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Abstract. The affiliation relation that allows to include unbounded elements
(operators) into the C*-algebra framework is introduced, investigated and applied
to the quantum group theory. The quantum deformation of (the two-fold covering
of) the group of motions of Euclidean plane is constructed. A remarkable radius
quantization is discovered. It is also shown that the quantum SU(1,1) group does
not exist on the C*-algebra level for real value of the deformation parameter.

0. Introduction

In practical computations in quantum physics we mostly deal with unbounded
physical quantities represented by unbounded operators. On the other hand in the
very theoretical approaches (see for example [5,2]) we consider C*-algebras
consisting of bounded elements only. Therefore it is necessary to investigate the
relation between particular unbounded operators and C*-algebras.

The same problem in a more apparent way arises in the theory of non-compact
topological quantum groups, where on the one hand the doctrine [18] says that
the C*-algebra language is the only one to be used and where on the other hand we
have to deal with matrix elements of finite-dimensional non-unitary representa-
tions which in general are not bounded.

The similar problem was encountered in the von Neumann algebra theory [11]
where the affiliation relation aηM [where M c B(H) is a von Neumann algebra and
a is an unbounded operator acting on the Hubert space H~\ was invented to
describe such situations. We borrow from this theory the name of the relation and
its symbol: in what follows we shall speak about unbounded elements a affiliated
with a C*-algebra A and write aηA. We have however to warn the reader that the
affiliation relation that we introduce in the present paper is not a generalization of
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the one used in the von Neumann algebra theory. For example iϊaηM (where M is
a von Neumann algebra and η is understood in the C*-algebra sense) then
according to Proposition 1.3 aeM.

As we shall see, elements affiliated with the C*-algebra A are unbounded
multipliers of a special kind. The domain D(a) of an element aηA depends on a and
need not coincide with the Pedersen ideal of A. It means that the theory presented
in this paper goes in the other direction than the one developed in [7] and [13].

The paper is organized in the following way. In the remaining part of the
Introduction we remind the necessary definitions and results of the theory of
(bounded) multipliers [1].

In Sect. 1 the definition of the affiliation relation is formulated and basic
examples are presented. In particular the set of all elements affiliated with the
C*-algebra CB(H) of all compact operators acting on a Hubert space H coincides
with the set of all closed operators acting on H. It shows that the existing theory of
unbounded closed Hubert space operators (that contains such chapters as the
theory of symmetric and selfadjoint operators including the Caley transform and
extension theory, Friedrichs and Krein extensions of positive operators, Lie group
and algebra representations including the Nelson integrability condition, the
algebras of unbounded elements and many more ...) is related to a very particular
C*-algebra CB(H) and should be generalized to an arbitrary C*-algebra A. In an
attempt to limit the volume of this paper we decided to shift all this program to a
separate paper [20]. We include only a few results concerning normal elements
that are used in Sect. 3.

In Sect. 2 we investigate the characteristic properties of the graphs of affiliated
elements. The results provide us with a convenient method of introducing
particular elements affiliated with C*-algebras.

Section 3 is devoted to the quantum deformation of the Euclidean plane and its
group of motions. This is where the theory of affiliation relation is applied. We
discover the remarkable radius quantization that was not seen in the Hopf-algebra
framework. The similar quantum group is considered in [3], The very related
material is contained in [17].

Finally in Sect. 4 the quantum group SμU(ί, 1) is investigated. We show that
something is essentially wrong for μ e R : on the C*-algebra level the comultipli-
cation does not exist. In our opinion the only deformation of 517(1,1) = SL(2,R)
that may exist is the one corresponding to the value μeS1. This case has not been
seriously investigated yet. We have obtained very preliminary results [19] related
to the Hubert space level.

Both Sects. 3 and 4 are divided into three parts corresponding to different levels
of the quantum group theory. The most technical Hubert space level gives the link
between a very surface Hopf-algebra level and deep C*-algebra level. We believe
that constructing any non-compact quantum group one has to consider these
three levels. In very lucky cases the Hubert space level may be very easy: all
irreducible representations of the considered commutation relations are realized
by bounded operators. Then many of the technical difficulties disappear. Such a
case is considered in [14].

We have to recall a few facts concerning multipliers on non-unital
C*-algebras. Let B(A) be the algebra of all bounded linear mappings acting on a
C*-algebra A and α, b e B(A). We say that b is the hermitian adjoint of a and write
b = a* if

y*(ax) = (by)*x (0.1)
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for any x,yeA. We have to stress that the existence of the hermitian adjoint is a
very restrictive condition. M(A) is by definition the set of all bounded linear
mappings that have the hermitian adjoint:

M(A) = {aeB(A): there exists a*}.

M(A) endowed with the natural algebraic operations and with the sup-norm
becomes a unital C*-algebra. There exists the natural embedding Ac+M(A); we
identify any element a e A with the left multiplication by a. One can easily verify
that A is a closed two-sided ideal in M(A).

Using (0.1) one can prove that

(axί)x2 = a(xίx2)

for any xux2eA. If A is unital then inserting xx = / we observe that a coincides
withe the left multiplication by al. This way we showed that A is unital if and
olyiϊ A = M(A).

It is known that M(CB(H)) [where CB(H) denotes the algebra of all compact
operators acting on a Hubert space H] coincides with B(H). Denoting by
Cbounded(yl)[C00(yl) respectively] the algebra of all continuous, bounded (vanishing
at infinity respectively) functions on a locally compact topological space A we

We shall prove

Proposition 0.1. Let Abe a C*-algebra and ubea bijective linear mapping acting on
A such that (uy)*(ux) = y*x for any x,yeA. Then u is a unitary element of M(A).

Proof Inserting in the assumed relation u~xy instead of y we get y*(ux) = (u~ 1y)*x
for any x,yeA. It shows that w* = w~~1 and the statement follows. Q.E.D.

Proposition 0.2. Let Abe a C*-algebra and a e M(A). Assume that aA and a* A are
dense in A. Then there exists unique unitary u e M(A) such that

a = u\a\, (0.2)

where \a\=(a*a)ί/2.

Proof One can easily verify that the mapping

u:\a\x\-+ax, (0.3)

where x runs over A extends by continuity to a linear bijection acting on A
satisfying the assumptions of Proposition 0.1. Therefore u e M(A) and u is unitary.
(0.2) follows immediately from (0.3). Q.E.D.

Proposition 0.3. Let Abe a C*'-algebra, TeB(A) and aeM(A). Assume that a* A is
dense in A and aTeM(A). Then TeM(A).

Proof Let c = aT. For any x e i w e have

Therefore ||c*x|| ^ ||Γ|| ||α*x||. Remembering that a*A is dense in A we see that
there exists S e B(A) such that

Sa*x = c*x
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for any xeA. We shall prove that S is the hermitian adjoint of T. Indeed for any
x, y e A we have

(a*y)* Tx = y*aTx = y*cx = (c*y)*x = {Sa*y)*x,

and using once more the density of a* A we obtain y*Γx = (Sy)*x for any x, y e A.
The latter means that S= T* [cf. (0.1)]. Q.E.D.

At the end of this section we remind the category of C*-algebras that plays the
basic role in the non-commutative topology [18,16]. All C*-algebras are objects of
this category. For any C*-algebras A and B, the set of morphisms Moτ{A, B)
consists of all *-algebra homomorphisms φ acting from A into M(B) such that

φ(,4)£isdenseinβ. (0.4)

Any φ e Mor(v4, B) admits unique extension to the *-algebra homomorphism
acting from M(A) into M(B). Due to this fact the compositions of morphisms is well
defined. The extension (denoted by the same letter) is introduced in the following
way: For any TeM(A), φ(T) is a bounded operator acting on B such that

φ(T)(φ(a)b) = φ(Ta)b (0.5)

for all ae A and beB. By virtue of (0.4), φ(T) is unique and one can show that
φ(T) e M(B). Clearly φ(lj) = IB> where IA (IB respectively) denotes the unity of M(A)
[_M{B) respectively].

1. The Affiliation Relation

In this section we introduce elements affiliated with a C*-algebra. Heuristic
justification of the formal definition given below is the following: In brief, an
element T is affiliated with a C*-algebra A if bounded continuous functions of T
belong to M{A). We choose a bounded continuous function

defined by a simple algebraic expression such that zλ + zλ> for λΦλ'. Then λ is
determined by zλ. By definition TηA if zτ e M(A). The choice

'2 (1.1)

leads to Definition 1.1. Indeed in this case formal computations show that

T(I-zfzτ)
ί/2 = zτ.

