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Abstract. We consider a smooth operator-valued function H(t,δ) that has two
isolated non-degenerate eigenvalues E^(t, δ) and Eg(t9 δ) for δ > 0. We assume these
eigenvalues are bounded away from the rest of the spectrum of H(t, δ), but have
an avoided crossing with one another with a closest approach that is O(δ) as δ
tends to zero. Under these circumstances, we study the small ε limit for the adiabatic
Schrodinger equation

We prove that the Landau-Zener formula correctly describes the coupling between
the adiabatic states associated with the eigenvalues E^(t,δ) and E@(t,δ) as the
system propagates through the avoided crossing.

1. Introduction

Adiabatic approximations in quantum mechanics describe solutions to Schrodinger
equations with slowly varying time-dependent Hamiltonians. More precisely, if
the time scale is chosen to be commensurate with the Hamiltonian's variation,
then adiabatic approximations describe the small ε behavior of solutions to the
Schrodinger equation

iεd-^ = H(ήψ, (1.1)

for t in some fixed interval. The classical adiabatic theorem states that if H(t) is a
smooth family of self-adjoint operators with a continuous, isolated, multiplicity
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one eigenvalue E(ί), then the Schrodinger equation has a solution of the form

Γ t •)

exp<-ίjE(r)dr/ε >Φ(t) + O(ε),

where Φ(t) is a particular smooth choice for the normalized eigenvector associated
with E(t). Under general circumstances, this result can be extended [1,4,6,9,10,12]
to an asymptotic expansion of the form

'). (1.2)

The Landau-Zener formula describes infinite order corrections to this expansion
that are associated with small gaps between E(t) and the rest of the spectrum of
H(t). In particular, suppose the gap between E(t) and the rest of the spectrum of
H(t) attains its absolute minimum width δ at a unique point t0 in the interval
— T rg £ g T. Furthermore, assume — T <t0 < T, and that the width of the gap

behaves like Jδ2 + a2(t-t0)
2 + O ( | ί - ί 0 | 2 ) for small |ί —ίol T n e n t n e Landau-

Zener formula states that there are corrections to (1.2) of exponential order e~
πδ2i2aε

t

It is notoriously difficult to prove the validity of such infinite order corrections
in singular perturbation problems, and we are unaware of any rigorous proof of
the Landau-Zener formula under general hypotheses on the Hamiltonian H(ή.
However, exponentially small bounds on the correction terms have been obtained
in some circumstances [2,3,7,14].

In this paper, we consider a much less difficult problem. We prove the
Landau-Zener formula for situations in which the minimum gap width depends
on ε and behaves like cε1/2 + O(ε). We further assume that the small gap arises
from an avoided crossing of two isolated multiplicity one eigenvalues that are
remain bounded an 0(1) distance away from the rest of the spectrum.

By an avoided crossing, one usually means a situation in which the gap between
two isolated eigenvalues has a small, but positive local minimum. In this paper,
we use the term avoided crossing to mean the following:

Definition. Suppose H(t, δ) is a family of self-adjoint operators with a fixed domain
Q) in a Hubert space Jf\ Suppose that resolvent of H(t, δ) is C 3 as an operator
from Jf to Θ for (ί,δ) in the domain [— T,T^\ x [— α,α]. Suppose H(t,δ) has two
isolated, multiplicity one eigenvalues E^{t,δ) and E#(t,δ) for (t,δ) ^(i o ,0). Assume
E^(t, δ) and E0J(t, δ) are bounded away from the rest of the spectrum of H(t, δ)
for all t and δ. Then if Ey/(to,0) = £#(ί 0,0), we say H(t,δ) has an avoided crossing
between these two eigenvalues at t0.

In Sect. 2 we discuss degenerate perturbation theory in two variables, and
define what we mean by non-degenerate avoided crossings. The definition of
non-degeneracy is technical. It is a non-vanishing condition for certain matrix
elements of two 2 x 2 matrices that depend on the behavior of the eigenvalues of
H(t,δ) and their spectral subspaces near the point (ίo,0). Avoided crossings
generically satisfy this non-degeneracy condition.

The following proposition describes the local behavior of eigenvalues involved
in a non-degenerate avoided crossing.

