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Abstract. The Krichever-Novikov bases are studied on Riemann surfaces with
more-than-two punctures. The bases are presented and the completness theorem is
proven for the case of integer (up to a common constant) momenta. Then the
interacting strings are considered, the amplitudes and partition functions are
obtained, comparable with that of path-integral approach. For the amplitudes the
simple geometric implication is proposed.

Introduction

The works [1, 2] of Novikov and Krichever stimulated an interest in the global
operator expansions on Riemann surfaces of arbitrary genus. Originally KN
considered the bases on these surfaces with two marked points. Physically it
corresponds to a single self-interacting string at the perturbation theory order,
equal to genus. In [8,9] some attempts are presented to generalise the
constructions of [1,2] to the multi-point case. The work [10] concerns represen-
tations of Heisenberg-type KN algebra.

In their recent articles [3,4] Krichever and Novikov applied the bases of [1,2]
to the operator quantization of the self-interacting string to obtain the amplitude
and the partition function. The canonical operator product expansions of CFT
were rederived using the well-defined quantities.

Our main goal in this paper is to generalise the results of [1-4] to obtain the
multistrings quantization. We will get the correct tensor bases, the quantum state
vectors and, finally, the scattering amplitudes, which turn out to be the generalised
Kobo-Nielsen ones, obtained earlier in Polyakov's theory [7]. It is proven thus
that the Krichever-Novikov operator quantization does leads to correct effects.

Moreover, this approach makes more transparent the geometric essence of
bosonic amplitudes. These are simply related to the "Euclidean time" coordinates,
intrinsic to KN theory.
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1. Krichever-Novikov Bases for Multipoint Diagrams

There is a well known way to describe interacting strings at given perturbation
theory order. Riemann surface Γ (see Appendix A for the notation) with marked
points Qi endowed with real numbers pt presents the world sheet for in- and out-
going strings, attached to Γ in Q/ We divide these points in two sets - "in":
{GίlA >0}; " o u t " : {6ilPi<0} τ h e s e t o f data {Γ9Qi9Pi} we call a "diagram."

On Γ, there is a special 1-form dk [1], that defines the "Euclidean time."
This differential enjoys the following properties:

a) it is holomorphic on Γ except for Qi9 where it has simple poles with residues pi9

b) it is normalised by the condition RG§dk =

Then the euclidean time τ(z) = exp \̂ Re J dk) is a single-valued function on Γ.
The level lines of this function define the contours set Cr. The set produces a
fibration of Γ which may be thought of as a picture of interacting strings which
varies in time.

The operator quantization uses Fourier-type bases on Cτ. Note, that Cτ and
therefore, bases set essentially depend on momenta pt. This paper concerns the case

all the momenta being integer - up to a common factor, i.e. — being rational. It is
im-

possible to pick the appropriate units to make p{ be integers in fact.
Introduce an important value / = £ px•- the total (integer) momentum of "in"

set. iein

Riemann-Roch theorem implies, that for every λ + 0,1 and every integer n there
are / independent tensor fields fn

λ

a(z) of weight λ such that:
a) they are holomorphic on Γ, except, possibly, for Qb

b) in the vicinities of β f in local coordinates z{ they take the form:

, (1.0)

where St(X,g) are arbitrary integers, Σ 5 ί = (2Λ, — l)(g — 1) + /.
£

For the exceptional cases λ = 0,1 the bases also exist, their local form being
slightly different.

Theorem 1. Let Cτ be non-degenerate, f\σ) - be any smooth tensor field on Cτ, then

/»= Σ Σ /»^f/Wi;», (l.i)
n α = l Zni Cτ

where S^λ.g) are so chosen, that S^l —λ,g) + Si(λ,g) = \, and

Proof. Consider first the simplest multipoint diagram - that one with all the
momenta being the same: \pt\ = \pj\. (The case first considered in [4]). By the proper
rescaling one can set \pt\ = 1. For this special case it is convenient to change slightly
our notation. There are / points in "in" set and / points in "out" set, so we denote
"in" points as Q+a and "out" points as β_α, α runs from 1 to /. Essentially, apart
from being easy to handle with, this case is the generic one for the general case.
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Specifying the diagram, the powerful soliton theory technique of KN [1] is
applied. In addition to the "physical" vertices Q±a fix g + Z—1 point divisor

g + l - l

Z= Σ 7ι There is a 1-differential dΩ such that:

a) it is holomorphic on Γ, except for Q±a, where it has simple poles of residues

b) it has zeroes in Z. g+ι-i
Besides, dΩ has g + Z—1 zeros in Z + = £ Ίt For any integer n consider

i = l

two /-dimensional spaces produced by the functions φ*(z) and tp*+(z). These
functions have poles divisors such that div(ipj)^—Z, div(i/;*+)^ — Z+, and
specified by their local expansion near Qt:

