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Abstract. We consider the problem of constructing a cyclic L-operator associated
with a 3-state ^-matrix related to the Uq(sl(3)) algebra at qN = 1. This problem
is reduced to the construction of a cyclic (i.e. with no highest weight vector)
representation of some twelve generating element algebra, which generalizes
the Uq(sl(3)) algebra. We found such representation acting in CN ® CN <g> CN.
The necessary conditions of the existence of the intertwining operator for two
representations are also discussed.

0. Introduction

Recently, it was observed [1] that the chiral Potts model [2-4] can be considered
as a part of some new algebraic structure related to the six-vertex i^-matrix. In
particular, the high genus algebraic relations between the Boltzmann weights of
the chiral Potts model arise as a condition of the existence of an intertwining
operator for two different representations of some quadratic Hopf algebra [5-7],
which generalizes the Uq(sl(2)) algebra. This structure leads to various functional
relations [1, 8], which completely determine the spectrum of the chiral Potts
model transfer matrix. In fact, the largest eigenvalue was very recently calculated
[9] using these functional relations.

It is natural to make an attempt to find new solvable lattice models whose
Boltzmann weights obey high genus algebraic relations generalizing the results
of [1] for the case of other R-matrices.

As a simplest possibility, one can replace the six-vertex ^-matrix by the
eight-vertex one. In this way one can discover [10] two cases of the integrable
deformation of the chiral Potts model. The first case is, in fact, the deformation
of Fateev-Zamolodchikov model [11] into the "broken Z^-model" of [12]. The
second case is an integrable deformation of the super-integrable chiral Potts
model [13]. Incidentally, the former case was recently studied in [14].

In the present paper we consider the case of the three-state i^-matrix of [15,
16, 20], which is related to the Uq(sl(3)) algebra with qN = 1. As in the case
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of [1], the problem of the construction of a cyclic L-operator is reduced to
the construction of the cyclic (i.e. with no highest weight vector) representation
of some quadratic Hopf algebra containing twelve generating elements. We
found an N3 -dimensional representation of this algebra parametrized by twelve
complex parameters. The condition of the existence of the intertwining operator
for two such representations leads to a set of high degree algebraic relations in
the parameter space, which, however, leave two "spectral variable" degrees of
freedom just as in the case of [1].

Up to the moment we have not yet generalized the whole program of [1] for
our case. We hope to consider this in subsequent publications.

The organization of the paper is as follows. In Sect. 1 we start from the R-
matrix (1.1) and the Yang-Baxter equation (1.5) for an L-operator of the form
(1.6). This equation is reduced to the algebra (1.10) for the elements Ljj. Then we
introduce an equivalent algebra (1.16). For this algebra we have two non-trivial
Casimir elements given by (1.17). In Sect. 2 first we consider the subalgebra of
(1.16) defined by Eqs. (2.1) because the above mentioned Casimir elements (1.17)
are expressed entirely in terms of it. Using a special choice for the generating
elements of this subalgebra [Eqs. (2.11), (2.12), (2.15)] we realize them by explicit
expressions through simple matrices Xu Z[ in (2.23), (2.24). In Sect. 3 we restore
the rest of the algebra (1.16) by introducing three more elements Lj{ having simple
commutation relations (2.2) with other elements. Substituting these results into
(1.15) we obtain the representation of (1.10). This ends the construction of the
solution of the Yang-Baxter Eq. (1.5). In Sect. 4 we consider the specialization
of our main algebra (1.10) to the Uq(sl(3)) algebra. In Sect. 5 we discuss the
necessary conditions for the intertwining of two L-operators (1.5).

1. The Main Algebra

Define a trigonometric ^-matrix acting in C3 ® C3 with the following matrix
elements (the indices run over three values 1,2,3) [15, 16, 20]:

l l - x~{) + δuδβσtj , (1.1)

(1.2)

(1.3)

Here x is a variable, while q, λ are considered as constants. The R(x) satisfies the
Yang-Baxter equation (Fig. 1)

] Γ R(x)ii»jj»R(xy)i»i',kk»R(y)ffrk> = ^ R(y)jj»,kk»R{xy)ii»,k»k>R{x)i"i>j>y. (1.4)
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Fig. 1. Graphical representation of Eq. (1.4)

L(jc)iϊ',αβ =

α
Fig. 2. Graphical representation of Eq. (1.5)

Let L(x) be an operator in C 3 ® C M , M > 3, satisfying the following equation
(Fig. 2):
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where L(x)ij#β,iJ = 1,2,3;α,β = 1, ..., M denote the matrix elements of L(x).
Such an operator is called a quantum L-operator related to a given i^-matrix.

