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Abstract. We show that all onto cellular automata defined on the binary sequence
space are invariant with respect to the Haar measure, and that an extensive class of
such maps (including many nonlinear ones) are strongly mixing with respect to the
Haar measure.

I. Introduction

Let X denote the space of bi-infinite sequences a = (ai)ieZ, where each αf = 0 or 1,
regarded as a compact abelian group under component-wise addition. Denote the
normalized Haar measure on X by μ. Let σ be the shift map defined by σ{a)i = aί+1

for all ίeΈ and all aeX. Iff: {0, l}n->{0,1} is a Boolean function of n variables and
r^s are fixed integers with s — r = n + l, then we write /«, for the corresponding
cellular automaton: /^(α),-=f(at+„ ..., at+s) for all i e Έ. Surjective such maps have
been analyzed in great detail from both the combinatorial and the topological
points of view [1,3,8]. We characterize those /^ which preserve the Haar measure
[i.e. μ(f~ί(Λ)) = μ(Λ) for all measurable subsets A of X~\ in Theorem 2.4, in
particular showing that f^ is onto if and only if it preserves the Haar measure. (The
latter result was announced by J. Milnor in [2].) We show further that certain of
the /oo are actually ergodic with respect to μ (Theorems 3.2 and 3.4), although our
results here are not complete since we suspect that all onto one-dimensional
cellular automata (with the exception of the identity and the inversion map) are
ergodic with respect to μ. Nonetheless, 3.4 shows that certain nonlinear automata
considered by Wolfram in [7, Chap. 2.3], are in fact strongly mixing. To our knowl-
edge these are the first examples of nonlinear ergodic automata in the literature.
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II. Measure-Preserving Maps

We begin by defining a class of open sets which will be extensively used in what
follows. Let fc = {0,1} be the field of two elements, and let R = k[xi ΆeΈ] denote
the free /c-algebra in the commuting variables xt subject to the relations xf = xt for
all ί. (In other words R is the quotient of the polynomial algebra k\_Xi: i e 2 ] by the
ideal generated by all the polynomials Xf — Xt.) It is well-known (and trivial to
prove) that every Boolean function in a finite number of variables can be regarded
as an element of R. (To be more precise, disjunction, conjunction and negation are
defined as follows: pvq = p + q + pq,pnq = pq, and p' = 1 + p, where the operations
on the right-hand side are the ring operations.)

If p = p{xb ...,Xj)eR (it is understood that i^j) and aeX define p(a) to be
p(αt , ...,0,), and let

Clearly every V(p) is a finite disjoint union of cylinder sets, and conversely every
cylinder set is of the form V{p) for some p e R [e.g. the cylinder set [a e X: a0 = 1 and
α1 = 0} is V(l + x o +

 x o x :i)] The following properties of V(p) are easy to verify.

2.1. Lemma. Let p, qeR. Then
(i) X-V(p)=V(ί+p).

(ii) V(pq)=V{p)uV(q).
(iii) V{pvq)=V(p)nV(q).
(iv) V(p) = V(q) if and only if p = q.
(v) V(p)QV(q) if and only if q{a)^p{a) for all aeX. •

Given peR, where p = p(xi9...9Xj), write supp(p) = {xm:i^m^j}9 \p\=j-i
+ 1 = the number of variables in supp(p), and r(p) = the number of roots of p, i.e. the
number of vectors (bί9...,br) (where r=j — i+ί) such that p(bί9...,br) = 0. [There is
some ambiguity about the number of variables involved in a polynomial p, and so
in the above definitions. For example p = x1x2 can also be written
p = xo + xίx2 + Xo, thereby changing supp(p), \p\, and r(p). In what follows,
however, no contradiction will arise if it is borne in mind that the determination of
the above quantities refers to a fixed representation of a Boolean function as a
polynomial in R.~\ For example if p = x0 + x2 then |p| = 3 (regarding p as a function
of xθ9xί9 and x2) and r(p) = 4 [since there are four vectors (bί9b29b3) with
b1+b3 = 01

We can now determine the measure of the sets V(p).

2.2. Lemma. Let p9 qeR. Then:
(i) μ(V(p)) = r(p)2~M.

(ii) // supp(/>)nsupp(4H(/> then μ(V(p)nV(q)) = μ(V(p))μ(V(q)).
In particular μ(V(xiιu...^jχir)) = 2 r.