Proposition 1.1. Suppose H(t,δ) has a non-degenerate avoided crossing between two
eigenvalues EQ/(t, δ) and E#(t, δ) at ί0, and assume (without loss) that EΛ/(f, δ) > Es(t, δ)
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for δ > 0. Then there exist real numbers a > 0, b φ 0, and c> 0, such that

EJt, δ) - Ea(t, δ) = lja2t2 + c2δ2 + O(t2 + δ2\

where t = t — to + bδ/a.

We now state our main result. An analogous result holds if the roles of E^
and E@ are reversed.

Theorem 1.2. Suppose H(t, δ) has a single avoided crossing between two eigenvalues
E^(t9δ) and E@(t,δ) on the interval [— T9T^\ at some time toe(— T, T). Assume this
avoided crossing is non-degenerate and that E^(t, δ) > Ea(t9 δ) for δ > 0. Let a, b, and
c be the three numbers associated with this avoided crossing by Proposition 1.1. Then
for 11 — t01 > β > 0, one can choose Φ^(t, δ) and Φ@(t, δ) to be smooth normalized

eigenvectors that correspond to E^(t, δ) and Ea(t, δ), respectively, such that —^- (t, δ) is

orthogonal to Φ<#(t, δ) for <& = s/, £8. Moreover, there is a solution to the Schrόdinger
equation

(1.3)

that satisfies

ψ(t9 ε) = exp I - i ̂  j EJr, ε^dr/εl ΦJt, ε1'2) + 0(ε) (1.4)

for t^to — β. For t^.to-\-β9 this solution satisfies

ί ι

ψ(t, ε) = A^ exp < — ί J EΛ

I to-φ/a^/2

+ Λaexp\-i J

+ 0(εp\ (1.5)

for some positive p,
/2π

Γ I'-2Ϊ

-losl^ΠK-'4". ('•«

and

Λ^ = eiω{ε)e-πc2/2a. (1.7)

Remarks. 1. Expressions (1.4)—(1.7) are the Landau-Zener formula for Eq. (1.3).
Thus, the final conclusion to the theorem states that the formula is valid for
non-degenerate avoided crossings.

2. Because we have choosen δ = ε1/2 in (1.3), the coefficients Λ^ and Λ@ that
describe the mixing of the adiabatic states associated with E^(t, δ) and Ea(t9 δ) both
are 0(1). If, instead, δ is held fixed as ε->0, then one expects Λ% = ei<°(*)e-™2*2/2™
to be exponentially small.
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3. The analysis of exponentially small terms in singular perturbation theory is
mathematically very interesting and difficult. By choosing δ = ε1 / 2 we have avoided
these infinite order considerations. However, the limit we have chosen is appropriate
for many physically interesting systems in which the propagation is approximately
adiabatic and there are avoided crossings with small gaps. For example, the
electronic propagation is adiabatic in many molecular systems, and such systems
exhibit a wide variety of gap sizes at avoided crossings of eigenvalues. Another
such example involves solar neutrino oscillations.

4. The proof of Theorem 1.2 involves matched asymptotic expansions. Expression
(1.4) describes a negative time "outer solution." In an ε-dependent neighborhood
of ί0, (1.4) is matched to an "inner solution" that depends on a rescaled time
parameter s = a1/2ε~1/2t. This inner solution is then matched to a positive time
outer solution that is described by (1.5)—(1.7).

5. Zener's original paper [16] only analyzed a special case in which H(t) was a
particular 2 x 2 matrix valued function. He argued physically that this special case
reflected the behavior of general systems. Our proof shows that his intuition was
correct. His physical reasoning led him to write down our inner solution. All the
interesting mixing of the two adiabatic states occurs in the temporal boundary
layer during which the inner solution describes the propagation.

6. In addition, Zener tacitly took the same type of limit that we discuss in this
paper. In the middle of this analysis, he used asymptotics of parabolic cylinder
functions that are valid when the eigenvalue gap has width 0(ε1 / 2).

7. Landau's original paper [8] contained the beautiful idea that avoided crossings
could be understood by analytic continuation to complex time. An avoided crossing
was associated with an actual crossing at some point in the complex time plane.
We have not seen a rigorous justification of the Landau-Zener formula from this
point of view, although exponentially small bounds have been obtained this way
[7,14].