Throughout the paper the domain of any (unbounded) linear operator T acting
on a C*-algebra will be denoted by D(T). On the other hand the domain of an
operator T acting on a Hubert space is denoted by <3>(T). This distinction is
necessary because in some cases we identify operators acting on a Hubert space H
with corresponding operators acting on a C*-algebra embedded into B(H) (see
Examples 3 and 4 in this section).

Definition 1.1. Let A be a C*-algebra and T be a linear mapping acting on A
defined on a linear dense subset D(T)cA. We say that T is affiliated with A and



C*-Algebras and Non-Compact Quantum Groups 403

write TηA if and only if there exists zeM(Λ) such that ||z|| ^ 1 and

XED(T) \ /There exists aeA such thatλ

y = TxJ \ x = (/—z*z)1/2a and y = za

for any x,yeA.
Clearly T is determined by z. We say that T is the Γ-transform of z: T= Tz. In

the next section we shall prove that z is determined by T. We say that z is the
z-transform of T: z = zτ. Clearly z e M(A) is the z-transform of an element affiliated
with A if and only if ||z|| ^ 1 and (I—z*z)ί/2A is dense in A.

It follows immediately from the definition that T is a closed linear map, D(T) is
a right ideal in A and T(ab) = (Ta)b for any aeD(T) and be A. Let T^^ and D be a
dense linear subset in A. We say that D is a core of T if DcD(T) and T coincides
with the closure of T\D. One can easily check that D is a core of T if and only if
D = (I — z%zτ)

1/2D', where D' is a dense linear subset in A.
The functorial properties of the definition are described in the following

Theorem 1.2. Let A,B be C*-algebras, φeMoτ(A,B) and TηA. Then there exists
φ(T)ηB such that φ(D(T))B is a core of φ(T) and

φ(T)(φ(a)b) = φ(Ta)b (1.2)

for any aeD(T) and beB. The z-transforms of φ(T) and T are related by the formula

Zφ(T) = Φ(zτ)- (1-3)

Moreover if A,B,C are C*-algebras, φeMoτ(A,B), ψeMor(B,C) and TηA,
then

(1.4)

Proof At first we notice that \\φ(zτ)\\ ^ | |z τ | | ^ 1 and

is dense in B [cf. (0.4)]. It shows that φ(zτ) is the z-transform of an element affiliated
with B. Denoting the latter element by φ(T) we get (1.3).

Let us notice that

Using once more (0.4) we see that φ(D(T))B is a core of φ(T). Let aeD(T) and beB.
Then a = {I — z%zτγ

l2x, Ta = zτx (where x is an element belonging to A) and

Therefore

φ(T)φ(a)b = zφiT)φ(x)b = φ(zτ)φ(x)b = φ(zτx)b = φ(Ta)b,

and (1.2) follows. (1.4) follows immediately from (1.3). Q.E.D.

Example ί. Let A be a C*-algebra, a e M(A) and T be the left multiplication by α.
By definition D(T) = A. We claim that TηA. Indeed one can easily check that
z-transform of T is given by the formula

aΓί/2. (1.5)
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In what follows we shall identify TηA with aeM(Λ). Let us notice that T is
bounded: || Tx\\ ^ ||α|| ||x|| for any xeA. Conversely if TηA and T is bounded then
| | z τ | |< l and one can easily verify that T is the left multiplication by
a = zτ(I - z%zΎ) -1/2 e M(A). Therefore

M(A) = {TηA: \\T\\<00}. (1.6)

If A is unital then any dense right ideal of A coincides with A and (closed graph
theorem) any TηA is bounded. On the other hand in this case M(A) = A. Taking
into account (1.6) we get

Proposition 1.3. // A is unital then any element affiliated with A belongs to A.

This is a noncommutative version of the known theorem of classical analysis
saying that on a compact space any continuous function is bounded.

Finally we notice that for TeM(A) the definition (1.2) coincides with (0.5).

Example 2. Let A be a locally compact topological space, A = Co0(A) be the
C*-algebra of all continuous, vanishing at infinity complex functions on A,
aeC(A) and T be the multiplication by a. By definition D(T) is the set of all
x e CJ^A) such that lim a(λ)x(λ) = 0. Then TηC^Λ); the z-transform of T given by

x-»oo

zτ(λ) = a(λ) (1 + \a(λ)\2)~1/2 is a bounded continuous function on A. In what follows
we shall identify TηCJΛ) with a e C(Λ). Conversely if TηC^Λ) then zτ e MiC^Λ))
= Cbounded(Λ), | |z τ | | g l , and \zτ(λ)\<\ for all λeA [otherwise D(T)
= (I — z$zτ)

ί/2C ^(Λ) would not be dense in C^AJ], Therefore setting

we define an element a e C(A) and one can easily verify that T coincides with the
multiplication by a. It shows that the set of all elements affiliated with CJ^Λ)
coincides with C(Λ).

Example 3. Let H be a Hubert space (dimH= 00), A = CB(H) be the C*-algebra of
all compact operators acting on iί, α be a closed operator acting on ϋ with a dense
domain &>(a)cH and T be the left multiplication by a. By definition D(T) is the set
of all x e CB(H) such that the product ax is well defined [i.e. xH C 3){d)\ and belongs
to CB(H). Then TηCB(H); the z-transform of T given by (1.5) is a bounded operator
acting on H [in the considered case M(A) = B(H)]. In what follows we shall identify
TηCB(H) with the closed operator a acting on H.

Conversely if TηCB(H) then zτεM(CB(H)) = B(H\ \\zτ\\ ^ 1 , and 1 is not an
eigenvalue of z%zΎ [otherwise D(T) = (I—zfzτ)

1/2CB(H) would not be dense in
CB(H)~\. Therefore a = zτ(I—z£zΓ)~1/2 is a well defined closed operator and one
can easily verify that T coincides with the left multiplication by a. It shows that the
set of all elements affiliated with CB(H) coincides with the set of all closed
operators acting on H.

Example 4. Let i ί be a Hubert space and AcB(H) be a C*-algebra of operators
acting on iί. As usual we assume that A is nondegenerate, i.e. for any non-zero
ψeH there exists aeA such that aψή=0. Then the embedding

i:A3a\-+aeB(H)

belongs to Mor(^, CB(H)). Therefore for any TηA, i(T)ηCB{H) and (cf. Example 3)
i(T) is a closed operator acting on H. In what follows we shall identify T with i(T).
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For any closed operator T acting on H we have

i s d e n s e i n A

Example 5. Let {An}neN be a family of C*-algebras labeled by a set N (in most cases
N is denumerable) and

Σ
neN

By definition the elements of A are sequences a = (an)neN such that aneAn for all
neN and l im| |αJ |=0. Let πn:A-+An be the canonical projection. Then

Let TηA. Then Tn = πn(T)ηAn. One can easily show that T is determined by the
sequence (Tn)neN and that any sequence (Tn)neN (where TnηAn for any neN) can be
obtained in this way. If all An are unital, then (cf. Proposition 1.3) TnηAn means
Tn e An and the set of all elements affiliated with ΣΘAn coincides with the cartesian
product x An. This fact is very much used in [14].

n

For the C*-algebras A considered in Examples 2 and 5 (with unital An) the set
of all elements affiliated with A is endowed with the natural *-algebra structure.
Example 3 shows that this is not always the case: In general even the sum of two
closed operators is not well defined. We have however

Theorem 1.4. Let A be a C*-algebra and TηA. Then there exists T*ηA such that for
any a,beA

(a e D(T*) and\ (For any x e D(T)\

{ )**{ )b=T*a )**{ a*(Tx) = b*x ) ' ( '

The z-transforms of T* and T are related by the formula

zτ* = z%. (1.8)

// A,B are C*-algebras, φeMoτ(A,B) and TηA, then

φ(T*) = φ(T)*. (1.9)

Proof Clearly \\zf\\ = ||zΓ | | ^ 1. Assume for the moment that (I—zτzf)1/2A is not
dense in A. Then (cf. [4, Theorem 2.9.5]) there exists a state ω on A such that

for all aeA. Using the GNS procedure we construct a representation π of A acting
on a Hubert space H and a cyclic vector ΩeH such that

ω(a) = (Ω\π(a)Ω)

for all aeA. Comparing the last two formulae and remembering that Ω is cyclic we
get

π(zτ)π(zτ)*Ω = Ω. (1.10)

Let Ω' = π(zτ)*Ω and for any aeA

ω\a) = {Ω'\π(a)Ω').
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Clearly ωf is a state on A. Applying π(zτ)* to the both sides of (1.10) we get

π(zτ)*π(zτ)Ω' = Ω'.