Proof (i) If p = p(xi9..., x}) then clearly V(p) is the union of r(p) disjoint cylinder sets
[each being the set of all aeX such that (ab ..., a ) is equal to one of the r(p) roots of
/?]. Since each such cylinder set has measure 2~ | p | we have the result,
(ii) The condition supp(p)nsupp(^) = (/> means that p and q have no variable in
common, so the number of roots of puq is r(p)r(q\ and \puq\ = \p\ + \q\. Thus by 2.1
and part (i),

μ(V(p)n V(q)) = μ(V(puq)) = r(puq)2 ~ ^ = μ(V(p))μ(V(q)). D
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The shift automorphism σ acts on R in the obvious way: if p=p(xi9..., xj) then
pσ = p(xi+ί, ...9Xj+1)9 and clearly (pσ)(a)=p(σ(a)) for all aeX (the use of the same
letter to denote the shifts on X and R should cause no confusion). It is also obvious

Vipσ) = σ-\V(p)) for all peR.

Given an element feR define an algebra homomorphism θf: R^R as follows:
θf(xi)=fσί for all isΈ and θf is extended multiplicatively and linearly to all of R.
In other words if p=p(xb ..., Xj) then θf(p)=p(fσ\ ..., fσj). In particular /=θ f(x 0).

Given / e R define f^-.X^Xby fja\=f{σ\a)) for all ieZ and all aeX [so if
f=f(xr,...,xs) then f<x>(a)i=f(ai+r9...9ai+j}. It is well-known that /„ is con-
tinuous and commutes with σ (cf. Hedlund [3]). If/, geR [say /=f(x r,..., xs)] then

Put h = θg(f) = f(gσr, ...,gσs). Then

hja\ = Hfta)=Signal..., gσ^a)) = fjgja)\.

We have shown that

/cogoo=(̂ (/))oo foraU/,g6Λ,

and in particular

We also have the following result:

2.3. Lemma. For all peR,

Suppose p = p(xi9..., x̂ ). Then

a)e V(p)op(fja)) = 0

a)u .-» fJfl)i) = 0op{fσ\a\ ...Jσ\a)) = 0

We can now prove the equivalence of onto-ness and measure-preservation, and
at the same time provide an algorithm for determining whether a map is measure-
preserving:

2.4. Theorem. For feR the following are equivalent:
(i) /χ, is measure-preserving.

(ϋ) /a fa onto,
(iii) For all integers il9 i2,... with ίί<i2<...<ir we have

μ(V(fσί*)n...nV(fσiή) = 2-r.

(iv) For all non-negative integers iί9 i29... with 0 = ίί<ί2<...<ir we have

μ(V(fσi>)n...nV(fσi')) = 2-'.

Proof. (i)=^>(ii): In general fJX) is a closed subset of X since /«, is continuous and
X is compact. Further, since fx is measure-preserving we have
= M/oo"1(/oo(̂ ))) = M^) = l, so fJX) is dense in X. Therefore fJX) = X.
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(ii)=>(iii): Since σ is a measure-preserving homeomorphism of X and
/ooσ

/c = (/σ/c)oo, by applying a suitable power of σ to / we may assume that
f = f(xί9 ...,xm) for some m ^ l . Also since

= μ(V(f)n...nV(fσi'-i*))

we may assume that ίί = 0. Put p = fσllu...ufσίr and i = ίr, so we need to show
that μ(V(p)) = 2r. Consider the set T of all (z+l)-dimensional vectors b = bo...bh

where bj = O iϊje{il9...,ir}, and b7 e{0,l} is arbitrary otherwise. Clearly the
cardinality of T is | T\ = 2*+ *"r. As in [3] define the map / f: {0,1}f + m -> {0,1}f + 1 as
follows: given α = (α l J . . . ,α i + m) let fla) = {f(au . . . , α j , /(α2,...,flm + 1 ) , . . . 5

/ ( α i + 1 , . . . , α i + TO)). Observe that flμ)eT if and only if / (α 1 + ik, . . . , α m f J = 0 for
fc = 1,..., r. On the other hand, for w e X we have w e F(p) if and only if fσik(u) = 0 for
1 <;/c^r, which happens if and only if f(u1 + ik,..., Mm + i J = 0for 1 Sk^r. In other
words, weF(p) if and only if uί...ui + me \J / i " » = / Γ 1 ( Ό . BY Theorem 5.4 of

[3], the onto-ness of/^ implies that each fi~γ{b) has cardinality 2m~1, and so
|y ; . - 1 (T) |=2 m " 1 x2 ι + 1~ r = 2m + ί~r. It is now clear that μ(V(p)) = 2i + m-r/2ί + m = 2-r,
as required.
(iii)=>(iv) is trivial.
(iv)=>(iii): This is proved by induction on r, the case r = ί being equivalent to
μ(7(/))=l/2. In general since

we may assume that iί = 0. If ir ̂  \f\ then supp(/)nsupp(/σir) = φ, so by 2.2 (ii) we
have