Let us search for an L-operator of the form

L(x) = xL + + x~1L~9 (1.6)

where L+(L~) is independent of x and has an upper (lower) triangular form in
(C3. The most obvious non-trivial solution of this form for M = 3 is the i^-matrix
itself. From (1.1) it follows that

R(x) = xR+ +x~ιR~, (1.7)

where R+ and R~ satisfy the above requirements and

(1.8)

(1.9)

with Pijjii = δuδjk being the permutation matrix in C3®C3. By using of (1.6)—(1.9)
Eq. (1.5) reduces to the following relations:

RnLfLj = L±LfRγ2, (1.10a)

Rγ2LγL+ = L+LγRγ2. (1.10b)

Explicitly we have

[L±,L±] = [L+,Lτ.]=0, (l.lla)

L % L i j = q*ιρijLljLt, i φ j , (1.11b)

L t L j i = q±ιρJiLjiLt, i φ j , (1.11c)

L±Ljk = λ-2cLjkL±, (1.1 Id)

LjjLlk = λεq-εLikLij, (1.1 le)

LkiLji = λεqεLJiLki, (1.1 If)

[Lki, Lu] = -ε{q - q-ι)λ-°L';iLkj, (1.1 lg)

L y L fρy - LμUjQji = (q-q-1) (LjjLf - L t L ^ ) , i φ j , ( 1 . 1 1 h )

where (i,j,k) in (l.lld)-(l.llg) is any permutation of (1,2,3) and ε denotes its
sign;

These relations can be considered as the defining ones for some quadratic Hopf

algebra [5-7] with twelve generating elements and co-multiplication ALjj =

ΣLj^ ® LjΓ which generalizes the Uq(sl(3)) algebra [6, 7].
k \

We are interested in the most general irreducible finite dimensional represen-
tations of the algebra (1.10) satisfying the requirements

ΐ ^ O , i,j= 1,2,3. (1.13)

From the relations (1.1 lb)—(1.1 If) it follows that this is possible provided that
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where M is the dimension of representation. It will be more convenient to deal
with some other relations instead of (1.10). For this let us introduce a matrix S+

in C 3 ® CM defined by

Σ ΣikSkj=δih (1-15)

where in the right-hand side of (1.15) the identity matrix in CM is implied. Solving
Eq. (1.15) with respect fo L + we rewrite (1.10) as:

RnLm = L^LYRΰ, (1.16a)

RΰSfSf = S+S+Rΰ, (1.16b)

SfRΰLγ = LγR[2S£. (1.16c)

One can show that the operators of the form

QN = tr{Ω(LS+)N}, N = 1,2, ..., (1.17)

where the trace is taken in C 3 and

\lq-2), (1.18)

are Casimir elements of algebra (1.16). Only two of them Q\ and Qι are inde-
pendent.

2. The Subalgebra

There is a subalgebra of (1.16) being generated by seven elements L2l,Lj2, S*2, S23,
A\ = L^Sχ, ί = 1,2,3 with the following defining relations:

[Ai9Aj] = [L2l9S£3] = [LJ2,Sf2] = [L2UA{\

= [LJ2,A{\ = [S+,A3] = [S+,Ai] = 0; (2.1a)

(2.1b)

= 0,

'32 21 ω 32 21 32 ω 21 32 ~ > ^ ^

S^(S2

+

3)
2 - (1 + co)S}3S?2S£3 + ω ( S 2 ^ ) 2 ^ = 0,

(S12)2S23 - ( ! + ω ) S i2 S 23 S 12 + ω S 23( S 12) 2 = ° 5

LJ2A2 = COA2LJ2, L21A2 = CO~ A2L21 9

= ω

where ω = q2. Note that this algebra does not depend on λ. Moreover, if one
adds three more elements, e.g. L^, i = 1,2,3 with the relations

[LI7,Lτ.] = [ L « , ^ ] = 0 , (2.2a)
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^ 3 2 ^ 1 1 — ^ ^11^32? ^32^33 ~ # ^ 3 3 ^ 3 2 ?

