulation is often used in order to study the
representations of the Lorentz group.)

In the spirit of the analysis we have made in this paper for genus g without
marked points, the obvious analog of the Knizhnik—Zamolodchikov equation is
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now

(6 2 t(i)+'t(j)+)lp=0’

0z; tj#i z;—zj

(a +gZM>?’=O- (524)

6Z—i Ej#i Z,-—Zj

This equation would determine the conformal blocks in the n point functions of
a hypothetical 1+ 1 dimensional theory related to our discussion. These blocks,
of course, are neither holomorphic nor anti-holomorphic, but, after understanding
the unitary structure, one could attempt to combine them into physical correlation
functions. The monodromies of the differential equations (5.24) would determine
the G¢ analogs of the Jones representations of the braid group.

6. Additional Properties

In this section we will briefly consider certain additional questions.

In Sect. 6.1, we consider the gravitational interpretation of the SL(2, C) theory.
In Sects 6.2 and 6.3, we consider the extent to which some familiar structures of
the theory with compact gauge group generalize to the G¢ case. The structures
in question are “duality” of conformal blocks, and the role of unitary representa-
tions of the loop group.

6.1. Gravitational Interpretation. The arguments [4] claiming to show that 2 + 1
dimensional general relativity can be reinterpreted as a gauge theory involve
combining the vierbein e and the spin connection w into a gauge field
o =w,J* + e, P and then claiming that difffomorphisms of (e, w) are equivalent
to gauge transformations of /. This claim is valid if it can be assumed that the
vierbein is invertible. Once one formulates the theory as a gauge theory, however,
one drops the requirement that the vierbein should be invertible. The consequences
of this step must be understood in deciding whether the gauge theory really has
a gravitational interpretation.

In the canonical formulation, in which one is assigning a physical Hilbert space
# 5 (of “solutions of the Wheeler-de Witt equation” or its analog in a different
polarization) to a Riemann surface X, this question can be posed rather sharply.
(In a more general situation in which one is considering topology-changing
amplitudes, the correct physical principles are not entirely clear; we will not attempt
to explore these matters here.) In quantum gravity, # 5 should be constructed by
quantizing the moduli space &, of solutions of the Einstein equations with
cosmological constant A. In the gauge theory interpretation, one is instead
quantizing a moduli space .#, of flat connections on X (with gauge group
SL(2,R) x SL(2,R), ISO(2,1), or SL(2,T) for A negative, zero, or positive). (In the
cases of SL(2,R) x SL(2,IR) and ISO(2, 1), one considers flat bundles of the right
Euler class, as was explained in [4].) The equivalence of quantum gravity with
gauge theory holds in the canonical formalism if it is true that /4 ,= % , In fact,
there is always a natural map ¢:% ,— 4 ,, since every solution of the Einstein
equations does determine a flat connection. The question arises of whether ¢ is
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invertible. This will be so if every flat connection representing a point in .# , can
by a gauge transformation be put in a form in which the vierbein is invertible and
if there is only a unique way to do this, up to a diffeomorphism and local Lorentz
transformation.

For A=0 and X of genus =2, G. Mess has recently proved that this is so
[18]. Actually, for A =0, Mess’ work exhibits a very interesting feature, namely
that every classical solution has a past singularity or a future singularity, but not
both. (This is easily seen to be true for solutions whose holonomy lies in an SO(2, 1)
subgroup of the gauge group [4].) It is intriguing to ask whether this corresponds
to a possibility of building CPT violation into quantum gravity. Mess also argues
(but does not prove) that the desired relation & ,= .# , holds for A <O0. (In this
case he also argues that every classical solution has both a past singularity and
a future singularity, something that can easily be seen for the solutions whose
holonomy lies in an SO(2,1) subgroup.)

However, for A >0, the situation is more subtle. (For A >0, .# , is what we
have previously been calling .#¢.) Mess shows that every projective structure on
X (a projective structure is a covering of X by open sets ¢, with maps u,:0; —~ CP?,
such that where they are defined, the wu;~! are in SL(2,C)) gives rise to a
gravitational solution with positive cosmological constant (in fact, to two of them,
one with a past singularity and one with a future singularity). He conjectures that
in fact for positve A, & , is the space of such prejective structures. If so, then it
can be shown that almost every flat SL(2, €) connection (the exceptions are a set
of very high codimension) can by a gauge transformation be put in a form in
which the vierbein is invertible. Let us throw away the exceptions (which are, for
instance, the flat connections with holonomy contained in SU(2)) and denote the
space of flat connections which can be gauged to a form with an invertible vierbein
as /*, The key subtlety is now that every flat connection in .#* , can be gauged
to a form with invertible vierbein in infinitely many different ways (which are not
equivalent by diffeomorphisms and local Lorentz transformations), so the map ¢
from &, to #*,is infinitely-many-to-one for A > 0. The one redeeming feature
of the situation is that the map ¢ is locally an isomorphism, so that locally in
phase space the mapping between gravity and gauge theory is valid (according to
Mess’s conjectures) also for A > 0.