8. Except when symmetries are involved, avoided crossings should generically
occur in adiabatic quantum mechanics rather than actual crossings. If there are
no symmetries involved, crossings of eigenvalues of real symmetric or self-adjoint
Hamiltonians generically occur on submanifolds of codimension 2 or 3, respectively.
Since H(t) depends on only one parameter, ί, one should not expect to see actual
crossings unless symmetries are involved.

9. Although (1.6) appears to be complicated, its absolute square is not. The
transition probabilities associated with the avoided crossing are

\ΛJ2 = l-e~πc2'a

and
\Λa\

2 = e-m2ta.

10. The phase factor eiω(ε) that occurs in (1.7) depends on the choices of the phases
of Φ^ and Φ%. Since we have only specified the choices up to an arbitrary
time-independent phase factor, the value of ω(ε) is not determined. For any given
choice of the eigenvector phases, ω(ε) is determined uniquely by the formulas in
Sect. 3.
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The paper is organized as follows. Section 2 is devoted to a description of
degenerate perturbation theory in two variables. What we mean by non-degenerate
avoided crossings is precisely defined, and Proposition 1.1 is proved. Section 3
contains the proof of Theorem 1.2. It involves formal asymptotic expansions, some
simple estimates, and the use of a lemma that is based on the fundamental theoreΐn
of calculus.

There is a huge physics literature associated with the Landau-Zener formula,
and we will not attempt to review it here. We recommend the interested reader
consult the introduction to the recent preprint of Jaksic and Segert [7].

2. Degenerate Perturbation Theory in Two Valuables

In this section, we discuss the structure of non-degenerate avoided crossings. This
amounts to a study of degenerate perturbation theory for Hamiltonians that depend
on two parameters.

Suppose two eigenvalues, E^(t, δ) and E#(t9 δ), oϊH(t, δ) have an avoided crossing
at time ί0 (and recall that by our definition, this requires the resolvent of H(t, δ)
to be C 3 in (ί, δ) as an operator from J f to 3f). We begin our analysis by letting
P(ί, δ) be the rank two orthogonal projection onto the spectral subspace of H(t, δ)
that corresponds to these two eigenvalues. By representing P(ί,<5) as a contour
integral of the resolvent, it is easy to see that it is a C 3 operator-valued function.
From this it follows that the trace of H(ί, δ)P(t, δ) (which equals E^(t, δ) + Ea(t9 δ))
is a C 3 real valued function. So, the resolvent of

H±(t, δ) = H(t9 δ) - &EJt, δ) + Ea(t9 δ))

is also a C 3 operator-valued function. Clearly H(t,δ) and Ht(t,δ) have the same
spectral projections, and the restriction of Hx{t, δ) to the range of P(ί, δ) is traceless.

We choose {φ1,φ2}
 t 0 be an orthonormal basis for the range of P(ίo,0), and

define

Since P(ί, δ) is C3, it is easy to see that Ψx{t9 δ) is a C 3 function of t and δ in some
neighborhood of (ίo,0).

Let Pi(ί,<5) denote the orthogonal projection onto the subspace spanned by
Ψ^t.δ). It is a C 3 operator-valued function in some neighborhood of (ίo,0), and

P(ί, φJPΛί, δ) = Pχ(ί, (5)P(ί, δ) = Px(ί, 5).

We define

m , . * P(t,δ)(l-Pi(t,δ))Φ2

This vector-valued function is also C 3 in a neighborhood of (tθ90)9 and
{Ψγ(t,δ\ Ψ2(t,δ)} is an orthonormal basis for the range of P(t,δ) for (ί,<5) in a
neighborhood of (ίo,0).

Near (ί0,0), the restriction of Hγ{t, δ) to the range of P(ί, δ) is given in this basis
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by a traceless 2 x 2 matrix-valued function that is C 3 in (ί, δ) and is the zero matrix
at the (ίo,0). By standard Taylor series results, this matrix-valued function has the
form

where A and B are self-adjoint and traceless.

Non-Degeneracy Assumption I. We assume that A is not the zero matrix.

By the spectral theorem applied to A, there is an orthonormal basis
{Φι{t,δ)9φ2(t,δ)} that consists of t- and ^-independent linear combinations of
{Ψ^t, δ), Ψ2(t, δ)}, such that in the new basis, the restriction of H^t, δ) to the range
of P(t, δ) is given near (ί0,0) by

where A1 is a diagonal matrix ( 1 with a > 0.

