Heterotic Superstring Gauge Residue Trivialization Via Homogeneous CP ${ }^{4}$ Topology Change

Randy A. Baadhio
Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, New York 14853-6801 and Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853-5001, USA

Received December 27, 1989; in revised form May 25, 1990

Abstract

A new mechanism for the cancellation of gauge residue symmetries in the framework of heterotic superstring compactification theories is revealed. The model preserves all the string features and fits naturally in the consistent topological structure of the homogeneous $C P^{4}$ Calabi-Yau manifold.

I. Introduction

The anomaly cancellation for the 10-dimensional heterotic superstring theory with $S O(32)$ or $E_{8} \times E_{8}$ gauge group gives hope of allowing a consistent unified theory including gravity, especially if $N=1$ supersymmetry is required to be unbroken at low energies. ${ }^{1}$

To make a realistic contact with the low energies phenomenology, it is assumed that the $D=10$ theories compactify into $M^{4} \times K^{6}$, where K is a compact complex 6 -dimensional Calabi-Yau manifold for orbifold with $S U(N)$ holonomy. It is further assumed that all the known particles at low energies are singlets under the E_{8} group and belong to the representation of E_{6}. Such realistic connection with low energies is then intrinsically related to lowering the rank of the E_{6} gauge group [1].

A powerful method of implementing such symmetry breaking in superstring theory is to consider the string propagation on an orbifold. The most popular and effective method of breaking the gauge symmetry - and consequently reduce the number of generations - is known as the Wilson-lines mechanism [2] in the framework of orbifold compactification.

The Wilson-loop is a homomorphism of the translation defining the torus into

[^0]$E_{8} \times E_{8}$. (In the literature the $0^{6}=T^{6} / \Lambda$ flat tori are usually considered.) Since the translation group is abelian this implies that the Wilson-lines satisfy this property: they commute between each other!

Such commutability in the embedding of the gauge group action into the internal degree of freedom lies in the explanation of why the rank of the gauge group is not reduced, and so on the survival of some extra $U(1)$'s under the symmetry breakdown by the Wilson-loops mechanism. The same remark applies when one, in an attempt to construct a chiral string model in 4-dimensions, obtains a large rank gauge group [3]. Thus, the theoretical perspectives of making a realistic connection between the Planck energies and the low energies phenomenology strike on the existence of these extra singlets. ${ }^{2}$

In this paper we present a new mechanism for removing the unwanted extra symmetries. In the language of topology this is called trivialization. We trivialize these symmetries. The paper is divided as follows: In Sect. II, we recall some basic properties of the algebraic topology and introduce the problem. We then treat the reduction of the E_{6} gauge group associated with the $S U(3)$ gauge holonomy. A connection is provided between such reduction and the homogeneous $C P^{4}$ polynomial deformations. Particular emphasis is given to trivializing an arbitrary $U(1)$ residue. Here, the use of the universal coefficient theorem is required. Our treatment is generalized by considering the consequence of introducing the use of obstruction theory. This enables us to determine exactly for which specific class of homotopy the obstruction lives. In Sect. III, we discuss the string vacuum configuration with respect to the model, and, hence show how one can meet the geometrical requirement to not destabilize the string vacuum configuration.

The conclusion addresses some open questions, in particular, the geometrical interpretation of our results as well as the physical implications with respect to the Planck scale and low energies like the Salam-Weinberg scale.

II. The Model

Let us first start by recalling some basic facts. Within a complex projective space, a bundle $U(1)$ is defined as

$$
B U(1)=C P^{\infty} \equiv k(Z, 2)
$$

with cohomology

$$
H^{*}[B U(1, Z)]=Z\left[c_{1}\right],
$$

Let \mathscr{M} be a complex manifold of dimension 3. Relating now $B U(1)$ to \mathscr{M} leads us

[^1]next to write
$$
(\mathscr{M}, B U(1))=H^{2}(\mathscr{M}, 2) \equiv 0 \quad \text { for } \quad \mathscr{M}=3 .
$$

At this point, we introduce a useful notion, Hopf invariance. To roughly apply this, take 3 -spheres of respective rank 1, 2 and 3. Under the Hopf invariance, the 3 -spheres will give the following map:

Applying it to a complex projective space, one obtains:

Hence, a universe of the principle bundle will substantially be of the form:

Extending this to a vector bundle with E_{8} as gauge group leads to:

where we view E_{8} as the product of a sphere [4]

$$
S^{3} \cdot S^{15} \cdot S^{23} \cdot S^{27}
$$

with respective dimensions $35,39,47,59$.
We are now interested in computing the exact cohomology of the E_{8} vector bundle, and consequently its homotopic class. This leads us to consider an Eilenberg-MacLane space, a space with exactly non-zero homotopy group. It is, in fact, a path connected space, all of whose homotopy groups vanish except for a single dimension. ${ }^{3}$