= ^ ^11^23' ^23^33 = ^ ^33^23 '

-1 -l r - c+ c + r - _ ;
Λ ^11^12' ^12^33 ~ A

32 22 = : ^^-^22 32> 21 ̂ 2 2 = = ^ 22 21 '

c + r — ^ — H — I f — e + c + r — ^ 2 ~ l r ~ C +
23 22 — ^ Λ ^ 2 2 23' 12 22 — /̂ 22^12 '

then the resulting algebra is equivalent to the whole one (1.16) with

S+ = Ai(LΰΓ\ (2.3a)

Lϊi = - \-u [L2uLJ2](L^)-\ (2.3b)

^ + + + - 1 . (2.3c)

First, we shall construct the representation of algebra (2.1). Let us introduce the
new notations:

32' 2 3 '

i/3 = L2 1, G3 = S^.

After some tedious manipulations one can rewrite Q\ and Q2 from (1.17) in terms
of generators of the algebra (2.1):

^ ' ^ + βj' ( 2 5 a )

jγ^ γ^ - o/jNj + β), (2.5b)

where

Ni = HiGi + ωθvAj + ω^M 2 = G/H/ + ωθ*Aj + ωθ /M2 (2.6)

oίi = ωθiJ (ω^' Ai + ωfiy A2),

(2.8)

β[ = BjiCO— A2{A[ — ωεji(Aj + Q\)).

In these formulae the indiuces ίj run over two values 1,3 and not coincide. The
symbols # ί ; , εί; mean the following:

θ.. = ί l> 1>J' ( 2 9 )
11 I 0, i < j ,

(2.10)
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Define four operators

(2.11b)

with
J = A1A2A3 (2.13)

being the Casimir element. From (2.1), (2.5) it follows that they form the closed
algebra

[κuκ3] = φi-φ3, (2.14a)

[Φι,φ3\ = κι-K3, (2.14b)

ωφiKi - Kiφi = J 3 ^ ? i = 1,3, (2.14c)

ωKf^ - -̂K:,- = J 3 ^ » ί ^ 7 (2.14d)

Let us take them together with H3, G\, Aγ, A3 as a generating set of operators in
(2.1). Apart from (2.14) we have

[U3,Gi] = [H3,κt]= [H3,φi] = [H3,A3]

= [Guκί]=[Guφί] = [GuAi]

= [Aj, Kt] = [Aj, φi] = [AUA3] = 0, (2.15a)

H3Aι = ωAχH3, GγA3 = ωA3G{. (2.15b)

Then relations (2.14a) and (2.14b) can be replaced by their resolved form with
two Casimir elements ρ, σ,

**> = « - * £ τ r ^ > <2 1 6 a >
φiφj = σ 1 _ ω > ι^J' ( 2 1 6 b )

To satisfy (2.5) the relations

__
( l -

must be valid. So, if we know a representation of the algebra (2.14), then solving
(2.12) with respect to JV, :

AT, = (1 - ω)Δ1^(A1/3(AiΓ
ιφi - **), i = 1,3, (2.18)

we know the representation of (2.6).
To construct a representation of (2.14) let us choose any relation from (2.14c),

(2.14d), which has the following form:

ωAB - BA = ——, (2.19)
1 — ω
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where A, B denote any pair of operators from (2.14c), (2.14d). Introduce an
operator

C = AB+ ω = ω-ιBA + l . (2.20)
( 1 - ω ) 2 ( 1 - ω ) 2

One can show that it satisfies the simple commutation relations

AC = ω~1CA9 BC = ωCB, (2.21)

which can be realized explicitly as (in the case of nongenerate A)

A = aXo,

( 1 2 2 >

where α, c are arbitrary parameters. Here the matrices Z i ? Xi have the following
properties:

[Xi9Xj] = [Zi9Zj]=0,

ZiXj = ω^XjZu ί,7 = 0,1,3,

and can be realized explicitly as

(n\Xi\m)=δn^+δi9 (2.24a)

(n\Zi\m)=ωnίδn/n. (2.24b)

We use Dirac's notations for bra- and ket-vectors with three component indices
(n = (no,nι,ni)) running over N3 values, where N is a minimal number such that

ω N = 1 (2.25)

1, n = m (modΛ^);

Λ , u (2-26)
0, otherwise,

and δ\ means the addition of unity modulo N to the z'-the component of the
index. The two pairs of matrices Zt, Xj with i = 1,3 will be used below. Let us
choose

tit
Then by means of (2.16) we have (the case c ^ O ) :

1 ,-> (o
(2.28a)

