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Abstract. We investigate the Kahler structure arising in n-component, N = 2
supersymmetric quantum mechanics. We define L2-cohomology groups of a
modified 3-operator and relate them to the corresponding spaces of harmonic
forms. We prove that the cohomology is concentrated in the middle dimension,
and is isomorphic to the direct sum of the local rings of the singularities of the
superpotential. In the physics language, this means that the number of ground
states is equal to the absolute value of the index of the supercharge, and each
ground state contains exactly n fermions.

I. Introduction

N = 2 supersymmetric Wess-Zumino models in one and two dimensions have
been extensively studied over the past few years. These quantum field theory models
are particularly rich in structure, and serve as a nontrivial example in studying
the phenomenon of supersymmetry breaking [CG1,2,GIM], constructive field
theory [JLW,JL1], as well as string theory [GSW]. Wess-Zumino models are
far from being exactly solvable. Yet, N = 2 supersymmetry allows for closed form
computations of various numerical characteristics of the models. The simplest of
these characteristics is the index of the supersymmetry generator, the supercharge.
The supercharge plays a similar role and has a similar structure as the Dirac
operator in differential geometry. Its index is a topological invariant which captures
certain qualitative features of the model, and is independent of its details (seecg.,
Sect. II of [JL2] for a precise formulation of this statement). It is known
[JLL] that in one-component N = 2 Wess-Zumino quantum mechanics with a
polynomial superpotential, the number of ground states is equal to the index of
the supercharge. It was also proven that this number is equal to the algebraic
degree of the superpotential minus one.
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In a recent work [CGP], Cecotti, Girardello and Pasquinucci proposed a new
approach to the N = 2 Wess-Zumino quantum mechanics with many components.
They suggested studying the L2-cohomology of a certain complex which arises
naturally in the theory. Motivated by their approach, and using some of their
ideas, we establish a number of theorems on cohomology groups arising as a
generalization of the cohomology of [CGP]. The complex in question is a
perturbation of the Dolbeault complex with coboundary given by d + /, where /
is a holomorphic one-form on (Cπ. We prove a Hodge type theorem for the
square-integrable cohomologies of this operator, and relate them to the singularity
structure of /. As a consequence of our results, we obtain the vanishing theorem
in N = 2 Wess-Zumino quantum mechanics: the number of ground states of the
system is equal to the absolute value of the index of the supercharge.

It has been recognized recently [LVW] that N = 2 Wess-Zumino models are
closely related to the singularity theory of holomorphic maps. The relationship is
roughly of the same type as the relationship between nonlinear supersymmetric
σ-models and differential geometry. The ground states of the σ-model quantum
mechanics are just harmonic forms on the target manifold and can be studied via
de Rham cohomology. We show that the same is true in N = 2 Wess-Zumino
quantum mechanics with the Koszul complex of the singularity replacing the
de Rham complex of the target manifold.

The paper is organized as follows. In Sect. II we study the smooth cohomologies
of the perturbed δ-operator on an arbitrary Stein manifold X. In Sect. Ill we
introduce the L2-cohomology of this operator on I = C" and formulate our main
results: the Hodge-type theorem, the vanishing theorem, and the index theorem.
These theorems are proven in Sects. IV and V. In Sect. VI, we connect our results
with the theory of residues of meromorphic n-forms. Section VII has an informal,
nonrigorous character: here we formulate some conjectures on various general-
izations of our results.

II. Smooth Cohomologies

In this section we study the smooth cohomologies of a perturbed ^-operator on
a Stein space X (see [GR] for the definition of a Stein space). Later in this paper
will study the ίΛcohomologies of X = <Cn (the reader who feels uncomfortable with
Stein spaces may make this substitution already in this section), and relate them
to the smooth cohomologies.

Let X be a Stein space of (complex) dimension n, and let Ap'q(X) denote the
space of smooth (p, g)-forms on X. We set

A\X) = 0 Λ**pO, Λ ( I ) = 0 Λ k ( I ) . (II. 1)
p+q=k k=0

Let d and d be the standard Dolbeault coboundary operators (we will be primarily
concerned with the operator d). Recall [GR] that the Dolbeault cohomologies
^f^q(X) of a Stein space are very simple, namely

if ί ^ l , ( ι ι 2 )

P(X\ if 0 = 0,
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where ΩP(X) is the space of holomorphic p-forms on X.
We are concerned with the perturbed Dolbeault operator df defined by

df:=d+fΛ. (II.3)

Here feΩ1(X) is a holomorphic one-form which acts on A(X) by exterior
multiplication. Since

5) = 0, (Π.4)

the following complex arises

Let ^fk

f(X) denote the cohomology groups of this complex.
We will relate the cohomology of (II.5) to the cohomology of the following

complex (the Koszul complex):

We denote the cohomology groups of this complex by Jfk

f(X).
We should remark at this point that the cohomology of (II. 5) arises as thetotal

cohomology of a double complex whose vertical coboundary operator is d and
whose horizontal coboundary operator is / Λ . The results of this section, which
we prove by rather elementary means, can be proven by studying the spectral
sequences associated with this double complex (we thank Joe Harris for a discussion
on this point). In this spectral sequence, the cohomology of (II.6) arises as Έf'°.