Non-Degeneracy Assumption II. We assume that the matrix Bx is not a diagonal
matrix {and hence, that it is non-zero).

Since Bx is traceless and self-adjoint, it has the form ( Ί I, where b is real

and c is complex and non-zero. v J

We define I = t — t0 + -δ. Then in the basis {φ1(t,δ),φ2{t,δ)}, the restriction of

H^t.δ) to the range of P{t,δ) is locally given by

,δ)

dF dF
where the F ; are C3, F/(0,0) = 0, - ^ ( 0 5 0 ) = 0, —/(0,0) = 0, and F x is real. By

ot do

multiplying φ2(t,δ) by a ί and (5 dependent phase, we can assume without loss that
F2 is real and c is real and positive.

Thus, Non-degeneracy Assumptions I and II guarantee that near (tOi0), there
is a C 3 basis,

{φ1(t,δ),φ2(t,δ)}9 (2.2)

in which H^δ) is represented on JT ^ ( C ® €®(1 -P(t9δ))JίT as

(2.3)

0

where H\{ϊ,δ) is the restriction of H^δ) to the range (1 -P{t,δ)\ We note that
H\(t,δ) has a C 3 resolvent and has its spectrum bounded away from the spectrum
of M^ί, δ) for (ί, (5) near (ίo,0).

From the representation (2.3), elementary linear algebra, standard Taylor series
estimates, and tedious calculations, we obtain several results for (t,δ) in a
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neighborhood of (tθ9δ). We conclude this section with a list of these results, and
note that the first of these is the conclusion to Proposition 1.1,

t, δ) - Ea(t, δ) = 2ja2t2 + c2δ2 + O(t2 + <52), (2.4)

£„ - Em)b δ) = 2 - ^ 2 =

'> 8) = eιω^δ\cos (θ/2)φ1(t, δ) + sin (θ/2)φ2(t9 δ))9 (2.6)

and

ΦJt,δ) = eiω^δ\-sin(θ/2)φ1(t,δ) + cos(θ/2)φ2(t,δ))9 (2.7)

where ω^(ί, <5) and ωa(t, δ) are functions to be chosen in Sect. 3 and

,2.8,

We only use θ for small δ > 0, and we choose 0 < 0 < π.
If I αf I > cδ > 0, we have

(2.9)
\UL J

and in general for δ > 0, we have

3f a2t

and

δ20 2a3ctδ

= ^ + 0 , l ) , ,2.10)

{a'P + c'i2)'

3. Proof of Theorem 1.2

We begin this section with Lemma 3.1, whose proof is a simple application of the
fundamental theorem of calculus. We then explicitly construct the inner and two
outer approximate solutions. Theorem 1.2 follows from some simple estimates and
three applications of Lemma 3.1.

Lemma 3.1. For each fixed value ofε, suppose that K(r, ε1/2) is a family of self-adjoint
operators with a fixed domain @ι9 and assume that the resolvent of K(r,ε1/2), as an
operator from 2tf to Q), is a C2 function of r. Suppose φ(r9 ε) belongs to 29 is
continuously differentiable in r, and approximately solves the Schrδdίnger equation
in the sense that

where ζ{r. ε) satisfies

\\ζ(r,ε)\\Sμ(r,ε)
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on the time interval of interest. Suppose Ψ(r, ε) is the exact solution to the Schrόdinger
equation with initial condition Ψ(ro,ε) = ψ(ro,ε). Then the following estimate holds:

r

|| Ψ{r, ε) — ψ(r, ε)\\ ^ ε ~ v j μ(rf, ε)dr'. (3.1)
ro

Proof. Our hypotheses guarantee [11, 13, 15] the existence of a strongly differenti-
able unitary propagator U(r,ro,ε) for the Schrδdinger equation with time-
dependent Hamiltonian K(r, ε1/2). By the unitarity of this propagator and the
fundamental theorem of calculus, the quantity on the left-hand side of (3.1) can be
estimated as follows:

\\U{r,ro,ε)ψ{ro,ε)-ψ(r,ε)\\

= \\φ(ro,ε)-U(ro,r,ε)φ{r,ε)\\

d
^(φ(ro,ε)-U(ro,r',ε)φ(r',ε))dr'
ro or

dr'

This proves the lemma. •

3 A. The Negative Time Outer Solution. To construct and prove the validity of the
negative time outer solution, we mimic the construction and proof of Sect. 2 of [6].

