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Abstract. We give a rigorous definition of Witten's C*-string-algebra. To this end
we present a new construction of C*-algebras associated to special geometric
situations (Kahler foliations) and generalize this later construction to the string
case. Through this we get a natural geometrical interpretation of the occurrence
of semi-infinite forms as well as the fermionic algebra structure. Using the (non-
commutative) geometric concepts for investigating the string algebra we get a
natural Fredholm module representation of dimension 26+.

1. Introduction

One of the nice features in the development of string theory turned out to be
the simple ways in which strings can interact. For example the open bosonic
strings can only either split or join. The joining of two strings to a new one may
remind one of a product-like structure while the splitting may be compared to
the factorization.

This idea was pushed forward by Witten in 1986, [Wi 1], where he introduced
a groupoid structure for classical strings, see Sect. 1. In the Schrodinger picture
of the first quantization of string theory one passes from the classical strings
(continuous paths in R1 '^"1) to wavefunctions on the space of classical strings.
The groupoid structure yields in a canonical way a *-algebra-structure on the
space of wavefunctions. The first part of this article gives a precision to Witten's
definition and describes this (bosonic-) algebra explicitly.

Now the physics should not depend on the parametrization of the interacting
strings. The reparametrization group is an infinite-dimensional Frechet-Lie-group,
[Mi]. In the course of quantizing the theory we have to take care of the unphysical
degrees of freedom caused by the symmetry. Usually this is done by introduc-
ing Faddeev-Popov-ghost-fields, which are fermionic fields, for dividng out the
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symmetry-part. Connected with this approach is the BRS-formalism. Witten also
considered the Faddeev-Popov-ghost part of the theory. He defined for it a
*-algebra structure using the bosonization of the fermionic fields and in this way
traced it back to the bosonic algebra structure. Besides making the formal or
heuristic definitions analytically precise there are a lot of questions concerning
the interpretation.

In the BRS-formalism of gauge theory the chains of the BRS-complex are
Maurer-Cartan-forms on the gauge group, [Bo-Co], but in string theory they
are semi-infinite forms [F-G-Z]. In physics one argues that the vacuum of the
fermionic Faddeev-Popov-ghost-fields is a filled Dirac-sea. This perspective is
supposed to be the reason for using semi-infinite forms. This leads to the strange
fact that the physical string fields are not ghost-free, they have nonvanishing
ghost-number [Wi 1]! The common interpretation of the BRS-formalism as the
restriction to symmetry-invariant objects doesn't work in a naive way. We have
the famous conformal anomaly which only cancels by putting together bosonic-
and fermionic-ghost-parts. Last but not least, why should one also introduce an
algebra structure for the ghost part?

The second part of the paper deals with these questions. In the course of giving
a precise definition for the fermionic or ghost part, we present a purely geometrical
interpretation of the construction. This is motivated by Connes' construction
of C*-algebras associated to foliations, [Col]. We present a slightly different
construction more appropriate to Kahler manifolds which can be generalized to
the string case. This new construction is seen to yield the strange fermionic part
of the algebra.

We investigate Connes' non-commutative geometry for the string algebra and
get a natural Fredholm module representation of dimension 26+.

2. The Path Groupoid

As mentioned in the introduction the only possible interactions of open bosonic
strings is their splitting and joining. This looks like factorization and multiplica-
tion in a group. Witten pushed this idea forward and defined a groupoid structure
for paths.

Let

ωi f lUl-R 1 ' * - 1 i = l , 2 (1)

be continuous paths

a>ϊ = ωi I [0, \] (source) w\ = ωt \ [\9 1] (range) (2)

with overlapping halves

ω\{t) = ω*2(\-t). (3)

Then their product is defined as the path

ωι±cθ2 :=ω (4)

with

f ωi(ί) ί€[0, i[
I ω2(ί) t e [±, 1]
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Remark 1. This product for parametrized paths is associative

(6)

In quantizing the theory according to the Schrodinger picture one passes from
classical objects to wavefunctions thereon, so that at a formal level we get

wavefunctions of 1. quantized string = functions on path space.

The groupoid structure of the path space yields formally an algebra structure
for the wavefunctions as in the case of groups and group algebras:

Let Φ, Ψ be string wavefunctionals, then let

Φ*Ψ(ω)= / Φ(ωi) Φ(ω2)dμ(ωi) Θ dμ(ω2) (7)

ωi_Lω2=ω

with μ a measure on the path space.
For doing this in a rigorously defined way we take the Euclidean space Rd,

instead of the Minkowski space, as the target space of the paths. Then the
measure μ is defined as the direct sum of measures

dx, (8)

where dμ^ is the Gaussian measure with covariance L^"1,

U = yf^ (9)

and — AN is the Laplacian on L2([0, 1]) with Neumann boundary conditions in
0, 1, A'N the restriction of AN onto the complement of the kernel (without zero
mode). The kernels sum up to Rd. Let dx denote the Lebesgue measure on Rd.
We can split an arbitrary path into ω = ω' + y with y=orthogonal projection of
ω onto the kernel.

Then one rewrites at least formally the product as

Φ*ψ(ω)= ί Φ(ωi) Ψ{ω2)δ{ω\ - ωs)δ(ωr

2 - ωr)dμ{ωι)dμ{ω2). (10)

Obviously the Rd -integration (the kernel part) causes no trouble. It contributes
to the algebra an injective-C*-algebra tensor product with C°(Rd). Therefore we
will neglect this part in the following.

For notational simplification we temporarily take d = 1. The Gaussian mea-
sure μLo is a cylinder measure on the space of Schwartzian distributions &"[0,1],
[Si]. The classical string space of continuous paths is to be substituted by a space
of distributions, to be more precise, by the support of μL0
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Lemma 2. For μ^Q-almost everywhere T E ^ ' [0, 1] there exists no nonempty open
set U c [0, 1] such that T restricted on U is a signed measure. In particular, T is
not a continuous function on any such U.

Proof. The covariance of μιQ

c(s, t) = ^ - (cos nπt cos nπs)

= ln{4(l - sinπ(s + ή) (1 - sinπ(s - t))} (11)

is obviously not continuous, which implies the lemma, see [Co-La]. D
On the support of μ^ we have to define the groupoid structure on "paths."

These "paths" are distributions but are not in general continuous functions. It is
not even clear what the splitting of strings into two parts should be. In general
one would propose

ωs = ω- χ[0 ^ for ω e supp μLo, (12)

where χ[0 Î  is the characteristic function of the interval [0, \]. This would be the
product of two distributions and this is not always defined.

In the above situation we have a nice theorem which helps:

Theorem 3. Let Lo,r (Lo,s) be the square root of the Neumann Laplace operator on

[j, 1]) (respectively L2([0, j)]) without zero modes and denote Ho the span of

-X[ii]} Then

1 (13)

is of trace class for all α > 0.