Proposition ILL With the above notation,

^*~ί°> if k > n > mΊ,
π s = \ ~rk if u < „ ( 1 1 J )

Proof Consider first 1 ̂  k ̂  n. As the cochains in (II.6) are holomorphic forms,
JΓy is naturally embedded in J f k

f, and what remains to be proven is that every
δ/-cohomology class contains a holomorphic representative. Let ωk be a δ^-closed
fe-form. Writing ωk= £ ωpq, we obtain the following conditions:

ωP.*-P = 0» l ^ P ^ f e - 1 , (Π.9)

and

dωOfk = 0. (11.10)

We claim that there exist (k - l)-forms ηPΛ such that

<%* = < W - i , (11.11)

and

ω M - p = % , * - , - ! +fΛηp_ uk_p, l^p^k-1. (11.12)

Indeed, ^0,fc-i exists by (II.2). Given f/p_lk_p, p^k — 2, such that (11.12) holds,
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we observe that

as a consequence of (II.9). Thus by (II.2) there is ^ . p - ! satisfying (11.12) with p
replaced by p + 1. If p = k — 1, then Eq. (II.9) reads dωkt0 + / Λ ω f c _ l s l = 0, or by
means of (11.12), d(ωkt0 —/ Λ ηk_ 1>0) = 0. As a consequence of (II.2), ωκo — f A ηk_ 1>0

is a holomorphic fc-form. Adding up (11.11) and (11.12) we find that ωk is
βy-cohomologous to ωkf0 — / Λ ηk-j,θ9 and thus ωfc>0 — / Λ ̂ fc_i>0 'is the desired
holomorphic representative of the δj-cohomology class of ωk.

The remaining cases k = 0 and fc> n can be analyzed in the same fashion. •

Let us now assume that / has a finite number of zeros,

(z) = 0} = {zu...,zr}. (11.13)

Let Θz denote the ring of germs of functions holomorphic in the vicinity of z. By
[/L w e denote the ideal in Gz generated by the components of/. The corresponding
quotient space R{:= # z / [ / ] z is called the local ring of / at z [AGV] and it is
independent of the choice of coordinates near z.

Theorem II.2. Let Zf be finite. Then

if k <? n

(11.14)

as isomorphisms of vector spaces.

Proof. Clearly, Jf ° ^ 0 . L e t l ^ f c ^ n — 1, w > 1. Since the dimension of Zf is zero,
ΩP(X) ^ Ωp(X\Zf). Also, by the extension of cohomology classes theorem of
Scheja [Sch],

^ 4 ^ ( I ) = °' ί f q = U VUn~X (Π15)

We can thus restrict attention to the cohomologies of the submanifold X\Zf.
Choosing a hermitian structure on X, we can find a smooth vector field v of type
(1,0) such that

fv + Όf=I on A{X\Zf), (11.16)

where v acts on Λ (X\Zf) by interior multiplication (v has, in general, singularities
on Zf). We note that v is not a homotopy for (II.6) as it does not map holomorphic
forms into holomorphic forms. Now, if ωk0 is a holomorphic /Λ-closed fe-form,
then

dωk,o = / Λ ωk,o = 0. (Π.17)

As a consequence of (11.16), ωki0 = / Λ (vwk0). This, however, does not solve our
problem yet, as ω f c_ 1 > 0:= vwk0 does not have to be holomorphic. From (11.17) we
conclude, however, that / Λ dωk-ίf0 = 0, and so δω f c_1 > 0 + / Λ ωfc_2,i = 0 , where
ωk-2,i:= ~v^ωk-i,o- Continuing this process, we obtain a sequence of (fe—1)-
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forms ωPfk-p-x, p = 0 , 1 , . . . , k — 1, such that

fl)ri,t-, = 0, if P > 0 , (11.18)

and

δωo.fc-^0, (11.19)

(explicitly, we set ω p _ 1 > f c _ p := - Λ M _ r l and observe that / Λ dωp-ίtk-p = 0).
We now use (11.15) to write

, , . (Π.20)