(1.2.1)

) (1-2.2)

|Pil = l, index α marks subspaces elements, 1 <x<l.
There are two useful bases of xpl and ψ*+,

A)

β)), (1.3.1)

)), (1.3.2)

β)), (1.3.3)

/ % β)). (1.3.4)

Discuss it briefly. There is no problem to "diagonalise" ψ*(z) and ψ^a(z) to leave
the highest (nth) order poles of ψajz) (ψϊa{z)) only on Q+a(Q _α). Doing this, fix α and
consider t/;n

+α(z)t/;*(z)dίλ This 1-differential has two simple poles in Q+a and β_α

with residues ca

+acXf and —c°Lact'a
a, their sum being zero. This remarkable

identity enables us to normalise as above. We like this basis for

Proposition 1.

T
<•>„ here stands for the average on n. Theta-functional formulae for ψ*a and ψ^
imply that the product ψ^ψϊ is quasiperiodic as a function of n, so the average is
sensable. From the definition of dΩ and (1.4), it follows that

^ : β ( σ ) - r ^ =δn0. (1.5)

Σ <v
α = l

B) Whereas A is distinguished for (1.4) and (1.5), the most convenient are
orthogonal bases, where § ψnΨm' βdΩ=2πiδaβδmn. One can get these bases through

cτ

the usual orthogonalisation procedure. Both A and B bases sets being non-
degenerated, the matrix Mn

aβ is defined, that transforms one into the other. Fix now
orthogonal bases φ£, ψn'a
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Lemma. For every non-singular Cτ every smooth function F(σ) on Cτ has an
expansion:

F(σ)= Σwliσ)^-- § W v C V H ^ . (1.6)

Proof. Let SN(σ) be a partial sum of (1.6), then

n= -N 2Mί Cτ

x , " W • 0.7)

α = 1

Choose some function λ(Q) on Γ with g + 1 poles in β_α's and a zero in β+ α 's.

Proposition 2.
9+1

λ(z)ψa

n(z)= Σ h%xpβ

n+i(z), (1.8.1)
i = l

l(z)φΠ

+^)= ' Σ hβ-'φMz). (1.8.2)
ί = l

(The equations of that kind first appeared in [6].) There are two facts stated:
1) The right-hand side of (1.8) contains only g terms of the kind ψ%z) - it follows
from the count of the number of zeros and poles in the left-hand side,
2) coefficients ha

β) in the right-hand side of (1.8.1) and (1.8.2) are the same because of

hfj= ^ § λ(σ)ιp*n(σ)Ψ:Uσ')dΩ. (1.9)

By (1.8.1) and (1.8.2) one gets

Σ Ψ>)W:\σ')=9Σ ( Σ h%ψίφ)W:\σ')
n= -N i= 1 \n = N-i

Σ )
n = - ΛΓ - i

The Dirichlet kernel analogue

- Σ h*βlψ»+ι{Z)ψ;*(σ')). (1.10)

α = l

oscillates quickly as JV-»oo.In a usual way it implies that SN(σ) — F(cr)-»0(JV->oo).
The lemma is proven.
We are in a position now to make use of ψa

n to obtain all the tensor bases (1.0)
and to prove Theorem 1 for the special case \p(\ = 1. Fix fo{z). It has g + / — 1 zeroes
divisor Z. Find ψ* and ψ*α out of Z as prescribed above and put fn

λ

j(t(z) = /0

A
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So defined, fn

λ,z)tΛ does satisfy all the properties the basic field (1.0) should. As \pΛ

n

basis is full, fn\z)f<x bases are also full on the contours Cτ for all λ; Theorem 1 is thus
proven.

Return to the general case of "in" state including Nin points Ql9..., β# i n , "out"
state including JV0Ut points QNin+19..., 6ivin+iVout of integer momenta pt. Let! be the
total momentum of the "in" state: /= £/?,-.

in

Note now that this general picture can be obtained out of a special one, treated
above. Really, take an auxilliary diagram with / "in" and / "out" points of momenta
± 1, respectively. We shall get a point of (positive, to say) momentum p on fusing
together p "in" points of the auxilliary diagram. While fusing, we should be on
guard not to spoil the contours set and the bases /π

Λ'α(z). It is obvious, however, that
a given contour is not influenced as much by the details of fusion, providing the
size of the fusing system is small enough. Thus the contours set is continuous. As
for the bases sets ψa

n and t/;w

+α of the lemma (and, therefore, all tensor bases) more
care is required.