According to Eq. 1, we note this space:

$$
K(Z, 3) \times K(Z, 15) \times K(Z, 23) \times K(Z, 27) \cdots .
$$

What one gains from this notation is that the vector bundle will have a cohomology of the form:

$$
H^{*}\left(B E_{8}, R\right) \text { for } R=k_{3}, k_{15}, \ldots, k_{27} .
$$

E_{6} Structure Group Reduction. We turn now, at this point, our attention to a $C P^{4}$

[^2]Calabi-Yau manifold, which contains our vector bundle with E_{8} as a maximal gauge group. In the heterotic superstring case, one way to break it down (as soon as one is interested) to obtain a Ricci flat scalar metric is to embed the spin connection with the gauge group ${ }^{4}$. Later we will come back to this specific topic. Although this will be the tool of the next part, let us take here $E_{6} \times S U(3)$ as the maximal subgroup of E_{8}. So, one write:

$$
\begin{equation*}
E_{6} \times S U(3) \subset E_{8} \tag{2}
\end{equation*}
$$

where $S U(3)$ is the gauge group for the $S U(N)$ holonomy. Translated in the sequel language, the decomposition takes the form

Lemma. Every $E_{6} \times S U(3)$ bundle gives an E_{6} extension of E_{8} bundles by a homomorphism.

Taking Lemma 1 into account, we define then the sequence

$$
\begin{equation*}
\cdots \rightarrow H_{j} \subset H_{1} \subset H_{0} \rightarrow \cdots \tag{3}
\end{equation*}
$$

with cohomologies

$$
H^{*}\left(B H_{0}\right) \rightarrow H^{*}\left(B H_{1}\right) \rightarrow H^{*}\left(B H_{j}\right)
$$

In order to reduce E_{6} one must relate E_{6} to a map of a cohomology of a certain classifying space.

Let us consider again the induction

$$
E_{6} \times S U(3) \subsetneq E_{8}
$$

and let $G_{\text {standard }}$ be:

$$
G_{\mathrm{std}}=S U(3) \times S U(2) \times U(1) .
$$

Thus we get the explicit induced sequence

$$
\begin{equation*}
G_{\text {std }} \hookrightarrow E_{6} \rightarrow E_{6} \times S U(3) \hookrightarrow E_{8} \tag{4}
\end{equation*}
$$

This process is a homomorphism of $H_{j} \subset H_{1} \subset H_{0}$:

$$
G_{\text {std }} \subset G_{\text {std }} \times U(1) \subset E_{6}
$$

and thus induces an E_{6} bundle which naturally reduces itself to a $G_{\text {std }}$ bundle (noted $\left(E_{2}\right)$) and $G_{\text {std }} \times U(1)$ bundle (noted $E(1)$). Here, we took $U(1)$ (e.g. from $G_{\text {std }} \times U(1)$ as the gauge residue symmetry. Basically, we are not only interested - at this stage - in reducing E_{6} to $G_{\text {std }} \times U(1)$ but also to $G_{\text {std }}$. So given Lemma 1 in that respect, a first point is to find out the E_{1} extension of E_{6} from $G_{\text {std }}$ to $G_{\text {std }} \times U(1)$. To answer, consider a principal bundle $B\left(G_{1} \times G_{2}\right)$ which satisfies the commutative

[^3]property
$$
B\left(G_{1} \times G_{2}\right)=B G_{1} \times B G_{2} .
$$

If so, then the only known classifying space of

$$
B G_{\text {std }} \times U(1)=B G_{\text {std }} \times B U(1)
$$

has a nontrivial cohomology of $H^{*} B G$ expressed as a product [6]. More explicitly for $G=G_{1} \times G_{2}$ the cohomologies of $B G_{1}$ and $B G_{2}$ appear under the commutative relation $B\left(G_{1} \times G_{2}\right)=B G_{1} B G_{2}$, which in turn extends to the cohomology

$$
H^{*}\left(B G_{1} \times B G_{2}\right)=H^{*} G
$$

Going back now to $H^{*} B U(1)$, let us notice that it can be viewed as a characteristic class, measuring whether the extension to $G_{\text {std }} \times U(1)$ from the restriction E_{2} to $G_{\text {std }}$ is isomorphic to E_{1}.

