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Abstract. Let Sh= -tιA + V on R", with V smooth. If 0<£2<liminfF(x), the
spectrum of Sh near E2 consists (for h small) of finitely-many eigenvalues, λβi).
We study the asymptotic distribution of these eigenvalues about E2 as fi-*0; we
obtain semi-classical asymptotics for

λβ)-E

h

with / e CQ, in terms of the periodic classical trajectories on the energy surface
Bε={\ζ\2 + V(x) = E2}. This in turn gives Weyl-type estimates for the counting
function #{/; \]/λβί) — E\^ch). We make a detailed analysis of the case when
the flow on BE is periodic.

Table of Contents

1. Introduction 567
2. Statement of Results 569
3. On the Number of Eigenvalues Around a Given Energy Level 571
4. The Case of Periodic Flow 575
5. The Trace Formula for Schrόdinger Operators onR" . 581
6. References 584

1. Introduction

Consider the Schrόdinger operator S(h)=-h2A + V on Rπ, where FGC°°(Rn),
V>0. If Foo=liminf V{x\ the intersection

|x|->oo

SpecS(ft)n(-oo,KJ
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consists of eigenvalues λί(h)^λ2(ti)S ..., where we count each eigenvalue accord-
ing to its (finite) multiplicity. In this paper we will analyze the distribution of the
λjiti) around a fixed energy level E as ft->0, generalizing and complementing the
results of Guillemin and Uribe [11] on compact manifolds. In particular, we will
relate this asymptotic distribution to the classical dynamics of a particle with
energy £ in a potential V.

Let us briefly describe the setting of [11], as it applies to S(h) on a compact
manifold. Further developing an idea to be found in Colin and Verdiere [3],
Guillemin and Uribe interpret h~ι as an eigenvalue of i~1dθ on the unit circle S1,
and make an analysis, in the spirit of [5], of the joint eigenvalue distribution
(μjm,m) of the two commuting operators P = { — Δ — Vd^)112 and A = ί~1dθ. Let
£ > 0 be fixed and let φeS?(R). Define

ri/m(φ)=lφ(μj(m)-Em) (1)

and

r(φ)=ΣΆ/meimθ • (2)
m

T(φ) can be interpreted as a trace, namely as Tr (φ(P — EA)eiθA). The singularities of
Y(φ) are analyzed in [11], leading to asymptotics of Γ1/m(φ) as h~i = m^>cc.
These enable one to "see" spectrally the existence of periodic classical trajectories
with a given energy, and to relate them quantitatively to the spectrum. This can of
course be readily translated into a statement involving the eigenvalues λ3{h)
= m~2μJ{m)2 (m = h~1) of S(h); the end result is a semi-classical version of the
Selberg trace formula, in the spirit of the non-rigorous formula of Gutzwilier [6].

The principal aim of this paper is to extend these results to Schrόdinger
operators on RΛ We will do this without introducing extraneous assumptions on
the behavior of V at infinity (which we would be forced to introduce if we tried to
adapt the proofs of [11] to the case of R"). This is possible for Schrδdίnger
operators because of the work of Helffer and Sjόstrand on exponential decay and
localization of eigenvalue problems to wells, which we will apply. On R", (1) gets
replaced by (5) below; our main result is an asymptotic expansion of (5) as h^O.

Another aim is to analyze the consequences of the asymptotics of (5) for the
refined counting function

NUQ=*{J'\VΨ)-E\^c h}. (3)

This will first be done in the setting of [11] (on compact manifolds) in Sect. 3, under
the assumption that the flow is non-periodic a.e. on the energy surface {H = E}.
This result will translate to estimates on (3) for the Schrόdinger operator on R".
(There is some connection with [18], which deals with the error term in the Weyl
estimate for the usual counting function; cf. the remarks after Theorem 2.2.)

In the opposite case, when the flow is periodic on {H = E}, we will derive in
Sect. 4 (still on compact manifolds) a semi-classical analogue of the well-known
results of [4, 5, 22] for large eigenvalue asymptotics of a positive elliptic operator
on a compact manifold all of whose bicharacteristics are closed. However, in the
present set-up we will have to deal with exp(ίfβ), with Q being of real principal type
rather than elliptic, under the assumption that all its null bicharacteristics are
periodic.

Finally, in Sect. 5 we show how to pass from a compact manifold to R".
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In the present semi-classical context, what has been mostly studied is the
counting function Nf

E(h):= #{j: λ/fή^E}. For operators on R" we refer to
Chazarain [2], and the subsequent developments by Helffer-Robert [14,15] and
Petkov-Robert [18] (cf. also the books [19] by Robert and [12] by Helffer). These
authors proceed along the lines of Hόrmander [16], analyzing the singularity at
ί = 0 of Tτ[exp(itS(h)/K], treating h as a parameter. To be able to do this globally
on Rw they need to introduce certain technical assumptions on the behavior of
|5aF(x)| for large |x|. It should be noted that their work applies to a more general
class of operators (operateurs ft-admissibles). On the other hand, they do not
analyze the singularities of the trace at ί's different from 0. Furthermore, our
analysis is finer in that we work on a fixed energy shell {H = E}\ our method uses
standard Fourier integral operator theory.

