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Abstract. We use a renormalization group differential equation to rigorously
control the renormalization group flow in a hierarchical lattice Sine-Gordon field
theory in the Kosterlitz-Thouless phase.

Introduction

We propose to use renormalization group differential equations to rigorously
control the renormalization group flow in lattice field theories.

The differential equation approach to the renormalization group was first
proposed by Wilson [1,2]. Polchinski used it to give a short complete proof of
perturbative renormalizability of φ%-thGoτy with a continuous momentum space
cutoff [3]. Mitter and Ramadas extended his proof to the O(N)2 nonlinear σ-model
[4]. The first rigorous investigations were made by Brydges and Kennedy [5, 6],
who proved short time estimates using the method of Cauchy and Kowalewski,
and Felder [7], who constructed a family of fixed points for a hierarchical model in
d>2 dimensions.

In lattice renormalization group theory (for, e.g., scalar fields) the block spin
transformation is given by the fluctuation integral [8]

ζ\. (0.1)

We propose to analyse (0.1) using an auxiliary potential, which interpolates
between V and Feff by

> (0.2)

where 0 ̂  t ̂  1 is the interpolation parameter. The auxiliary potential satisfies the
quasi-linear parabolic partial differential equation,

vt=\ Σ nχ,y)(vψ{x)ψ(y)-vψ{x)vψ{y)), (0.3)
** x,yeΛ
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which is the renormalization group differential equation of Wilson and Polchinski,
with the initial condition F[φ,0] = F[φ]. The effective potential is recovered as
the boundary value V\_sίφ, 1] = Feff [</>].

We use techniques from the theory of parabolic partial differential equations to
prove estimates on the solutions of the renormalization group equation (0.3), when
Γ is diagonal and when the initial potential is local. This is the case in hierarchical
models. We also require that the potential V be periodic in ψ. Our estimates can be
used to control the renormalization group flow in this situation.

The estimates are valid for all (positive) times and prove the dissipative
character of the renormalization group equation. As a virtue of our approach we
do not need a small parameter, and we do not rely on the analyticity properties of
the effective potential. We believe that our method, when extended, applies to more
general lattice field theories.

As an application we choose the hierarchical cos(φ)2-model, which has been
investigated recently by Dimock [9]. A continuous version of the hierarchical
Coulomb gas model has been studied previously by Benfatto, Gallavotti, and
Nicolo [10]. For general facts on the hierarchical approximation we refer to their
work and to that of Gawedzki and Kupiainen [8,11,12].

Let us briefly recall that the full model is defined in terms of a massless
Gaussian measure1 dμβ{-Δ)-ι(φ) on K/1, where A denotes a two dimensional
toroidal lattice, and a potential V(φ) = 2z £ cos(φ(x)). This model has various

xeΛ

isomorphic representations including that as a classical lattice gas of charged
particles with Coulomb interaction (—A)'1 and an overall neutrality condition.
For a general discussion on this aspect see the review of Frόhlich and Spencer [13].
As was discovered first by Kosterlitz and Thouless [14], and rigorously proved by
Frohlich and Spencer [15], the model has for large β a phase, in which the charged
particles form dipoles, and in which correlations of fractional charges show a
powerlaw decay. The Kosterlitz-Thouless phase has to be contrasted with the
plasma phase for β and z small [16], in which (truncated) correlation functions
show exponential decay due to Debye screening. This other phase has been studied
by Brydges and Federbush [17,18]. The ultraviolet behavior of the massive Sine-
Gordon model for β<Sπ has been investigated by Frohlich [19], and Benfatto,
Gallavotti, Nicolo et al. [20-22].

Dimock's renormalization group analysis gives another proof that the
hierarchical cos(φ)2-model is in the Kosterlitz-Thouless phase for β sufficiently
large and z^e~β.ίle proves that, in this regime, the sequence of effective measures
converges exponentially fast towards a massless Gaussian measure in the infrared
limit. We can extend his result to a larger parameter range. We can show that, as a
consequence of an energy estimate from the theory of partial differential equations,
the renormalization group flow converges for j8>41n(L) and any z towards the
trivial fixed point V=0.2

Our estimates follow roughly the lines of Dimock. However, we use Lp-norms
instead of estimates on Fourier coefficients, and we estimate the effective potential
instead of the Boltzmann factor.
1 In two dimensions $em'φ)dμβ(-Λ)-ι(φ) = exp( --β £ k(x)C{x-y)k(y)) if £ A;(x) = 0and

\ 2 χ,yeΛ ) xeΛ

zero else. Here C(x)= \im(Cε(x)-Cε(0)\ where Cε{x-y) is the integral kernel of (-Δ+ε2)'1.