To see how this may happen, consider the following sequence:

This gives us an extension (E_{2} isomorphic to E_{1}, respectively) which furthermore satisfies

$$
\tilde{c}_{1}\left(E_{1}\right)=0 .
$$

When E_{1} is actually restricted to $G_{\text {std }}$, the composition becomes an identity (\tilde{c}_{1} is the characteristic form of the criterion for this restriction). Defining, now, the following sequence,

$$
\rightarrow \cdots G_{\mathrm{std}} \rightarrow G_{\mathrm{std}} \times U(1) \rightarrow E_{1} \times S U(3) \rightarrow E_{6} \cdots \rightarrow
$$

one can easily point out that any G-bundle over homogeneous $C P^{4}$ can be of the form:

$$
\begin{equation*}
H^{*} B\left(E_{6}, R\right) \rightarrow H^{*} B\left(G_{\mathrm{std}}, R\right) \tag{5}
\end{equation*}
$$

where $H^{*} B\left(E_{6}, R\right)$ is taken to be the maximal cohomology of the maximal bundle structure of E_{6}. Before digressing to the characteristics class of our homogeneous $C P^{4}$ manifold [7], let us consider the map:

and also a universe of E bundles such as

Hence, what we construct is nothing other than a homogeneous space ${ }^{5}$ with fiber bundles $[8,9]$:

and

A first question to ask is whether the section $E \rightarrow B$ exists and, if so, under which conditions. As it will become clear later this implies that one has to look at the global cohomology of F. Such global cohomology is obtained if one combines the π_{n-1} homotopy of F with $E G / H$:

$$
H^{n}\left(n, \pi_{n-1} F\right) .
$$

In that case and only in that case, (4) ignores the torsion [10], since the DeRham cohomology of $E G / H$ will be isomorphic to

$$
H^{i}(E G / H, R)=R^{K} .
$$

This is an interesting fact. We now wish to specify the triviality of the torsion, in other words, to work out these implications. A useful notion will be required: the universal coefficient theorem [11]. If we consider any principal ideal domain, S, with a non-trivial cohomology $H^{i}(M, S)$ defined by $H^{i}(M, Z)$ and use the fact that M is compact, it follows that the only case where $H^{i}(M, Z)$ is finitely generated is when it is isomorphic to ${ }^{6}$

[^4]\[

$$
\begin{equation*}
Z^{K} \oplus Z / P_{i}^{K_{1}} Z \oplus Z / P_{i}^{K_{2}} Z \oplus \cdots \oplus Z / P_{n}^{K_{n}} Z \tag{5}
\end{equation*}
$$

\]

where $Z / P_{1}^{K_{1}}$ are integer modules of $P_{1}^{K_{1}}$ and P_{1} is a prime,

$$
Z \otimes R=R \quad \text { and } \quad Z / P_{1}^{K_{1}} Z \otimes R=0
$$

the torsion being $Z / P_{1}^{K_{1}}$ in this tensor form.
Reducing the structure group from G to E corresponds to a specific section of some bundle. The first step is to find out which section we may consider.

Again it will be useful to construct an explicit map of the sequences which are of some relevance for our purpose. Let such a sequence be

We are interested in

$$
\begin{equation*}
G / H \longrightarrow E_{0} / H \longrightarrow E_{0} / G . \tag{9}
\end{equation*}
$$

Substituting (7) into (4), such that (7) must be exactly solvable, then it follows by the use of obstruction theory [12] that a set of F lives in $H^{i}\left[B, \pi_{i-1}(F)\right]$, where π_{i-1} denotes the first homotopy of F. Given this statement, considering now any reduction of G-bundles to E over M implies asking whether

is isomorphic to the coset homogeneous space E / G.
If we define a global cohomology both from M and G / H,

$$
H^{i}\left[\left(M, \pi_{i-1}, G / H\right)\right]
$$

then it is not so difficult to work out the cohomology of M and G / H together as a tensor product:

$$
\begin{equation*}
H^{i}\left[(M, R) \otimes\left(\pi_{i-1} G / H\right) \otimes R\right] \tag{10}
\end{equation*}
$$

Consider now the following inductive sequence:

By the use of (10) one writes

$$
\begin{equation*}
H^{i}\left[\left(M, \pi_{i-1}\left(E_{6} / G_{\mathrm{std}}\right)\right] \neq 0\right. \tag{11}
\end{equation*}
$$

for any arbitrary $H \subset G$. Then by definition

$$
G / H^{i} \longrightarrow E G / H \xrightarrow{p} E G / G .
$$

If H is taken as a maximal rank subgroup of G, then

$$
\begin{equation*}
H^{*}(G / H)=H^{*} B H / P^{*}\left(H^{*} B G\right) \tag{12}
\end{equation*}
$$