Finally, let us note that in this paper, as in [11], h " 1 will only range over the set
{m'1: meN}. This is of course a restriction, but note that, at least in the case of a
periodic classical trajectory, the Bohr-Sommerfeld quantization condition gives a
good philosophical reason to restrict h to the inverse of an arithmetical sequence;
cf. Corollary 2.5.

After the results of this paper were obtained, we learned from Andre Voros that
he had considered an object very similar to (2) in [21]. In fact, our Y(φ) is a
smoothed-out version of his Θ(R2, s), if we put s = iθ. Voros bases his analysis on
Gutzwiller's non-rigorous trace formula [6], and obtains a result formally
analogous to our results on the singularities of Γ(φ).

2. Statement of Results

We now formulate the main results of this paper. Fix E > 0 such that E2<Vo0, pick
0 < ε < l , and consider the following set of eigenvalues:

V ε } . (4)
This is a finite set if h is sufficiently small. Define

. Σ , |ώ0t*l (5)
JJ(h) \ Ϋl J

where φ e ^(R). Note that if V^ < oo, summation over all j in (5) would not make
sense in general. Also, in case of a compact manifold, the difference between (5) and
the analogous sum over all j is O(ft°°); cf. Lemma 5.2 below.

Let

+V(x). (6)

Considered as a Hamiltonian on Γ*R π =R w φR", it generates a Hamilton flow
which we denote by φt. Let E be as above, and let BE be the energy surface {H = E).
Notice that, since E2 < V^, BE is compact. We will furthermore assume that E is a
regular value of H, so BE is a manifold; we denote its Liouville measure by Vol(ff£).
If γ is a periodic trajectory of φt9 we let

Sr=lξdx
y

denote its action.
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Finally, we will need to assume that φt restricted to BE is a clean flow. [We
recall the definition for convenience of the reader: A smooth flow φt on a manifold
Y is said to be clean iff the set

0>={(T,y)eKxY;φτ(y) = y} (7)

is a smooth submanifold of R x 7, and at each (T, y) e SP the tangent space to & is
the set of all (τ,i))εRx TyY such that

τΞy + d{φτ)y{υ) = υ, (8)

where Ξ is the infinitesimal generator of the flow. If the set of periods of the flow is
discrete, cleanness of the flow is equivalent to the following: for every period T, the
set 0*T = {ye Y; φτ(y) = y} is a manifold, and at each ye£Pτ its tangent space is
identical with the set of fixed vectors of d(φτ)y.'] We can now state:

Theorem 2.1. Assume E is a regular value of H and the restriction of the flow φt to
BE is clean. Then, for each function φ such that φ e C^(ΊR), there is an asymptotic
expansion

Ά Σψ (9)

as h=l/m tends to zero. Each coefficient Cj is 0(1) in h. Moreover, we can say the
following about the leading coefficient in the expansion, c0, and the degree d = d(φ):

(i) // 0 is the only period in supp(φ), then d = n — \ and

(ii) More generally, assume that there is a unique period T of the flow in the
support of φ. Let Yu ...,Yr be the connected components of {xeBE; φτ(x) = x} of
maximal dimension, and let this dimension by k. Then d = k — \, and V; there is a
density Vj on Y p defined in terms of the classical dynamics, such that

co(h,φ) = φ(T) Σ e'Weto-^iVj, (11)

where σ7- is the (common) Maslov index of the trajectories in Yj and Sj their
(common) action.

Remark. The densities v7- are described in [11, Sect. 4], where it is also described
what the statement is if the flow is clean but the period spectrum is not discrete.
This situation can actually occur; however, if the flow is clean, the set of numbers
\pdq where y ranges over all the periodic trajectories in BE is discrete, which is
y

what is fundamental for the proof of the theorem.
If there is a unique periodic trajectory y C BE whose period Ty is in the support

of φ, then d = 0 and the density in (ii) can be computed explicitly. This results in:

where Ty*, Py, and σy are respectively the primitive period, the Poincare map and
the Maslov index of y.
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Theorem 2.2. Assume that E<\/V^ is a regular value of H, and that the set of
periodic points in BE has Liouville measure zero. Then

lim W-'NE c{h) = 2cΎo\{BE)/{2π)n.
ft=l/m->0

Formally, this result also follows from Petkov and Robert [18], who prove
under the assumption of a.e. non-periodicity of the flow that the error term in the
Weyl formula for the usual counting function φ{j: λj(h)SE} is o^"*""1*).
However, to make this rigorous one would need to assume also non-periodicity
a.e. of the flow on nearby energy surfaces, thereby obtaining a weaker result.
Moreover, in our set-up, 2.2. is a straightforward consequence of the trace formula,
and as such also holds in the circular symmetry setting of [11], which is more
general than the semi-classical one.

At the other extreme, we have:

Theorem 2.3. Assume that BE is connected and that all points on it are periodic with a
common minimal period T>0. Letot= \pdq denote the common action of the simple

y
trajectories on BE, and let σeZ be the common Maslov index of these trajectories.
Suppose that ae2πZ. Then there exist constants, C1,C2>0 such that for h
sufficiently small and of the form h = m~ί, meZ:

Moreover, there exists a polynomial p of degree n — ί and leading coefficient equal to
Yol(BE)/(2π)n such that forh^m'1 small enough the cardinality of (13) is equal to
p(m).