L ^ 2 is a fixed integer in the hierarchical model, and β > 4 ln(L) corresponds to β = 8π in the full
model
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1. The Hierarchical Model

We consider a Sine-Gordon field theory on a two dimensional finite lattice Λ(N)

= (Z/LNΈ)2 with periodic boundary conditions. L ^ 2 is a fixed integer. The
hierarchical model is defined in terms of a Gaussian measure dμβv(N) [φ(Λ°] on R/1**0

with covariance

v(N)(χ,y)= Σ r<MXx,y),
M = o (i.i)

Γ (x>y) = <*[L-" + Mx],[L-N + My]>

where [ ] denotes the integral part. It follows that

χ-] [L-My']} l '

v{N) mimicks the long distance behavior of ( — Ay1 up to a factor 2π/ln(L),
although it is not translation invariant. For details on the hierarchical approxi-
mation see [8, 12, 23], and references therein. The model has a local potential

F ( Λ r ) [><">] =2z Y cos(φiN)(x)), (1.3)
xeΛW

and the full measure is e~v(N)[φ(N)]dμβviN)[φ(N)] with two positive real parameters β
and z. The partition function is denoted by ZiN\

By iterative renormalization group transformation the theory on ΛiN\ defined
by (1.1) and (1.3), can be mapped to a sequence of effective theories on Λ{M)

= (Z/LMZ)2 with 0 ^ M ^ N -1, such that the partition function is preserved. The
effective theory has a Gaussian measure dμβv{M)\_φ{M)"], with v(M) defined analo-
gously to (1.1). The hierarchical covariance has the property that it splits as follows,

(1.4)

where C ^ " 1 ' ^ : ^ ^ ) - ^ ^ ^ ^ " 1 ^ denotes the block average operator

( C ( M - i , M ) / ) ( y ) = 1 ^ Σ fix),
V0l(Δ(X)) XeA(xf)

A(x') = {xeΛiM)\lL-1χ-] = x'}i (1.5)

and c * ( M ' M " υ denotes the transpose of c(M~UM\ We then define the effective
potential F ^ " 1 ^ ^ " 1 ^ by

r-V(M)[C*(M,M - ί)φ(M -
- γ{M ~ \)[φ{M - l)] __ J_̂

Se-v(Mmd
As a consequence of the convolution formula for Gaussian measures [24] Z ( M ~ 1 }

= Z ( M ) as promised. Ultimately we end up with a theory on the single point lattice
Λi0\ which consists of the Gaussian measure

dμβ{C0)) = (2πβ)' K " ^ ζ ( 0 ) 2 r f C ( 0 ) (1.7)

on R with covariance β and the effective potential F ( 0 )(£ ( 0 )). Since we also want to
integrate out this last degree of freedom we define an auxiliary quantity

Λ -κ(θ) ( φ (-i) + ζ(oj), /wou

e { }
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The generating function (1.8) depends of course on N. The infinite volume limit is
then constructed by taking JV-»oo in (1.8).

The hierarchical renormalization group is designed such that the effective
potentials remain local, i.e., sums of densities on all scales. Namely

Vm [> ( M )] = V Vm(φ(M\x)). (1.9)

The renormalization group transformation for the function V{M)(φ) of a single
variable then takes the form

In the following we will study this nonlinear transformation using techniques from
the theory of partial differential equations. The initial value is ViN)(φ) = 2zcos(φ).
We decompose the transformation (1.10) into three steps. We first perform the
Gaussian integral. For this purpose we define an auxiliary quantity t / ( M 1 }

which depends on an auxiliary parameter 0 ̂  t ̂  /?, by

(1.11)

It follows that U^'^iφ.t) satisfies the partial differential equation

UMiUφφ-U}) (1.12)

with initial condition U{M-i\φ,0)=V{M\φ).
We will use (1.12) to bound U^'^iφ.β). It is clear that (1.11) provides a

solution to (1.12), which is C°°(RxR+). A short argument, which we defer to
Appendix 1, proves that this solution is also unique. In the following section we
will prove a priori estimates on the solutions of (1.12), which will be valid for all
(positive) times.