Proof The {ψn}nez with

ψn(t) = 2(cos(2nπί)χ[0, ij(ί) + sign(n) cos(2nπί)χti, 1}(ή) n φ 0,

Ψo(ή = Z ( ί ) Z W

build an orthonormal basis of eigenvectors of Lo,s + Lo,r + αW#0. The crucial
part in the proof is to show the convergence of the sum

Denote

1 ) ^ ) < oo. (15)
meZ\{0}

i i

a™ := / dt cos nπt cos mπί + sign (m) / dt cos mπt cos nπt. (16)
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For the sum above one computes

2 n

co / co , / j ί \ j
= y ( y _

ί . Λ 4mπ 2 I ((2n + 1) + 2m)2 ((2n + 1) - 2m)2 / 2m
m=l \ n=Ό \ / /

where one uses

/
= Σ Σ

l

(2n + 1 + 2m)2 = (2m)* (^±1 + ( 2 m)i-i ) (18)
\ (2m) 4

and estimates

2n

(2m) *

= ci(2n+l)ί . (19)

The rest of the proof is straightforward D

For convenience let us denote Lo,s+Lo,r+α/dtfo by Lα. Using Shale's Theorem
this theorem has the following important

Corollary 4. The Gaussian measures μ^ and μιQ are mutually absolutely continu-
ous.

Therefore the two measures have the same support. In the light of this result
we cannot split a string into two halves but into three parts. We must incorporate
the discontinuity at t = \,

suppμLo = suppμLθs X suppμLθ)Γ x suppμα/(/H()

c: £ff\0 -1 x ^/?r\- 11 x R (20)

where we identified R = HQ by

R = tfo
(21)

so that the value x gives the jump at t = \.
Now we can generalize the groupoid structure of continuous paths to the

support of μL0 Let

ω, = (ωf, ω[, x ) e suppμLα = suρpμLo, ω[ = r(ωs

2) (22)
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r : J[0, 1] > 9[Q, 1]

ω i—• ω ( l — ί)

then
ωi±ω2 :=(ωf, ωj, xi + x2). (24)

After these preparations we can give a rigorous definition of the bosonic part in
Witten's construction. Let us start doing this by using the absolutely continuous
measure μLα instead of μLo. Therefore let Φ, Ψ e ^'[0, 1] be two continuous
functions on the support of μ^ then we can define their product by

Φ*α Ψ{ω\ ω\ x) := JdμLθr{ώ)dμoίIdHo(x){Φ(ωs, ώ, %(

x Ψ(r(ώ\ω\\(x-x))}. (25)

There is a natural involution for any such function Φ defined by the change of
orientation

Φ V , ω\ x) := Φ(r(ωr), r(ω% -x). (26)

Now consider first the x-part. A close look shows that for α < oo the mea-
sure dμaidH is not translation invariant, the resulting product structure is not
associative f The half-string part of the algebra can be identified isomorphically
to the C*-algebra generated by the integral operators with smooth kernel on
L2{y[\, 1], dμi^X denoted by 7^, the ideal of compact operators thereon.

Let us pass to the string case. We replace the measure dμ^ by dμ^. There
exists a Radon-Nikodym-derivative

dμLς>=FJμu Fα > 0 a.e. (27)

which can be computed explicitly [Si]. For our purposes only the α-dependence
is important. One get

F{ω\ ω\ x) = v/a^F(o/, a/, x) (28)

with F independent of a.
For defining the product of two string-functional Φ, Ψ e ^[0, 1] we replace

the measures and obtain

Φ *α Ψ = F?((F* ' *) ** (Fa Ψ)). (29)

This definition depends on α and putting the above dependence into the formulas
and taking the limit α -> oo yields

Φ * Ψ{ω\ ωr\x) = -^= F~\ω\ ω\ x) JdμL^r{ώ)dxh(ω\ ώ, l- (x

9 {x + X)\p(r(G>)9 ω\ l- {x-x)

(30)

It is not difficult to see that the x-part is just the convolution. Fourier transfor-
mation maps it isomorphically to the commutative algebra of functions. Going
to completions this part is identified as the C*-algebra of continuous C-valued
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functions on R vanishing at infinity and equipped with the sup-norm. This
C*-algebra is denoted by C°(R).

Therefore this bosonic part of the string-algebra is isomorphic to the tensor
product of the two algebras,

(momentum-zero-)bosonic string-algebra = C°(R) ® loo (31)

This result agrees quite well with general topological considerations [Cr-Go].
Look at the foliation

P(M) = {/ : [0, 1] —> Mcontinuous},

I - (32)
M

where M is a C°°-manifold. The foliation is defined by π(f) = /(^), the string
groupoid can be viewed as the foliation groupoid. The i^-theory of the bosonic
string-algebra should describe the transversal cohomology of the foliation. This
is obviously the case for Rd.

To get the full bosonic part of Witten's string algebra we have to tensor this
algebra with C°(Rd)9 see (10)ff.

3. Symmetry Consideration

There is a gap in the construction of the previous section. The algebra should
only depend on the geometry of the "paths", that is on the shape of the strings
and not on their special parametrizations. For investigating this drawback we
have to look at the reparametrization properties of the string. The space of strings
is suppμLo For the half-strings LQ is replaced by Lo,r or Lo,s. These spaces are
contained in the associated weighted spaces. For example the right halves in

Hr := span ^ [ 5 , 1] (right-halves-string Hubert space) (33)

with

\\φ\\2 = Jdtφ(t)(L^rφ)(t). (34)

Hs is analogously defined. The general string turned out to be nowhere continuous
and in addition to the two halves we need for the full description the jump in
the middle. We take as the space of strings

{strings} = {(ωs, ω\ x)/ωs e Hs, ωr G Hr, x € R} (35)

considered as a direct sum of Huberts spaces.
What is a reparametrization of a string? For continuous strings one would

suppose any homeomorphism of the parameter interval. But the strings are only
distributionally defined and we have to take differentiable bijections, forming the
group Diff[0,1], To be compatible with the path groupoid structure we further
have to assume

y £ Diff[0, 1] with y(±) = \ . (36)

So let
γs : = γ I [0, i ] , yr := y I [i 1] (37)
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be the restrictions onto halves. Then a reparametrization of a string-half is given
by

y,V) = L~} ((L*,ω') (y"1) \y'r\'i) (38)

for a ωr e Sf\\, 1].

Remarks. Naively one would expect from the path picture of strings an action
without the |y£|~ 2-factor. But then the action would not be unitary. Furthermore
a deeper geometrical inspection would show that the strings in the groupoid
should be ^-densities rather than paths which is reflected in the additional factor.

The reparametrized product reads then as follows:

y*(Φ)*y*(Ψ)(ω)

= -η= F~\ω) I dμLθr(ώ)dx

(ω\ ώ, 1 (x + x) V fγ*(ωs), 7r*(ω), \ (x + x)

r(ώ), ωr

9

 l- (x - xή Ψ (γϊr(&), γ*(ωr)9 \ (x - xή | , (39)

and we get a restriction on γ:

γ*=γ*or, (40)

that is
y(l-ή = l-y{t) V ί G [ 0 , l ] . (41)

In particular we get periodic boundary conditions at 0 and 1 and rescaling the
parameter interval we get

y e D i f f S V s 1 , (42)

where Diff Sι/S{ is the Frechet group of diffeomorphism of S1 fixing the point
ίeS1.