Corollary 2.4. With the same hypotheses as Theorem 2.3, for all c<Cγ,

h= l/m-*oo

This corollary should be compared with Theorem 2.2. By a rescaling of (the
proof of) Theorem 2.3 one obtains:

Corollary 2.5. // the common action α is not in 2πZ, Theorem 2.3 and its corollary
remain true if we let h range over {α/2πm; meZ}.

Note that the condition relating α and h in 2.5 is the Bohr-Sommerfeld
quantization condition, α = 2πmh, without Maslov corrections. The latter are of
course present in the counting function in Corollary 2.4.

3. On the Number of Eigenvalues around a Given Energy Level

In this section we will prove Theorem 2.2 on a compact manifold. With an eye
toward other applications we will do this in the more general setting of [11]. Thus
let M be a compact, n-dimensional manifold, and let P and A be two commuting,
self-adjoint classical first-order ΨDO's, such that P is positive and elliptic and
Spec (̂ 4) is contained in TL, so that θ\-^eiθΛ is a representation of the circle group.
For each meZ, let

ύ ... (14)
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be the eigenvalues (each counted according to its multiplicity) of the restriction of
P to the m-eigenspace of A. Fix E>0. If φ e y ( R ) , define Γ1/m(φ) and Y(φ) by (1)
and (2).

We will assume that the action of S1 on T*(M) induced by the Hamilton flow of
a is free, so that

J3 = {xeT*(M)-0 : a(x) = l}/S1 (15)

is a manifold, which is in fact symplectic. Note that p descends to a function H on B,
since {p, a} = 0. Let φt denote the Hamilton flow of H on B and let

BE = {beB: H(b) = E}. (16)

Note that {a = 1} ->B is a principal circle bundle on which the canonical one form
of Γ*(RW) induces a natural connection. If y is a closed curve in B, we let exp (i J α

denote the holonomy of y with respect to this connection. The logarithm of the
holonomy of y will be interpreted as the action of y.

For the purposes of Sect. 1 of this paper, the relevant example of this situation
is the following: Let M be of the form M = M xS 1 , M a compact Riemannian
manifold with Laplace-Beltrami operator A, and A = i~ιdθ, P = ( — A — Vdβ)1/2,
with V > 0 in C^iM). In this case £ is just T*(M) and J α is just the integral over y of
the canonical one-form ξdx of Γ*(M). y

The main result of [11] implies that the singularities of Y (considered as a
periodic distribution on R) are amongst the values of the actions of the closed
trajectories of φt:

Theorem 3.1 (cf. [11, Theorem 4.3, Theorem 4.7]). (i) // a point zeS1 is in the
singular support of Y, there is a periodic trajectory y of φt on BE whose period is in
the support of φ (the Fourier transform of φ) and such that

(17)

(ii) // E is a regular value of H and the flow φt on BE is clean, then there is an
asymptotic expansion

Ά/m(φ)~ ΣoCj(m,φ)md^-j, m - o o , (18)

with Cj(m,φ) as in Theorem 2.1, if we put h = m~1.

In particular, co(m, φ) = (2π)~n(Yo\BE)φ(0) if 0 is the only period in suppφ. We
will show that this implies a Weyl-type estimate. Let

NE,c(m)=*{J- \λj(m)-mE\Sc}. (19)

Theorem 3.2. Assume that E is a regular value of H, and that the set of periodic
points on BE: = H~ 1(E),

{beBE\3T>0,φτ{b) = b} (20)

has Liouville measure zero. Then

lim m-{n-1)NEfC(m) = (2π)n-1'2c Vol(BE). (21)

The proof of this theorem is based on the observation that the hypothesis on
the flow in 3.2 implies the following:
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Let φbea Schwartz function on the real line such that its Fourier transform φ has
compact support. Then, under the assumptions of Theorem 3.2,

(BE)mn-1 + o(mn-1). (22)

If we assume that φt is a clean flow this follows immediately from Theorem 3.1
since the contributions coming from the periods T> 0 are of strictly lower order in
m. Actually, (22) remains true without any cleanness assumption on the flow, as can
be shown directly by a stationary phase argument.

To prove (21) from (22) we will use the following two lemmas.

Lemma 3.3. Let 0<Eί<E2be such that [Eu £ 2 ] consists entirely of regular values
of H. Let a>0. Then there exists a constant, C=C(a,EuE2) such that for all

(23)

Proof It follows trivially from (22) that the left-hand side of (23) is OE(mn~ *). The
point of this lemma is that the estimate is locally uniform in E, which follows from
inspection of the proof of (22). •

Fix c>0, and let χ be the characteristic function of the interval \_ — c,c]. Let ψ
be a Schwartz function on the line such that ψ ̂  0, ψ(0) = 1, and the support of ψ is
compact. Define, for each δ>0,

Ψδ(x) = δ-1ψ(δ-ίx), (24)

<Pδ = Ψδ*X- (25)

The functions ψδ converge to χ as <5->0. We will apply (22) to each φδ. The following
lemma is the main technical step in the proof of theorem and is analogous to
Lemma 3.3 of [5]. Since the proof is slightly more involved [because (23) does not
hold globally uniformly in E~\ we give the proof in full. As customary, the precise
values of the constants C, CN below may differ from line to line.