What is now the correct homotopy of $E_{6} / G_{\text {std }}$? First we may recall that the global cohomology of E_{6} was given already by

$$
H^{i}\left(M_{5}^{3}, Z\right)
$$

So then, by recurrence, the cohomology of $S U(3, R)$ is ${ }^{7}$

$$
H^{*} S U(3, R) \sim \wedge\left[e_{5}, e_{3}\right]
$$

the cohomology of $G_{\text {std }}$ is

$$
H^{*}\left(G_{\mathrm{std}}, R\right)=\wedge\left[e_{5}, e_{3}, e_{3}^{\prime}, e_{1}\right]
$$

and, finally, the cohomology of E_{6} is

$$
H^{*}\left(E_{6}, R\right)=\wedge\left[F_{3}, F_{9}, F_{11}, \ldots\right]
$$

So

$$
\pi_{i-1}\left(E_{6} / G_{\text {std }}\right) \neq 0 \quad \text { for } \quad i=2,4,6 .
$$

This results allows the obstruction to live only in

$$
\begin{equation*}
H^{2}\left(M_{5}^{3}, \pi_{i}\right) \neq 0, \quad H^{4}\left(M_{5}^{3}, \pi_{3}\right) \neq 0, \quad H^{6}\left(M_{5}^{3}, \pi_{5}\right) \tag{13}
\end{equation*}
$$

III. String Vacua Stability

In order to be consistent, the model as described in Sect. II must obey certain geometrical requirements which at last resort should ensure that world sheet instantons do not destabilize the string vacuum configuration. For the general case, conditions to preserve the string vacuum state have been extensively and explicitly discussed by Witten and collaborators [15]. We will follow these prescriptions.

Our starting point is with respect to Sect. II, to take once again a 3-D Calabi-Yau manifold which is described basically by an algebraic equation of the form:

$$
Z_{0}^{5}+Z_{0}^{5}+Z_{1}^{5}+Z_{2}^{5}+Z_{3}^{5}+Z_{4}^{5}=0
$$

As in π, for notational convenience, we write this manifold M_{5}^{3}, which is a submanifold of $C P^{4}$; that is, one sets:

$$
M_{5}^{3} \cong C P^{4}
$$

Let us now define $V\left(M_{5}^{3}\right)$ as a "stable holomorphic vector bundle" [16] (i.e. we refer to the vector bundle of Eq. 1, Sect. II). At this point, we can now meet one of the algebraic geometrical requirements for string vacua stability, namely, by posing:

$$
\begin{equation*}
V\left(M_{5}^{3}\right) \oplus T\left(M_{5}^{3}\right)=T\left(C P^{4}\right) / M_{5}^{3} \tag{14}
\end{equation*}
$$

[^5]Although V is holomorphically stable it is still a 1 -dimensional complex normal bundle, while T denotes the 4-D complex tangent bundle of $C P^{4}$.

The question arises now how one can establish an equivalence relation between the second Chern class of V and that of $T\left(C P^{4}\right)$. To proceed, we first of all define a map i :

$$
i: M_{5}^{3} \rightarrow C P^{4}
$$

and its dual i^{*} :

$$
i^{*}: H^{*}\left(C P^{4}\right) \rightarrow H^{*}\left(M_{5}^{3}\right) .
$$

Using the Whitney sum formula for Chern classes, one gains a better evaluation of i^{*} :

$$
\begin{equation*}
\left[1+c_{1}\left(V\left(M_{5}^{3}\right)\right]\left[1+c_{1}\left(T\left(C P^{4}\right)\right)+c_{2}\left(T\left(C P^{4}\right)\right)+C_{3} \cdots\right]=i^{*}\right. \tag{15}
\end{equation*}
$$

where the first term under the first bracket expression denotes the total Chern class of $V\left(M_{5}^{3}\right)$ and the second one, the total Chern class of the tangent bundle of $C P^{4}$. So from Eq. (15), i^{*} is nothing other than the total Chern class of the tangent bundle of $C P^{4}$.

It is well known that one can write the total Chern class of a complex projective space of dimension n like:

$$
\begin{equation*}
C\left(C P^{n}\right)=(1+\alpha)^{n+1} \tag{16}
\end{equation*}
$$

where, by α we means the $H^{2}(M ; Z)$ generator. Generally, $H^{K}\left(C P^{n}\right)$ will be an integer of K is even and $K<2 n$; or, otherwise will vanish.

Returning now to Eq. (16), it is straightforward to see:

$$
\begin{equation*}
C\left(T\left(C P^{4}\right)\right)=(1+\alpha)^{5} \tag{17}
\end{equation*}
$$

for

$$
\alpha \in H^{2}\left(C P^{4} ; Z\right)
$$

Equation (17) can actually take a more explicit form, that is:

$$
\begin{equation*}
C\left[T\left(C P^{4}\right)\right]=1+5 \alpha+10 \alpha^{2}+10 \alpha^{3}+5 \alpha^{4} \tag{18}
\end{equation*}
$$

Let us note that the reason why the coefficient α^{5} is not in (18) has to do with the fact that it is an element of $H^{1} 0\left(C P^{4} ; Z\right)$, which is known to have a zero value. So consequently, α^{5} will vanish.