Denote Diff^ a Diff S1/S1 the subgroup of the above y. This subgroup can
be characterized infinitesimally:

Let {Ln}nez be the usual real basis of the Witt-algebra,

[Ln, Lm] = (m- ή)Lm+n (43)

which is the well known complexified Lie-algebra of Diff S1. The Lie-algebra of
the restricted symmetry is then generated over the reals by

Kn := Ln - (-l) n L_ n (44)

which is just the symmetry Witten found for the product [Wi2].
Under these restrictions we can perform a formal substituions ώ ι-> y*(ώ)

which yields at least formally,

y*(Φ) * y*(Ψ) = det(y*)y*(Φ * Ψ). (45)

(Notice that by the unitarity of y* we have y*(F) = F.) But in general y* — Id is
not of trace class in Jf r and the determinant is not defined in the analytical sense.
This result suggests the picture of an algebra bundle over the reparametrization
group, each parametrization giving a bosonic string-algebra. The point is that
each parametrization leads to incompatible measures. We will see below that the
essence of such a bundle is a line bundle over the symmetry group.
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4. C* -Algebras and Kahler Geometry

Look at a C00-manifold M and a compact Lie-groupd G acting on M. A proper
and general description of the orbit space M/G is given by using the language
of C*-algebras. Take the reduced cross-product

C°(M)<G, (46)

where C°(M) is the C*-algebra of continuous functions on M. To recover the
topological space M/G notice that

specC°(M)<iG = M/G, (47)

[Col, Mo-Scho].
For Kahler manifolds let us propose a different way. Assume M, G Kahlerian,

for example M = C", G = 5/(2, C), with

om : G —> ΛΓm

_, (48)
gι->g xm,

holomorphic for all m e M, Nm the orbit of G through m. We first look at the
simplest case of one orbit with trivial isotropy group. The additional Kahler
structure suggests a different construction.

Let dimcG = w, T*jG the (fc, /)-cotangent bundle and GΠjo the space of
holomorphic n-forms. Fixing a Kahler metric we define the Hodge-*-operator.
Then

(φ9ψ) := J φ*ψ φ9ψeGn>0 (49)
G

defines a scalar product on Gn?o and we get the Hubert space H(G) of holomorphic
n-forms. One can generalize to H φ id and to more than one orbit. For general
isotropy group H, G/H is Kahlerian by assumption. The naturally associated
Hubert space is H(G/H), the holomorphic /c-forms on G/H, if dimcG/H = k.
The ideal of compact operators on H (G) acts naturally on the later Hubert space,
the image of this representation is obviously the ideal of compact operators on
H(G/H). Let us further assume that there is a global section Φo in Gn>0 such that
Φo * Φo is a multiple of the Haar measure dμo on G. Using this section we can
pass from sections φ in Gn,o to meromorphic functions Φ on G

Φ e G n , 0 => φ = ΦΦ0. (50)

The general construction for foliation algebras, [Co 1], leads then to the generating
elements

F : M x G - > C , (51)

F(gm, gr) continuous in m and holomorphic in g, antiholomorphic in g' for any
m. The product of two such elements is given by

F * K(m, g) := J F(m, gf)K(g'm, g)/μG(g') (52)

G

and the involution by

F*(m,g) :=F(gm, 1). (53)
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Let us fix an m 6 M. We identify G/H = Nm and associate to the orbit Nm the
Hubert space H(G/H). For fixed m the function F defines an integral operator
on H(G) in a natural way. This operator reduces to H(G/H). Denote Ipm this
operator on H(G/H). Then we define the norm of F by

| |F | | := sup \\IFJH(G/H). (54)

meM

This definition is quite analogous to the one for the foliation algebra [Co 1].
In the Kahler situation we take the completion of this algebra as the naturally

associated C* -algebra. The advantage of this approach is that one can generalize
the later construction to the case of the symmetry group Diff SVS1. This appli-
cation and generalization to the symmetry group Diίf S1/S1 is the content of the
next paragraph.

5. The ΌiBS1/S1 Symmetry Group

In generalizing the constructions of the previous paragraph we have to answer
three main questions concerning the structures of the group
a) What are the Kahler structures on Diff SVS1?
b) What are the analogues of holomorphic n-forms?
c) Can one define a "Haar-measure" on DiffSVS1?
In a) we will show the well known result of the existence of a whole family of
Kahler structures. It will turn out that it is quite appropriate to use them all at
once in the following. For b) we will propose natural candidates given by the
holomorphic sections of canonical bundles, i.e. the DET*-bundle over DiffSVS1.
The last problem is the most difficult one. Here it is important to look at the
whole family of Kahler structures at once.

The main problems concern the infinite dimensionality of the group. We will
restrict ourselves to the identity component (DiffS^S^o of Diίf S1/S1.

5.1. Part a)

We can look at (Diίf S1/S1)o in two quite different ways. First it is the subgroup of
DiffS1 of diffeomorphisms fixing the point (0, 1) e S1 (S1 viewed as the unit ball
in C). Second it is a generalized flag manifold. S1 is a maximal abelian subgroup
of DiffS1, the subgroup of rigid motion with respect to a parametrization θ. S1

is not a normal subgroup of DiffS1. As a flag manifold (Diff SV^Jo 4°esn't
inherit the group structure induced on the equivalence classes, but it has a natural
complex structure.

The tangent space of (Diff SVS 1 ^ at the identity in DiffS1 is spanned over
the reals by

d d
Ln(θ) := cos nθ —- + sign(n) sin nθ — (55)

uu aσ

for n € Z\{0}. The splitting of the tangent space with respect to the parametriza-
tion θ is

TiίDiffSVS^o = (Γi(DiffS1/S1)o)+ Θ (Γi(DiffSV^ίo)-, (56)

where
V ^ := span{Ln}±π>0. (57)
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It is much easier to work on (DiffS% => (Diff S V ^ o - Let us therefore look at
the Lie-algebra on (Diff S1)^

Γi(Diff S^o = Γi(Diff Sι/S% φ span{L0}. (58)

By using the scalar product

(U Lm) := <5n,m (59)

we can complete the (complexified) space to Hubert spaces

MT = je+ Θ j f _, (60)

where j f+ = span{Ln}w>o, Jf- = span{Lπ}n<0, [Pre-Se].
As a flag manifold (Diίf51/5'1)o is a quotient manifold of DiffS1. The splitting

defines an almost complex structure J obeying J = 1 on 34?+ and J — — 1 on
Jf_. This yields the canonical complex structure on (DiffS1/S1)0 with respect to
θ, [Mic]. The group structure doesn't respect this complex structure. We defined
for any fixed parametrization θ - equivalent for any identification of S1 as a
subgroup of rigid motion - a complex structure which we will denote by J(θ).