Lemma 3.4. Suppose 0<y<c. Then, for all N sufficiently large, there exist
constants C = C(N) and K = K(N) such that

NEfC.y(m)(l-C(δ/γ)N)^ Σ φJ^λ^-mE) (26)

ύNE^y{m) + K{δlyfmn-'. (27)

Proof. Since

(x + c)/δ

φ&)= ί w(y)dy (28)
(x-c)fδ

it follows yjδ

min φδ^ J ψ(y)dy (29)
\x\£c-y -γ/δ

= 1- J ψ(y)dy^ί-C(δ/γ)N, (30)

where the last inequality holds by the rapid decrease of ψ. This proves the first
inequality in (26).
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To simplify the notation in the proof of (27), write Xj = λj{m) — mE and c' =
Then

Σ
j:\xj] <C

(31)

The first sum is dominated by NEc{m). To estimate the second sum, we proceed as
follows. First, let ε > 0 be such that the interval [E — ε, E + ε] consists entirely of
regular values of H (ε exists since the set of regular values is open by compactness
of M). Next write the second sum on the right-hand side of (31) as a sum / + //,
where

I=lf Σ Ψs(xj) (32)
fc = O c' + k^\xj\<c'+k+l

and

//= Σ Σ φfa). (33)
k = [εm]+l c' + k^\xj\<c'+k+ 1

To estimate /, first note that

or \λfjn)-m(E-k/m)\^d +1}, (34)

which is f^Cm"'1 if fc^[εm], by Lemma 3.3. Hence

l l max |^(x) | (35)

ί Ψ(y)dy (36)
(k + )lδ

^ΣiΛτX' ( 3 7 )
where the last inequality uses the rapid decrease of ψ. If in the last series we factor
out (δ/γ)N and sum the rest, we obtain

/δ\N

- . (38)

(Since in the proof of Theorem 3.2 we will let y-»0, we may assume and use here
that γ < 1.) We now turn to the estimate of //. By the rough estimate (78) of Sect. 5,
we see that, for some No and some constants C,

# {7; μ/m)-m(E±k/m)\ Sc'} S CmNo(E + k/m)NoS CmN°kNo, (39)

and therefore, using once again the rapid decrease of ψ, if N is large enough

(Aτ) (40)
+l \k + y/

Σ (i) (41)
* = [em]+lW

N ~ N o + i

( 4 2 )
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Choosing N such that 2N0—N + ί ^n — \ and adding the estimates for / and //
completes the proof of (26).

Proof of Theorem 3.2. Let 0<y<c. Apply (22) and (26) to φδ. Then, if V is the
Liouville measure of BE, we have

NEfC.γ(m)(l - CNδN)^(2πf- 'icVm^1 + oδ(mn-') (43)

and

γ

 1). (44)

Dividing by mn~1 and letting m-»oo first and δ-^0 afterwards, we obtain

c + y (m). (45)

Now just apply (45) with c replaced by c + γ and then with c replaced by c — y, and
finally let y->0. •

4. The Case of Periodic Flow

A. We first discuss a general theorem on operators of real principal type. Let Q be
any first-order, self-adjoint pseudodifferential operator of real principal type on a
compact manifold M such that all its null bicharacteristics are periodic of minimal
period T>0. Let q be the principal symbol of Q, and assume for simplicity that its
subprincipal symbol is zero. Let σ be the Maslov index of the null bicharacteristics,
and I' = ̂ "1(0) the characteristic variety.

Theorem 4.1. There exist an orthogonal projection, Π, and a self-adjoint pseudodif-
ferential operator of order (—1), R, such that [iJ, Q ] = 0 = [17,JR], and if we set

j2o77 = 0. (46)

Moreover, there is a bounded operator, L, such that

(47)

where S is a smoothing operator. The projector Π is a Fourier integral operator
associated with the characteristic relation

<g= {(χiy)eΣ x Σ; (x,y) are in the same bicharacteristic strip}, (48)

while L is in the class J ~ 1 / 2 ' ~ 1 / 2 ( M x M ; A9<g) of Guillemin and Uhlmann, [10],
where Δ is the diagonal in T*M x T*M\0. In the circular symmetry setting, all
operators can be chosen to commute with the S1 action.

The projector Π will be a smoothed-out version of the operator

-JJe f t βΛ, (49)
i o

which is the exact answer in case Q is (— i) times the infinitesimal generator of a
circle action on M.

The canonical relation (48) has the property that composed with itself yields
itself, and the composition is clean in the sense of FIO theory [8]. Thus the Fourier
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integral operators associated to it form a ring ^ in fact ^ is a * -algebra over the
ring of pseudodifferential operators. We seek to construct Π symbolically in this
algebra. We will need to discuss the non-commutative symbol calculus of
operators in M, introduced by Guillemin and Sternberg in [8], modified to include
Maslov factors. Due to lack of space, we will be sketchy.