1 1 - ω " 1 1 - ω ( 1 - ω ) 2

φ3 = - Zo-' I σκ3 + -^— κ\ + —— ρ ~ —*—j φi I . (2.28b)

Taking into account (2.15) the operators #3, G\, A\, A3 can be realized in
terms of Z/? X; by the formulae

H3=h3Zu G i = g i Z 3 ,

A\ = a\X\, A3 = ^3X3,
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where h3, gi, a\, #3 are arbitrary parameters. For the remaining operators in (2.1)
we have

A2 = a2Xϊ1Xϊ1 (2.30a)

with the parameter a2 being such that Δ = a\a2a3,

1 Γ A2!3 1
H{ = — (1 - ω) Xχγφ\ - (1 - ω)Δι/3κι - ωa2X^ιX3

ι - a3X3

gi I ai J

x Z3\ (2.30b)

1 Γ A2!3

— (1 - ω)
h3 I a3

1 Γ A2!3 1
G3 = — I (1 - ω) -^— X3

ιφ3 - (1 - ω)Aι/3κ3 - ωa2XχxX3

x - aγXx

x Zϊγ. (2.30c)

Thus, we have constructed the representation of the subalgebra (2.1). The ex-
pressions of the generating elements are given by Eqs. (2.4), (2.29), (2.30). This
representation contains nine complex parameters a\9 a2, a3, gi, h3, a, c, ρ, σ.

It is interesting to note that four-element algebra (2.14) at ω ψ — 1 contains
a central extension of the algebra recently introduced in [19] as a new possible
quantum deformation of the s/(2) algebra. Define

* + ω (2.31)

e2 = — — (ξiΦi - ξ2

lκi + ξ3ξϊ{[κuφ3])
1 + ω

with ξi being arbitrary complex parameters with one constraint

iifci3 = l . (2.32)

Then from (2.14) and (2.16) it follows that

βjβi = ek + ζk> (2.33)

where (ίj,k) is any even permutation of (1,2,3) and the central elements £, have
the following explicit form:

( 2 3 4 )

Note that the parameters ξi can be chosen so that the elements eu i = 1,3 will be
proportional to ΛΓ;. The algebra (2.33) with ζt = 0 was introduced in [19], where
some plausible arguments in favour of the existence of co-multiplication in this
case were also given. There is a Casimir element generalizing that of ref. [19]:

(2 + ω2)(e{e2e3 + e2e3e{ + e3e{e2)

3

- (2ω + ω~ι){e2eχe3 + e\e3e2 + e3e2e\) + 3 ̂  Cfef. (2.35)
Ϊ = 1

A question about the explicit formula for the co-multiplication law in this
algebra is obscure until now.
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3. Representation of the Main Algebra

To write down the L^, S£, Lj{, S^3 in terms of X[ and Z; let us define the integer
numbers s\9 s2, s3 by

(qX)-1 = ω \ qλ~ι = ωs\ λ2 = ωs\ (3.1)

where ω = exp(2πi/N). From (3.1) and (2.25) it follows that equations

si + 52 + 53 = 0 (mod N),

52 — s\ = 1 (mod N)

are valid. By use of (1.16), (3.1), (3.2), and (3.3) we come to

Lϊ2 = b2X~S2Xl\ S& = a2/b2XllX-s\ (3.3)

LJ3 = 3 ^ 3 \ 3

S+ = ωSl b^- X~S2Xl{ ((1 - ω) — Xiφ3 - ωaΛ Z3Z^\ (3.4a)

/, / /|2/3 \

LJX = ωSί —— X\ιX~Sl ( (1 - ω) X3Φ1 - ωa2 ZXZ^1. (3.4b)
b2gi \ a\ J

That ends our construction of the representation for the algebra (1.16). The
transition to that of (1.10) is straightforward. For completness we list the whole
set of formulae:

L+ =

L+ =

(3.5a)

X

?f\ (3.5b)

((1 - ω)Λi/iκ3 + axXx)Z3Z^\ (3.5c)

JΛΛ — —uj ' Λ< y\.o z^3, (3.5d)

α 2 α3

L2ι = h3Zι, (3.5e)

h
Lΰ = ωS l — - X\1X-S2 (1 - ω) Z3^>i - ωa2 Z&p, (3.5f)

= 1 ( i _ ω ) .
gi L

x Z3-'. (3.5g)
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This representation is realized in CN ®CN ® CN and is defined by twelve complex
parameters, namely, α,, bu i = 1,2,3, gi, /i3, a, c, ρ, σ. For the meaning of the
other symbols in (3.5) refer to (2.22)-(2.28), (3.1), (3.2).