Therefore for any a e A

On the other hand D(T) = (I — z%zτ)
ll2A is dense in A. This contradiction shows

that (I — zτz%)ll2A is dense in A. It means that z% is a z-transform of an element
affiliated with A. Denoting the latter element by T* we get (1.8).

Let us notice that the right-hand side of (1.7) is equivalent to

α*zτ = fe*(/-zίzτ)
1/2. (1.11)

If a e D(T*) and b = T*α then a = (I- zτzf)1/2y, b = z%y (where ye A) and using the
equality

{l-zτz*yi2zτ = zτ{l-z*τzτr
2 (1.12)

one can easily verify (1.11). Conversely if (1.11) holds then setting

and using (1.12) we obtain

(/ - zτz$)1/2y = (I- zτz*)a + (I - zτzf)1/2zτb

= (I — zτz%)a + zΎz%a = a

and

It shows that aeD(T*) and b = Ta. The equivalence (1.7) is proved. Relation (1.9)
follows immediately from (1.8) and (1.3). Q.E.D.

The reader easily examines how the *-operation introduced by (1.7) acts in
particular examples. In Example 1 it coincides with the hermitian conjugation in
M(A\ in Examples 3 and 4 T* is the adjoint of Tin the sense of the theory of closed
operators acting on a Hubert space (see e.g. [10]). In Example 2

(T*)(λ)=T(λ) (1.13)

for any TηC(A) and λeΛ.
It follows immediately from (1.8) that

for any TηA. We say that an element T affiliated with a C*-algebra A is normal if
) = D(T*) and

) = (T*α)*(T*α) (1.14)

for any aeD(T). We shall prove that

(T is normal)o(z%zΎ = zΎz%). (1.15)
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In particular any element affiliated with a commutative C*-algebra is normal. The
implication "=>" is obvious. To prove the converse we notice that the relation D(T)
= D{T*) means that there exists a bijective mapping

A3x->uxeA

such that

(I-z$zτ)
1/2ux = (I-zτz$)1/2x (1.16)

for any xeA. Let a = (I — zτz%)lί2x. Then T*a = z%x, Ta = zτux and (1.14) shows
that (ux)*zfzτ(ux) = x*zτz$x. Combining this result with (1.16) we obtain (ux)*(ux)
= x*x for any x e A and by polarization (uy)*(ux) = y*x for any x, y e A Therefore
(cf. Proposition 0.1) ueM(A) and u is unitary. Equation (1.16) means that
(I — z%zτ)

1/2u = (I—zτz%)1/2 and remembering that the polar decomposition is
unique we see that u = I, (/ —z$zΓ)1/2 = (/—zτz%)112 and the relation z%zτ = zτz%
follows. This way the equivalence (1.15) is proved.

It turns out (see Theorem 1.5 below) that there exists an universal normal
element. Let ζ be an element affiliated with C^ity introduced by the formula
ζ(λ) = λ for any λeC. Clearly ζ is normal [C^C) is commutative!]. We have

Theorem 1.5. Let A be a C*-algebra and T be a normal element affiliated with A.
Then there exists unique φτeMor(Co0((D)9A) such that

φτ(ζ)=T. (1.17)

Proof. Let

We know that zτ is normal and | | z r | | ^ l . Therefore SpzγCD1. The same
relation holds for zζ. We shall use the continuous function calculus of normal
elements of M(A) and M(C00(C)) = Cbounded(C). Relation (1.17) means that

φτ(zζ) = zτ. (1.18)

Therefore
(1.19)

for any fe C(Z)1). One can easily check that any function belonging to C^C) is of
the form /(zζ), where f(zζ), where fe Cφ 1 ) and / | s i = 0 and the uniqueness of φτ

follows.
On the other hand the formula (1.19) defines a mapping φτ acting from C^iC)

into M(A). One can easily check that φτ is a *-algebra homomorphism. Let x be
the element of CJC) such that x(2) = (l +I/l)" 1 / 2 for all λeC. By virtue of (1.19)
φΓ(x) = (/_z*zΓ)1/2 and φτ(CJ€))A contains φi{x)A = (I-z$zτ)

ί/2A=D(T). Re-
membering that D(T) is dense in A we obtain φj eMo^CdfLXA). (1.18) is the
special case of (1.19) and (1.17) follows. Q.E.D.

In the general φτ is not an embedding. This fact is related to the spectral
properties of T. The general notion of spectrum of any (not necessarly normal)
element affiliated with a C*-algebra is introduced in [20]. For normal elements

Γ 0 ^ }, (1.20)
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where

Clearly Sp Tis a closed subset of C It is never empty. Let φ e Mor(^4, A'\ where
A' is another C*-algebra. Then φ(T) is normal [this fact follows immediately from
(1.3) and (1.15)] and Sp</>(Γ)CSPT. (1.21)

Indeed (φ°φτ)(ζ) = φ(φτ(ζ)) = φ(T). Therefore φφ{τ) = ΦoΨτ^ Kerφ τ cKerφ φ ( Γ )

and (1.21) follows. We shall prove

Theorem 1.6. Let Abe a C*-algebra, Tbea normal element affiliated with A and ζSpT

be the restriction of ζ to SpT. Then there exists a unique embedding
) such that

Ψτ(CsPτ)=T.

Proof Kerφ τ is a closed ideal in C <„(<£)> Let π S p Γ e MorίC^C), C^CVKerφτ) be
the canonical epimorphism and ψτ be the element of Mo^C^Q/Ker φτ, A) that
makes the diagram r (aΛ

commutative. To complete the proof we notice that

J V φ ^ ^ C p ) ,
and π^j eMoτiC^^XCJ^pT)) is the restriction map. The uniqueness of ψT is
obvious Q E D
and π^jeMoτiC
obvious. Q.E.D.

The reader easily examines how the morphism φτ acts in the particular
examples. In Example 3 and 4 T is normal if and only if it is normal in the operator
theory sense (i.e. T*T=TT*). In this case

where dE( ) is the spectral measure associated with the normal operator T:

T=μdE(λ).

Taking into account (1.20) we see that SpΓ coincides with the support of the
spectral measure and the definition (1.20) agrees with the one known from the
operator theory.

We know [cf. (1.15)] that the normality of an element TηA can be expressed in
terms of its z-transform. One can also check that

Sp T= {λ(ί - Iλ) ~1/2: λ 6 Sp(zΓ), μ| < 1}

Remembering that any C*-algebra A admits a non-degenerate embedding into
B(H), where H is a Hubert space [the embedding belongs to Mor(,4, CB(HJ] and
that any representation of A can be decomposed into direct integral of irreducible
ones we get
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Proposition 1.7. Let Abe a C*-algebra, TηA and A be a closed subset of<E. Then T is
normal and Sp TcA if and only if π(T) is normal and Spπ(T)cA for any irreducible
representation π of A.

2. The Graphs of Affiliated Elements

The definition of the affiliation relation given in Sect. 1 is nice if one is going to
investigate properties of affiliated elements. It is however less convenient if one has
to show that a given linear operator acting on a C*-algebra is affiliated with it. In
the present section we develop a method that in many cases allows us to prove that
the affiliation relation holds. To this end we give new conditions characterizing
elements affiliated with a C*-algebra in terms of their graphs. These conditions
make no use of any particular z-transform [like (1.1) used in Definition 1.1].

For any C*-algebra A we set A2 = Aξ&A. We endow A2 with its canonical
Hubert right ^-module structure [12]:

df (ax

=a*a' + b*b'
I A

for any α, b, a\ b\ xsA. For any GcA2 we put

G1 = {keA2:(k\l)Λ=*0foral

G 1 is always a submodule of A2. In the great contrast with the Hubert space theory,
even if G is a closed submodule of A2 then in general G £ G 1 1 and G 0 G 1 £ 4 2 The
canonical projections A2-+A will be denoted by px and p2:

for any a,beA.

Proposition 2.1. Let T be an element affiliated with a C*-algebra A and G be the
graph of T:

)} (2.1)

Then G is a closed submodule of A2,

(2.2)

and the orthogonal complement is given by

Proof. Let z = z Γ be the z-transform of T. One can easily verify that

/ I-z*z,
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is an orthogonal projection onto (2.1) and (2.2) follows. (2.3) follows immediately
from definition (1.7). Q.E.D.

Let us notice that in the situation described in Proposition 2.1, p 1G = D( T) and
p2G

± = D(T*) are dense in A.

Proposition 2.2. Let Abe a C*-algebra and GcA2be a closed submodule such that
pxG and p2G

λ are dense in A. Assume that the decomposition (2.2) holds. Then G is
the graph of an element TηA.