The implications of this for quantum gravity would appear to be that the
SL(2, €) Hilbert spaces # that we have constructed in this paper would be only
subspaces of the actual gravitational Hilbert spaces #,,,,. Roughly speaking, the
choice of a point in & 4 corresponding to a given point in .#*, would give a new
quantum number in the gravitational problem, which we have omitted in our
gauge theory treatment.

Here is a somewhat more precise account. From the standpoint of geometric
quantization [13-16], quantization arises by defining a prequantum line bundle
& over M*,, introducing a polarization, and then defining #* to consist of
sections of £ that are covariantly constant along the leaves of the polarization.®

(With this definition, the Hilbert space # obtained by quantizing .# , may be a

5 What follows is the one point in this paper in which we use the point of view of geometric
quantization in a substantive way. Our arguments until this point have been based on standard
field theoretic considerations and are therefore more clearly valid than the comments that follow
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proper subspace of the Hilbert space s#* obtained by quantizing .#*,.) Given a
map ¢:Z — A* that is locally an isomorphism, one can pull back the prequantum
line bundle and the polarization from .#* to 2 and define #,,,,, the quantization
of Z, to consist of sections of the pullback of %, that are covariantly constant
along the leaves of the pulled-back polarization. With this definition, the Hilbert
space # that we have obtained in this paper by quantizing the SL(2, C) moduli
space ./ , is naturally a subspace of #,,, (since any element of I'(# ,, £ ) can
be restricted to 4*, and then pulled back to Z).

In actuality, quantization of .# , is carried out by considering a family of
polarizations of .#, and constructing a flat connection §¢ over the parameter
space J of this family. There is no difficulty in principle in carrying out this step
for the enlarged gravitational Hilbert space #,,,,, since the differential equation
that was used to define 2 can be restricted to .#*, and then pulled back from
M¥yx T to & ,x . Since the inclusion of # in #,,, commutes with parallel
transport by 62 local observables like the central charge are unmodified by
replacing # with 5.

One reason to believe that it is really #,,,, that is the right Hilbert space for
the gravitational theory is that, since the space of projective structures is a
deformation of the cotangent bundle of Teichmiiller space, the Hilbert space #,,,,
goes over for A—0 to the Hilbert space (of square integrable functions on
Teichmiiller space) which seems natural [4] for quantum gravity with A =0. It is
nevertheless dissatisfying to make an ad hoc replacement of # by the larger Hilbert
space ., sketched above, which does not at the moment have a natural field
theoretic construction. Perhaps there is a new physical principle, presently
unknown, of generally covariant quantum field theory, that singles out the subspace
# as the “correct” one, even though it is #,,, that corresponds more closely to
the canonical quantization of gravity. In this case, however, it is not clear what
the new principle would lead to for A <0.

6.2. Duality. One of the crucial properties of rational conformal field theory
[26,27] is “duality.” Among other things, duality means that for every way of
describing a Riemann surface X as a thickening of a trivalent graph I, one gets
an explicit basis for the Hilbert space # 5 of conformal blocks of that theory. In
the case of current algebra of a compact symmetry group G, the explicit basis is
obtained by labeling the lines in I" by certain representations of G and the vertices
by certain couplings of representations [27,28]. It seems that such a description
holds in the case of gauge group SL(2,IR) [23,8]. The question arises of whether
a similar description holds in the G¢ case. We will now indicate very briefly that
it does.

We have seen that in the G¢ theory, the Hilbert space associated to a surface
X has a description as I'(#, & ®¥), where . is the moduli space of representations
of the fundamental group of X into the compact group G. This may be compared
to the case of “holomorphic orbifolds” [29], where one considers a finite group
F, introduces the set & of representations of the fundamental group of X in F,
and (in the untwisted case) defines a Hilbert space consisting of functions on &.
The problem of holomorphic orbifolds is clearly analogous to the G ¢ gauge theory,
with the following dictionary: F«— G; &« ./; functions on &« [? functions on
M; twisting of the holomorphic orbifold (derived [30] from an element of
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H*(BF, Z))«<replacement of functions on .# by sections of ¥ ®* with k #0. We
may therefore borrow the reasoning of [29], where it was shown how duality
comes about in the case of holomorphic orbifolds. Indeed, there it was shown that
the space of conformal blocks in the theory of holomorphic orbifolds has a “dual”
description in which the lines in a graph I' (of which a Riemann surface X is a
thickening) are labeled by giving an element of F (up to conjugacy) and a
representation of its centralizer. The same is therefore true in the G¢ theory, with
F replaced by G.

Under a duality similar to that of E. Verlinde [27], a conjugacy class of G
together with a representation of its centralizer is more or less the data
corresponding to a unitary principal series representation of Gg, so it is probably
possible to interpret this by saying that the lines in I" are labeled by unitary
representations of Gg. _

There is not a continuously variable parameter analogous to s=t—t in the
holomorphic orbifold theory; this theory gives representations of the mapping
class group similar to those that appear for G¢ in the limit s—»co where the
quantum connection simplifies.