Let us fuse two points Q_! and β _ 2 of the "out" set.

Proposition 3. In fusing, one of the points of Z+ is being sandwiched between Q-ί

and <2_2.

Proof Take β_ ί and β _ 2 close enough to be on the same coordinate map, then

dΩ= (— + * +o(l)W1. (1.12)
\ Z - 1 Z-γ—U J

It is written through Q _ x local coordinate z _ 1, so u - it is a Q _ 2's coordinate on the
map - is a fusion parameter. It is easy to check that dΩ has a zero at the point

- +o(u2) that belongs to Z+ by definition.

The proposition claims that on fusing p "in" ("out") points Qt to the one Q, also
p ψ^s (ψϊa's) poles join Q, deg(Z), (deg(Z + )) being the same (and equal to /)• Thus
the dimensions of ψ* bases do not change, i.e. there is no degeneration. Consider
the basis elements fusion in more details.

In the Q-ί local map of Proposition 3 above we have

A + \ -t const z-^-^l+oίz)). (1.13)

Although the leading power In + 1 changes by 2, due to two independent
coefficients in the left-hand side of (1.13) there are two functions with such
asymptotics, the gap does not appear. The "fused" bases of the lemma take the
form:

) ? (1.14.1)

where εf is one for "out" points and zero for "in" points and the tensor bases take
the form (1.0).

Noting that the expressions (1.7-1.11) of the lemma are continuous on the
fusion parameter, Theorem 1 is proven for the case of arbitrary (integer up to a
constant) momenta.
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Remark 1. Some explanations should be given on the choice of /, for the global
rescalings group gives rise to equivalence of the physically inequivalent diagrams.
Thus, all the diagrams with two marked points of [1-3] belong to the same
equivalence class. As the contours set and, consequently, the bases should depend
on the class only, there is a way to "reduce" / in terms of bases re-numeration.
Namely, for the set {Γ, Qt, 2pJ at each n the 2/-dimensional space of independent
basis tensors reduces to two /-dimensional ones. In the first subspace 2npi — Si

Sdeg(g;)^2npi + pt-1 - S i 9 while in the second 2npi + pt-S(^deg(Qt.)^2(n + l)pf

— 1 — Sf. Re-numerating them to be 2nth and 2n + 1th, we arrive at the bases of the
diagram Γ9Qi9Pi.

Remark 2. The bases fields are uniquely determined by the condition (1.0). For
later references, however, present the explicit formulae through the prime-form
and Fay's σ-differential (A.4-A.6),

Σ

,(1.15)

where nt = npι-st> Σs , = ( l - 2 λ ) ( g - l ) - l , t / = Σ f t β | - ( 2 A - l ) ^ and C{ are
i i

coordinates in the l(= ^pΛ-dimensional space. The theta-functional character-
in

istic ρ specifies the boundary conditions on the cut Γ. Exceptional cases λ = 0,1 can
be handled in the same spirit.

2. The Applications to the Operator Quantum Theory
of Interacting Strings

The vector fields e£ = /n

(~1 ) α generate the almost graded KN algebra:

The limits Lx and L 2 depend on the choice of St(— 1, g) but are finite. Tensor fields
/π

(A)α for each λ are endowed with KN module properties:

PCL f{λ)β _ Y rnmy f{λ)y /Λ 4 \
^/iJm ~- h 'kaβJn + m-k' \ Δ Λ )

1 ^y^l
Mί^k^M2

In quantum theory there appear central extensions of 1-forms and vector fields
algebras - these are the Heisenberg algebra and Virasoro algebra. The first is
generated by the elements α£ and t with the commutation relations

l<Λ~\=ynJ, (2.2.0)

[α2,f]=0, (2.2.1)

^ ^ d f ^ . (2.2.2)
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In turn, the Virasoro algebra is generated by eΛ

n and t and looks like the

M = Σ <%3el+m-k + XHmt9 (2.3.1)
1 ^^l

Kί]=O; (2.3.2)

the cocycle χnm is the standard Gelfand-Fuchs' one on the contours C r As in the
two-point case the cocycle is local - it equals zero identically outside a strip of the
finite width around the diagonal |w + m| = 0.