The circle group Sγ = W^/TΈ acts freely on Σ by the Hamilton flow of q\ let
W=Σ/Sγ and π:Σ-+W the natural projection. W has a natural symplectic
structure. Vwe W, let Fw = π'1(w); this is an affine circle. Let ̂ W-^FW be the flat
complex line bundle defined by the character of πί(Fw) = Z which to the obvious
generator associates e~

ιπσT/2.

Lemma 4.2. V(x, y) e Ή there is a natural identification

^{x,y)^\TxFT2®^:®\TyF^2®^, (50)

where w = π(x) = π(y), and &? = \TΣ\1/2(g)Jί<g is the symbol bundle of <$, tensor
product of its half-density and Maslov bundles. This identification depends smoothly
on (x,y).

For the construction of this identification ignoring Maslov factors, see [8]. We
hope to provide the details of the Maslov factors (in greater generality) elsewhere.

The space of smooth sections of the bundle |TFw | 1 / 2(x)i?w has a natural pre-
Hilbert space structure. By (50), a symbol s on ί? (i.e. a section of Sf) defines, for
each w e W, a smoothing operator

5w:C-0 0(|ΓFHΊ1 / 2(g)^ v v)->C0 0(|ΓFw |1 / 2(x)^ ? w). (51)

Proposition 4.3. The correspondence s i—• {sw; we W) between symbols on <% and
families of smoothing operators along the fibers of π is a *-algebra isomorphism.

From now on we will think of the symbol of an operator in 0t as such a family
of smoothing operators. Other symbol calculus rules will be quoted as needed.
Note that the action of R + on I1 induces an action of IR+ on W and the natural
projection Σ -+ W is equivariant. Thus one can speak in an obvious way of symbols
homogeneous of a given degree. We denote by 0lm the subspace oiSt consisting of
operators which are homogeneous of degree m.

With this symbol calculus at hand, we proceed to construct Π. VWE W its
symbol will be the rank-one projector onto an element μweCco(\TFw\1/2<g)g?w).
The definition of μ is as follows. Trivialize \TFW\1/2 by the half-density dual to the
Hamilton vector field of q. Using the action of S\ on Fw, one gets an identification

C w ( | T F Y / 2 ® J ? w ) ^ ^ w = { u e C Λ ^ (52)

T

with the pre-Hilbert space structure <w5 v} = J uvdθ. Define μw as that section
o

corresponding to the function θh^T~ll2ei7iσθl2T.

Proposition 4.4 [8, Proposition 4.1]. There exists a self-adjoint projection, Π, which
commutes with β, is in the ring &, and has symbol the family of rank-one projectors
μ®μ. Moreover, in the circular symmetry setting, Π can be chosen as to commute
with A.

Proof. In Proposition 4.1 of [8] it is shown that there exists an orthogonal
projection with this symbol. The construction there will produce Π commuting
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with Q and A if we can find a self-adjoint operator in ?̂ with symbol μ®μ and
commuting with Q (respectively A). We now look for such an operator of the
form φ(Q).

Claim. VφeQftR), φ{Q)e@°. Moreover, with the identification (52), its symbol
along the fiber ^ w is the operator

S(u)(θ) = (2π)-^2eiσπΘI2T(u0 * φ), (53)

where uo(θ) = u(θ)exp( — ίσπθ/2T) is TZ periodic, * is convolution in S? and

(54)

Proof of the Claim. For the first part, see [20]. The Fourier integral operator
exp(ϊίβ) acts on the right and on the left on the ring St. At the symbolic level, the
action is by translation, u(θ) \—> u(θ +1). The symbol of φ(Q) maps u e ^ w to

(55)

as is seen from the equation φ(Q) = (2π)~1/2 J eitQφ(t)dt. The right-hand side of (55)
is easily seen to equal (53).

Thus φ(Q) will have for symbol μ(g)μ if Vwe J 5 ^
1 / 2 τ

(56)o

By the Poisson summation formula, it is enough that

— UO and φ(0) = 2πT, (57)

and one can take for example a function of the form

) = 2π, (58)

where f(x) has a smooth and compactly supported Fourier transform. The Fourier
transform of such a φ is the convolution of the characteristic function of an
interval of length T and a compactly supported smooth function. Hence the
resulting operator is indeed a smoothed-out version of (49). •

Next we show that modulo smoothing operators Π is the projection into the
kernel of a perturbation of Q. Let Q and ΠeSt be as above (in particular:
ΠQ = QΠ, the symbol of Π is μ®μ, and q = qsuh = 0 on Σ).

Proposition 4.5. There is a self-adjoint, pseudodifferentίal operator of order (— 1), R,
such that

/ -~ \
Π = 0. (59)

In the circular symmetry setting, R can be chosen to commute with A.

Proof. The second part follows by averaging with respect to exp(iθA). We sketch
the proof of the first statement, which is a slight strengthening of [8, Theorem
5.6]. The symbol of QΠ is the symbol of Π followed by the operator — iΞq, (by [8,
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Proposition 3.2]); hence it is the operator u ι-> — <M, μ)μ. Thus QJl<E0l~γ, where

βi = β — — / . Since (QιΠ)Π = Q1Π, the symbol of Q^Π is of the form μt®μ,

where μ t is a section of |TF | 1 / 2 homogeneous of degree — 1. The symbol calculus
implies that, since Π commutes with Qu μx is of the form μx=ρμ, where ρ is a
function on Σ homogeneous of order — 1. Let Rί be a pseudodifferential operator
of order — 1 whose symbol agrees with ρ on Σ. The symbol calculus shows that
(Qγ—R^Π is of order lower than Q^Π. Now continue exactly as in the proof of
Theorem 5.6 [8]. •

Let us define Ά = Q-^-I-R.