Denote by Ad the Ad-action of DiffS1 on J f. Then we have

J(θ') = Ad(0'0~y ( ^ A d ^ ' Γ 1 ) (61)

There is a well known

Lemma6. for all θ, θf e Diff Sι[Ad(θf)9 J(θ)] is Hilbert Schmidt.

Proof. See [Se]. D

Now fix a parametrization θ and the associated splitting Jf = Jf + © ̂ f _. Let
Jί?+(θf) be the positive part of the J(θf) splitting. Then we get a map

(DiflFSVS1^ ^ Gr(Jf)o, (62)

where G r p f )o is the component of the universal Grassmannian Grpf) of index
0, [Pr-Se]. This space is a Hilbert-manifold modelled over

f_) = {A : ̂  + -• 3P-/A is Hilbert Schmidt} (63)

equipped with the Hilbert-Schmidt norm. The sesquiliniear form

(X, Y) := 2trX*y X, Y e &2(je+9 jf_) (64)

gives a Kahler metric on Gr(jf), [Pr-Se]. It can be shown that this map is
holomorphic with respect to the complex structure on (Diff Sι/Sι)o and injective
[Pr-Se, Mic]. As a complex submanifold of a Kahlerian (DifFSVS^o is also
Kahlerian. We take the induced Kahler metric on (Diff SV^Jo for defining the
Kahler structure on (Diff51/5'1)o.

5.2. Part b)

For a fixed parametrization θ € (Diff S1/Si)o we get a Kahler structure on (Diff
Si/Si)o defined above. A basis of the holomorphic cotangent vectors over θ at
the identity are by the very definition the L*n, n e N, the duals to L_n. The
formal analogue to the maximal antisymmetric tensor product would be

!ΛL!!{ Λ L ! 2 Λ L ! 3 Λ . . . . (65)
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Over a different parametrization θ' e (ΌiSS1/S1)o this formal expression passes
to the fibre

Ad(0') (Llx Λ L ! 2 Λ . . . ) « (det Ad(0') | j f 0 ) * {L*_γ A L*_2 Λ...) + ...

. (66)

The determinant is not defined analytically but rather categorially, as was pro-
posed by Quillen [Q]. Let

DET*
i (67)

be the dual bundle of the Quillen DET-bundle over G r p f ) . This is a holomorphic
line bundle, [Pr-Se]. Pulling back to (DiffSVS^o gives a holomorphic line bundle
over (DiffS1/S1)o> An inspection of (66) shows that the right candidate for the
analogue of holomorphic n-forms are the holomorphic sections of the bundle.
To define the analogue of all holomorphic forms on (ΌifίSι/S1)o W e use the
following map: Let S be the shift operator on J f,

S ^f (68)
Ln h-» Ln+ι.

Then S e UTQS(je) and

S : (Grpf))„ -> (Gr(Jf))ι«+i (69)

is a biholomorphic map. Pulling back the DET*-bundle of (Gr(Jf ))„ to (Grpf ))0

via Sn defines a holomorphic line bundle

(DET*)M

i (70)

The formal fibre at the identity is then given by

L* AL*^...AL* AI^ ALlxA... (71)

for n > 0, analogously for n < 0. We define the analogue of holomorphic n-forms
on (DiffSVS^o to be holomorphic sections of the pull back (DET*)"-bundle
over (DiffSVsV

Before continuing to part c) let me make some

5.2.1. Remarks. 1. Using the above machinery we can again look at the bosonic
part of the algebra. As we have shown the measures of integration depend
crucially on the chosen parametrization. Formally one got

Φ * Ψ « det(y*)y*(Φ * Ψ) (72)

or equivalently
y?(dμLj*(detγ?)dμLθr. (73)

A closer look shows that yr is Fredholm. Therefore we can redefine the determi-
nant of yr by the Quillen-determinant. The equation

* (dV>Lo,r) = det y?dμLo,r (74)
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is then to be interpreted as a parallel transport of a line bundle over Diff^ a
(Diff S1/S1)Q. The fibres are the measures of integration in the definition of the
bosonic string algebra with respect to the chosen reparametrization.

2. The multiplicative property of the Quillen-determinant yields a central exten-
sion of the group (DiffS'1/S'1)o As a central extension this bundle has a canonical
U(l)-connection given by the projection onto the central extension of the Lie-
algebra [Pr-Se]. The curvature of this connection is given by the central extension,
[Pr-Se], equivalently by the central charge c of the Lie-algebra extension.

We considered two different line bundles. The first is induced by the
(Diff S1/S1)o, the other by the above. The resulting central charges associated to
these DET-bundles are computed as

creparam — λ
( 7 5 )

Furthermore the interpretation of

7* (dμL0>r) = det γ* dμLθr (76)

as defining a parallel transport is made precise by the above definition of the
canonical connection. This connection on the £/(l)-PFB gives a canonical connec-
tion on the associated DET-bundle which is exactly the (bosonic string-)measure-
bundle equipped with the above formal parallel transport.

3.1 To make contact with the physics literature let us point out the intimate
relationship of the DET-bundle over G r p f) to what is called the Bogoliubov
transformation in fermion theory.

According to Dirac in physics one interprets the decomposition of the com-
plexified Lie-algebra 2tf into positive and negative parts as the splitting of the one
fermionic particle space of the Faddeev-Popov-ghost-fields into ghost-anti-ghost
states. The fermionic field algebra is the CAR algebra over Jf7, [Fre]. The vacuum
of the field theory is given by specifying a state on the algebra. This is usually
done by choosing the filled Dirac sea as a vacuum. Let a(f)* (respectively a(g))
denote the creation (respectively annihilation) operator in CAR(jf) of a particle
/ e tf (respectively g e J f). These operators generate the CAR algebra. Let E+

be the orthogonal projection onto J f + . Then the filled Dirac sea vacuum is given
by the state evaluated on the generating elements

ωE+(a(fnf a(fύ*a(gk).. α(gi)) := det«/,, E+gj)), (76a)

fu gj € Jf, i = 1, . . . , n; j = 1, . . . , fe. This state is pure and using the GNS-
construction we can rewrite this as

ωE+(a(fn)* ...α(gi)) = <β0, a{fnf ...a(fι)*a(gk)...a(g ι)Ω0). (77)

Ωo is the unique vacuum vector with

a(ff ΩQ = 0 V / e ^ _ ,
a(g)Ω0 = 0 Vge3f+,

which reads formally as
Ωo = AmaxJίf- . (79)

1 After discussion with K. Fredenhagen
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Given a transformation A e Uτes(Jίf) of the one particle state this defines canon-
ically an automorphism on CAR(Jf), the second quantization,

aA{a(fγ) = a(Af)* , xA(a(g)) = a(Ag). (80)

This automorphism induces a state

ωA-ιE+A(a(fn)* flfei)) := ω£ +(α(^l/n)* ... a(Agι)). (81)

In the case of A e Uτes(J^) these states are equivalent. Again such a transformed
state is quasi-free and pure,

<»A-iE+Λ(a(fn)* flfeO) = (ΩA, a(fn)* .. . a(gl)ΩΛ) (82)

with the transformed vacuum

(83)

where &(A) is the Bogoliubov transformation of the fermionic vacuum. Explicitly
&(A) is given by the following formula [Fre]:

Let {/ϊ}ί=i,...,/c, {g_/}y=i,...,/ be an orthonormal basis in c(kerα) respectively
b(coker a), where we use the block matrix representation of

(84)

Let
L : Jtf* = (ker α) ® (ker a)1 Θ J f _ -

with dΓ(L) the second quantization of L,

dΓ(L)= £ (L_m ? LLn)a* (L-m)a(Ln). (86)

n,meN\{0}

Then
k I

i = l i = l

with the normalization constant

c^ = αet(l + LL ) 2 . (oo)

Obviously the Bogoliubov transformation doesn't really depend o n i G L/res but
on the equivalence class in

(89)

Thereby we get a line bundle over Gr(Jf) with the fibres being the Bogoliubov
transformed vacua. This line bundle is isomorphic to DET.
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53. Part c)

We are left with the most difficult part, the integration over (DiίfS1/S ι)o Instead
of integrating over (DiffS1 /Sι)o we will integrate over Gr(^f).

First let me give an easier description of holomorphic sections in the DET*-
bundle over G r p f )o These are equivalently given by equivariant functions

Φ : (Gr(JT))o -* C (90)

with

for q e Gl(Jf _) of det-class [Pi].
Then we have a canonical section in DET* over (Grpf ))o given by

Φol ( : "A\ ) = ( d e t ( l + L L * ) ) 5 , ( 9 2 )

: i))-
where

L : JUT = (kerd) Θ (ker d)-1 Θ Jf + -

see Remark 3. This section gives just the Bogoliubov transformation when ker d
and cokerd are trivial. At least formally the section over Id e Uτes(J^) has value

Φ0(Id) = Ll{ Λ L ! 2 Λ L ! 3 Λ ... . (94)

The Hodge-*-operator defined with respect to the Kahler structure on Gr(j«f)
can be applied to this semi-infinite form [F-G-Z] or (138),

•Φo(M) = LQ Λ L* Λ L* Λ... . (95)

We get at a formal level the Haar-measure

= . . . L ! 1 Λ L o * Λ L * Λ . . . . (96)

*)Using the biholomorphic map S we get too canonical sections Φn of (DET*)".
The idea is to pass from ^-densities on Gr(^f) - holomorphic sections in DET*
- to holomorphic functions by using the canonical sections Φn, see Sect. 3. The
problem is then reduced to the construction of a measure on (Grpf ))o, which is
invariant under the (Diίf SV^o-action, a t least quasi-invariant. This was done
by Pickrell, [Pi],

Theorem 7. There exists a measure μ on (Grpf))o, a cylinder measure on the co-
ordinate patches, with the following invarίance property:

Let g G £/res,o The induced measure g*(μ) is absolutely continuous to μ with
Radon-Nίkodym-derίvative

Proof. [Pi, Proposition 4.14]. D
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Applied to holomorphic sections Φ, Ψ of DET* this gives as an Ansatz

I (ί){^) (98)

(Gr(JT))o

Φ Ψ

for their scalar product, where — and — denote the holomorphic functions on
Φo &o

(Grpf)) 0

Φ Ψ
Φ = — Φo; Ψ = —Φ<>. (99)

ΦQ ΦQ

That this is the right Ansatz is the content of the next
5.3.1. Remark. Let V+ a jf+, V__ c jf_ be subspaces of dimension n. Define the
new splitting

tf' = (je+ Θ F + Θ V-) θ (Jf _ θ F_ @ F+). (100)
An element ,4 € G r p f )o gives obviously too an element ι(A) e Gτ(J^% and vice
versa. Let ΦQ be the canonical equivariant function on Grpf')o as defined in
(91). Then

A»#0(i(A)) (101)

defines a new equivariant function on G r p f )o and thereby a holomorphic section
in DET*, denoted by Φv,V-- A closer look shows that this section depends only
on ΛnV+ A (ΛnV-)*. Pickrell showed that this map defines an isomorphism of
the zero charge fermionic Hubert space (A*34? + Λ (A* J f-)*)o to the L2-space of
holomorphic sections [Pi].

For the scalar product of general n-forms we use the canonical sections
φn = (S~n)*(Φo), S the shift operator, instead of ΦQ. Let Φ be a holomorphic
section in DET* m respectively Ψ a holomorphic section in DET*n. Then we
define

/ {τ)(k) (102)

(Gr(JT))o

The proof in [Pi] carries over to the ίΛspace of holomorphic sections in (DET*)W.
We get that the direct sum of Huberts paces of the n-forms is isomorphic to
the fermionic Huberts space A*3^ + Λ (A*3^-)*. Alternatively we can think of
the direct sum as the Hubert space of holomorphic sections of DET* over all
GR(Jf).

Now we are almost in the position of Sect. 3. A reparametrization γ e (Diff S1/
Sx)o gives an element y* e (Gl r e s(Jf ))o PickrelΓs proof of the quasi-invariance
property of the measure μ carries over to the (Glres(^))o-action on (Gr(Jf))o [Pi].
But different from the situation assumed in Sect. 3 the integration measure is only
quasi-invariant. Again one can picture this as a line bundle over the symmetry
group. The quasi-invariance can be interpreted as a parallel transport according
to a canonical connection on that line bundle of measures, see Remark 2. As in
the bosonic case we get a line bundle with fibres the measures of integration,
equipped with a canonical connection.
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6. The String-Algebra

First one remarks that DiffS1/S i is not the reparametrization symmetry group of
open strings. This later one was recognized to be the Witten subgroup DiffV of
DiffS^/S1 given by the restriction γ(t) = (1— γ(ή). Secondly we got an integration
measure over Gr(jf)o (respectively using Sn over Grpf) n ) instead over DiffV.
But now we can argue that one associates the direct sum of a whole family of
Hubert spaces to one orbit. The Borel σ-algebra of the Frechet-Lie-group DiffV
is generated by the cylinder sets on the coordinate patches. Then the map

induces a measure μπ on Grpf)/DiffV. Furthermore we can find a measurable
section

and shifting π "̂1 by Sn

9

π" 1 := SnπolS-n : Grpf)n/DiffV

a measurable section

π" 1 : Grpf )/DiffV -> Grpf). (103)

We get a Borel isomorphism

(Diff^ x Grpf)/Diff^) ^ Gr(Jf),

(yΛg])^yπ-ι([g]).