In step two we scale JJ^'^φ.β) by the block volume L2, so obtaining the
unnormalized effective potential

Xφ,β). (1.13)

Finally we subtract a physically irrelevant normalization constant

F ( M " x\φ) = F * ( M " x\φ) - V*iM~ 1}(0). (1.14)

This completes the setup for the hierarchical renormalization group. The main
result of our paper which we will prove is the following theorem.

Theorem 1.1. For all β>0, z>0, and O^M^N the effective potential satisfies the
upper bounds

( 1 2 π \ 1 / 2 --B

I— j \V£M\φ)\2dφ) <L]/ϊz{L2e 2pf-M (j 1 5 )

and
1 2π _ / _LΛN~M

(1.16)

In particular, this implies that the effective potential vanishes in the infrared limit
N^oo for all β>4 ln(L) and z>0.
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2. A Priori Estimates for the Potential

The partial differential equation for U(φ, t) implies bounds on the Lp-norms of
U(φ, t) and all its (^-derivatives. We present this analysis in detail to convince the
reader of the power of our method.

All functions in this section will be C°°(RxIR+) and periodic in the first
variable φ->φ + 2πZ. U will also be real valued. We will use the notation

zπ o

!=(//),

co = SUp

f(Φ) = tTneinφ. (2.1)

The L2-norm of U refers to the first variable φ, and not to the second variable t. A
superscript ° will denote initial values at time t = 0. Cx and C2 will denote Sobolev
constants. Our first estimate is an energy bound.

Lemma2.1. Let U(φj) be a smooth solution of (1.12). Then the energy \\Uφ\\2

decreases strictly in t ̂  0, and it is bounded from above by

\\Uφ\\2^e'^\\U0

φ\\2. (2.2)

Proof Using (1.12) it follows that

dt

since the second term on the right-hand side is a total derivative. By Fourier
expansion \\Vφ\\2^ \\Uφφ\\2, and thus

jt\\Vφ\\lύ-\\Vφ\\2

2, (2.4)

which implies (2.2) by integration. •

As a consequence, all nonzero Fourier modes of U decay exponentially to zero
for asymptotically large times.

Lemma 2.2. The zero mode Uo decreases strictly in ί^O, and it is bounded from
below by

-4(1-0 II î lli ( 2 5 )
Proof Integrate (1.12) to obtain

dΐh: 1 1

which yields (2.5). •

The complete analysis of (1.12) includes upper bounds on the L2-norms of all
higher ^-derivatives of U. As a tool we note the following estimate, which we will
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prove in the appendix. There exists a Sobolev constant C2 such that

^ ^ | | ^ | | L / ^ | | ^ 3 . (2.7)

In the appendix we will prove that C 2 ^ π/j/3.

Lemma 2.3. Let \\Uφ\\2<\/3/π. Then \\Uφφ\\2 decreases strictly in ί^O, and it is
bounded from above by

^=(l-e'2)\\Uo

φ\\2. (2.8)

Proof. Using (1.12) we have

~ \\Vφφ\\l={

= -\\Uφφφ\\2

2-^2j(Uφφ)
3dφ. (2.9)

UΦΦΦΦ-2(UΦΦ)2-2UΦUΦΦΦ)

The second term on the right-hand side can be estimated with the interpolation
inequality (2.7). Thus using \\Uφφ\\2^\\Uφφφ\\2 it follows that

jt\\UφΦ\\U-{\-c2\\uφ\\2)\\υφφφ\\l

Z-(l-C2\\Uφ\\2)\\Uφφ\\2

2. (2.10)