Verma moduli analogues are constructed out of semi-infinite wedge products
of basic /l-forms. The characteristic representative looks like:

fnλr Λ tir A Λ ./£* ^Λ k ti* (2.4)

- the right form

Λ /m'αΛ/πt'
αkΛ...Λ//2'

α2Λ//'^ (2.5)

- the left form, nx ^ . . . ^ nk. The right KN moduli are used for "in" states, the left -
for "out" states.

To get the multistring state vectors, following the arguments of [3], consider
the case λ=\. When handling ^-forms an additional structure appears - it is the
global boundary conditions on the cut Γ. Take the unitary representation of the
fundamental group πx(Γ) ρ i π ^ Γ ) - ^ 1 . In the canonical 1-cycles basis ab b{ it is
defined by 2g real parameters ρl9 ...,ρ2g'

ρ(aj) = exp(2πiρ,.), ρ(bj) = exp(2πίρj+g). (2.6)

The vector ρ is a theta-functional characteristic of the explicit formula (1.15). The
case when ρ is a half-period corresponds to the "ordinary" spin structures.

Thus "in", "out" vectors are:

|in>=

<out|= Λ <TO. (2-8)

Now consider |in>, |out> in more detail. From (1.0), near Qt

Φa

n(Zi) = znPί~^ Σ ξfiΦl (2.9)
s = 0

Substituting this expansion for Φa

n(z^ into (2.9) one gets:

|in>= Λ znPi~^\ ξf{n)z\. (2.10)
s = O
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For each Φ*(zt ) only p( first terms of expansion survive; the other one is killed by

After all,

{n) - ft-Ίw ξι

0\n) ... (2.11)

Choose "in" normalisation - take |in> equals the "in" vector of free strings:

|in> = z^1 Azp

2

2 A ... Λ Z ^ Γ ^ Λ Z ? 1 Λ .... (2.12)

In the normalisation proposed, the determinant in the right-hand side of (2.11)
equals one, the <out| vector being

<out|= Λ ZT>

The vacua "in", "out" states are determined as

| 0 > = Λ Z Ϊ ' = 1 Λ Z 1 Λ Z 2 Λ . . . , (2.14.1)
" ^ 1/2

<o|= Λ 2 Γ ; (2.14.2)

the "in" vacuum coincides with the free strings.

The amplitude is

(regularized) value is

The amplitude is defined as Λ(pu ...,pk)= and from (2.12-2.14) its

1

whereas the partition function

ZF = <0|0>. (2.15.2)

The internal product < > is introduced here as in [3]. Namely, for the left-infinite
form / (2.5) and the right-infinite form g (2.4) consider the wedge product /Λ g. If
this infinite in both directions form coincides with some σ-permutation of the
standard one <out|in>, then we define </|g> = sign(σ). In all other cases the
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product </|g> is set to be zero by definition. On the linear combinations of the
basic forms (2.4—2.5) the product < > is introduced by linearity both in the first and
the second arguments.

Although very natural, that definition has an important physical implication.
Let us introduce the "Euclidean time" coordinates ξt in the vicinities of Qt through
a 1-form, dk

dk = dlogl\EPi(z,Qi)-2πi £ Qmτ^flmΣPkQΛMz), (2.16)

Kzd. (2.17)

Theorem 2. Written in the Euclidean time coordinates, the amplitude A(pί9 ...,pκ)
equals one identically.

Proof. To prove the theorem and thus to establish the operator quantisation
approach of Novikov and Krichever let us calculate the amplitude explicitly. For
technical reasons it is convenient to obtain it directly from (2.13-2.15) just for the
basic case p, = +1 and then make use of the ordinary free bosonic theory fusion
rules.

The basic ^-differentials are:

ή [ I f f * "2 έ Θ M % ^ + i " + O T l218»
u= Σ e+.-e-..

α = l

"ϊn" normalisation gives:

detc_1= π ( g j y
+ Λ ^ l ΰ ΰ ) / Π.19)

and

2n+ί
(

2

r (Q*Qjh (2 20)

To obtain the last identity in (2.20) Corollary 2.19 from [12] was used. Note
that the structure of Zn is the same as in the two-point case, so the same
regularisation can be applied. Moreover, the regularized partition function ZF

= @IQ1 (0) is the same as in the two-point case. The dependence on Qt is dropped in
a natural way (providing D = 26, so all the anomalies are cancelled).