(V(f^)n... n V(fσ^)) = μ(F(/σ l l)n... n

by the inductive hypothesis. If ϊ r < | / | then the inductive step is given directly
by (iv).
(iii)=>(i): Take any we{0,l}, and consider the function pu = (xii+u1)u...
u(x ίr + Mr), where iί < ... <ir are arbitrary integers. Then pu(u) = 0 and pu{v) = ί if
vή=u.We claim that μ(f~ \V{pu))) = μ(V(pu)) = 2~r if (iii) holds. If every ut = 0 then
this is simply (iii). As an example of what happens when some of the ut are nonzero,
consider the case where only uί = ί. If p = xiίu...uxi and q = xt u . . .ux ί } then
ppu = q9 so 7(p)u 7(pJ - Ffe) and hence / J ^ F ^ u / J H^ίpJ) = /«" ' ί ^ ) ) - Since
the union is disjoint and /^ 1(K(p)) and /^ H ^ ) ) n a v e measure 2 r and 2 (r υ

respectively [by(iii)] we obtain μ(f~1(V(pu))) = 2~r. Similarly reasoning es-
tablishes the result for all u. For a general peR it is clear that V(p) is the disjoint
union of the V(pu), where u ranges over the r(p) roots of p. Since μ(f^i(V(pu)))
= 2~M for each u we get μ(/« 1(K(p))) = r(p)2-|l>l = μ(7(p)). Finally since the V(p)
generate the Borel σ-algebra of X it follows that f^ is measure-preserving. •

2.5. Remark. Theorem 2.4 provides an effective algorithm for deciding whether a
given f^ is onto: let m = | / | - l . Then /^ is onto if and only if /m:{0,l}2m+1

->{0, l } m + 1 is an exactly 2m-to-l map. It is known [8] that the onto-ness of a
cellular automaton in dimensions higher than 1 is undecidable.

For example it can be verified that the only measure-preserving cellular
automata f^ with f = f{xuX2^3) are the following (c = 0 or 1): c + xu c + x2,
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C + Xί+X2, C + X 1 + X 3 , C + X2 + X3, C + X 1 + X 2 + X3, C + Xί+X2X3, C-\-X1

C + xί +

It is perhaps worth mentioning that if/̂  is not onto, then f^X) has measure 0.
For /oo(X) is always a closed subset of X, and clearly σ~1(/00(X))=/00(σ"1(X))
= /00(X). Since σ~ * is ergodic it follows that fJ{X) has measure 0 or 1, and if/^ is
not onto then μ(fao(X))^\, as claimed.

III. Ergodicity

Throughout this section f = f(xr,...,xs) is a fixed element of R. In contrast to the
property of being measure-preserving, ergodicity and the various forms of mixing
are shift-dependent, in the sense that f^ and f^σ may have different properties
(think of the identity map). We begin with the following lemma:

3.1. Lemma. Let p = p(xh ...,Xj)eR, and let n^.0. Then

supp(0}(p)) Q {xk: ί + nr :g k ̂ j + ns}.

Proof. Since fσk = f(xr+k,...,xs+k), we have θf(p) = p(fσ\ ...Jσj)
= p(f(xi+r9...9Xj+r)9...9 f(xi+s9...,xj+s)l so supp(θf(p))Q{xr+i9...,xs+j}. The re-
sult follows by induction on n. •

We now come to our first result concerning the ergodicity of the /„. It is in fact
easier to prove that /^ is strongly mixing [i.e. μ(Anf~n(B))^>μ(A)μ(B) as n->oo for
all measurable subsets A and B of X~\ and to deduce ergodicity from this ([4],
p. 142).

3.2. Theorem. Let f=f(xr,..., xs), where either 0 < r ^ s o r r ^ s < 0 , and assume that
/ w is onto. Then for all po,PίeR we have M^(Po)n/J"(K(p1))) = /ι(K(PoM^(Pi))
/or all sufficiently large n. In particular f^ is strongly mixing and hence ergodic.

Proof Consider first the case 0 < r ̂  s, and suppose supp(pt ) = {xk: oct ̂  k ̂  β j for
i = 0,l. By 3.1 we have supp(θn(pί))Q{xk:oc1 + nrf^kSβi + ns}. Since r>0, for all
sufficiently large n we have jβ o<α 1+m, which implies that p0 and θn[p^) have
disjoint supports. By 2.2 (ii) this implies that

KV{po)nf- n(V(Pl))) = μ(V(po)n V(θn(Pl))) = μ(V(po))μ(V(θn(Pl)))

= μ(V(Po)MV(Pί)),

the finally equality following from the fact that f^ is measure-preserving, by 2.4.
The case r ^ s < 0 can be established analogously, since β1+ns<oco for all

sufficiently large n. •

Question 1. Is /^ above m-mixing for all m^l? The method of proof does not
allow us to establish this fact. When /^ is a linear map then it is known that /^ is
m-mixing for all m^ 1, cf. [5].