Theorem 4.6 [10, 7]. There is a bounded operator, L, such that

L j 2 J i 7 + S (60)

where S is a smoothing operator.

Proof. See [10, Theorem 7.2] and the discussion that follows it. The operator L is
constructed symbolically using the calculus of Fourier integral operators as-
sociated to two intersecting lagrangians, as developed in [10]. Thus its Schwartz
kernel is in a space IPfl(M x M; A, %?) of Guillemin and Uhlmann, where A is the
diagonal, AcXxX (X = T*M— {0}), and # is the bicharacteristic relation.
Elements of this space are distributions that, microlocally near A—(Anc€) are in
the Hόrmander space Ip + ι(M xM,A), while near ^-(Anfi) are in IP(M x M,^).
Matching orders in (60) near these two manifolds, we get p = —1/2 = / [the Fourier
integral operator Π has kernel in /~1 / 2(M x M; #); this can be seen from the
equation Π o Π = Π and the fact that the composition of Π with itself has excess
equal to one]. By Theorem 3.3 of [7] and a microlocal partition of unity, since

the operator L is bounded in L2(M). •

One can easily show that the image of Π has finite codimension in the kernel of
J ; cf. [8], remark after Proposition 6.7.

Corollary 4.7. Zero is an isolated point in the spectrum of Ά.

Proof. Let μj be a sequence of non-zero eigenvalues of Ά. By (59), we can write

j2(Wj.) = μ Λ , (61)

with the Uj of norm one and in Im(iJ)1. Applying L to (61), taking the inner product
with Uj and using (60), get

C | / i ^ | l + < ^ . ) , ^ > | , (62)

Vj, with C the norm of L. Since the operator S is compact, zero is not an
accumulation point of the μjt •

B. Back in the circular symmetry setting, we now consider the case when the
trajectory through each point on BE is periodic. More precisely, assume: (i) £ is a
regular value of H, (ii) BE is connected, and (iii) each point in BE is periodic with
minimal period T, with T > 0 fixed. For each beBE, let γb denote the trajectory
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φt(b), t e [0, T]. If exp (i J oc\ denotes the holonomy of a closed curve γ with respect
\ y )

to the natural connection on the circle bundle {a = l}->B, the mapping B^S1

defined by
b \—> exp // J oΛ (63)

\ y*> J
is locally constant [11, Lemma 4.5]. Since we are assuming that BE is connected,
this map is constant. We will now assume that the trajectories yb satisfy the Bohr-
Sommerfeld quantization condition:

e x p ( i j ή = l . (64)
V yb J

By the constancy of (63), if this happens for one b it happens for all b, and implies
that the only singularity of Y is at z = l. This assumption, or at least the
assumption that the left-hand side of (64) be a root of unity, can be seen to be
essential for what follows below.

Theorem 4.8. Under the previous assumptions, including (64), there are constants
Cl,C2>0 and an integer σ such that, if m is sufficiently large,

{j; μ / m J - m E - π σ / Σ Γ I ^ C j c ϋ ; \λJ{m)-mE-πσ/2T\^C2m-1}. (65)

The integer σ is the Maslov index of the null bicharacterίstics of the real-principal
type operator Q = P — EA, which are all closed with minimal period T. Furthermore,
the cardinality of the set on the right-hand side of (65) is, for large m, a polynomial
function of m of degree n — ί and leading coefficient the Liouville measure of BE

divided by (2π)n.

We will refer to the set on the right-hand side of (65) as the mth cluster in the
spectrum. The polynomial giving the number of eigenvalues in the mth cluster is
very closely related to the Riemann-Roch polynomial p(x) (as defined in [1]) of the
symplectic manifold

Y=BE/(S1

T), (66)

where we let S\, act on BE via the flow φt. BE is a smooth closed manifold of
dimension 2(n — 1), which inherits a natural symplectic structure induced from the
restriction to BE of the symplectic form on B. The Riemann-Roch polynomial p(x)
associated to Y has degree n — ί and leading coefficient the Liouville measure of Y.

Theorem 4.9. // (64) holds, there is an integer m0 such that if m is large enough, the
cardinality of the right-hand side of (65) is equal to p(m + m0).

Proof of Theorem 4.8. We first notice that the operator Q = P—EA is of real
principal type, and all its null bicharacteristics are periodic of minimal period T.
(Proof: Zero is a regular value of q=p — Ea because £ is a regular value of H. By
the periodicity assumption, for any xeΣn{a = l} there is a θe 1R such that one has

exp(0Ξα)oexp(TΞp)(x) = x, (67)

where Ξa, respectively Ξp, is the Hamilton vector field of a, respectively p. By
Theorem 4.3 in [11], and (64), ET+θe 2πZ. Since (67) continues to hold if we add
to θ a multiple of 2π, it is clear that we can take θ= —ET. This means by (67) that

exp(TΞp_Ea)(x) = x. (68)
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This proves the periodicity of the null bicharacteristics on {a = 1}; the periodicity
of the other ones follows by homogeneity.)