We first comment that under the hypotheses of Theorem 1.2, we can easily
make C 3 choices for the normalized eigenvector emuδ)Φ^(t, δ) for 11 — t0 \ > R, where
0(ί, δ) is an arbitrary real C 3 function. By differentiating the normalization condition

(ΦJt,δ\ΦJt,δ)} = \

with respect to t, we learn that

d x
v/ ' 'δt '9ί '

is purely imaginary. Thus, there are real solutions to

If we choose such a real solution θ(t, δ) that depends smoothly on <5, then

satisfies

'di
ΦJt,δ),-ΦJt,δ)
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We choose Φa(t9δ) by the same technique, and note that these choices uniquely
determine the functions ωjt, δ) and (%(ί, δ) in Sect. 2 up to additive constants.

We next make the ansatz that (1.3) has a formal solution of the form

i } EJr9ε^2)dr/ε
to-(b/a)ε1/2

#o(M 1 / 2 ) + εψάW2) + εV2(M1 / 2) + - ) (3.2)

for t<to — β.
We substitute (3.2) into (1.3) and equate terms of like powers of ε on the two

sides of the resulting equation.
The zeroth order terms require

H(t, s1/2)φ0(t, ε1/2) = EJt, ε1/2)<Ao(', β1/2)

Thus,

where f0 is not yet determined.
The first order terms require

We split this into two conditions by separately considering components of this
equation that are multiples of Φ^(ί,ε1/2), and those are orthogonal to ΦJt9ε

1/2):

and

Since we are only doing a leading order expansion, we terminate the expansion
at this stage and choose the following particular solutions to these equations:

and

ψfa ε1/2) = i [H(ί, ε1/2) - EJf,

where [H(ί, ε1/2) - EJt, ε 1 / 2 ) ] r "
1 denotes the restriction of the resolvent of H(t, ε1/2)

to the subspace orthogonal to Φ^(ί,ε1/2).
We define the negative time outer approximate solution to be

ψjt, ε) = exp j - i \ EJr, ε"2)dr/ε}(ΦJt, ε1/2) + ε^t(ί, ε1'2)). (3.3)

This expression approximately satisfies Eq. (1.3) in the sense of Lemma 3.1 with
a remainder term

C(ί,ε)= -iε2exp \-i ] EJr^^dr/εi^^ε1'2). (3.4)
I to-(b/a)ε1/2 J Ot
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For t^t0 — β, this error term has norm bounded by Cε2, so Lemma 3.1 with v = 1
and r = t shows that (3.3) agrees with an exact solution to Eq. (1.3) up to an O(ε)
error for t^to — β. Since (1.4) agrees with (3.3) on this time interval, there is a
solution to (1.3) that satisfies (1.4) for t ^ t 0 - β.

As t approaches ί0, the norm of (3.4) diverges. This norm is equal to the norm of

+ ε2[H(t, ε1/2) - EJt, ε 1 ' 2 )]," 1 -^(t, ε1'2). (3.5)

We estimate how this norm diverges with the help of formulas (2.4)—(2.11). From
(2.6) and (2.10), it follows by explicit calculation, that the norm of the final factor
in the first term in (3.5) is bounded by a constant times

dθ _ acε1/2

ft 'a2t2-

By (2.4), (2.6), (2.10), (2.11), and explicit calculations, the norm of the second term
in (3.5) is obtained by a constant times

? 1 a3cε1/2\t\
ε2

2y/at1 + c ε [a t -t c ε)

To estimate the operator norm of the middle factor in the first term of (3.5),
we write the reduced resolvent as

+ [Hi(f, ε1/2) - UEJt, ε1/2) - EΛ(t, ε1 / 2))] " \l - P(t9 ε
1'2)). (3.6)

The second term on the right-hand side of (3.6) has bounded derivative. To estimate
the first term on the right-hand side, we use (2.7) and then explicitly differentiate.
From (2.4), (2.5) and (2.10), we find that the operator norm of the derivative of
(3.6) is bounded by a constant plus a constant times