Proof. Any bounded linear mapping E acting on A2 can be represented by a matrix

E-

where p, q, q*, r are bounded linear mappings acting on A. In what follows E will
denote the projection onto G along G1:E(ψ + ψ1) = ψ for any ψeG and ψ1 eG 1 .
One can easily check that p and r are self adjoint and that q* is the adjoint of q.
Therefore (cf. Sect. 0) p, q, q*, r e M(A). We have to show that E is of the form (2.4),
i.e. that

p = I-z*z, (2.5)

4 = z(/-z*z)1 / 2, (2.6)

r = zz*, (2.7)

where z e M(A), \\z\\ ^ 1, and (I—z*z)ί/2A is dense in A Remembering that E2 — E
we obtain

p = p 2 + 4*4, (2.8)

(I-r)q = qp, (2.9)

/ - r = (J-r) 2 + 44*. (2.10)

Equations (2.8) and (2.10) show that p and / — r are positive. Equation (2.9) implies

that

Assume for the moment pA is not dense in A. Then there exists a state coon A
such that ω(p) = 0. By virtue of (2.8) ω(p2) = ω(q*q) = 0 and (Schwarz inequality)

( X \ (X \ (X

\ e G then ( I = EI
x=px + q*y, and ω(x) = 0. It shows that ω kills all elements of ptG and we obtain
contradiction with the assumed density of pxG. Therefore pA is dense in A, so is
pί/2A. Similarly using (2.10) and the density of pγG

L one can show that (/ — r)1/2A is
dense in A.

Using (2.8) one can easily check that

for any x e A. Therefore there exists bounded linear mapping z acting on A such
that D(z) = closure oϊp1/2A = A, \\z\\ ^ 1, and zp1/2x = qx for any xeA. According
to this definition

zp1>2 = q. (2.12)
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By virtue of (2.11) (I-r)1/2zp1/2 = (I-r)ll2q'=qpί/2 and remembering that pί/2A is
dense in A we get

(I-r)ί/2z = q. (2.13)
Using now Proposition 0.3 [with T and a replaced by z and (/—r)ί/2 respectively]
we conclude that z e M(A).

Inserting (2.12) into (2.8) we obtain p=p2 + p1/2z*zpί/2. Therefore

and (2.5) follows. Similarly using (2.13) and (2.10) we get (2.7). Finally combining
(2.5) and (2.12) we prove (2.6). Q.E.D.

Remark. In the situation described in Proposition 2.2 for given /?, q, r there exists at
most one z satisfying relations (2.5)-(2.7). Indeed (2.12) is implied by (2.5) and (2.6).
It means that the z-transform of any element TηA is determined uniquely.

id -c*\
Theorem 2.3. Let Abe a C*-algebra; a, b,c,de M(A) and β = I ' * . Assume
that V>> a /

ab = cd, (2.14)

a*A is dense in A, (2.15)

dA is dense in A, (2.16)

QA2 is dense in A2. (2.17)
Then there exists TηA such that

1° dA is a core for T and

Tdx = bx (2.18)

XED(T) and\ , , Λ λ

)^aycχy ( 2 1 9 )

for any xsA.
2° For any x, y e A

// β is invertible (this assumption is stronger than (2.17),) then D(T) = dA.

Proof We consider the following submodules of A2:

G = the closure of G, (2.20)

One can easily verify that

G{ = \(X)eA2:cx = ay>. (2.21)

The relation (2.14) implies that

GcGj.
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It means that submodules G and Gx are mutually orthogonal. We have
assumed that G + Gί = QA2 is dense in A2. Therefore G1 = the closure of Gl9

G = G{, and A2 = GφGλ. Let us notice that p1GDp1G = dA andp2G
1Dp2G1 = a*A

are assumed to be dense in A [cf. (2.15) and (2.16)]. According to Proposition 2.2, G
is a graph of an element TηA. Equation (2.20) shows that dA is a core for T and that
(2.18) holds. Remembering that G = G\ and using (2.21) we obtain (2.19).

One can easily check that G = β(ker/?2) If 6 is invertible then G is closed: G = G
and D(T)=pίG=p1G = dA. Q.E.D.

In the examples illustrating Theorem 2.3 we shall use the following

Lemma 2.4. Let Bbea unίtal C*-algebra, V be an invertible element of B, El9 E2 be
orthogonal projections belonging to B such that E1+E2 = I and Q = VE1 + V*~ ιE2.
Then β is invertible.

Proof. At first we notice that

Q*Q = E1V*VEί+E2(V*V)-ίE2^cI,

where c = inf{Sp(F*F)uSp(F*F)~1}>0. Therefore Sρ(β*β)C[c, oo[ and (cf. [6,
Problem 61]) Sp(QQ*)C {0}u[c, oo[. Let / be a continuous function on R such
that

f o r λ = 0

for

Then /(β*β) = 0, F=f{QQ*) is an orthogonal projection and

Therefore E1V*F = E1Q*F = 09 F*V*~1E2 = F*QE2 = 09 and

F = F*F = F*V*-\Eί+E2)V*F = 0.

It shows that 0<£Sp(ββ*). This way we showed that both β*β and β β * are
invertible, so is β. Q.E.D.

In the following examples A is a C*-algebra, S is an element affiliated with A
and z — zs is the z-transform of S. We shall also use the unitary matrix

ί(I—z*zγl2 —z*
δ o V z, ' d-zz*y

Example 1. Let qeM(A) and

a = (I-zz*)1'2, b = z + q(I-z*zy>2, c = z + (I-zz*)ll2q, d = (I~z*z)112.

The relations (2.14)-(2.16) are obviously satisfied. One can easily check that

fd, -c*\ /I, 0\ , _ _ , / ( ) , 0\

where

-C: >•
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Using Lemma 2.4 we conclude that Q is invertible and all assumptions of
Theorem 2.3 are verified. Let T be the element affiliated with A introduced in this
theorem. Then D(T) = dΛ = D(S) and

Tx = Sx -f qx

for any xeD(S). In what follows the element T considered in this example will be
denoted by S + q.

Example 2. Let v be an invertible element of M{A) and

a = (I-zz*)1/2v-1, b = vz, c = z9 d = (I-z*z)1/2.

Again the relations (2.14)—(2.16) are obviously satisfied. Moreover in this case

Λ - v ί ) + v (
where

and (cf. Lemma 2.4) Q is invertible. Let TηA be the element introduced in
Theorem 2.3. Then D(T) = dA = D(S) and

Tx = vSx

for any Λ: e D(S). In what follows the element T considered in this example will be
denoted by vS.

Example 3. Let veM(A) be invertible and

α = (/-zz*)1 / 2, b = z, c = zv, d = v-\I-z*z)1/2.

Also in this example the relations (2.14)-(2.16) are obvious. Moreover

fi9 -c*\ //, 0\ #-i/Ό»

κb, α* )==V\0, 0 ; + F * \0,

where

and (cf. Lemma 2.4) Q is invertible. Let TηA be the element introduced in
Theorem 2.3. Then D(T) = dA = υ~ ^(S) and

Tx = S(vx)

for any x ev~1D(S). In what follows the element T considered in this example will
be denoted by Sv.

In concrete application of Theorem 2.3 the most difficult assumption to verify
is the one saying that QA2 is dense in A. The following proposition shows that the
problem may be reduced to the similar problem in the Hubert space theory.
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Proposition 2.5.
1 ° Let A be a C*-algebra and d e M(A). Then dA is dense in A if and only if for any
irreducible representation π of A acting on a Hilbert space Hπ the range ofπ(d) is
dense in Hπ.
2° Let Abe a C*-algebra, QeM(M2(<E)®A) and q denote the canonical represen-
tation of M2(<E) on C 2 . Then QA2 is dense in A2 if and only if for any irreducible
representation πof A acting on a Hilbert space Hπ the range of (q® π) (Q) is dense in
<C2®Hπ = Hπ®Hπ.

Proof
Ad 1 ° If dA is dense in A then π(d)π(A)H is dense in π(A)H which in turn is dense in
H. Therefore the range of π(d) is dense.

If dA is not dense in A then (cf. [4, Theorem 2.9.5]) there exists a pure state ω on
A such that

ω(dx) = 0

for all xeA. Let π be the GNS representation of A acting on a Hilbert space Hn and
ΩeHπ be the corresponding cyclic vector:

ω(x) = (Ω\π(x)Ω)

for any xeA. Combining the two formulae we see that the range of π(d) is
contained in Ω1 = {φ e Hπ: (φ \ Ω) = 0}. Therefore it is not dense and Statement 1 ° is
proved.
Ad 2° This case can be easily reduced to the previous one. Indeed QA2 is dense in
A2 if and only if Q{M2(<E)®A) is dense in M2((C)® A On the other hand any
irreducible representation of M2(<£)®A is of the form q®π when π is an irreducible
representation of A. Q.E.D.