W Γ i t e P-EA-™I=<i + R (69)

π
as in Theorem (4.1). Let ffl = 0 Jί?m be the eigenspace decomposition of A. Since R

m

is of order — 1, the composition AR is bounded in L2(M). Let C 2 be its norm. It is
clear that the norm of the restriction of R to J^m is bounded by C2m ~1. By standard
perturbation theory, (e.g. [17, Theorem 4.10]), one has

dist(Spec[βm-(πσ/2T)J], Spec(^J) ̂  C 2 m " 1 , (70)

where Spec stands for "spectrum," and β m , respectively J w , denote the restriction
of Q = P — EA, respectively Ά, to J^m. By Corollary 4.7, there is a constant C > 0
such that there are no non-zero eigenvalues of & in [ — C, C]. Since the spectrum of
Qm is the set of eigenvalues {λfaiή — mE; ' ^ l } , the first part of Theorem 4.8
follows, with Cλ a constant slightly smaller than C. •

One can push the analysis further, along the lines of the theory of "band
asymptotics", [4, 22]. Let ρ be the principal symbol of R. Since it Poisson
commutes with A, there is a function on BE corresponding to it; we will also denote
this function by ρ. Let μ denote Liouville measure on BE, and J(m) the set of indices
of eigenvalues in the mth cluster. The eigenvalues λfm) in the mth cluster are those
that split off from KerΆ m , and so for large m, # J(m) = dim(Ker^J.

Proposition 4.10. For every /eC°°(R), there is an asymptotic expansion

X f(m(λjlrn)-mE-πσ/2T))~ Σ mn~ι-%(f)9 (71)
jeJ(m) j^O

where

βo(f)= SfoQdμ. (72)
BE

Proof. Very succinctly, one forms the following trace:

Ύr(f(AR)eίΘAΠ). (73)

The operator f(AR) (defined by the spectral theorem) is a classical pseudodifferen-
tial operator of order zero, so the construction of (73) as a distributional function of
θ can be carried out within the theory of Fourier integral operators. On the other
hand, (69) and the fact that ImΠ has finite codimension in Ker^ imply that
modulo a C00 function the distribution (73) is equal to

X eimθ Σ f(m(λj(m)-mE-πσ/2T)). (74)
meZ jeJ(m)

The proposition follows from these facts and a calculation of the symbol
of (73). •

We do not have an explicit description of ρ. However, this proposition implies
that the multiplicity of the mth cluster is a polynomial function of m, with the
properties stated at the end of Theorem 4.8. Indeed, take / in (71) to be identically
equal to one. The proposition implies that the function d(m) = # J(m) admits an
asymptotic expansion in decreasing powers of m, with the correct leading order
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term. Since for every integer, m, d{m) is an integer, this implies that d(m) is a
polynomial in m [16, Lemma 29.2.3].

Theorem 4.9, now follows directly from results of Boutet de Monvel and
Guillemin in Sect. 14 of [1], particularly Theorem 14.10, applied to the symplectic
manifold (66).

Let us now return to the semi-classical problem and consider — h2A + V on a
compact Riemannian manifold. Interpreting ft"1 as an eigenvalue of — idθ and
applying Theorems 4.8 and 4.9 leads to Theorem 2.3 on a compact manifold. To
prove Corollary 2.5, again on a compact manifold, consider h~1 as eigenvalue of
A= -iRdθ on S1 and form again Q = P-EA, with P2 = -A+A2V. One easily
checks that the null bicharacteristics of Q are periodic iff Roc e 2πZ. Now choose
R = 2π/oc. Then Theorem 4.8 holds with m replaced by Inm/a.

5. The Trace Formula for Schrδdinger Operators on Rπ

We will first compare (5) with the analogous expression where the λβ) are replaced
by the Dirichlet eigenvalues of S(h) on a bounded open neighborhood of the set
{x: V(x)^E}. We are able to do this using the following result of Helffer and
Sjostrand [13].

Let M be either RΛ or a compact Riemannian manifold. Let Δ denote the
Laplace-Beltrami operator on M and let FeC°°(M), F > 0 . Let £ e R ,
E< liminf V(x) if M is non-compact. Write

||

where the "wells" Wj are connected, compact and pairwise disjoint. Let Ωk D Wk be
bounded connected open subsets of M with C0 0 boundary, such that Ωk is disjoint
with an open neighborhood of Wj for all j + k. Let S(h)Ωk denote the Dirichlet
realization of S(h) on Ωk [so that eigenfunctions of S(h)Ωk are eigenfunctions of S(h)
which satisfy the Dirichlet boundary condition on dΩk~\.

Let £<Foo and let I{h) denote an interval I(h) = [E-φ),E + β{fi)] with
α(ft), jS(ft)->0 as h-+0. Let the function e(h)>0 satisfy loge(h) = o(h~1), h-+0.