2a\ΐ\ 1 acε112

(aΨ + c2ε)3'2 ^JaΦ + chiaΦ + c2ε)'

By combining all these estimates, we find that the norm of (3.4) is bounded by a
constant multiple of

k I / O ~ O 1 \ ς/-> I / T o O . T N ^ / T I

(a2t2 + c2ε)5 '2 (α 2ί 2 + c2ε)5 '2 (α 2ί 2 + c2ε)

So, by Lemma 3.1, (3.3) agrees with an exact solution to (1.3) up to an O(ε ( 3 / 2 )~3 ))
as long as t ^ — εγ. If we keep y < \, this error is bounded by a positive power of ε.

3B. The Inner Solution. Near crossings, a new time scale becomes relevant (see
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[6]). Accordingly, we introduce a new time variable s = a1/2ε~1/2t. When necessary,

we let ί(s, ε) = a~ ί/2ε1/2s + t0 — ε 1 / 2 denote the old time variable as a function of
a

the new one. The rescaled version of Eq. (1.3) is

iεl!2a-l/2d±=H{Siεl,2)^ ( 3 7 )

OS

where

We now search for a solution to (3.7) that matches the negative time outer
solution (3.3) when t is small and negative, but s is large and negative.

We begin by proceeding formally. We make the ansatz that the inner solution
has the form

exp j - ^ T JEJr^ε^ + E^ε^drβεl

+ (go(s) + v ε̂jflf! (s) + )(/>2(ί(5, ε), ε1/2)

+ φo(s) + v1(ε)ψ1(s) +...), (3.8)

where the v7 (ε) are arbitrary order functions, and the φj are orthogonal to the
range of the rank two projection P(ί(s,ε), ε1 / 2). Note that the φj here are not the
eigenvectors, but the vectors constructed near the end of Sect. 2.

We substitute (3.8) into (3.7), use representation (2.3) with the Fj expanded in
their second order Taylor series with remainder, and equate terms of like powers
of ε on the two sides of the resulting equation.

The leading order terms have order ε°. They require

(1 - P(ί(s,ε), ε1/2))Hi(a~ 1/2ε1/2s,ε1/2)ιA0 = 0.

Since P(t(s,ε\ε1/2)φ0 = 0, this forces us to take ^ 0 = 0.
If limε~1/2v1(ε) is infinite, the next order terms similarly require only φ1 = 0.

ε->0

Since this is trivial, we assume limε~1/2v1(ε) to be finite. Thus, vx(ε) = o(ε1/2) or

Vi(ε) = ε1 / 2. In either case, the next order terms are of order ε1 / 2. If vx(ε) = o(ε1/2),
the order ε1 / 2 terms require

\i2 C f l " 1 / 2 Y / o Y (3.9)

If Vl(ε) = ε1/2, the order ε1 / 2 terms require a more complicated condition. However,
by separately examining the components in this condition that are in the ranges
of P(ί(s,ε),ε1/2)) and (1 -P(ί(s,ε),ε1 / 2)), we find that this condition splits into two
separate conditions. One is (3.9); the other is

(1 -P(ί( 5,ε), ε 1 ' 2 ) ) / ^ - 1 ' ^ 1 ' 2 ^ 1 ' 2 ) ^ = 0 .

This latter condition implies φ1=0.
Thus, if either vx(ε) = o(ε1/2) or vx(ε) = ε1/2, Eq. (3.9) must be satisfied. The

solutions to this equation can be expressed in terms of parabolic cylinder functions.
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As we discuss below, the particular solution that formally matches the outer solution
(3.3) is the following:

where

c2\ ic2 πc2

exp<^ --—log —
( 4a \2aJ 4a

In addition, the matching condition requires ψί=0, even in the case where

We terminate the formal construction at this stage since we are only doing a
leading order calculation. Thus, we take the inner approximate solution to be

P Y Γ J Ϊ ^f (F ίr p ^ ϊ - μ F (r P X / 2 > lWr/?P I P Y Π i ?>/> i t — -P1!2?1!2

to-(bfa)εW

c2 λ zc2 πc2

(3.10)