Consider now a simplest one-dimensional realization of (2.14) when all the
operators commute among themselves. In this case we have

φ φ φ (3.6)
(1 -

where φ and K are some parameters. One sees that there is a relation between
ρ and σ owing to (3.6), (3.7) and therefore by (2.17) so between Qi, Qι and Δ.
Let us consider more closely the structure of formulae (3.5) in that case. It is
not difficult to see that the long expressions in square brackets in (3.5b), (3.5g)
factorize leading to the formulae

+ ΐ ^ B k ) « ' - ̂ '"«+° XύZ'' »
y ^ w ^ ,( 1 m M K y ^ ^ , (3.9,

a2gι V (l-ω)A1/3κJ \(l-ω)κaι )

Zr\ i= 1,3, (3.1

Introducing new matrices W\ instead of Z, ,

,

for which we have the same algebraic relations (2.23) where all Zt are replaced
by the Wu we rewrite the (3.5b)-(3.5g) in form

T + — rnSl Y53 Y~51 (ίλ nΛΛ^^-u -\- ΠΛYΛ\W~^ C\λλs\\

"23 = ~ω _ _ ^1 ^3 I l + 71 —VJUΪ7, I Ws' (3.11b)

(3.11c)

α2g'i \ (1 - ω)κaι

where the symbols gj and hf

3 mean the following:

V V / N (3 12)
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Let us define the new parameters by formulae:

ξ = ( ω - l ) i / 2 J ' / V / 2 , u- = bh u+ = b./ab i = 1,2,3; (3.13)

4 Γ^ί J { ^(314)

Then relations (3.11) take the following compact form:

Lij = C i j i u - ξ - ' X t - u t ξ ) X Γ Θ S 2 W i j X θ j S i

9 i φ j , (3.15)

where L i ; is defined in (1.12),

Wn = WΓ\ W23 = W3, Wn = Wf1 W3, X2 = X f 1 ^ 1 (3.16)

and
f 1, if (i, y , /c) is even permutation of (1,2,3)

" = i SΛ 1 W l ' )

^ 0, otherwise.

Here the matrices Xu Wy satisfy the closed algebraic relations

[Xi9Xv] = [Wij9 Wrf] - 0, WijXp = ωδ»-δ»XpWiJ9 ί φ j9 ϊ φ f (3.18)

with additional constraints:

WijWji = WijWjkWki = X1X2X3 = 1, i φ j φ k φ i . (3.19)

At last note that the parameters in (3.15) can be considered independently of
their definition (3.13), (3.14) if we impose on them the following constraints:

djCji = - 1 , djCjkCki = εωBξ-ε

9 i φ j φ k φ i 9 ε = 2Θ - 1 . ( 3 . 2 0 )

4. Specialization to the Uq(sl(3)) Algebra

Let us make more transparent the connection of the algebra (1.10) with the
Uq(sl(3)) announced in Sect. 1. Impose the following constraints:

λ=l, (4.1a)

+ ± L ± L ± = l . (4.1b)

co-multiplication ΔLγ = ΣThen the algebra (1.10) as a Hopf algebra with co-multiplication ΔLγ =

γk is equivalent to Uq(sl(3)) by the following identification:

_ k-4/3k~2/3 L~ - k4/3k2/3

= kfk~2/\ Ln = /cΓ2/3fcf, (4.2a)k

K fi i 3 3 K ^

Lt, = {q- q-ι)k\βkX^e2, LJ2 = -(q - q-ι)k?%l/3f2.

Here we omitted the corresponding expressions for operators L| 3 and Lj", since
they are dependent ones by (1.1 lg). Hereafter, the commutation relations (1.11)
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lead to the standard commutation relations of the Uq(sl(3)) algebra [7]:

[ki,kj]=O, (4.3a)

kiej = q^βjku kifj = q-ai>/2fjkh (4.3b)

etή - (q + q-^ejeiβj + ήet = 0, iφ j9 (4.3d)

fifj -(q + <Γι)fififi + ήfi = 0, iφ j, (4.3e)

where
au = 29 fli; = - l , /^y, (4.4)

and the following co-multiplication law:

Δ{βi) = hi (8) βi + ̂  (8) fcj"1, (4.5)