Using this and (11.18), we construct recursively a sequence of forms 77M_P_2 such
that

rip-i,k-p-u ( π 2 1 )

if /? = 1,2,...,k - 2. Using (11.21) for p = k-2 we see that d(ω f c_ l t 0 - / Λ ηk-2,o) = Q>
and thus, by (11.15), ω f c_ 1 > 0— / Λ ^ fc-2,o i s a holomorphic (fe— l)-form. Since by
construction

ω k s 0 = / Λ (ωk.uo - f A ηk-2,o), (Π.22)

ωk>0 is cohomologous to zero. Therefore, Jf * = 0, for k ̂  n — 1.
Consider now fe = n, i.e.,

jΓn

f = Ωn/fAΩn-1. (11.23)

Choosing local coordinates near each z, we observe first that restriction of forms
defines a mapping i of Xn

f into (J) R{. We claim that / is an isomorphism of
ZjβZf

vector spaces. First, we verify that i is surjective. This can be formulated as the
following problem: given r n-forms hί0, j = 1,...,r, where hJ

n0 is holomorphic in
a neighborhood Uj oϊzp find a global holomorphic n-form hn0 such that near each

Ko-hi.o=f*Ci-i.o> j=h...,r, (IL24)

with some (n — l)-forms ζί-ltθ9 holomorphic near z y We proceed in two steps. In
the first step we construct hnθ9 while in the second step we construct Cπ_i,o

Step 1. For each j choose a small disk Dj a Uj and a smooth function χ,. such that
supp Xj ci Uj and

30=1, on Dj. (11.25)

Consider the following, globally defined smooth form:

o- (Π.26)
j

In general, ωn0 is not holomorphic. But, as a consequence of (11.25),

dωHfO = 0, on [)Dj. (11.27)
j

Furthermore, from (11.16),

θ ) n _ u = 0 5 (11.28)
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with ω π _ l f l : = —vdωΛt0. Observe that, owing to (11.27), ωn-ίΛ is defined on the
whole space X (even though v is singular on Zj ) and

ωπ_ ^ = 0 , on [JDj. (11.29)
j

Now, since / Λ dωn- l t l = 0, we infer that

^ - U + Z A ^ ^ O , (11.30)

with some globally defined ω w _ 2 , 2 which vanishes on (J Dj. Continuing this process
j

we obtain a sequence of rc-forms ωp > M_p such that

δωo > π = 0, (11.32)

and

ωp,M_p = 0, on U ^ ,

Using (II.2) we construct inductively a sequence of (n — l)-forms ηPtn-p-ι such that

<%« = <tyofn-i> ( π 3 3 )

and

a>p,n-p = dnP,n-p-l+f*np-Ln-p> 1 ^ P ̂  H - 1. (Π.34)

Then from (11.28) we infer that δ ( ω n 0 — /Λfyπ_ x 0 ) = 0, and thus

^ - 1 , o , (11.35)

with /ιrt>0 globally holomorphic. This concludes Step 1 of our construction. Observe
that (IΪ.35) is almost (11.24), up to the fact that ηn-lf0 is not holomorphic on Dj.
In Step 2, we will show that it is possible to modify ηn-li0 locally in such a way
that the resulting form is holomorphic on Dj and that it still satisfies (11.35).

Step 2. By (11.27), we have / Λ dηn_ 1 § 0 = 0, on 3)j. Since Dj itself is a Stein space,
we have by Scheja's theorem:

i f P = n~2> 4 ^ 1 , m ^

WsflVAWλ if β = α ( I L 3 6 )

Repeating the above procedure with X replaced by Dy, we construct a sequence

of (n— l)-forms ηj

Ptn-P-i s u c h that

i p ^ - l i l l - p = 0, l ^ p ^ w - 1 , (11.37)

di?<Ui=0, (11.38)

and

r}J»-uo = 1n-i,o> on Dj9 (11.39)

and a sequence of (n — 2)-forms τ ^ π _ p _ 2 defined on D^ such that

< « - i = ^ , M _ 2 , (11.40)
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and

^ , r l = J ί ; _ r 2 + / Λ i ; . 1 ( Λ . p . 1 ) ISPSΠ-2. (11.41)

Since we also have

% U o - / Λ ^ - 2 , o ) = 0, (11.42)

we infer that

t i ^ f i - u + Z A i i - ^ on DJ\{ZJ}9 (11.43)

with Cπ-i.o holomorphic. Substituting (11.43) into (11.35), we find that

ωM,o = ̂ ,o+/ Λ Cn-2,o> on Dp (11.44)

which is (11.24).
Now we show that i is injective. This amounts to proving the following: given