Next, our main concern is about the fundamental class of M_{5}^{3} in $H_{6}\left(C P^{4} ; Z\right)$. Introducing a certain Poincaré dual, denoted by β, in $C P^{4}$ one gets with respect to Eq. (18):

$$
c_{1}\left[V\left(M_{5}^{3}\right)\right]=5 \beta
$$

β is an element of the characteristic form $H^{2}\left(C P^{4} ; Z\right)$. Having introduced a Poincaré dual in $C P^{4}$, our next task is to apply it to M_{5}^{3}. While it was rather easy in the $C P^{4}$ case, one will need a different approach here. Let us then digress to this well established relation, roughly

$$
H_{K}\left(M^{n}\right)=H^{n-k}\left(M^{n}\right) .
$$

Going back to the fact that M_{5}^{3} is a submanifold of $C P^{4}$, we get a sufficient
condition for it to have also a fundamental class, which, among other things, generates the following relation:

$$
H_{6}\left(M_{5}^{3} ; Z\right) \equiv Z .
$$

To substantially apply these interesting facts, we introduce a "homological dual" for i, noted i_{*} which has the basic features of i : roughly, it is a linear map of the form:

$$
\begin{equation*}
i_{*}: H_{6}\left(M_{5}^{3} ; Z\right) \rightarrow H_{6}\left(C P^{4}\right) \tag{19}
\end{equation*}
$$

By the earlier well-established relation, one just writes

$$
\begin{equation*}
i_{*}[M] \in H_{6}\left(C P^{4} ; Z\right) \tag{20}
\end{equation*}
$$

Although (19-20) give a rich appreciation for having introduced i_{*}, there is another fact which deserves to be pointed out here. Namely, one can associate an element $\bar{\beta}$ dual to $i_{*} \cdot \bar{\beta}$ lives in $H^{2}\left(C P^{2} ; Z\right)$. Now, in terms of $\bar{\beta}, \beta$ has the value:

$$
\begin{equation*}
\beta=\bar{\beta} \in H^{2}\left(M_{5}^{3} ; Z\right) . \tag{21}
\end{equation*}
$$

So rewriting the Whitney sum formula, we obtain:

$$
\begin{equation*}
(1+5 \beta)\left(1+c_{1}+c_{2}+c_{3}\right)=1+5 \tilde{\alpha}+10 \tilde{\alpha}^{2}+10 \tilde{\alpha}^{3} \tag{22}
\end{equation*}
$$

where, $\tilde{\alpha}=i^{*} \alpha$ and, furthermore, $\tilde{\alpha} \in H^{2}\left(M_{5}^{3} ; Z\right)$. The first term on the left is taken to be a constant while, the second term on the left are characteristic forms for the tangent bundle of $\left(C P^{4}\right)$.

What we definitely gain is a good way to find explicit forms for those characteristic forms; they are:

$$
\begin{gathered}
5 \beta+c_{1}=5 \tilde{\alpha} \rightarrow c_{1}=5(\tilde{\alpha}-\beta) \\
5 \beta c_{1}+c_{2}=10 \tilde{\alpha}^{2} \rightarrow c_{2}=10 \bar{\alpha}^{2}-5 \beta c_{1}=10 \tilde{\alpha}^{2}-25 \beta(\tilde{\alpha}-\beta)=10 \tilde{\alpha}^{2}-25 \tilde{\alpha} \beta+25 \beta^{2} \\
c_{3}=10 \tilde{\alpha}^{3}-5 \beta c_{2}=10 \tilde{\alpha}^{3}-5 \beta\left(10 \tilde{\alpha}^{2} \beta+25 \beta^{2}\right)
\end{gathered}
$$

where

$$
\begin{gather*}
5 \beta c_{2}+c_{3}=10 \tilde{\alpha}^{3}, \\
c_{2}\left[V\left(M_{5}^{3}\right)\right]=c_{2}\left[T\left(C P^{4}\right)\right] \equiv 10 \tilde{\alpha}^{2} . \tag{23}
\end{gather*}
$$

Equation (23) is precisely the statement that the model described in Sect. II does not destabilize the string vacuum configuration.

IV. Conclusion

The procedure for reducing extra $U(1)$'s can be generalized to any Calabi-Yau manifold under of course the assumptions that they are solutions for string theory. Essentially, the generalization itself will have to deal with obstructions. As given by Eq. (13) of Sect. II, they are natural characteristic forms generated by the reductional structure group of the E_{8} vector bundle. It may not appear surprising that, definitively, as a result of generalization to other Calabi-Yau manifolds, the localisation of obstructions appears more or less the same as the one found in this paper. The reason is the universality of the string gauge group for any soluble
string manifold and in relation to this point, the requirement about the dimension of the manifold.