Hence, any representation of (1.10) obeying the constraints (4.1) becomes the
representation of Uq(sl(3)). For example, let us rewrite (3.11) as a representation
of Uq(sl(3)). The relations (4.1b) give

en = b], i = 1,2,3, b^h = 1. (4.6)

Expressing now fej, β, , // from (4.2) and using (3.5a), (3.11) and (4.6) we obtain:

l/2vl/4 , Λ /, v-l/4v-l/2
ι A3 , /C2 = \/b2/02Λi A3

1/2

(4.7)

b2/b1h'3 ϊb2 1/2 ξ V-1/2I rί,

lT 2 ~hXi \Wu

b3/b2ξ ϊb3 1/2 ^ 1/2] ^ -

where

WiZX-! % Wm (48)

Note that Eqs. (4.7) contain five independent parameters.

5. Necessary Conditions for 5-Matrix Existence

Let L(x) and L(x) be two solutions of Eq. (1.5) just constructed with two different
sets of parameters. Below the argument x(x) will be omitted since by redefinition
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α α β

>αα', ββ' =

Fig. 3. Graphical representation of Eq. (5.1)

of the parameters of the representation it can be absorbed into other parameters.
Let us find necessary conditions for the existence of an intertwining matrix S,
which satisfies the equation (Fig. 3)

ijS = SALiJ9

where

From (5.1) it follows that the equations

(5.1)

(5.2a)

(5.2b)

(5.3)

with n being an arbitrary positive integer must be valid too. From (5.3) it follows
that (if S~ι does exist)

tτ(ALij)n = tr(ALij)n

9 (5.4)

where the trace is taken in CM (M = N3). Let us expand the operators AL\j in
the sum

where

(5.6)
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By using (1.10) one can show that the individual terms in (5.5) are commutative
with each other (a similar expansion is valid for the ΔLij). This means that they
are intertwined independently, i.e. the equations

) \

n

should be valid. For the cyclic representations with ωN = 1, where N is a prime
number Eqs. (5.7) at n < N are trivial (of the form 0 = 0). Calculating the traces
in the case when n = N and discarding the common factors N3 we have the
following equations:

k k

Equations (5.8a) are equivalent to

(T + \N — (T + ) N (T-)N -

_

) N 3 '

(59h)
( 5 9 b )

where cf9 i =1,2,3 are invariants (in the sense that they should be the same for

Lij and LI7). For the generic case, i.e., when there are no special relations between

(Ly)N

9 Eqs. (5.8) are equivalent to

(5.10)

where the symbol L i ; means as it stands in (1.12). Note that we have the eleven
free parameters excluding the common normalization factor listed after Eqs.
(3.5) and the nine equations (5.10), which define the two-dimensional spectral
parameter surface just as in the case of [1]. However, we don't know if is it
possible to factorize the two-dimensional complex surface defined by Eqs. (5.10)
into a product of two complex curves.

A complete analysis of different particular cases with special relations between
(Ljj)N is too cumbersome and will not be presented here. Consider only one
special case, when

(L±)* = (φN, (5.11)

4cJ = 1, CIQ = 4c2 + 1, (5.12)
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where

r+_(LΪ3)N-cϊ(Lt2)
N

 r-_(Ljι)
N-cj(Ljι)

N

In this case Eqs. (5.8b) require only that cf should be the invariants.
For example, consider the representation in (3.11) with additional constraints

(L±)N = (L*)", U = 1,2,3. (5.14)

In this case Eqs. (5.12) are valid, and the invariants have the following explicit
form:

cf=4=O, (5.15)

V (516)
C 3 ' ( 5 ' 1 6 )

where we have used a\ = a2 = a^, b{ = b2 = b^.
To end this section let us list the formulae for (Ljj)N entering (5.8) for the

general case of our L-operator given by (3.5),

(L+f = (b,/a,)N, (Lzf = b», (5.17a)

{W\

(5.17b)

(5.17c)

N ,N _

(5.17e)

-aξ- aή (5.17g)
J

(5.18a)

( 5 1 8 b )

cι, O f " «?)0ΐ - KίX/ ? - < ) .
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where the v, are defined by the following system of equations:

vi + v2 + v3 = (ω" 1 - l)ρ,

vi v2 + v2v3 + v3vi = ω~ισ,

while the μ; are given by formulae:

μI = - ( 1 _ C ^ ) 2 v ? i = 1,2,3. (5.21)

Note, that expressions (5.17-5.19) are valid for any prime N > 2 and for any
choice of 5i, 52, s3 satisfying (3.2).
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