ωeΩn and (n - Informs £/_ x, holomorphic in a neighborhood Uj of zj9j = 1,..., r,
and such that

ω-/Λ#-i, j = l,...,r, (11.45)

near z ; , find a global holomorphic (n — l)-form Cw-i such that

(α) ίn-i-Q~i=f*ti-2,o, near zj9 (11.46)

with some (n — 2)-forms C«-2,o> holomorphic near zy,

(β) ω=fAζn_u globally on X (11.47)

Observe that, in fact, (β) is a consequence of (11.45, 46) and the extension theorem
for holomorphic forms. We prove (oc). Proceeding as in Step 1 of the proof of
surjectivity of Ϊ, we set

ίn-uo = ΣXjti-i> (11.48)
j

and use it to construct a globally holomorphic form ζn_x and a smooth form
ηn-2$ such that

C W -I~C M -I,O = / A ^ _ 2 , O . (H.49)

Then we proceed as in Step 2 of the proof of surjectivity to show that

Cn-2,0 = in'-2,o + / Λ τ«-3,o> near zj9 (11.50)

with Cπ-2,o holomorphic near Zj. This proves (11.46). •

Recall [AGV] that the dimension of R{, known also as the Milnor number,
coincides with the local degree, deg2 /, of / at z,

dimK{ = deg2/. (11.51)

Consequently,

dimjf} = dimjf}= £ deg2./ = deg/, (11.52)
zjeZf J

where deg / is the (global) degree of /.
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III. ZΛCohomologies

n

From now on we assume that X = <Ln. As before, let /(z)= £ fj(z)dzj be a

holomorphic one-from. We say that / is elliptic if all //s are polynomials and if
the following condition is satisfied: Write

I/(*)I2:= Σ l/;(z)l2 (πi i)

Then:

(i) l/(*)|->oo, as |z |->oo. (III.2)

(ii) For any ε > 0, there is a constant C such that

for all ze<Ln and 7, /c = 1,2,..., n. As a consequence of (III.2), Zf, the set of zeros
of /, is compact and thus consists of finitely many points, Zf = {zl9... ,zr}.

Let df:= d_ + f A be the coboundary operator on Λ(CΠ) defined in Sect. II, and
let df:= d + / Λ be its complex conjugate. In coordinates, they can be written as

df= tidjdzjΛ+fjdzjΛ), (III.4)

df=£ (djdzj A + fjdzj A ). (III.5)

Let *: Λ p ' g ^ Λπ"p'w~^ be the Hodge star operator, and let (ω,η):= J*ω Λ η be
the standard inne^ product defined on the space Λ(0) of compactly supported
smooth forms. By dj and dj we denote the formal adjoints with respect to ( , ) of
df and df9 respectively. We introduce the following notation

bf:=dzjA,

bf:=dzjA,

as operators on Λ(0). By bj and bj we denote the adjoints of bf and bf, respectively.
The operators bf, bf,bj and bj obey the following algebra:

{bJtbk} = {bj,bk} = {bpbt} = {bj,bi} = {bj,b*k} =

Using this notation we have

( Π Π l )

δ*f=-Z(bjdj-bjfj). (111.13)
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We define the corresponding Laplace operators

• / : = (df + d})2 = {df, d}}9 (111.14)

and

Π/:= (df + d})2 = {df9 d}}9 (111.15)

and we find that, in coordinates,

Πf=-Δ + I/I2 + Σ(bJbkJJk + bJbkdJjl (ΠI.16)

and

Πf=-Δ + I/I2 + Σ(bJbΛfj + bfbkδjfk), (111.17)

where Δ:= —

If / is exact, i.e., / = dV, with a holomorphic polynomial F:<CΠ->C, then Πy
coincides with the Hamiltonian of the N = 2 supersymmetric quantum mechanics.
The function V is called a superpotential. An interesting feature of this situation
is that \Z\dv = Odv- Furthermore, defining df:=df + df and

Δf:=(df + d})2 = {df,d}}, (111.18)

and observing that

(this holds for arbitrary /) we obtain

2 D a κ = 2Daκ = 4>κ (ΠL20)

Relations (111.20) are familiar from the theory of Kahler manifolds [W,GH]
and thus the N = 2 supersymmetric quantum mechanics with a superpotential V
may serve as a model of a nontrivial Kahler structure on <C".

Now let Λ2(<CW) be the Hubert space of square-integrable forms on <CW defined
as the completion of Λ(0)(Cn) in ( , •). We also let Λ%q(<En) denote the Hubert space
of square-integrable (p, g)-forms on C" and likewise we let Ak

2((Cn) denote the
Hubert space of square-integrable fc-forms on C . Then, the operators df9 df and
their adjoints extend to densely defined, closed operators on Λ2.