We now must prove that this agrees with an exact solution and that it matches
the negative time outer solution. The first of these tasks is relatively easy. By explicit
calculation using the representation (2.3), we see that (3.10) approximately satisfies
(3.7) with a remainder ζ that contains two types of terms. One type comes from
the error term in (2.3) and has norm bounded by a constant times εs2 + ε. The

other type contains iε1/2—- applied to the basis vectors φMs,ε\ε\ and has norm
OS

bounded by a constant times ε. To obtain these estimates, we have used the
boundedness of (3.10), which follows from the self-adjointness of the matrix in (3.9).
Thus, (3.10) approximately solves (3.7) in the sense of Lemma 3.1 with a remainder
ζ whose norm at time 5 is bounded by a constant times εs2 + ε. We apply Lemma
3.1 with v = \ and r = s. We conclude that (3.10) agrees with an exact solution to
(3.7) up to an (^(ε37'"1) error as long as we keep | ί | < εy>. If we choose y' > 1/3, the
error is bounded by a positive power of ε.

We fix 1/3 < y' < y < 1/2. Then for — εγ' <t< — εy, both the negative time outer
solution and the inner solution agree with exact solutions up to O(εp) errors, for
some p>0. We now must prove that they agree with one another up to such an
error in this overlap region. To do this, we set t= — εκ, where κe(y\y) is arbitrary,
and we compute both solutions modulo errors that are bounded by positive powers
of ε.

For t= - ε κ , the norm of εi//|(ί,ε1/2) in (3.3) is

1 acε112

la2ε2κ •
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Thus, in the matching region, we can ignore this term, and up to an 0(εp) error,
(3.3) equals

exp { - i } (EJr, ε1/2) + EJr, εll2))dr/2ε

•exp j - i } (EJr^2) - EJr^i^drβ

= exp { - ί } (EJr, ε1'2) + EJ,r, ε^2))dr/2ε
I to-(b/a)ε1/2

— ε ,ε \>ij^{t, ε).

Using the basis {φ1,φ2} and formula (2.4), we can write ί2^(ί,ε) for I = —εκ, as

Ωjl ε) = exp j - i f (EJr, ε^) - EJr, ^2))drβεΨ^X
I to-WΦ1/2 J \ sin (6̂ /2) /

-- ί— -aεκja2ε2κ + c2ε + c 2 εlog(-αε κ + Ja2ε2κ + c2ε) >

where θ = tan~ 1(cε{ll2)~κ/a) + O(εκ) by (2.9). To evaluate the small ε asymptotics
of (3.11), we use (2.9), standard Taylor series estimates, and

c2

/ 2 2 K . 2 K . 1 — K
/ SΊ p —J— P p HP —I— P •

Vαε + c ε - f l £ + 2 α ε

to obtain

• e x p { ~ έ [ ~ c 2 1 o g ( c ε l / 2 ) ] } ( i ) + O ( ε P )

for some p > 0.
So, for ί = — εκ, the outer solution (3.3) equals

exp \-i \ (EJr,ε1'2) + EΰJ(r,ε^dr/lεjexp {ic - - ε 1 ' 2 ,

2(ίo,ε1/2) + 0(ε"). (3.12)

To evaluate the asymptotics of the inner solution for t = — εκ we note that
s = — α 1 / 2 ε κ ~ ( 1 / 2 ) and use the known asymptotics of the parabolic cylinder functions



446 G. A. Hagedorn

[5] for large complex arguments. These show that the φx component in (3.10) is
O(ε{lf2)~κ). Thus, in the negative time matching region, the inner solution (3.10)
equals

expί- i \ (EJr,είl2) + EJr,εil2))dr/2ε}exp\iωJt0--ε1i2,ε1ι2

ek2ι*aΞ{ϊ, ε)φ2(t{s, ε), ε1'2) + O(ε'),

where

S(f, ε) = eic2i"a exp | - ~ log (c2/2a) J e ' ^ a D i c 2 , l a { { i ~

For t= — εκ,

. 7

ICΞ(ϊ, ε) = β ί c 2 / 4 α e x p <J log (c2/2a)} e ' πc2/8a

•expj

So, we see that the inner solution also agrees with (3.12) for t= — εκ, and the
matching is justified.

3C. The Positive Time Outer Solution. The positive time outer solution is a linear
combination of the two standard adiabatic states associated with £ c / and E#. The
particular linear combination is determined by matching the inner solution.