6.3. Unitary Representations of the Loop Group of Gg. 2+ 1 dimensional
Chern—Simons gauge theory with a compact gauge group G is related to 1+ 1
dimensional current algebra, with symmetry group G, and thereby to unitary
highest weight representations of (a central extension of) the loop group LG. It is
natural to wonder whether the 2 + 1 dimensional G¢ theory is similarly related
to some unitary representations of LG¢.

The relevant unitary representations of LG arise by quantizing the
homogeneous symplectic manifold LG/G (here we are dividing LG on the right
by the subgroup of the loop group consisting of constant maps to G). Similarly,
one might expect to get unitary representations of LG¢ by quantizing LG¢/G¢ in
a suitable sense.

In 2 + 1 dimensional Chern—Simons theory with gauge group G, the problem
of quantizing LG/G naturally arises as follows [1]. One quantizes the 2+ 1
dimensional theory on a three manifold of the form D x IR!, where D is a disc and
]l}1 represents time. The Chern—-Simons Lagrangian is invariant under the group
G, of gauge transformations that are the identity on the boundary of D x R?,
which is L x R?, L being a loop. One quantizes the space of G connections on D
by picking a complex polarization, just as one would do if the boundary of D
were empty. The classical phase space of flat G connections on D modulo G, is
LG/G. Quantizing LG/G like any other moduli space of flat G connections, one
gets back the usual unitary highest weight representations of LG, realized as
H°(LG/G, #®%), with Z the basic holomorphic line bundle over LG/G.

Possible unitary representations of LG ¢ related to the G¢ Chern—Simons theory
should be found in a similar way. One formulates the G¢ theory on D x R'. The
space of G¢ connections on D can be quantized by picking a real polarization,
just as we have done in this paper in the case that the boundary of D is empty.
The classical phase space of flat G¢ connections on D modulo G¢; is LG¢/Gg.
Quantizing LG¢/G¢ by the methods that we have used in this paper, one will at
least formally get unitary representations of (a central extension of) LG¢. With
the sort of real polarization that we have been using, LG¢/G¢ will have an
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identification (depending on a choice of complex structure on D) with the cotangent
bundle T*(LG/G), and thus the Hilbert space on which LG¢ is realized will be
more or less the space of I? sections I'(LG/G, % ®").

Let diff S* be the group of diffeomorphisms of a circle. In conformal field theory
in general, the-Hilbert space attached to a circle has a non-trivial action of two
copies of (central extensions of ) diff S* — one for left-movers and one for right-movers.
In the case of representations of LG, the action of one of the two copies of diff S*
is trivial, essentially because in quantizing the Chern—Simons theory with compact
gauge group, the quantum connection 52 has a (0, 1) piece which is trivial. In the
unitary representations of LG constructed as above, both copies of diff S* will
act nontrivially, essentially because the G¢ theory has a quantum connection 62
with non-trivial (1, 0) and (0, 1) pieces. These two copies of diff S* will not intertwine
with LG¢ in the elementary way that is familiar from the LG case.

Attempted At A Concrete Description. Let us attempt to give a concrete description
of some representations of LG ¢ with the right properties (though I will not try to
deduce the following description directly from the above discussion).”
First we recall the situation for representations of LG. One considers the Lie
algebra
a b( 1 + rab 7, ! ikéab ’ ’
[J%o), J’(e")] = if CJ(O')5(0'—0')+4—5(0'—0'). (6.1)
7
Here o and ¢’, which range from 0 to 2z, are points on a circle S; k is a positive
integer; and the J%o), with a=1.--dim G, are hermitian “currents.” Expanding in
modes, J%o)=) e "J,% one notes that the operators J,* generate a finite

n

dimensional Lie algebra isomorphic to the Lie algebra g of G. Picking an
irreducible representation R of g in states |4,), r=1---p and postulating that

JA4,>=0, n>0 6.2)

determines an irreducible highest weight representation of LG. Further study shows
that this representation is unitary if R obeys certain restrictions.
Now, we consider the case of LG¢. The complexified current algebra can be
written in the form
-4 Sab

LF(0), £10)] = if . F0)o(0 — o) + %a«a _o)

i?: 50— d),
[#%(o), £*(c)] =0. (6.3)

We suppose t = k + is, f = k — is, with keZ and s real. Of course, £ is the hermitian

[F40), ) =if . F(0)30 — o) +

7 1t is interesting to compare the following to some unitary representations of LSL(2,IR) that
were described in [31] and may conceivably play a role in SL(2,IR) Chern—Simons theory in
three dimensions
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adjoint of #. Expanding in Fourier modes, with #*=)"e~"" ¢ 4 the ¢, generate

a copy of the complex Lie algebra g¢ of G¢. Picking a unitary representation R¢
of this Lie algebra in states |y, >, we now postulate the analog of (6.2), namely

FilY,>=0, n>0
jna|‘//r>=0? n<0‘ (64)

Hopefully, these formulas if suitably interpreted determine an irreducible, unitary
representation of LG¢. The main difficulty in interpreting them is that, because
of the use of a real polarization, the states |/, > are not normalizable in the unitary
structure that one should attempt to define, but are similar to plane waves in
quantum mechanics.
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