We consider the L2-cohomology of the operator df:

Λ0 % AlX...XA2n-lXA2n_

Let J^k

2j, fc = 0,l,...,2n denote the cohomology groups of the above complex
and let Hk

f, k = 0, 1,..., 2n denote the spaces of harmonic fe-forms,

Hk

f:= {ωe Λ|: Πfω = 0}. (111.22)

Our first result is an analog of Hodge's theorem.

Theorem III.l. (Hodge Theorem) Let f be elliptic. Then:

(i) dim//* < oo.
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(ii) There is a self-adjoint compact operator Gf on A2 such that

A\ = Hkf®dfφ}Gf Ak

2)®d%dfGf Ak

2). (111.22)

(iii) There is a canonical isomorphism,

ypk rv/ <ι/pk /ΎTT ΊΊ\
tfv 2 f = ^ Γ \LLL.£JJ

(iv) (Poincare Duality) There is an isomorphism,

i/pk r+*s T/pΊn — k K Γ\ ί v% 1 /ΎTT ΊA\
t7V 2 f = **l> 2 f 9 ^ 5 5 * * * ? ^IJ.J. ZΛΐJ

As in the standard differential geometric context (see e.g., [W]), part (iii) of this
theorem follows from part (ii). Part (iv) follows from part (iii), the fact that the
Hodge star operator * maps antiunitarily Ak

2 onto A\n~k, and that

Parts (i) and (ii) of the theorem are proven in Sect. IV. Observe that, even though
<CW is not compact, the spaces of Π/-harmonic fe-forms on <C" are finite-dimensional.
This is a consequence of the ellipticity of/which "compactifϊes" <CW at infinity.

Our second result gives a precise characterization of the cohomology groups

Theorem III.2. (Vanishing Theorem) Let f be elliptic. Then

-1 r , ΦΆ' (111.26)
Λ Ωn , // k = n.

The above results can be interpreted in terms of index theory. Write A2 =
Λ 2

+ φΛ2, where A2 and Λ^ are the spaces of square-integrable forms of even
and odd degree, respectively. This defines a Z2-grading on Λ2". The operator

Qf:=df + d} (111.27)

is odd under this grading and thus can be written as

0 Qf

with Qf: A* ^ A} and (β+) = QJ.

Theorem III.3. (Index Theorem) The operator Qf is Fredholm. Furthermore,

ί(QΪ) = (-!)" dim H}, (111.29)

where i(Qf) denotes the index of Qf .

We prove this theorem in Sect. IV.
In AT = 2 supersymmetric quantum mechanics (i.e., f = dV) the space of

harmonic forms coincides with the space of ground states of the system. The degree
of a form becomes the number of fermions of the corresponding state and the set
of zeros of / becomes the critical set, cr(F), of V. Translating Theorem III.2 into
the physics language and using (11.14) we obtain

Theorem IIL4. Let V be such that dV is elliptic. Then:
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(i) Every ground state of the system contains nfermions.
(ii) The number of ground states is £ dimRd

z

v.
zjecr(V) '

Note that the first statement of this theorem is true only if we use the
representation of the fermionic operators defined above. Performing a Bogolubov
transformation on the operators bf,bf,bj9bj changes the structure of the ground
states (we thank Konrad Osterwalder for this remark). However, the number of
ground states is invariant under such a transformation, as it leads to a unitarily
equivalent Hamiltonian.

IV. Hodge Theory

In this section we prove Theorems III.l and III.3. It will be convenient to use the
following notation. For a smooth (p, q)-ϊoτm

P *I * O i

we set

T Σ ω*β(z)dz* Λ ' * * Λ dz*P ΛdzβίΛ Λ dzβq

Λ ' * * Λ dz*P ΛdzβίΛ — Λ dzβq (IV. 1

αv.2)

For φ) = ΣωM(z) we define |ω(z)|:= \ ΣK,(z) |

Lemma IV.l. Let /eί2 1 (C π ) be elliptic. Then:

(i) The operator Π/ has ayompact resolvent.
(ii) Every eigenvector ω 0/D/ I S smooth. Moreover, for any a>0 there is a constant
C such that

Proof, (i) As a consequence of (III.2) and Theorem XIII.67 in [RS], the operator
H:= -A + I/I 2 has a compact resolvent. Since \\bf \\ = \\bf \\ = \\bj\\ = \\bj\\ = 1, it
follows from (III. 16) and (III.3) that for any ε > 0 there is a constant C such that
for all ωeD(H\

(ω, Γg bfbkd~Γk + ^δfe^/Πω'l S ε(ω, Hω) + C || ω \\2. (IV.4)