One should point out at this point that the fact that one may get different obstructions for different CY manifolds may lead to different spectrum. Roughly, the spectrum of the model doesn't seem to be altered since, a relation like the one given by (10) enables us to choose the "good" $U(1)$ via hypercharge checking.

Another source of interest should be to look at the global geometrical consequence induced by the model. In [13], it has been pointed out that, actually, one can minimize those consequences through the introduction of a certain type of homomorphism, known as the "Chern-Weil homomorphism."

Appendix A: The $\boldsymbol{U}(\mathbf{1})$ Generators

Let us define a universal principal G-bundle by

and assume that $E G$ is contractible. The contractibility of $E G$ has an a priori meaning: the homotopy class of maps of X to $B G$ is $\pi_{i-1}[X, B G] \approx 1: 2$ of the principal G-bundle over X, where $B G$ is the classifying space for the principal G-bundle. We take here $E G$ and $B G$ such that they must be essentially unique. Consider now the contractibility property of $E G$. We define $E G$:

$$
E G=\gamma_{G}
$$

Given $F: X \rightarrow B G$, then $F^{*} \gamma_{G}$ is nothing other than the correspondence of G-bundles over Y. Let us take $G=U(1)$, and define $E G$:

$$
E G=S^{\infty} \subset C^{\infty} .
$$

$U(1)$ acts on C^{∞} by

$$
\lambda\left(Z_{1}, Z_{2}, \ldots,\right)=\sum\left|Z_{i}\right|^{2}=1=S^{\infty}
$$

for any complex number $C^{n} \subset C^{n+1}(n=1)$ so, one has:

$$
\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right) \longrightarrow\left(Z_{1}, Z_{2}, \ldots, Z_{n}, 0\right)
$$

and furthermore

$$
C^{\infty}=\stackrel{\infty}{U}^{n}
$$

This implies that the relation between S^{∞} and C^{∞} is $S^{\infty}=$ infinite dim sphere $\rightarrow \sum^{\infty}\left|Z_{i}\right|^{2}=1$ and $U(1)$ acts definitely on C^{∞} by

$$
\lambda\left(Z_{1}, Z_{2}, \ldots,\right)=\left(\lambda Z_{1}, \lambda Z_{2}, \lambda Z_{3}, \ldots, \lambda Z_{n}\right) .
$$

Given the Hopf invariance, one can just write S^{∞} invariance $S^{\infty} / S^{1}=C P^{\infty}$. We
are able to work out an interesting fact, namely the S^{∞} contractibility by

This contractibility generates in turn the universal $U(1)$ bundle.
It follows that if

$$
H^{*}\left(C P^{\infty}, Z\right)=Z[X] \quad \operatorname{dim} X=2
$$

then a $U(1)$ bundle over X had a 1 to 1 correspondence with [$X, C P^{\infty}$]:

$$
X \underset{1: 1}{\longleftrightarrow}\left[X, C P^{\infty}\right]=[X, K(Z, 2)]=H^{2}(X, Z)
$$

Notice that $K(Z, 2)$ is a Eilenberg-MacLane space with dim 2. A brief look tells us that the cohomology class corresponding to a $U(1)$ bundle γ is simply $C_{1}(\gamma)$.

We wish now to point out the generators of $U(1)$ bundle. To do this we first recall a constraint in the cohomology of $\left(M_{5}^{3}, Z\right)$. From Sect. II, we know that $H^{2}\left(M_{5}^{3}, Z\right) \geqq 1$, and a Kähler form Ω was associated with $H^{2}(M, Z)$.

Consider now the following transition functions:

$$
X \xrightarrow{F} K(Z, 2)
$$

and

$$
F^{*}: H^{2}[K(Z, 2), Z] \longrightarrow H^{2}(Z, Z)
$$

These transition functions generate a class which turns out to be represented by F and which gives furthermore the following map:

The F^{*} generator of $H^{2}\left(C P^{\infty}, Z\right)$ is precisely the generators of $\left.H^{2}\left(C P^{4}\right), Z\right)$. They turn out to be equivalent to a universal constant modulo the Kähler form of $C P^{4}\left(i^{*}\right.$ is the congruent here of Ω of $\left.M_{5}^{3}\right)$. In conclusion, $f \circ i$ is the classifying map for the $U(1)$ bundle with a restriction corresponding to the Kähler form $i^{*} .{ }^{8}$

[^6]Acknowledgements. I am sincerely grateful to Prof. Salam to whom I wish to express my deep filial consideration. I have benefited greatly from contact with K. S. Narain, Kei Ito and H. Saidi. I wish to thank A. Back for many useful discussions relevant to the topology of moduli spaces; I also wish to thank Profs. L. Gross and H. Tye for many useful discussions. I am grateful to Prof. S. Shapiro for the kind hospitality of the Center of Radiophysics and Space Research at Cornell University. This work has been supported in part by National Science Foundation Grant AST 87-14475 to Cornell University.