We shall also use

Proposition 2.6. Let A be a C*-algebra and α, b, c, de M(A). Assume that for any
irreducible representation πof A acting on a Hilbert space Hπ there exists a closed
operator Tπ acting on Hπ such that
1° π{d)Hπ is a core for Tπ and

Tππ(d)φ = π(b)φ

for any φ e Hπ.
2° π(a)*Hπ is a core for Tπ* and

for any ψ e Hπ.
Then the assumptions (2.14)-(2.17) of Theorem 2.3 are satisfied and denoting by

T the element affiliated with A introduced in this theorem we have

π(T)=Tπ (2.22)

for any irreducible representation π of A.

Proof For any π and any φ,ψeHπ we have

(ψ I π(ab)φ) = ( φ ) * φ | φ)φ) = (φ)*φ \ Tππ{d)ψ) = (Γπ*π(α)*φ | π(d)φ)

= (π{c)*ψ I π(d)φ) = (ψ \ π(cd)φ)
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and (2.14) follows. We assumed that π(d)Hπ and π(a)*Hπ are cores of closed
operators. Therefore these sets are dense in H and using Proposition 2.5.1° we
obtain (2.15) and (2.16). Let Q be the element of M2(<E)®A introduced in
Theorem 2.3. Then

and the range of {q®n)(Q) equals to Kί + K2, where

~ (Y-π(c)*vΛ

[\ π(a)*ψ ) ψ

Let

Assumption 1° (Assumption 2° respectively) means that Kx (K2 respectively) is
dense in Kx (K2 respectively). On the other hand for any closed operator Γπ, Kx is
orthogonal to K2 and K1®K2 = <ϋ2®Hπ. This way we showed that the range of
(#®π)(β) is dense and using Proposition 2.5.2° we obtain (2.17).

Formula (2.22) follows immediately from assumption 1° and the following
lemma.

Lemma 2.7. Let A be a C*-algebra, TηA, b,de M(A), and πbea representation of A
acting on a Hubert space Hπ. Assume that the statement 1 ° of Theorem 2.3 holds.
Then π(d)Hπ is a core for π(T) and

π(T)π(d)φ = π(b)φ

for any φ e Hπ.

Proof. We recall that the element π(T) affiliated with the algebra CB(Hπ) of all
compact operators acting on Hπ is introduced in Theorem 1.2 [with B and φ
replaced by CB(Hπ) and π respectively]. According to Example 3 of Sect. 1, π(Γ)
may be identified with a closed operator acting on Hπ. In the proof we shall
frequently refer to these parts of the paper without any further notice. We have
however to distinguish carefully the domains 2{π{T))dHπ and D(π(T))cCB(Hπ).
Similarly the notion of core of π(T) will be used in the two meanings (which one is
used will be clear from the context).

We have to show that:

@ π{d)ψ e @(π(T)) and π(T)π(d)φ = π(b)q>

for any φeHπ and
© For any ψe£&(π(T)) there exists a sequence {φn} of elements of Hπ such that

= limπ(b)φJ' { ' }
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Ad ®. Any φGHπis of the form φ = π(x)φ\ where xeA and φ' eHπ. Therefore
π(d)φ = π(dx)φ' = π(dx)Eφ,φ\ where Eφ. e CB(Hπ) is the one-dimensional projection
onto Cφ'. On the other hand π(dx)Eφ,eD(π(T)) and

π(T)π(dx)Eφ, = π{Tdx)Eφ, = π(bx)Eφ,.

Therefore π(d)φ = π(dx)Eφ,φ'e@(π(T)) and

π(T)π(d)φ = π{bx)Eφrψ' = π(b)π(x)φ' = π(b)φ.

Ad ©. We assumed that dΛ is a core for T. Therefore π(dΛ)CB(Hπ) is a core for
π(T). Let tpe®(π(Γ)). Then the one-dimensional projection E onto <Eψ
belongs to D(π(T)) and for any natural n one can find xl9x2, ...,xkeA and
Fl9 F29..., Fk G CB(Hπ) such that

Fi-EψJK1-, (2.24)

We know that π(T)π(dXi)Fι = π(T(dXi))Fι = πφx^Fi and the second estimate may be
rewritten in the following way:

<i. (2.25)

p. Then (2.24) and (2.25) imply that

and (2.23) follows. Q.E.D.

3. The Group of Motions of the Euclidean Quantum Plane

Let G be the set of all matrices of the form
fv9 n

where v, n e (C, \v\ = 1. Then G is a three-dimensional solvable Lie group. For any g
of the form (3.1) and ( e C w e set

gζ = Ό2ζ + υn. (3.2)

One can easily check that this formula defines a homomorphism of G onto the
group of all transformations of C preserving the orientation and the Euclidean
distance. The kernel of this homomorphism is a normal subgroup of G isomorphic
to Z 2 . Therefore, G is the two-fold covering of the group of motions of two-
dimensional Euclidean plane.
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Now we shall use the mathematical tools developed in Sects. 1 and 2 to analyse
the quantum deformation of the group G. To clarify the exposition we divide this
section into three parts. In part A we introduce the *-Hopf algebra si of all
polynomials on Gμ (Gμ is the quantum version of G) and the *-algebra & of all
polynomials on <Dμ (<Lμ is the quantum version of C). In part B we investigate the
Hubert space representations of si discovering some unexpected unpleasant
features. To remove them we have to complete the list of commutation relations
defining the algebra si by adding a relation of a non-algebraic nature. In the last
part we construct the C*-algebra A of all "continuous vanishing at infinity"
functions on Gμ and show that there exists the natural comultiplication
ΦGMOT(A,A®A). The C*-algebra B of all "vanishing at infinity continuous"
functions on <Dμ and the morphism ψ e Mor(£, A®B) describing the natural action
of Gμ on (Cμ will also be discussed.

The reader should notice that the meaning of symbols v and n varies
throughout this section. In the introductory part v and n are complex numbers; in
part A they are elements of si, in part B - operators acting on a Hubert space and
finally in part C - elements affiliated with the C*-algebra A. Similarly, "(x)" denotes
in part A the algebraic tensor product, in part B - the tensor product known from
the theory of Hubert spaces and in part C - the algebraic tensor product followed
by the largest C*-norm completion. This remark applies also to the next section as
well as to other symbols (φ, ψ, etc.) used in this section.

A. Hopf-Algebra Level

Let us fix a real number μ + 0. We shall assume that |μ| > 1. For \μ\ < 1 we obtain
isomorphic objects; μ — 1 corresponds to the classical (i.e. non-quantum) case. The
very interesting case μ = — 1 will not be considered in this paper.

Let 38 be the *-algebra generated by a single element ζ such that

ζ*ζ = μ2ζζ*.

Elements of & are called polynomials on the Euclidean quantum plane <Cμ.
Let si be the *-algebra generated by two elements υ and n such that

n*n = nn*,

v*nv = μn.

(3.3)

Elements of si are called polynomials on Gμ. We endow si with the Hopf-algebra
structure introducing comultiplication φ, counit e and coinverse (antipode) K in
the following way

(3.4)

(3.5)

κ(v) = v*, κ(v*) = υ,

κ(ri)= —μn, κ(n*)= n*.
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We remind that φ and e are *-algebra homomorphisms whereas K is linear and
antimultiplicative. One can easily verify that all axioms (cf. [8]) of the *-Hopf
algebra theory are satisfied.

The action of Gμ on Cμ is described by the *-algebra homomorphism
introduced by the formula [cf. (3.2)]

(3.6)

One can easily check that the diagram

•I I
idφt/;

is commutative.
Let us notice that identifying ζ with vn we embed 36 into si. With this

embedding ψ coincides with φ\m.

B. Hubert Space Level

Let υ and n be operators acting on a Hubert space H. We say that the pair (v, ή) is a
representation of commutation relations (3.3) if v is unitary, n is normal and
v*nv = μn. We recall that the normality of n means that @>{n*) = @ι{ή) and
||n*V>|| = \\nψ\\ for any ψe3>(ή).

In the considered case the representation theory is relatively simple. One can
easily verify the following facts: As usual any representation is a direct integral of
irreducible ones. Any representation is either infinite or one-dimensional. All one-
dimensional representations are of the form (c/,0), where ceC, |c| = l.