Vice versa we can define a measurabe map

Γ : Gr(Jf)o -> Diff^ (105)

g - 7 (106)

for g = yτiQl([g]). The induced measure μΓ on Diff^ can be viewed as a
generalization of the Haar measure on DiffV! It is quasi-invariant. The idea is
to use as the associated Hubert space to one orbit a direct integral

Grpf)/DiffV

On Gr(J f)o we have a natural groupoid structure given by the above Borel
isomorphism. For gi, g2 € Gr(Jf)o with [gi] = [g2] we define their product
gx - g2 = y\y2π~ι([g2])> where g, = y i π " 1 ^ ] ) . The inverse is defined by g" 1 =

). For general gi e G r ( ^ ) n , g2 € Gr(Jf)w with

we define
gi g2 = y m S w π - 1 ( b i ] ) (107)

and the inverse

g-^y^S-^n'Hlgil). (108)
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This structure is compatible with an action of G r p f) on the space of strings

g f r s ^ r s

Then we can look at the total string groupoid. It is the semi-direct product of the
two groupoids, the bosonic string groupoid and the reparametrization symmetry
groupoid. The elements are given by

_i (109)

ω = (ω\ ωr, x, g ) G ( J f s x / x R x Gr(^f)), (110)

where ωs respectively ωr are the two halves of the string, x the height of the
jump in the middle and g reflects the choice of the reparametrization. For two
elements ωu ω2 with g2ω\ = ωr

2 and S^π'^lgi]) = S^TT^fe]), g ι e Gτ(jf)n9

g2 € Grpf )m, we can define their product

(ω|, ωr

2, g2)J-(ωJ, ω[9 gi) = (ω|, g2ω\, gig2). (Ill)

The inverse is then given by

(ω\ ωr, g)-1 := ig-χr(ωτ), g~ιφsl g ' 1 ). (112)

After these preliminaries we are able to define the total string algebra. The
generating elements are measurable functions

F : Jfs x Jfr x R26 x R26 x Gr(Jf) -> C (113)

with
F(giω\ giω r, x, y, g2) continuous in ω s, ω r, 3;, (114)

holomorphic in g\ and antiholomorphic in g2 and compact support inj;. The
involution is then given by

F*(ω s, ω r, x, y, g) := F(r(ωr), r(ωs), -x, y9 g" 1 ) . (115)

The product of two such functions F and K is then defined by

F*K(ω\ωr,x,y,g)

= Σ I \ &\ (x - x),

, ggωr, 1 (x + x), y, g^S^J . (116)

But this product is a priori not associative.
For proving associativity one uses the invariance of the measure under

reparametrization. Now the measures μ and μLOr are not invariant but de-
fine line bundles over DiffV, see Sect. 4. These line bundles are equipped with
canonical connections given by the projective representations of Diff^ (the
quasi-invariance). The invariance of the tensor product measure dμ ® dμLOr can
be reformulated in geometric terms by the vanishing of the curvature on the ten-
sor product bundle. In that case we can pick up a constant section of the bundle.
Thereby we have canonical isomorphisms of translated measures. This is meant
when we speak of invariant measures. In Sect. 3 we sketched the computation of
the curvatures. The bosonic part gives for any dimension d of the target space
the central charge

Cparam = l . ( H 7 )
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The fermionic part has central charge

c A d = _26. (118)

We get a cancellation in d = 26, that is, an invariant measure. Then the product
of such functions F, K is associative. For a more detailed analysis, see [Wie].

There is a natural positive functional on that algebra given by

Q(F) := J
tfr x (Gr(Jf )0/DiffV) xR26

x F(r(ώ)9 <S, 0, y9 π-ι{[g]))dμLύr{ώ)dμπ{[g])dy. (119)

We define the pre-Hilbert space spanned by all elementary functions F with
ρ(FF*) < oo and scalar product

*)(F9K) :=ρ(FK*). (120)

Let Jf~tr be the Hubert space completion. Then the generating functions F with
ρ(FF*) < oo define in a canonical way bounded operators on ^siτ. By the very
definition we get a representation of the *-algebra generated by such elementary
functions as bounded operators. We take the completion with respect to the
operator norm of this representation algebra. This C*-algebra defines the total
string algebra denoted by J / .

7. The Representation Space of the String Algebra

For F an elementary function we get explicitly

Q(F*F*)= J
R26 χR26 x j fs χ ^ r χ D i f f w , χ (Gr(jf )/Diff W)

x dydxdμLθs(ώ)dμLθr(ώ)dμΓ(g)dμπ([g]) (121)

δ, gώ, - x, y9 gπ-ι(\g])J F(ώ9 gώ, - - x, y9 gπ~ι([g])) (122)

dydxdμLθs (ώ)dμLθr (ώ)dμ(g) (123)

R26 χ R26 χje>sχjfrχ Gr( jf)

&, gώ, - i x, y9 gj F(&9 gώ, ~Sί9y9 g J (124)

JJ dydxdμLo>s(ώ)dμLo>r(ώ)dμ(g) (125)

R26 χR26 χ J f s ()

) f ) (126)F(CO, ώ, ~5t9 y9 g) pfώ, ώ, ~St9 y9 g)

Denote 2F the Hubert space of dxdμL^dμj^^qadiΐQ integrable functions, A^ the
Hubert space of dμ-square integrable holomorphic functions on Gτ(Jίf). Then
the above equality shows
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Lemma 8. JϋT^ := 3F Θ Λ* ® L2(R26, dx).

Let F|?_iv denote the Radon-Nikodym derivative

dμLo = FR-NdμLθs 0 dμLθr 0 dx.

Multiplication with (FR-N) i gives a unitary isomorphism of #" to the Hubert
space #" of dμL0 -square integrable functions. We get a C*-algebra representation
of the bosonic string algebra on J* ® Λĵ  ® L2(R2 6, dx). The Hubert space #" is
just the familiar bosonic string Fock space. Let

φ(ω'n) (127)

be the Gaussian variable to μιQ of the classical string

col := (* ̂  ^ ( c o s n π ί ) ) n G N , ί G 1, ..., 26, (128)

where e1 is an orthonormal basis of R26. We can split the variable into an
annihilation and creation part

φ(ω'n) = ai_n+ai

n. (129)

One computes for them
(130)

which are the familiar commutation rules in string theory. It is often much more
comfortable to use the Fock space language, see below.

The fermionic Hubert space in string theory is defined by

(131)

see [Pr-Se, F-G-Z].
A theorem of Pickrell, [Pi], shows

An ^ A*Jf+ A (A*je.)* , (132)

where the isomorphism is given as in Remark (5.3.1).
Again it is often quite useful to work in the fermionic Fock space language.
As a final result we get a C*-algebra representation of the bosonic string

algebra on the Hubert space

JUTs;r : = & (g) (A*3V + Λ (A*34?-)*) 0 L 2 (R 2 6 , dx) : (133)

This can also be read as a direct integral of Hubert spaces

^sίr= /3?®Al(p)dp. (134)

R 26

The fermionic Hubert space has a natural Z-grading given by the ghost-
number. But this can naturally be traced back to a Z-grading of the underlying
string algebra. Let F be an elementary function vanishing outside Gr(jf )„. Then
we define

degF :=neZ. (135)

Going through the definitions we see that equipped with this grading the bosonic
string algebra is a Z-graded algebra. We can pass to the reminiscent Z2-grading.

Let
σ :34? -> 34?
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be given by

σ(Ln) : = - L _ n . (136)

Then define the map

* : Gτ(Jf) -> Grpf)
(137)

W^>*W := [σ{W)]L.