References

1. Gross, J., Harvey, J. A., Martinec, E., Rohm, R.: Phys. Rev. Lett. 54, 502 (1985); Nucl. Phys. B256, 253 (1985); B267, 75 (1986); Narain, K. S.: Phys. Lett. B169 (1986); Narain, K. S. Sarmadi, ?. ?., Witten, E.: Nucl. Phys. B279, 369 (1987); Dixon, L., Harvey, J. A., Vafa, C., Witten, E.: Nucl. Phys. B274, 285 (1986); B261, 651 (1985); Strominger, A., Witten, E.: Commun. Math. Phys. 101, 341 (1985)
2. Ibanez, L. E., Nilles, H. P., Quevedo, F.: Phys. Lett. B187, 25 (1989); Phys. Lett. B192, 332 (1987)
3. Kawai, H., Lewellen, C., Tye, H.: Nucl. Phys. B288, 1 (1987); Lerche, W., Lust, D., Schellekens, N.: Phys. Lett. B181, 71 (1986); Nucl. Phys. B287, 667 (1987)
4. Borel, A.: Topology of Lie Group and Characteristic Classes. Am. Math. Bull. 397-432 (1955). For a general overview of differential geometry see S. Kobayashi: Differential Geometry of Complex Vector Bundles. Princeton, NJ: Princeton Univ. Press, 1987. Kobayashi and Nomizu: Foundations of Differential Geometry, Vol. 2. New York: Intersciences Publishers 1963-1969
5. An extensive discussion about the heterotic superstring compactification is given in Unified String Theories, Gross and Green (ed.). Singapore: World Scientific, 1985, pp. 294, 357, $400-438,635$. For a deep mathematical approach to this topic see Candelas, E.: Lecture on Complex Manifolds, pp. 1-88. Superstring 88, Singapore: World Scientific, Trieste 87 Spring School on Superstrings, Gaune, A., Green, Grisaru (ed.). See also Symposium on Anomalies, Geometry, and Topology, eds. Bardeen and White, Argonne, 1985, also Calabi, L.: Rend. Math. e Appl. Vol. 11 (1952) pp. 1-5
6. Cartan, E.: Notions d'Algebre Differentielles: Application Aux Groupes de Lie. (Collogue de Topologie sur les Espaces Fibrés) Bruxelles (1950), Paris-Liege (1951) pp. 15-27. Cartan, E.: La Transpression dans un Groupe de Lie et dans an Espace Fibré Principal; ibid. pp. 57-71
7. For a specific discussion see R. Bott, W. Tu: Differential Forms in Algebraic Topology, Berlin, Heidelberg, New York: Springer, 1982, pp. 8, 266. A general connection between homogeneous spaces and characteristic class may be found in Cartan, E.: Sur les invariants Integraux de certains Espaces Homogènes Clos et les Proprietés topologiques de ces espaces 7, Annal. Societe Polonaise Math., Vol. 8 (1929) pp. 181-225; Cartan, E.: Oeuvres Completes, Part I, Vol. 3, Paris: Gallimard-Gauthier Villars, 1952, pp. 1081-1125. See also the good paper of Borel, A. and Hirzebruch, F. on characteristic classes of homogeneous space (1956)
8. Cartan, E.: La Transgression dans un Groupe de Lie et dans un Space Fibré Principal. Colloque de Topologie sur les espace fibrés. Paris (1951)
9. Witten, E.: Commun. Math. Phys. 100, 197 (1985); S. Panier: Algebraic Topology, New York: McGraw Hill, 1966. See also Chap. 3 of Bott \& Tu: Differential Forms in Algebraic Topology
10. Borel, A.: Sur la Torsion des Groupes de Lie, J. Math. Pures Appl., (1955), and Torsion in Lie Groups, Proc. Natl. Acad. Sciences USA 40, 586-588 (1954)
11. For an introduction to the theory of Universal Coefficients see Spanier, E.: Algebraic Topology. New York: McGraw Hill, 1966, pp. 222-338
12. Kodiaira, K.: Complex Manifolds and Deformation of Complex Structures, in particular, Chap. 5, Berlin, Heidelberg, New York: Springer 1986
13. Baadhio, R. A.: On the Chern-Weil Homomorphism in Homogeneous M_{5}^{3} with a Trivial $U(1)$ Bundle and 2-form Curvature. CRSR/Newman Lab Report, December 1989
14. Baadhio R. A.: On the $\mathrm{E}_{8}, \mathrm{E}_{7}$ and E_{6} Topological obstructions structure. CRSR/Newman Lab, March 90
15. Witten, E.: Physics and Geometry, in Proceedings of the 1986 Congress of Mathematicians. Berkeley, and New issues in Manifold of $S U(N)$ Holonomy, Nucl. Phys. B268, 79-112 (1986) and references therein
16. Okonek, C.: Vectors Bundles on Complex Projective Spaces. Birkhauser, 1980; Schneider, M.: Sem. Bourbaki 530, Nov. 1978, no. 18-19-20, page 80