The amplitude

^ β ^ Q j ) . (2.21)

The subscript F denotes the amplitude is fermionic, and it is what we really have.
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In [4] Krichever proposed to obtain the bosonic vacuum expectation by
averaging the fermionic expectation over all the ρ-representations. The proposal
was backed with the explicit calculation of the stress-energy tensor T(z) in a case
g = l . Here we shall prove the similar identity for the amplitudes:

Lemma 2.
1 1

log(AB) = ()og(\AF\
2)yρ= j . . . §d2dρ\og\AF\

2.
o o

Proof. Averaging the right-hand side we only need to find Re /log ί I) . In

Appendix B it is shown that

'®[e](t/)\

^Wm)) lmU- (122)

Hence,
exp<log(|^|2)>ρ = Π I Ψ(Qb Qj)\2piPί, (2-23)

where
Ψ(Qto Qj) = E(Qb Qj) exp( - π Im(βf - Qj). (Imτ " \ b Im(ρ ; - Qfo). (2.24)

It is the well known generalised Kobo-Nielsen bosonic amplitude.
The lemma is proven.
It should be mentioned here that in our approach the amplitude is a tensor. At

every point Qt in the local coordinates it has the tensor weight pf. That is the usual
relation A =p2 of the Veneziano model. Fix now the Euclidean time coordinates ξt

(2.17) and write:

= Π |£(β ί ?β J)|^exp(-2πImt/ ίImτ-1Im(7)ΠI^^. (2.25)
i i<j

Hence, the bosonic amplitude has a simple geometric implication - it is a Jacobian
that transforms the form f] \dzt\

p2i to the free strings coordinates. Particularly, in
the euclidean time coordinates it is one.

Theorem 2 is proven.
The remarkable identity (2.24) was found by Krichever for the genus 0 case. He

also suggested it should be true for arbitrary genus.

Appendix A

In this paper we deal with a Riemann surface Γ of genus g. The basis of 1-cycles in
HX(Γ) is ah bh i = l , ...,g and normalised:

aioaj = biobj = 0, aiobj = δij. (A.I)

On Γ live g holomorphic 1-differentials ωf(z)5 dual to 1-cycles:

§ωj(z) = δij§ωj(z) = τij. (A.2)
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As usual, the period matrix τ defines Riemann theta-function (with the character-
istics ε, δ):

\{z)=
5J

(A.3)

(z z \

The Abelian map A: z^A(z) = ( J ω 1 , . . . , f ω g ) sets the correspondence
\p P )

). From now on we denote the point z on Γ and its image
A(z) on Jac(Γ) by the same symbol z if it does not lead to confusion.

There are two special objects on Γ, useful for us. The prime-form E(z, w) is a
—^-differential both on z and w,

E(z,w)=-E(w,z). (A.4)
Near the diagonal z = w

E(z, w) = (z- w) (1 + o(z))dz ~ ί/2dw ~1/2 (A.5)

and
E(z,w) = 0oz=w. (A.6)

Fay's σ-differential

* - ^

(A stands for the Riemann class) has tensor weight g/2. It does not (up a factor,
independent on z) depend on the auxilliary point P, holomorphic on Γ and has no
zeroes.

For a detailed review on Riemann surfaces see [12].

Appendix B

We prove here Lemma 2. All one needs is to compute the average

To find it, let us make use of the theta-functional transformational properties:

ΘΓ (z + τM + N) = exp(-πiMhM-2πiM\z + N)Θr\(z). (B.2)

In particular, it shows that Θ(z) is periodic in Rez.
First, by definition, one has

Re (logΘI x |(z)) = -π<ε'lmτε-2πε tlmz>

+ Re<log6>(z + τε + (5)>. (B.3)
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The second term is

1 1

Re f... J dβεd0δ log Θ(z + τε + δ)
o o

= Re J. . . J dβεdgδ log Θ(τ(ε + (Im τ ) " 1 Im z) + δ). (B.4)
o o

Let us denote (Imτ)" 1 by y = (yί9 .. ,yg) and the shifted arguments

(O,J2,...,^) = / . (B.5.2)
Then

Re J ... J dβεdβδ log β(z + τε + <5)
0 0

= Re j ..JdV
yi o

Re f... f Λ ' d ^ log Θ(τ{ε' + j;') + (5)
o o

yi i / Γ g

+ Re J ...f^ε^δ -πiτ 1 1-2πi
0 0 \

+ π l m τ n y 1 + 2 π

= (after g steps)...

= Re<log<9(τε + <5)> + π £ (1 +j;i)j;/Imτij.) + const. (B.6)

Adding the average of the first term in the right-hand side of (B.2) we get:

Re (log-

Θ

Θ

ε
_δ_

ε

δ_

(z)\

)
(0)/

ί,

= π
i,

g

9

i=l

J 1 . (B.7)

Lemma 2 is proven.
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