To construct the two standard adiabatic states we use the same technique we
used to construct (3.3). The state associated with Es/ is given by (3.3), except we

now keep t > t0 — ε 1 / 2 . The state associated with E.# is
a

φj.t, ε) = exp j - i \ EJr, εll2)dr/ε\(ΦJit, ε1/2) + εφ\{t,

where in this instance, φf is the function

ψfa β1/2) = i lH(t9 ε1/2) - EJίt, ε1 / 2)]Γ" ^ ( ί , ε1/2),

where \_H(Uεll2) — E.Jt,είl2)~\~1 denotes the restriction of the resolvent of H(t,ε112)
to the subspace orthogonal to Φ^(t,ε1/2).

These two standard adiabatic states agree with the exact solutions of (1.3) up
to O(ε ( 3 / 2 )~3 y) errors as long as t^ε7. The proof of this claim is essentially the
same as the proof in Sect. 3 A that the negative time outer solution agrees with an
exact solution up to an O(ε ( 3 / 2 ) " 3 y ) error.
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We note that when t > t0 + β, (1.5) agrees with

ΛΛMί,e 1 ' 2 ) + Λ,<Mt,61 '2) (3-13)

up to an 0(εp) error. So, the proof of Theorem 1.2 will be complete as soon as we
check that the inner solution and (3.13) agree with one another up to an 0(εp)
error when t = εκ, where y' <κ<y. We check this by explicitly evaluating the
asymptotics of (3.10) and (3.13) in the matching region.

The inner solution (3.10) has two components: multiples of φx and multiples
of φ2. The factors that multiply φ1in(3Λ0) are

exp j - i y (EJr,ε1/2) + E^ε^dr/lεiexp\icojt0 --ε1/2,s1'2

l l

= exp { - i y (EJr, ε1'2) + E^(r,

When t = εκ with

it r1/2 rΐ/2\ (^ ~ ^C ~ (t r\i t o ε ,ε i > 1 / 2 *=iU, ε;.

S 1(f,e) = e x p ^ - — l o g ι — j ,* * »ic*l2a

= exp<!-—- log! —
,2 / Λ 2 \

πc2/2α

(3.15)
The factors that multiply <£2 in (3.10) are

expί-ί

I

= expj-i Ύ (EJr^^ + E^

^ ^ ) j 2 ( F , 6 ) . (3 .16)
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When t = εκ with κe(γ',y),

Ξ2(t,ε) = exp j - ~ log (^Q\eic2>*"e-™2l8aDic2/2a((i - l)εκ~ 1 / 2)

ί ίC\ (C2\\ <c*,4a -«>,8a

= exp|--log^-j|e e -

exp< f exp<—log((i — l)α 1 / 2 ε κ ~ 1 / 2 ) > + O(εp)
[ 4 J (2ίi J

ί c 2 / / C 2 g l - 2 κ \ 3 π \ ^ Γ π c 2 C 2 f α ε 2 κ - n

-—-log -•— )}exp<- — + -τ- + — - — > + O ( ε p )
4« \ \ 4αz y 8αyJ ( 8α 4α 4 J
/c2 , / c 2 ε 1 " 2 κ \ /c2 /flε2κ"

O(εp). (3.17)

Equations (3.14)—(3.17) describe the asymptotics of the inner solution in the
positive time matching region. The asymptotics of the outer solution in this time
interval contain two terms that correspond to the two terms in (3.13). The
asymptotics of each term are evaluated by the techniques that led to (3.11) and
(3.12) for the negative time outer solution. We consequently find that for t = εκ,
the outer solution (3.13) equals

Γ t(s,ε)
I . f / Γ - i / 1 / ? \ J - > /

CAU \ — I I I JLJ rjyr, o ) -f ΓLi 0ΛΓ* i

(_ ίo-ίb/^ε1/2

ί α ε 2 ^ 1 re2 ic2

ε2κ'1 ic2 ic2 / c ε ( 1 / 2 ) "
0(ε"). (3.18)

The formulas (1.6) and (1.7) for Λ^ and Λ# were specifically chosen so that (3.18)
would agree with the inner solution asymptotics described by (3.14)—(3.17), provided

This completes the proof of Theorem 1.2. •
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