If (v, n) is an irreducible infinite-dimensional representation then Spn = {0}KJΛ,

where Λ is of the form
Λ = {toμ

k:keZ} (3.7)

and ίoe<C—{0}. Moreover, one can find an orthonormal basis {|ί>: teΛ} such
that

v\t) = \μt), (3.8)

fi|ί> = t|t> (3.9)

for any teΛ. It means that (v,ή) is uniquely determined (up to a unitary
equivalence) by Spn.

For any subset Θ c C we set

| θ | = {cί: teΘ, ceC, and |c| = l}.

Theorem 3.1. Let (vl9 nx) and (υ29 n2) be infinite-dimensional irreducible representa-
tions of (3.3) and

- - - - (3.10)

By definition 9{N) = @(v1®n2)n${n1®vl) = 2{I®n2)n9(nι®I). Then
1° If ISpnJ + |Spn2| then N is closed, N is not normal and has no normal extension.
2° // ISp/iĵ l = |Spn2| then N is closeable, its closure N is normal and

= |Spw2 |. (3.11)
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Proof. According to (3.7) and (3.9) operators nί and n2 are up to numeric phase
factors positive selfadjoint. On the other hand [cf. (3.10)], the phase factor of n2 can
be absorbed into vt and that of nγ into v%. Therefore, we may (and shall) assume
that n 1 ?n 2 are positive selfadjoint.

Let H^ (H2 respectively) be the Hubert space where operators vl9n1 (v2,n2

respectively) act. We shall identify H1®H2 with L2(Zx S1):

Hι®H2 = L2(ZxSί)9 (3.12)

where Z is the set of all integers endowed with the counting measure v1 [y^A) = the
number of elements of A for any A CZ)], S1 is the unit circle

endowed with the normalized Lebesgue measure dv(z) = -— — and the cartesian
2πi z

product Zx S1 is endowed with the product measure vt<8v.
Let us fix tίeSpnί and ί 2eSρn 2 such that

Then {|μfeίi>®|μίί2>
: Kiel} is an orthonormal basis in H^H^ To give the

meaning to (3.12), for any φeH1®H2 and any (m,z)eZxS1 we set

+ oo

φ(m,z)= £ (pm+ijz1, (3.13)
i = - o o

where φkl are Fourier coefficients of φ:

One can easily verify that the series (3.13) is convergent in the sense of L2(Z x S1)-
norm and that the correspondence Ht ®H2 3 φ <-» φ( , ) 6 L2(Z x S1) is bijective
and respects the Hubert space structures of Hι®H2 and L2(Zx S1).

Let R be the ring

We say that a function φ( )eL2(S1) admits a continuous extension on R
holomorphic (meromorphic respectively) inside R if there exists a holomorphic
(meromorphic with a finite number of poles respectively) function xp defined on the
interior of R and ψ'el/iS1) such that

lim ψ(rz) = ψ(z),
r->l+0

lim ψ(rz) = ψ'(z),
r-*μ — 0

where limits are understood in the sense of L2(Sι)-norm. In this case we write ψ{ζ)
and ψ(μz) instead of ψ(ζ) and ψ\z). The reader should notice that ψ and xp' are
uniquely determined by ψ.

Let φeH1®H2. Using (3.8), (3.9), and (3.13) one can verify that

(K ®I)φ)(m9 z) = φ(m - 1 , z), (3.14)
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Moreover, φe^in^I) if and only if all functions φ(m, •) admit continuous
extensions on R holomorphic inside R and

+ 00

X Jμ2m|φ(m,μz)|2dv(z)<oo.
m = - o o S1

In this case
((»i ®I)φ)(m, z) = tiμ

mφ(m, μz). (3.15)

Similarly, φe9(I®n2) if and only if all functions φ(m, •) admit continuous
extensions on R holomorphic inside R and

Σ ί\φ(m,μz)\2dv(z)<oo. (3.16)
m = - o o S 1

In this case
((I®n2)φ)(m, z) = t2φ(m, μz). (3.17)

Consequently, φ e 2(N) if and only if all functions φ(m, ) admit continuous
extensions on R holomorphic inside R and

Σ ί ( l+μ
m = - o o S 1

In this case

(Nφ)(m,z) = (t2 + tίμ
m-ίz)φ(m-ί,μz). (3.18)

Comparing (3.17) and (3.18) we get

,z) = (ί+(t1/t2)μm-1z)((I®n2)φ)(m-lz) (3.19)

for any
Assume now that

Then ti<t2< μtx and t2 + t^m iz + 0 for any (m, z) e Z x S1. In fact, one can easily
show that there exist positive constants cx and c2 such that

(3.20)

(3.21)

for any (m,z)sΈx S1. Taking into account (3.15), (3.17), and (3.18) we see that

for any φ ε 3f(N). Therefore, N is closed. Indeed, if {φn} is a converging sequence of
elements oϊS>(N) such that {Nφn} is converging, then using the above estimates we
see that {(wi®/)<pπ} and {(I®n2)φn} are also converging. Remembering that
(n1®I) and (I®n2) are closed we conclude that

e ^(fli ® I)

iV(limφn) = (vx ® n2)(limφM) + («!

and the statement follows.
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Let \peHγ®H2. We shall prove that ψe@(N*) if and only if the following
three conditions are satisfied:

© For all mΦl, φ(m, •) admits a continuous extension on R holomorphic
inside R.
© ψ(ί9 •) admits a continuous extension on R meromorphic inside R with the
only singularity of the type of simple pole located at the point ζ= —t2/tί.

© Σ° \{\+μ2m)\ψ{m,μz)\2dv{z)<oo. (3.22)
m = —oo S 1

To this end we choose a bounded sequence of strictly positive numbers {rm}meZ

such that

sup \rm{\+(tjt2)μmz)\<co,
(m,z)eZ*Sι

and for any ψeHί®H2 we set

z) = rmφ(m,z),

(rψ)(m, z) = rm(l + (tjt2)μmz)φt +1, z).

Clearly, r and r are bounded operators acting on H1 ®H2. Let us notice that r* = r
2LπάrS){N)c3){N).

Assume that ψ e 3f{N*). Then for all φ e Θ(N)

(φ\rN*ψ) = (rφ\N*ψ)

= (Nrφ I ψ) = {{I®n2)φ \ rψ),

where in the last step we used (3.19). Since 3f(N) = Θ{n1 ®/)n^(/® n2) is a core for
I®n2, the above relation holds for all φsS>(I®n2). It shows that

rψeS>((I®n2)) (3.24)

and

rN*ψ = (I®n2)(rψ). (3.25)

Let us notice that the function

TL x R 3 (m, C H r J l + (ί Jt2)μmζ) e C

vanishes only at one point (m, ζ) = (0, - t2/t J. Therefore, (3.23) and (3.24) imply [cf.
the description of <£>(I®n2) given earlier in this proof] that ip satisfies the
conditions © and ©. Moreover, using (3.25), (3.23), and (3.17) we get

Therefore,

Σ ί \
m- - o o S 1

and using the estimates (3.20) and (3.21) (with z replaced by z) we get (3.22).
Conversely assume that ψ satisfies the conditions α, ft, and c. Let
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Then all ψ'(m, ) admit continuous extensions on R holomorphic inside R [the
simple pole of ψ(\, ζ) at the point ζ = — t2/t1 meets the zero of the first factor placed
at the same point]. Moreover, (3.22) implies (3.16) with φ replaced by ψ'. Therefore,
ψ'e@)({I®n2)). Using (3.19) we get

(Nφ I ψ) = ((I®n2)φ \ xp') = (

for any φeS){N). It shows that \pe3){N*) [and N*ψ = (I®n2)ψ']. This way we
proved that

) and ©

and ©

For any ψ e &ι(N*) we set

l(ψ)= res ψ(ί9ζ)= lim
ζ=-ί2/ίi ζ--ί2/n

Then / is a linear functional defined on 2(N*).
Comparing the description of 3>{N) and 3ι{N*) we see that 3>(N)C@(N*) and

that ψeS>(N*) belongs to ®(N) if and only if l(ψ) = 0. Therefore,

) = 1. (3.26)

Let ft be a closed extension of N. Then

If ft is normal then @(ft) = @(ft*) and

would be even. The obvious contradiction with (3.26) shows that N admits no
normal extensions. This ends the proof of the first part of the theorem.

Assume now that

|Spn1| = |Spn2 |.