We can also say something about those maps / for which the conditions on r
and 5 stipulated in 3.2 do not hold. For brevity we introduce the following
terminology: let p = p(xb ...9Xj)e R. Say p has k roots in [i, β if there are exactly k
vectors u = (ui,ui+l,..., w7) for which p(u) = 0. We need the following.
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3.3. Lemma. Let r<oc<β and s>r be given integers, and consider the polynomial

where p, geR and p has k roots in [α,/?]. Then h has

/c2α" r~1 roots in [r, β], if s^β,

[r9sj9 if β<

Proof. Consider first the case s^β. If u = (ur,...,ua,...,uβ) is a root of h then
(ua, ...,uβ) is a root of p, so there are k possibilities for (ua, ...,uβ). Now for every
choice of a root (wα, ...,uβ)oϊp and every arbitrary choice of ur+ u ..., wα_ 1 we get a
unique root of ft by setting ur = g(ur+l9..., w ^ J . Thus the number of roots of ft is
/c2 ( a ~ 1 } " ( r + 1 ) + I = f c 2 a " r ~ 1 . Similarly in the case β < s , if (wr,...,κs) is a root of ft then
(ua, ...,w^)must be a root of p, ur+ί, ...,wα_1 and uβ + 1, ...,us (whence the factor of
2s~β) can be chosen arbitrarily, and ur = g(ur+l9...,us). This proves the second
formula. •

Our next result has some affinity to a result of Willson [6, Theorem A]:

3.4. Theorem. Let f = f(χr, ...,xs), and assume that either f is permutive in xr and
^ 5 , or f is permutive in xs and r ^ 0 < 5 . Then for all po,p1eR we have

^n(V(p1))) = μ(V(po))μ(V(p1)) for all sufficiently large n. In particular / „
is strongly mixing and hence ergodic.

Proof Assume, for definiteness sake, that / is permutive in xr, say f = xr

+ g(xr+!,..., xs\ where r < 0 ^ 5. Since / = θf(x0\ it is easy to prove by induction on
n, that

" W = Xnr + m^~ 8n(Xnr + m + 1 > ? ̂ ns + m) ?

for some gπ e R. We may clearly assume that V(p0) and F ^ J are cylinder sets, say
po = xiικj...κjχiι and p 1 =x m i u.. .ux W k . Since r<0 we may choose n sufficiently
large so that nr+l<i1<...<iι^ns + mk. [In the case s = 0 we may clearly assume
that ij ^ mfc, since those xit with it > mk can be disposed of by means of 2.2 (ii) as they
do not appear in any of the 0"(xm.).] We have to find the number of roots of

h1 = [ X r n + m i + g π ( X r m + mi + l5 •• ?Xsn + m i ) ] U

^ [ X r n + mk + gn(Xrn + m k + l ? . 5 X S n +

Consider

The number of roots of p0 = xh u... uxh in [i l5 i{] is clearly k = 2n ll + 1 \ and so
the second formula of 3.3 gives the number of roots of hk in [nr + mk, ns + mjj as

Oiz-ii + 1 -I s/ Oil ~ 1 - (rn + mk) + sn + mk- iι "\sn-rn-l
Δ, A JL — Δ,

Next consider

By the first formula of 3.3, the number of roots of ftfc_ 1 in [rn + mfc_ l 5 sn + m j is

jsn — rn — l ^ o»*« + w k — 1 — (rn + mk - i) jsn — rn — I — 1 + mk — mk - i
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Inductively the number of roots of

in lrn + mk-t, sn+mjj is 2sn~rn~ι~t+mk~mk-t. In particular for t = k-1 we find that
the number of roots of hί in [rn + mu sn + nijj is s(/z1) = 2 s n " r π " ί " k + 1 + m k " m i . Thus

as claimed. The proof of the other case is entirely analogous.

3.5. Corollary. All one-dimensional affine cellular automata f^ (i.e. those with
f=c + xr+...+xs, c = 0 or ί) except the identity (f=x0) and the inversion
(/= 1 +x 0) are strongly mixing and hence ergodic.

Proof. In all cases other than the ones excluded in the statement, one of 3.2 or 3.4
will apply. •

Question 2. Are all onto one-dimensional cellular automata (other than the identity
and the inversion maps), strongly mixing?

It is perhaps worth mentioning that by 3.2, Wolfram's nonlinear rules
30(/=x- ! + x0 + xt + x0Xι) and 45(/= l+x-1 + x0 + xι + xo

χι) are now known
to be strongly mixing. In [7, Paper 2.3], he studies the former map, particularly
from the point of view of its potential as a random sequence generator.
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