As a consequence of Theorem XIII.68 in [RS], Π/ has a compact resolvent,
(ii) Now let ω be an eigenvector of Π/ (as a consequence of (i), the spectrum of
Π/ is purely discrete). Since Π/ is an elliptic differential operator, it follows from
the elliptic regularity theorem (see e.g., [ H I ] ) that ω is smooth. To prove (IV.3),
we follow closely the method of the proof of Theorem XIII.70 in [RS]. Set

-bfbkdkfj(z)) + \f(z)\2 + C,
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where the constant C has been chosen in such a way that for all ze<Cn,

W(z)^0, (IV.6)

as operators on C" (this is possible since / is elliptic). We now introduce real
coordinates in <Cn, Zj = x2j-1 + ix2j9 y = 1,2,..., 2n and set

Consider the family of operators Hk

f(a):= Hk

0(a) + W(z)9 αeR, where

Hk

0(a):= (ίd/dxk - id)2 - X d2/dxj9 (IV.8)

for fc= l,2,...,2n. Then the semigroup exp{ — tHk

0(a)}, ί > 0 , has a pointwise
positive kernel

exp {-tfl*(α)}(x,y) = (4πtΓ"exp {axk - \x -y\2/At - ayk}9

2". Consequently, for ηe Λ2 and almost all ze<[?,

|(exp {- tHk

0(a)}η)(z)\ S Cβff ||41|, (IV.IO)

with Cβ>ί independent of z. We now let Wm(z):= exp {-\z\2/m} W(z\ m = 1,2,...,
where W(z) is defined by (IV.5) Then | Wm(z)| ^ Cm, uniformly in z, and as operators
in<Cn,

0£W1(z)£W2(z)£.. ύ Wm(z)£'..9 (IV.ll)

and

Wm(z)-+W(z), m - 0 0 . (IV.12)

Each Wm(z) defines a bounded positive operator on Λ2 and Hk

0(a) + Wm tends to
HQ(O) + W in the strong resolvent sense. Therefore, by Trotter's theorem,

exp {-*#>(*)} = s-lim s-lim
m-» 00 /—• 00

and since 0 ̂  exp {-ίH^m//} ^ / (as operators on C") this and (IV.IO) imply that

|(exp{-tHk

f(a)}η)(z)\ g CaΛ\\η\\. (IV.13)

Therefore, if ω is an eigenvector of Π/, then ^ = exp(αxk)ω is an eigenvector of
Hk(a) and (IV. 13) implies that \η(z)\ ̂  C, uniformly in z. This means that for a > 0,

Repeating this argument for all k = 1,2,..., In we obtain (IV.3). •

The prooJΌf parts (i) and (ii) of Theorem III.l is a consequence of Lemma III.l.
Since (κ2 + D / ) " 1 is compact for κ2 > 0, this implies that dimker Π/ < oo, which
proves (i). To prove (ii), we set

fO, on Hk

p

ΐ / ) " 1 , on (ffj ) 1,

and use the spectral theorem for compact operators.
Finally, let us prove Theorem III.3. The first statement is a standard consequence
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of Lemma IV. 1 (i) (see e.g., [JL2]). The second statement follows from the formula

*(β/)=Σ(- lHdimf ί } , (IV.15)
7 = 0

and Theorem III.2.

V. Vanishing Theorem

In this section we prove Theorem III.2. The proof uses a technique analogous to
the one employed in Sect. II. As compared to Sect. II, an additional difficulty
arises, namely the square integrability of the cohomology classes.

As a consequence of Poincare duality, we can restrict attention to n rg k g 2n.
Let k > n and let ωkeHk

f. We write

ωk= Σ « W ω M e Λ ^ (V.I)
p + q = k

Condition dfωk = 0 yields the following equations:

&*-„,„ = 0, (V.2)

dω ί α_ p + /Λωp_ l i f c_p+ 1 = 0, k-n<p^n, (V.3)

and

/Λfi)B, t-, = 0. (V.4)

Lemma V.I. Let ωe λp " be d-closed, and let

\ω(z)\^C(l + \z\f, (V.5)

with a constant C and a positive integer N. Then:

(i) Ifq^l, then there is ηe Ap'q such that ω = dη and

\η(z)\^C(l + \z\)N+\ (V.6)

(ii) Ifq = O, then ωeΏp and all the coefficients of ω are polynomials of algebraic
degree not exceeding N.

This is a refined version of Dolbeault's lemma. It follows from Theorem 4.2.2
in[H2] .