Then tί = t2 and combining (3.19) and (3.14) we get

(ΛΓ<p)(m,z) = (l +μm~1z~1)((vι®n2)φ)(m,z). (3.27)

For any meZ and ζe<C—{0} we set

oo A I it™ ~ 2,κy

V(m,ζ)= Π < , . . . - 1 - ^ - 1

One can easily check that this formula defines the denumerable family of functions
U(m, ) meromorphic on <C—{0}. For each m, U(m, ζ) has simple zeroes at points
ζ= — μ |m|+«, where q = l,3,5,... and simple poles at points ζ= — μ~|m|~4 (q as
above). In particular, all U(m, ζ) are holomorphic in a neighbourhood of R and
only C/(0, ζ) has a zero in R. Moreover,

(3.28)

(3.29)

(3-30)

for any meZ and ζe<C-{0}.
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For any φeH1®H2 we set

(Uφ)(m,z)=U(m,z)φ(m,z). (3.31)

By virtue of (3.28) and (3.29), \U(m,z)\ = ί for all (m,z)eZxSί. Therefore, U
introduced by (3.31) is a unitary operator acting on H®H'.

Inserting in (3.30) z instead of ζ we see that

\U(m,μz)\ = \l+μmz\.

Having in mind the descriptions of 2{N) and <3{I®n2) given in the introductory
part of this proof, using analytical properties of L/(m, ) and the above relation one
can easily check that Uφe@>(I®n2) for any φeS>(N). Moreover,

(vί®n2)Uφ=UNφ. (3.32)

Indeed, using (3.14), (3.17), (3.31), (3.30), and (3.27) we have

((vί®n2)Uφ)(m,z) = t2(Uφ)(m-l,μz)

= ί 2 U(m - 1 , μz)φ(m - 1 , μz)

= U(m,z)(l+μm-ίz-ί)((vί®n2)φ)(m,z)

= U{my z)(Nφ)(m, z) = (UNφ)(m, z).

Let @0 = U2(N). Formula (3.32) means that

\0oU. (3.33)

An element φeHί®H2is said to be a polynomial if all φ(m, z) are polynomials
in z and z~ * and only finite number of them are not zero. One can easily verify that
the set of all polynomials is a core for I®n2 (for it contains the complete set of
eigenvectors) and that a polynomial φeH1®H2 belongs to ^ 0 if φ(0, —μ) = 0.

Let φeHί®H2 be a polynomial. For any natural k we set

( \_ M m > z ) for m * ° >
φk(m>Z)-\φ(O,z)-φ(O,-μ)t(z)k for m = 0,

where ί(z) = ( l— z)/(l+μ). Then φk{0, —μ) = 0 and φkeS>0. Moreover,

\\ψ-φΛ = \<P(0, ~μ)\U \t(z)\2kdv(z)y2

and
n2)(φ-φk)\\ =ί2 |φ(0, -μ)\(\\t{μz)\2kdv{z)γ2

both converge to 0 as k-*co. It shows that 3>Q is a core for I®n2.
Passing to the closures on the both sides of (3.33) we obtain

Therefore, N has the same analytical properties as vί®n2. In particular, N is
normal and (3.11) holds. Q.E.D.

The possibility indicated by the first part of Theorem 3.1 is very disturbing. It
shows that the operator vί ®n2 + nί ® v% may have completely different analytical
properties than n itself. It means that we should not expect to have any formula like
(3.5).
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Fortunately, we can eliminate this embarassing possibility by adding to the
relations (3.3) the following new condition:

Sp«CC(μ), (3.34)

where (C(/f) = {CeC: C = 0 or \ζ\ = μk, where keΈ) and saying that only the
representations (v, n) satisfying this additional condition will be considered. We
call (3.34) the spectral condition.

C. C*-Algebra Level

We look for a C*-algebra A and two elements v, nηA such that v is unitary, n is
normal, SpnC(C(μ) and v*nv = μn having the following:

Universality property: For any C*-algebra A' and any V, NηA' such that V
is unitary, N is normal, SpNc<£(μ) and V*NV=μN there exists unique
φ e Mor(A, A') such that φ(v) = V and φ(n) = N.

The (obviously unique up to a C*-algebra isomorphism) solution of this
problem is provided by the crossed product construction [15].

Let Cni&iμ)) be the algebra of all continuous, vanishing at infinity functions on
C(μ). There is a natural action of Έ on CJ^^\ For any keZand fe C ^ f ^ J we
set

(μj)(ζ)=f(μ-kζ)

for all ζeC{μ). Let

be the corresponding crossed product. Then A contains C^C^)) in a non-
degenerate way [i.e. the embedding C.JtC^) c> A belongs to
and there exists a unitary v e M(A) such that

for any fe CJ(C{μ). Let n be the function on C ( μ ) such that n(ζ) = ζ for all ζ e <Eiμ).
Then n e C((C(μ)) and making use of the affiliation relation (see Example 2 of
Sect. 1) nηC^(C(μ)). Having in mind the nondegenerate inclusion CJ^^CA we
get nηA. Obviously, n is normal, Spn = <C(/ί) and

v*nv = μn.

Using Theorem 1.6 and the universality of the crossed product one can easily
prove the universality properly formulated above.

Now we shall give the meaning to the expression

Theorem 3.2. There exists an element NηA® A such that D(n)® algD(n) is a core for
N and

®v*y2 (3.35)

for any yuy2eS){ή). N is normal and SpiV = (C(/i).
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Proof. Let

(3.36)

n^ (3.37)

n ) - 1 / V . (3.38)

Then a,b,c,deM(A®A). We shall use Theorem 2.3 and Proposition 2.6.
Let π be an irreducible representation of A® A acting on a Hubert space Hπ.

The algebra A is of type /. Therefore, Hπ = Hi®H2 and

π = π 1 ® π 2 , (3.39)

where πx and π 2 are irreducible representations of A acting on Hubert spaces Hί

and H2, respectively. We set

v^n^v), n^π^ή),

t?2 = π 2(t>), n2 = π2(ή).

Then (f l5n2) and (v2,n2) are irreducible representations of (3.3) satisfying the
spectral condition (3,34). We shall assume that both representations are infinite-
dimensional. The reader himself should consider the much simpler case when at
least one of the representations is one-dimensional.

Let Nπ be the closure of the operator introduced by (3.10). Taking into account
definitions (3.36) and (3.37) one can easily check that π(d)Hn is a core for Nπ and

Nππ(d)φ = π(b)φ

for any φeHπ. According to Theorem 3.1.2° operator Nπ is normal. Therefore, any
core for Nπ is a core for N*. In particular, π(a*)Hπ = π(d)Hπ is a core for N* and
using (3.38) one can verify that

for any ψeHπ. This way we showed that the assumptions of Proposition 2.6 are
satisfied.

Using now Theorem 2.3 (with A replaced by A® A) we see that there exists an
element NηA®A such that d{A® A) is a core for N and Ndx = bx for any x e A® A.
Remembering that A®algA is dense in A® A, one can easily show that d(A®algA)
= (/ + n*n)~ 1/2A®alg(7 + n*n)~1/2A = D(ri)®algD(n) is a core for ΛΓ. Moreover, for
any x l 5 x 2 e ^ we have

and setting (I + n*n)~1/2x1=yί and (I + n*ή)~1/2x2 = y2 we get (3.35).
We shall use Proposition 1.7 to prove that N is normal and that SpNc <C(μ). To

this end it is sufficient to show that for any irreducible representation π of A® A,
π(N) is normal and Spπ(iV)C(C(/i). If π is given by (3.39), where both π1 and π 2 are
infinite-dimensional, then these statements follow directly from the formula (2.22)
with T and Tπ replaced by N and JVπ, respectively and Theorem 3.1.2° [cf. (3.11)].
The case when at least one of the representations πx and π2 is one-dimensional, is
again left to the reader. Q.E.D.
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In what follows, the element N introduced by (3.35) will be denoted by
v®n + n®v*. One can easily show that

(v®v)*(v®n + n®v*)(v® v) = μ(v®n + n® υ*),

and using the Universality property we obtain:

Theorem 3.3 There exists unique φeMor(A,A®A) such that

φ(v) = v®v,

φ(n) = v®n + n®v*.

We also have

Theorem 3.4. Let φ be the morphism introduced in Theorem 3.3. Then the diagram

A -?-+ A®A

I 1 i d < 8 > 0

A®A®Aφ<S>ιd

is commutative.

Proof. Obviously,

(φ®id)φ(v) = v®v® v = (id® φ)φ(v).