The estimate (2.8) follows from Lemma 2.1 and the estimate (A 2.7). •

Since there exists a Sobolev constant C1? such that || L/̂ || ^ ̂  Cx | |C/^||2, the
estimate (2.8) implies exponential decay also for || Uφ\\ ̂  In the appendix we will
prove that C ^ / ϊ

Lemma 2.4. Let \\U°φ\\2<]/3/π,andlet | |C/^||2<V /3/(5π). Then \\Uφφφ\\2 decreases
strictly in ί^O, and it is bounded from above by

< p i f # | | Γ 7 II
2 = e \\Uφφφ\\2>

^c2j||c/^||2*^^(
2 o ]/3

Proof. As a consequence of (1.12),

~j7 IIUφφφ || 2
 = (Uφφφ9 Uφφφφφ — 6Uφ φ Uφφφ — 2 Uφ Uφφφφ)

-^ T Uφφ(Uφφφ)
2dφ. (2.12)

The second term on the right-hand side can be estimated using Holder's inequality
with p = 3 and q = f. Thus

4 X 2 ί \\UΦΦ\\3 \\Uφφφ\\2

3

^C 2 | |L/ Ψ | | 2 / 3 \\Uφφφ\\2

2l
3 \\Uφφ\\2

2'
3 \\Uφφφφ\\i'3

^C2\\Uφφ\\2\\Uφφφφ\\l (2.13)
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where we also used the interpolation inequality (2.7). Hence

ft\\uΦΦΦm-(i-5C2\\uΦ42)\\uφφφφ\\2

2

^ - ( l - 5 C 2 | | u ^ | | 2 ) | | l 7 ^ | | | , (2.14)

and (2.11) follows from Lemma 2.3. •

Finally we can prove that the L2-norms of all higher ^-derivatives are bounded
dnU

uniformly in ίe!R+. Let U(n)= -WTV

Lemma 2.5. For all neN\{0} there exist constants An<co, such that

uniformly in te]R+. In particular

sup \\U^\\2SAn,

supJ | t/ w |Lg-^A. + 1 . (2.16)

Proof. We have already proved (2.15) for n 6 {1, 2, 3}. In fact (2.15) can be proved to
hold without further assumptions on the initial data. The higher derivatives are
estimated by induction on n —l->n. From (1.12) it follows that

\W\\l

) i n - ι + 1 ) ) . (2.17)

The terms under the sum are estimated respectively by

| | [/ ( π ) | | 2 . (2.18)

We use the last estimate for 2 ^ / ^ n - 2 . Thus

il|i/wlli+{

n-2

,ι,
t

SUp ||t/(2)||oo J
ίeR+ 0

n-2 fn\ ft V/2/ί \l/2f f
+ Σ , h u p I I I / ( I + 1 ) L j ι ι ι /o .- ι + i ) i ι i^ u

1 = 2 \l/ R+ \0 / \0 (2.19)
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Suppose that there exist constants Ax with 1 ̂  /^ n — 1, such that (2.15) and (2.16)
hold. Equation (2.19) then implies the existence of An. Π

The estimates in this section immediately imply estimates on the single Fourier
modes.

3. The Kosterlitz-Thouless Phase

When the estimates of Sect. 2 are applied to the hierarchical renormalization
group transformation, the dissipative behavior of the partial differential Eq. (1.12)
for large times (i.e., large β) competes with the rescaling by the block volume. It
turns out that the transformation is contractive for β>4 ln(L). Thus the effective
potential flows into the trivial fixed point V=0 for β > 4 ln(L) in the infrared for all
values of z, and the model is asymptotically free. This is the Kosterlitz-Thouless
phase in the hierarchical model.

In Fig. 1, we display the infrared limit of the L2-norm of the first
φ-derivative of the effective potential on the lattice consisting of a single site. The
data are obtained by numerical integration of (1.12) [25]. We choose L=2. For
/?<41n(L) (plasma phase) the flow converges to nontrivial fixed points which
depend on β only. Recall that β remains unchanged under renormalization group
transformations.