Communicated by S.-T. Yau

[^0]: ${ }^{1}$ One can consider the Atkin-Lehmer symmetry in a non-supersymmetric background as a good challenge, since its discrete symmetry of modular space makes the integral over τ vanish despite the precise absence of spacetime supersymmetry

[^1]: ${ }^{2}$ Singlets are considered extra by taking into account the standard $S U(3) \times S U(2) \times U(1)$ model. For an overview of this topic refer to S. Weinberg, A. Salam and L. Glashow, "Nobel Lectures in Physics", Review Mod. Phys., 52, No. 3 (1980). Note that the inclusion of the Wilson-loops depends on the geometrical configurations chosen. In particular, it is related to the construction of the orbifold which turns out to be related to some specific inner automorphism inside the torus and to the number of singularities (usually the $A \cdot D \cdot E$ semi-simple laced Lie singularities) in the light cone

[^2]: ${ }^{3}$ For a more detailed and historical overview see S. Eilenberg and MacLane, "On the Groups H(π, n)," Ann. Math. 58, 55-106 (1953)

[^3]: ${ }^{4}$ Restricting $\mathscr{M}<14$ means that the first fourteen homotopy groups of E_{8} are $\pi_{k}\left(E_{8}\right)=Z$ for $K=3$. Such homotopy is exactly trivial if we take $1 \leqq K \leqq 14$ for $K \neq 3$

[^4]: ${ }^{5}$ Space is homogeneous in the sense that G admits a transitive Lie group of a homomorphism and carries a complex analytic structure. The coset spaces C / H and $E G / G$ are homogeneously complex (respectively homogeneous Kählerian) if they carry a complex analytic structure invariant under G. For a discussion see H. C. Wang, Am. J. Math. 76, 1-32 (1954)
 ${ }^{6}$ We do not have torsion when prime P does not divide the order of the Weyl group of G. For E_{6}, E_{7}, E_{8} the order of the Weyl Group is

 $$
 2^{7} \cdot 3^{4} \cdot 5 ; \quad 9!\cdot 8 ; \quad 10!\cdot 3 \cdot 26
 $$

 If P is greater than the coefficients of the highest roots then the simply connected group G has no torsion. We restrict G to be either $G_{\text {std }}$ or $G_{\text {std }} \times U(1)$. Thus the simplest connected representatives of the structures E_{6}, E_{7}, E_{8} would imply no P-torsion (no torsion P and no torsion, respectively) for $P \geqq 5 ; P \geqq 5 ; P \geqq 7$ respectively.

 We are able to work out the vanishing of the torsion in $C P^{4}$ simply if we point out that there is a deep relation between the cohomology of $C P^{4}$ and the first Chern class. Since $C P^{4}$ is defined by 5 homogeneous polynomials, $\sum_{i=1}^{5} z_{0}^{5}=0$, such as the first Chern class $c_{1}=0$, the relation is immediately given by

 $$
 H^{*}\left(C P^{4}, Z\right)=Z\left[c_{1}\right]
 $$

[^5]: ${ }^{7}$ We have used the relations $S U(3)=S^{5} \times S^{3}$ and $S U(2)=S^{3}$

[^6]: ${ }^{8}$ To be more precise, a principal $G_{1} \times G_{2}$ bundle $E \rightarrow M$ will have a trivial G_{2} piece only if the structure group can be reduced to G_{1}. In that case (1) for F_{E} a classifying map for E is

 $$
 M \xrightarrow{E_{E}} B G_{1} \times B G_{2}=B\left(G_{1} \times G_{2}\right)
 $$

 i_{1} is induced by $g \rightarrow(g, 1)$. Then if F_{1} exists we have $i_{1} \circ F_{1}=F_{E}$ and $F_{E}^{*}=F_{i}^{*} \circ i_{1}$. (2) For $H^{*}\left(B G_{2}, Z\right) \subset \operatorname{ker} F_{E}^{*}$ all the characteristic classes in the G_{2} piece would vanish for E by the use of the "Chern-Weil homomorphism." That is, ϕ : adj. G-invt. polynomials with connection on $M_{5}^{3} \rightarrow H^{*}\left(M_{5}^{3}, R\right)$. This could be translated into differential forms by the use of the extension derivative of the DeRham cohomology (see ref. 13)