This is a smooth involution as it is easily shown. It induces a map

* : Γ ((DET*)n) -> Γ ((DET*Γn + 1) (138)

of sections. The Quillen metric defines a canonical fibre pairing

(DET*)n -> C(DET*Γ n + 1 (139)

To get the analogue of the Poincare Duality one would like to define the pairing

(ψ,φ) := / (φ,φ)dvol, (140)

where (,) denotes the Quillen pairing. Now at least formally we have [Pi]

dvol«(Φ w ΛσΦ_ n + i)« I j ΦnΛσΦ-n+λdμ. (141)

\Gr(Jf)o /

This suggests the following

Definition 9. We have a natural pairing of square integrable w-forms ψ and
(—n + l)-forms φ given by

The Poincare Duality also gives a natural definition for the generalized hodge-
*-operator.

Definition 10. For an rc-form ψ e A^ let *ψ e Λ^ be the Riesz-representant
given by the above pairing. This map defines uniquely a *-oρerator on Λ^ which
maps even forms onto odd and vice versa. It gives a natural involution on the
fermionic Hubert space.

Finally we get the

Definition 11. Let Γ : Jfstr -> Jf str be given by

Γ := IdgrQLi^w ® *. (143)

This operator defines a natural Z2-grading operator on the string Hubert space
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8. The Generalized String-Dirac-Operator

The symmetry group for bosonic strings is Diff^. Fixing a parametrization of S1

we can imbed
DiffV czDiffS1. (144)

It is much easier to work with the later group. This group also acts on the
space of classical strings. (Notice that the classical string can be discontinuous).
Therefore we have an action of DiffS1 on jfs x Jfr x R26 x R26 x Gr(^f). The
fourth factor consists of the constant strings. We can restrict the action on the
direct summands Jfs x tfr x R26 x Gr(Jf). This action leads canonically to an
infinitesimal action of DiffS1 on J* Θ Λ^9 to be precise on $F ® A^(p) with
p e R26. The natural Ansatz for the transversal elliptic operator then leads to the
BRST-operator in string theory, [F-G-Z]. In the following we fix p and simply
write PQA^ instead of & ® A^(p).

For the furhter investigation we use the Fock-space formulation of #" ® A^.
We define the fermionic creation and annihilation operators

b* := LnΛ n>0 exterior multiplication with Ln,

b(—n) := L_n A n<0 exterior multiplication with L_n,

and by the adjoint on A^ ^ A*3f A A*J4?!

b*(-ή):=(b(-n)f n > 0 ,

b(n) :=(b(n)f n < 0 .

These are bounded operators on A^. The b* -operators are called ghost-creation-
operators, the ft-operators ghost-annihilation-operators.

The subspace #Ό of finitely many excitations is then given by the algebraic
span of vectors

k I m

Ψ = Π a\ ® Λ Lsi Λ Λ L-n Λ Ω ( 1 4 7 )
i = l i = l i = l

with

Jk,/,m€N, v, €{l , . . . ,26},

n,,ri eN\{0}, S / € N .

It is a dense subspace of 3F ® A^. Finally we define some useful operators on

Definition 12.
flg:=^, (148)

where p G R26 was fixed above,

Σ Σ ) M A * , (149)

Nf := Id̂ r ® /" J ] n(b*(n)b(n) + b(-n)b*(-n))\ , (150)
VnGN /

/ (151)

are operators defined on #Ό.
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Lemma 13. Nb, Nf, Jί are essentially s.a. on J^o

Proof. #Ό is a dense set of analytical vectors for the operators. By Nelson's
analytical vector theorem [R-S, II X.39] this proves the lemma. D.

Jr has discrete spectrum and little combinatorics shows that (1 + Jί)~q for
q > 1 is of trace class.

The symmetry action on 3F leads to an infinitesimal action given by

26 \

Σ \
m n-m I Λ*

,meZ i=l /

with

a'na'm n<m,

The symmetry action on Λ^ leads to an action

ρ(Ln) := IdjiΓ ® I 2^ (m — ή) : b(m)b(m + ri) : ) (154)
\ mooZ

with ^
m> n
m < n.

The operators π(Ln) and ρ(Ln) are well defined on #Ό and θ(Ln) := π(Ln) + ρ(Ln)
defines a Lie-algebra representation on #Ό The BRST operator is then given by
the Lie-algebra coboundary with values in the Lie-algebra module # \

Definition 14.

d := Y π(Ln)b*(n) + Y (m - ft) : fc(m + ή)b* (m)b* (n) : (156)

is well defined on #Ό. Let rf be the adjoint on

J*J* : = ^ π(L_n)i(w) + J](m - w) : b(n)b(m)b*(m + n) : . (157)

Lemma 15. J maps #Ό ίo #Ό W^ geί rf = 0 on #Ό

Proo/ See [F-G-Z, Proposition 1.2] D

The most important result of this section is stated in

Theorem 16. The odd operator Q := d + d is essentially s.a. on J^o Let H := Q .
77zen (1 + H)~q for q> \ is of trace class.

The proof of this theorem takes nearly the rest of this section. Central for
the arguments is the simple observation

[JV,Q]=0 on #Ό (158)

Let ψ € #Ό with jVψ = nxp. Then, by the very definition, for m > n we have

amψ = b(m)ψ = b*(-m)φ = 0. (159)
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We get
26

π(Lm)ψ = -
m—n<m'<m ί= l

Qψ=Σ (π(Ln)b*(m) + π(L-m)b(m))ψ
\m\<n

+ Σ (mf -m)(: b(n + m')b*(m')b*(m)

—n<m'+m<2n, m'<m

+ b(m')b(m)b* (m + rri) :)ψ. (161)

We estimate

(162)

(163)

Lemma 17. Q is essentially s.a. on J^o

Proof Using [β, yΓ] = 0 this is shown as in Lemma (13). D

Analogously one shows that H is essentially s.a. on «̂ Ό
It remains to prove the trace class property of (1 + H)~q. We do this by

proving the following estimate.

Theorem 18. In the sense of quadratic forms one estimates

H > cγJί1 + c2 on J^o (164)

with c\ > 0.

Using this fundamental estimate we can finish the proof of the Theorem 16. We
get

0 < tr(l + H)~q < oo (165)

for q > \ by the estimation of tr(l + JT)~q < oo.
We are left with the proof of the fundamental estimate. Using the commuta-

tion rules

[π(Ln), π(Lm)] = (n - m)π{Ln+m) + — (n3 - n)δm^n (166)

on #Ό? one calculates H = Hi + Hi + H3 with

Hi := Σ 2π(L_m)π(Lw) + (π(L0))2

m>0

+ Σ ( m ~ n ) π (^w+«) '.b(—m)b (n) :

+ Σ 2mπ(Lo) (fo(—m)b*(—m) + b*(m)b(m))
m>0

+ X § (m3 - m) (b(-m)b* (-m) + b* (m)b(m)), (167)
m>0

if2 ; = ̂  fcπ(L_Π_m (&* (fe)fo* (n) + b(k)b(n)), (168)

n,fc
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H3 := ί Σ{m - n) : b(m + ή)b*(m)b*(n) + b(n)b(m)b*(m + n) Λ . (169)
m<n

For the next estimates let us first reduce to the case of the target space R of
the strings instead of R26. We use the same terminology where the sum over the
indices i = 1, ..., 26 is replaced by only the first summand. We simply write, an

instead of a\.
Let n, n' e N, k e (N)Λ, s € (Z)n' be ordered tuples, i.e. fc* < feI+i, s, < si+\,.,.