Lemma 3.1. For

and thus

(3.1)

(3.2)

8 . 0

6.0 -

4.0 -

2.0

Fig.1
o.o

0 . 0 1.0 2.0 3 . 0 4.0
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Proof. From (1.14), (1.13), (1.11), and the energy estimate (2.2) it follows that

%M\2=L2eϊβ \\VM\\2, (3.3)

which proves (3.1). •

Lemma3.2. For allO^M^N—1 the modulus of the zero mode |F0

( M ) | is bounded
from above by

\V^2πL2e~^β\\V^M+1)\\2. (3.4)

For all O^M^N—1 the L^-norm of F ( M ) is bounded from above by

Ί I 2 (3-5)

Proof As a consequence of the subtraction (1.14)

^ L2 2 π f*

zπ o \o
-Lβ

Note that we do not use that V^=0. With the Sobolev estimate (A2.1) we
conclude that

where we have used the estimates (3.1) and (3.4). •

In the analysis of correlation functions [25, 26] one also needs an iterated
estimate for HK^0!^.

Lemma3.5. Let ]8>41n(L), and let z<|/3/(2π2). For all 0^M^N\\V^\\2 is
bounded from above by

| |F ( M ) | | <]/lze*~^~ 2 (L2e~^β)N~M. (3.8)

Proof From Lemma 2.3 we infer the bound

ll^-^llagLV^^ 1 1^ 1 ' 2 ll^lla. (3.9)

Using the estimate

4=- Σ I I ^ I L ^ - T ^ ί 1 - ^ 2 ^ " ^ ) " 1 II^IL (3 1 0)

together with the initial condition

Γ ^ = ]/2z, (3.11)

the estimate (3.8) follows by iteration. •

Lemma 3.3 implies an immediate estimate on IIJ^IL- This completes the
discussion of the effective potential.
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The above estimates can be used to control the long distance decay of
correlation functions. This has been done in [9, 26]. The auxiliary effective
potential can also be continuously rescaled while integrating the renormalization
group differential equation. This yields an extra linear term in the equation.
Stationary solutions and solutions periodic in time with period β are then fixed
points of the transformation. The stationary solutions can be completely classified
[25].

Work on the full Sine-Gordon model in the Kosterlitz-Thouless phase using
the renormalization group differential equation is in progress. As in the
hierarchical case the main problem is to control the L2-norms of the effective
potential and its first three φ-derivatives.

It remains an open question if similar estimates can be used to control models
with unbounded potentials.

Appendix

ί. Uniqueness of the Solution. Let U{1) and Ui2) denote two solutions of
Ut = i(Uφφ-Uϊ) with l/(1)(0,O)=l/(2)(0,O). Then W=U(1)-U{2) satisfies the
differential equation

φ φ φ (Al.l)

with F = U$) + U<£) and the initial condition W(φ,0) = 0. It follows that

and thus W=0.

2. Estimates on Sobolev Constants. The Sobolev constant C± in the estimate

llt/φlL^cjι/^112 (All)

can be estimated as follows,

nεZ\{0} |Π|

/ 1 \l/2 ^

L 3 I λ n \Uφn\
\neZ\{0} n ) \neZ\{0} J

(A2.2)

Thus C1S —j=- Next we bound the Sobolev constant C2 in the interpolation

estimate

^ l l l / ^ l l l / 3 . ( A 2 . 3 )

By Young's theorem

ne

Σ |ntfJ3/2V/3. (A2.4)
Z\{0} J
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Using Holder's inequality with p = 4/3 and q = 4 it follows that

Σ (M3/2 lift) (lift)1'2 * ( Σ n2fίft4'3y/V Σ ftftΎ'4- (A2.5)
neZ\{0} \neZ\{0} / \neZ\{0} /

The first factor is estimated using Holder's inequality with p = 3 and q = 3/2,

nΣ{o}\nΓ2/3(N2+2/3|t7:n^(nΣ{o]^)1/3(πeΣo}«Ί^I2)2/3. (A2.6)

Thus putting (A2.4), (A2.5), and (A2.6) together

Il^φll3^l Σ Zϊj Σ \Un\ ) I Σ n \Un\
\neZ\{0} n J \/i6Z\{0} / \«eZ\{0} /

Hence C i / 3 ^ ( y

>φφ\\l

r2\l/6

\\υφφ\\ψ. (A2.7)
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