Using this lemma we infer from (V.2) that

ωk-n,n = dηk_nfn-u ^ ^ e Λ * - " ' " - 1 , (V.7)

with !%_„,„-!(z)| ύ CΊ(1 + |z | ) 4 . Substituting (V.7) to (V.3) with p = k - n + 1 we
obtain

/ι + 1 > n _ 1 - / Λ ^ _ π , M _ 1 ) = 0 (V.8)

As a consequence of the lemma,

a>k-n+l,n-l=fyk-n+Un-2+f*rik-n,n-U (V.9)

with ηk.n + Un_2eAk-n + 1>n-\ | ^ _ π + 1 > π _ 2 ( z ) | ^ C 2 ( l + | z | r + 4 , where 2m is the
algebraic degree of the polynomial |/(z) | 2 . Continuing this process we find that
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for 7 = 1,2,...,2n-fc,

with

where N2n-k>N2n-k-ι > ••• >NX = 4 . Equation (V.4) does not lead to any
restrictions. As a consequence of the above computations,

_ 2n~k _ _
ωfc = % _ „ , „ _ ! + X (dη^n+j^-j-i+f Ληk-n+j-ltn__j) = dfηk-u (V.12)

7 = 1

where
2«-fc

^-i = Σ Ίk-n+m-j-i, (V.I3)
7 = 0

and

lifk-ΊίzJIgCα + lzlf, JV>0. (V.14)

Therefore, ωfc is δj -exact. We claim that, in fact, ωk = 0. Since ωk is harmonic,
Lemma IV.l implies that \ωk(z)\_tends to zero faster than e~α | z |, for any a > 0, as
|z| —• oo. Also, by harmonicity, dfωk = 0. Therefore,

= lim J

= lim { f

and thus ωk = 0, as claimed.
Now, let k = n. We claim that there is an isomorphism ^n

2j = ̂ }, where Jf }
is the Koszul cohomology group of Sect. II. Observe first that, by an argument
analogous to the one above, a df -closed form ωn can be written as

where pneΩn((£n). Furthermore, if ωn = dfη'n-1 + p'n is another representation of
this form, then p'n — pn is an /-coboundary. Thus the correspondence ωn -> pn defines
a monomorphism Jίfn

2j-+tfn

f. To show that this mapping is surjective, we have
to prove that for every holomorphic n-form pn, there exists a smooth ηn_x such

As in Sect. II, let v be a smooth vector field of type (1,0) such that fv + vf = I
on (CΠ\Z/. We have then

pn = / Λ V 1 ) 0 , o n C " \ Z / f ^ (V.16)

where τw_ 1 > 0 : = vρn. The form pw_ 1>0 is not holomorphic. However, / Λ 3τΛ_ 1>0 = 0,
and thus there exists τ π _ 2 > 1 such that
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We continue this process and define

where for p = 1,2,..., n — 1,

-i= Σ
p+q=n-ί

VM-r°. ( V 1 9 )
and

3/10,.-!= 0. (V.20)

Then,

pH = 5fτn-l9 on(Cn\Zf.

Now let χ be a smooth function vanishing in a neighborhood of Zf and equal
1 outside a compact set. Let ηn_1 = —χτn-ί. Then dfηn_ί+pn has a compact
support and is thus square-integrable. This proves that άf\j = ^ 2 , /

VI. Connection with the Theory of Residues

In this section we explain the relation between the δf -complex and the theory of
residues. A clear presentation of this theory can be found in Chap. 5 of [GH], and
we will follow here the notation of this reference.

We consider the following smooth 2n-form on C :

φ(z):= (ΐ/2π)πexp { - \z\2}dzt A dz1 A ••• Λ dzn A dzn. (VI.l)

Also, let θ be the following smooth (2n - l)-form on <CΠ\{0}:

where ωM B is the Martinelli-Bochner form,

(n-ί)\ I n
ω u ^ z ) : = ~ Φ d γ Γ R p Λ ( ~ y Zj * A'"Λ n Λ ι A ""•Λ j A""Λ n

(VI.3)

(here dZj means omission of dZj).

Lemma VI.1. The above forms have the following properties:

c
(ii) ψ = dθ9 on Cπ\{0}, (VI.5)

(iii) θ(z) = O(z), as |z|-»0. (VI.6)

Proof Statements (i) and (ii) follow by straightforward though tedious computa-
n - l I

tions. Statement (iii) is clear, as expί — Y —tj = O(\t\n), as |ί |->0. •
7=0 β
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We now consider the following meromorphic n-form

dMz)Λ ..Λdfm(z)
ω / : = 77^ 77^ ' ( V L 7 )

where fl9...,fn has the same meaning as in Sect. III. Let Res{zj)ωf denote the
residue of ωf at ZjeZf (see [GH]). In the theorem below we identify / with the
holomorphic mapping z -> (/Ί(z),..., fn(z)) of <CM into itself and we let f#φ denote
the pull-back of the form ψ under this mapping.