Define
n

ψks ;= 1 1 a-kt Θ (b(s\) + b (s\)) Λ Λ (b(sn') + & ( v ) ) Ώ , (170)

{k} := {/cl5 . . . , * „ } , {s} := {sl9 ..., sn,}. (172)

The ipk s build an orthogonal basis of eigenvectors of Jί to the eigenvalues
|k| + |sf.

Theorem 19 (Main Technical Lemma). On #Ό we can estimate for \ < a < | ,

w - ΛίπίL^π) : t(-w)ft (n) : +H2 < Nb(Nι

b^ + 2N})2 (173)

m ί/ze sense of quadratic forms.

Proof Let us look at the first term.

Σ(m-n) : π(Lm+n)b(-m)b* (n) : (174)
mφ—n

By orthogonality we get

(v>k,Sϊ

 flmflz-m : 6(—^ + w)δ*(w) W,s') 7̂  0

only if

a) {k} U pos{m, z -m} = {kf} U ρos{-m, m-z}, (176)

b) {s} U pos{w - z, -n} = {s'} U pos{n, z — n}, (177)

and further

c) pos{m, z — m} a {k'}, pos{—m, m — z} c {k}, (178)

d) pos{—n, n — z}cz {sf}, pos{n, z — n} c {s}, (179)

where pos{.} denotes the subset of positive integers of {.}. Let us take a closer
look at these restriction. Using z ^ O w e can conclude from a) and c),

{k}\{{k} Π {k'}} = pos{-m, m-z}, (180)

{k'}\{{k} Π {k'}} = pos{m, z-m}, (181)
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and analog from b) and d)

{s}\{{s}n{s'}} = pos{n-z,n}, (182)

{s'}\{{s} Π {s'}} = pos{z -n,n}. (183)

Especially for fixed k, k', s, s', we get the estimates

|m| | m - z | < | k | | k ' | , (184)

\z - 2n\ < |s| + |s'|. (185)

Analogously let us look at

Hi = \YJ{-z-ή): amaz-m : b* (-z - n)b* (n) + b(-z - n)b(n). (186)
n,m,z

Let us define the restrictions on n, m, z for

(V?k,s,: amaz-m : (fe*(-z - n)b*(n) + b(-z - n)h(n))v>k',s') (187)

to be nonzero.
If z = 0 we get

m € { k / } = {k}, π€{s} = {s/} (188)

and
-n : αmα_m : (b* (-n)b* (n) + &(-n)&(n)) = -2NfNb. (189)

If z φ 0 we can use the above analysis.

{k}\{{k} n {k'}} = pos{-m, m-z}, (190)

{k'}\{{k} n {k'}} = pos{m, z-m}, (191)

{s}\{{s} n {s'}} = pos{-n -z,n}, (192)

{s'}\{{s} n {s'}} = pos{z + n, -n}, (193)

for the first summand, analogously for the second summand the two last restric-
tions are replaced by

{s}\{{s} n {s'}} = pos{n + z, -n), (194)

{s'}\{{s} n {s'}} = pos{-z -n,n}, (195)

Again one estimates

|m| | m - z | < | k | | k ' | , (196)
| z - 2 n | < | s | + |s'|, (197)

for fixed k, k', s, s'.
A short look at the restrictions shows that the sum

(Vk . amaz-m(b*(-z - m)b*(n) + b(-z + n)b*(n) + b(-z - n)b(n))ψκ*) (198)

has at most one nonvanishing term. For that term we have at most 4 possible
choices for n, m, z. Collecting the results we get the estimate

(m ~ n)π(Lm+n)H-m)b*(n) + H2

mφ-n

||φ k > s || 2

|s'|) | | tp k > s | | | | W ; S ί | | . (199)
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Now we use that the operators commute with N, i.e.

|k| + |s| = |k'| + |s'|. (200)

One estimates

|s| + | s ' |< | | S | - | s ' | | + |sMsT

< (|s|« + |k|'-α) (|sT + Ik'l1-01) + |s|« |sΊ«. (201)

Plugging this into the above we get

|sΊ) | | V M I I \\ψv,A (202)

( 2 0 3 )

From this estimation one gets the Main Technical Lemma D

These estimates also work in the case of the target space R26. It was only for
simplifying the notations that we reduced the dimension.

Lemma 20. For \ < α < | ,

If Nj + 1 N2 -^Nf-4Nb(Nl~« + 2N«f)
2 (204)

is bounded from below.

Proof. The spectra of the operators are contained in N. One compares the highest
powers. D

From the lemmata we get the

Corollary 21. H > jN% + Nj + c, where c ίs a constant.

Proof. Obviously we have

^ 0 , (205)

m>0

2mπ(L0) {b(-m)b* (m)b(m)) > 0, (206)
m>0

#3>0. (207)

The rest follows from the lemmata. D

Using that the spectra are contained in N we get the finally proof of Theo-
rem 18. D

Thus we get a good candidate for the Dirac-operator on the ^
The total string algebra acts on the direct integral

(208)
R 26

For the C°(R26) factor of the algebra we have a canonical candidate of a
quantum algebra Dirac operator. Let d be the exterior derivative on the Hubert
space L2(R26, C226) of differential forms on R26, (d is a twisted Dirac operator).
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(L2(R2 6, C226), d + &*) defines an odd Fredholm module for C°(R26), see [Co 2].
Therefore we define the operator

Q : = [ Q(p)dp + *®(d+d*) (209)

R 26

on

This operator is defined on the dense subspace

#Ό Θ C^c ί(R2 6, C 2 ), (211)

where Cfpct denotes the subspace of smooth forms with compact support. The
estimates show that the vectors in this subspace are analytical vectors for Q. This
proves the essential s.a. of Q. The bosonic string algebra also acts on the later
Hubert space. The odd operator Q is a natural candidate for the Dirac operator
of the bosonic string algebra.

9. The Finite Summablc Fredholm Module

Let si be equipped with the Z2-grading as in Sect. 7. Looking at the generating
elements of si we can pick up a dense local subalgebra si^ This algebra consists
of the functions with compact support in y9 where we used the notation of (113).
By [Co2, App. 3] the iC-theory of Ĵ QO coincides with that of si. Using the
foregoing paragraph and the techniques developed in [Co2, 6], we take as the
Z2-graded Huberts space *-module of sioo,

JC str .— Jΐ str Φ ^ V Z i Z J

and the Dirac operator

(213)

Then define F = sign(Qm). We get a 26+-summable Fredholm module of J/QO
whose class is independent of m.
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