Moreover, denoting by N any of the two elements (φ®id)φ(ή) and (id® φ)φ(n)
affiliated with A® A® A, one can easily show that D(ή)® algD(ή)® algD(n) is a core
for ft and

+ nyί®v*y2®v*y3

for any yl9y29y3^D(n). It shows that (φ®id)φ(ή) = (id®φ)φ(ri). According to the
Universality property, any morphism from A into a C*-algebra is completely
determined by its values at v and n. Therefore, (</>®id)φ = (id®</>)</>. Q.E.D.

It is not our aim to develop here the complete theory of the group Gμ of
motions of the Euclidean quantum plane. It will be presented in a separate paper.
We wanted only to convince the reader that the affiliation relation plays a crucial
role in the theory of non-compact quantum groups.

We end this section with a brief description of the algebra B of all continuous
vanishing at infinity functions on the Euclidean quantum plane <Dμ. By definition B
is the universal (i.e. obeying the suitable Universality property) C*-algebra having
a distinguished element ζηB such that

D(ζ) = D(ζ*), (3.40)

(ζx)*(ζy)=μ2(ζ*x)*(ζ*y) (3.41)

for any x,yeD(ζ) and

Sp(ζ*ζ)C{μ2k: keZ}u{0}. (3.42)
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Following the last remark of part A we shall look for B inside A. Using the
Universality property of the algebra A one can easily show that there exists one-
parameter group {σf}feR of automorphisms of A such that

σt(v) = e~ιtv, σt(ή) = eιtn

for any ίeR. Let

B = {aeA: σt(a) = a for all

Then ζηB and relations (3.40H3.42) including the suitable Universality property
can be easily verified. Moreover, ψ = φ\B belongs to Moτ(B,A®B) and describes
the action of Gμ on C^.

4. The Quantum SU(1,1)-Group

This group has been introduced and analysed in many papers (see e.g. [9]). The
main aim of this section is to show that it does not exist on the C*-algebra level. In
our opinion this fact does not undermine that general philosophy of the
topological quantum groups [18] saying that the C*-algebra language has to be
used. Conversely, it shows that there is something essentially wrong with SμU(l, 1)
for real values of the parameter μ. It is very likely that a non-compact form of
SU(2) exists only for μεS1 [in this case SμU(ί, 1) is a deformation of SL(2,R)].

A. Hopf-Algebra Level

Let μ be a fixed real number such that μ + 0 and \μ\ < 1. The *-algebra J / of all
polynomials on Sμ 17(1,1) is generated by two elements α and γ satisfying the
following commutation relations:

ay = μyoL

77* = 7*7

α*α — γ*y =

αα* — μ2y*y =

(4.1)

We endow si with the Hopf-algebra structure introducing the comultiplication φ,
counit e and coinverse K in the following way:

/c(α*) = α,

Φ*)= 7*
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We recall that φ and e are *-algebra homomorphisms whereas K is linear and
antimultiplicative. One can easily verify that all axioms of the *-Hopf-algebra
theory are satisfied. The simplest way to memorize the above formulae defining φ,
e, and K is to remember that

is the fundamental two-dimensional representation of SμU(l,l). It means that
(id®φ)u = uφu, (id®e)u = I, and (id i

B. Hilbert Space Level

Let α and y be closed operators acting on a Hilbert space H. We say that the pair
(α,y) is a representation of commutation relations (4.1) if ^(α) = ̂ (α*) = 3){y)

~ i and

(4.2)

(4.3)

(ocφ I αφ) - (γφ I yψ) = (φ I ψ), (4.4)

(α*φ I cc*ψ) - μ\yφ \ γxp) = (φ\ψ), (4.5)

for any φ,ψe3f{y). Relation (4.3) shows that y is normal. By virtue of (4.4) and (4.5)
kerα = kerα* = {0}. Therefore, in the polar decomposition α = t?|α|, the first factor is
unitary. Clearly, |α| = (/ + y*y)1/2. So we have

α = ι;(J + y*y)1/2, (4.6)

where υ is a unitary operator acting on H. Next using (4.2) we get

vyv* = μy.

Using the above two formulae one can easily describe all irreducible
representations of (4.1). They are either one- or infinite-dimensional. Any one-
dimensional representation is of the form (c/,0), where ceC, |c| = l.

If (α,y) is an irreducible infinite-dimensional representation of (4.1) then
Spy = {0}uΛ, where A is of the form

Λ = {toμ
k:keZ},

and ί o eC-{0}. Moreover, one can find an orthonormal basis {e(ή: teΛ} such
that

oce(t)=γl+\t\2e(μ-1t),

ye(t) = te(t)

for any teΛ. It means that (α,y) is uniquely determined (up to a unitary
equivalence) by Spy.

We shall prove the following "no go" theorem.
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Theorem 4.1. Let (αlJ

<y2)
 and i^Ji) be infinite-dimensional irreducible representa-

tions of (4.1) acting on Hilbert spaces Hί and H2, respectively. Then there exists no
representation (α,y) of (4.1) acting on H1®H2 such that

(4.7)

(4.8)

(4.9)

(4.10)

where by definition the operators on the right-hand side are defined on

We shall use the following two lemmae.

Lemma 4.2. Let α0, y0, OCQ , 7o be four operators acting on a Hilbert space H and
having the same dense domain 3. Assume that there exists a representation (α, y) of
(4.1) acting on H such that O α 0 , yDy0, α*Dα^, and y*Dy£ Then

dim [ker(α$)n^((y0

+)*)] = dim [ker((αo

+)*)n^( 7*)]. (4.11)

Proof Let (α,y) be the representation of (4.1). Then α " 1 , yα" 1 , and y * α - 1 are
bounded operators and one can verify that the matrix

foe'1, -γ^oc
V = \ -1 -1

is unitary. Moreover, for any φ,ψe @>(y) we have

Let

A""™ " ) - ( . . - ,φ.*..)• (4-12)

According to (4.12) VSJ^=2)+ and remembering that v is unitary we get
v2)1L=2)i. Therefore,

On the other hand, one can easily check that

1

and (4.11) follows. Q.E.D.
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Lemma 4.3. Let α 0 (y0, ô J", and JQ, respectively) be the operator standing on the
right-hand side of the relation (4.7) f(4.8), (4.9), and (4.10), respectively). Then

= {0}, (4.13)

2° dim[ker((αo

+)*)n^(7*)]>0.

Proof. AdΓ. Let us notice that

. (4.14)

We know [cf. (4.6)] that oc1 and α2 are invertible. Therefore, oc1@t(yί) = H1,

α2^(y2) = i ί2> a n d (αi®α2)(^(7i)®aig^(72)) = ̂ i ® a i g ^ 2 is dense in HX®H2. On
the other hand, the first factor in (4.14) is a bounded invertible operator
(llAί7iαΓ1®72α2~ 1II = μ < l and the Neumann series converges!). Therefore, range
of α 0 is dense and (4.13) follows.

Ad2°. Let ίx and t2 be non-zero elements of Spyx and Spy2, respectively. For any
integer 5 we set

~ί/2

where

Let us notice that for s-> + oo, ψs behaves like (—μcf, whereas for s-> — oo it
tends to zero faster than any natural power of μ~s. In particular, {φs}seZ is square
summable. Moreover, for any meZ,

Let

Ψ= Σ
s = - o o

We shall prove that ψ e ker((αo )*) and ψ e 2{y%). Indeed, for any integers m, n we
have

+μ-2m+2\t2\
2)1'2

= -μ-2m+1tJ2δmnψm

= -μ1~n~mt1t2(ψ\e{μ-nt1)®e{μ-mt2))

It shows that (ψ\a£(e(μ~ntj)®e(μ~mt2)))=0 for any m,neZ and φeker((αo)*).
Let

+ 00 _

Ψ'= Σ i ia i 2 l + A*2|i2l2)"1/2V*e0i"'
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Using the same techniques as above one may check that

(ΨI yo(e{μ-nh)®e{μ-mt2))) = (ψf I e(μ-nh)®e(μ-mt2))

for any m,neZ. It shows that ψe@>(γξ) (and y*ψ = ψ')' Q.E.D.

Proof of Theorem 4.1. It follows immediately from Lemma 4.2 and
Lemma 4.3. Q.E.D.

C. C*-Algebra Level

Assume for the moment that we have a C*-algebra A and two distinguished
elements α and y affiliated with it such that for any representation π of A acting on a
Hubert space H, (π(α),π(y)) is a representation of commutation relations (4.1).
Using Theorem 4.1 we immediately conclude that there exists no
φeMoτ(A,A®A) such that

φ{y*)Dy*®(x* + a®y*.

Therefore, SμU(ί, 1) group does not exist on the C*-algebra level.
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