Theorem VI.2. (Residue Theorem) Let f be elliptic. Then

Σ Reslzj)ωf= $ f«ψ. (VI.8)
zjeZf (c»

Proof. As a consequence of Lemma VI. 1,

$f*ψ= J d(f«θ). (VI.9)
C" C"\{0}

Using Stokes' theorem, we obtain

f d{fθ) = lim lim f d{fθ)
c"\{0} Λ">0° ^ ° ί ^ l / ( z ) l ^

= lim f / # θ - l i m f fθ. (VI. 10)
Λ"°° |/(z)|=Λ ε^° l/(z)|=ε

Since /#θ(z) = O( \ f(z) |), as | /(z) | -> 0, it follows that lim J f#θ = 0. Choose Λ
ε^°° 1/(̂ )1 =ε

sufficiently large so that Zf is contained in the ball of radius R around the origin.
Then (see [ G H ] , p. 655):

ί # X Res { z. }ω/.ί
\f(z)\=R

On the other hand, since / is elliptic,

J exp{-|/(z)|2}Σ^|/(z)|^/#ωMBω = O(Λ4("-1^-κ2)^0, as

The theorem follows. •

Corollary VI.3. The following identities hold:

( - i TKQf) = dim Jf 5f/ = dimί27/ Λ Ωn'x

VII. Concluding Remarks

In this section we would like to comment on two ways in which the results of the
previous sections could be generalized. Our discussion is purely conjectural, and
we attempt no mathematical rigor in presenting the arguments.

Our first remark is that the ellipticity assumption of Sect. Ill, though necessary
for our proofs, does not seem to be optimal. It is easy to construct counterexamples
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showing that some kind of analytic conditions on / are necessary in order that
the L2-cohomology of Sect. Ill is well defined. On the other hand, it is easy to
construct an / whose zero set is noncompact (and thus (III.2) is violated), yet the
integral jf*ψ has an integer value. In fact, take

F(z) = ̂ . . . z h (VILl)

with fcji ̂  1, for j = 1,2,..., n, and set / = dV. Then a straightforward computation
shows that

() (VΠ.2)

This indicates strongly that \Jf has a compact resolvent, and $ς*f*ψ is the^index
of Qf. The question of finding less restrictive conditions of / under which •/ has
a compact resolvent can presumably be settled by means of the powerful methods
of [F]. Related questions in nonsupersymmetric quantum mechanics were also
discussed in [S] (we thank Arthur Jaffe for bringing this reference to our attention).
Also, the geometric content of ffl\j in case of noncompact Z$ should be clarified.

A second interesting problem is to extend the results of this paper to
two-dimensional supersymmetric quantum field theory. It is possible to write field
theoretical analogs of df and df, namely

ddv = 7 5*(σ) (/π(σ) - dσφ(σ))dσ + J b*(σ)'dV(φ(σ))9 dσ, (VII.3)
o o

and
2π 2π

ddv = J b*(σ)'(iπ(σ) + daφ{σ))dσ + J b*(σ)'dV(φ(σ))dσ. (VTI.4)

Here φ(σ) is an n-component complex scalar field, π(σ) is the canonical momentum
and l)*(σ)9b*(σ),b(σ%b(σ) are fermionic creation and annihilation operators.
Informally, ddV and ddv are coboundary operators for certain infinite dimensional
complexes. Defining these operators on an appropriate Hubert space is a nontrivial
task, and can presumably be settled in the framework of constructive field theory.
We conjecture that for polynomial V satisfying a suitable growth condition, the
vanishing theorem of Sect. Ill holds. We also notice that there is an intriguing
infinite dimensional Kahler structure associated with (VII. 3,4). Namely, we let

2π

h = - J (b*(σ)b(σ) - b(σ)b*(σ))dσ, (VII.5)

L = f b*(σ)b*(σ)dσ9 (VII.6)

and

Λ = jb{σ)b(σ)dσ.

These operators obey the usual sl2 algebra,

[/z,L]=-2L,
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Furthermore, we have

[L, ddv\ = 0, (71, ddvi = δfo,

] 0 [ Λ W ^ '

relations familiar from Kahler geometry [W,GH] (however Cjdv Φ Ddv)' We hope
that these relations, once put on sound mathematical foundations, will lead to a
nontrivial infinite dimensional Kahler structure.

Acknowledgement. We would like to thank the anonymous referee for very helpful remarks.
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