Theorem 5.1 (Helffer and Sjostrand [13], cf. also Helffer [12]). Suppose that S(h)Ωk

has no spectrum in the intervals [E—oc(h) — e(h),E—oc(h)'] and
[E + β(h),E + β(h) + e(h)']. Then for sufficiently small h, there exists a bijection

b = bh:SpecS(h)nI(h)-> (J SpecS(h)ΩknI(h)
fc=l

(disjoint union on the right) such that for some σ > 0,

bάλ)-λ = O(e-Ί*) (75)

(σ can be taken arbitrarily close to the smallest Agmon distance between the wells,
but that will not be needed here).

We will need the following technical lemma.

Lemma 5.2. Let S(h) = —h2A + Vbea Schrδdinger operator on M and let φ e
We let the variable μ range over SpecS(ft). Let ε>0.
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(i) // M is compact and V(x) > 0 on M, then

Σ as

ft

n τ?2(ii) /n case M is R", £ 2 < liminf V(x) and ε < l , we have
1*1-°°

Σ

(76)

(77)

In the proof of this lemma we will use the following two rough estimates:
(a) In the situation of Lemma 5.2(i) there exists an JV0eN and a constant C such
that

^ X Λ \ (78)

(b) In case M is R" and K< V^, there exist N o and C (which may depend on K
here) such that

~No. (79)

In fact, one can take No = n in both these estimates. Estimate (78) follows for
example by comparing S(h) with —A and using the classical Weyl estimate; (79)
can be proved using min-max and Dirichlet-von Neumann bracketing.

Proof of Lemma 5.2. (i) Since φ e ^ ( R ) , \φ(t)\^CN\t\'N for
Hence the sum in (76) is bounded by

| ^ l , JV=1,2,

Σ
k<

φ

[where we used (78)]

for sufficiently large iVeN.
(ii) Proceed as above, but now note that since the sum over k only ranges from
[/Γε] till [2/Γε] and ε < l ,

#

for sufficiently small ft, where η > 0 is some number such that (E + ?/)2 < F^. By (79)
above, this is O{h~No).

Proof of Theorem 2.1. First, we reduce the problem to a disjoint sum of Dirichlet
eigenvalue problems by applying Theorem 5.1 with suitable α(ft) and β(h).
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Let η be some number such that (£-hf/)2<F00. Recall that the number of
eigenvalues of S(h)Ωk smaller than (E + η)2 is 0(h~N°). It follows that for any δ>0
there exist oc(h),β{h) such that 2Ehδ<φ),β(h)<4Ehδ and such that S(h)Ω has no
eigenvalues in [E2-a{h\E2-φ)-e-llv*~] or [E2 + β{h\E2+β{h) + e-*IVΈ-]', all
this for ft sufficiently small. We will take δ = 1 — ε, ε as in (4).

Now in (5) we sum over those eigenvalues λ of S(h) such that E2 — 2Ehδ + h2δ^λ
^E2 + 2Ehδ + h2δ. We may replace this by a summation over Λ's in
J(ft): = [£2-α(ft),£2 + j3(ft)], since by Lemma 5.2(ii) the contribution of the λ's in
the difference of these two sets is 0(ft°°). By Theorem 5.1,

Σ ) i Σ
λeSpecS(h)nI(fi) \ n J fe = l μeSρecS(fi)ΩknI(h)

s m i x M . Σ

λe Spec S(ft)nJ(ft)

e-σ/2h

#SpecS(ft)n(-oo,(£ + f/)2]
n

for ft sufficiently small; here we used that £ > 0 so that 0 is not in /(ft) for h
sufficiently small. By (79) this last term is O(h~Noe~σ/2tι) = O(hCX)).

Now we will use the same argument in the other direction (from Dirichlet to
global eigenvalue problem) but this time on a compact manifold. One easily
constructs a Riemannian manifold M and a Ve C™{M) such that

(i) ΩkcM and{xeM: V(x)^E} = {V^E}c [)Ωk.

(ii) The Riemannian metric of M restricted to a neighborhood of \JΩk is
Euclidean. k

ίFor example, one can take M equal to the double of a connected, bounded,

smoothly bounded neighborhood of (J Ωk and construct a suitable metric using a
partition of unityΛ k

Let S(h)=—h2AM+V, ΔM being the Laplace-Beltrami operator on M.
Repeating the arguments above, we see that

Σ. ΨC^-Σ Σ , ( £ r £ ) + 0 ( n . (8o)
/ieSpecS(fi) \ ft J k μeSpecS(h)ΩknI(h) \ Ϋl J

By Lemma 5.2(i), (80) differs only O(ft°°) from

This completes the proof, since the asymptotic expansion of (81) follows from
Theorem 3.1.

Proof of Theorem 2.2. Let E2<Voΰ. For sufficiently small ft,

Now repeat the proof of Theorem 3.2, starting from the trace formula for ]RW (and
replacing m by ft"1 everywhere).

Proof of Theorem 2.3 and Corollary 2.4. Use Theorem 5.1 to reduce to the compact
case, as in the proof of the trace formula (details left to the reader).
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Note added in proof. In joint work with Thierry Paul we have recently realized that one can
remove from the trace formula the square roots of the quantum and classical Hamiltonians.
Details will appear elsewhere.
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