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Abstract. In the framework of the weakly-coupled P(¢p),-models we construct
perturbation approximations of vectors of a dense set of the state space, especially
vectors of the one-particle state subspace, by polynomials of zero-time fields acting
on the vacuum state, with rigorous control of the remainders.

Introduction

Motivation. The particle structure of a Quantum Field Theory model is generally
deduced from the analyticity properties of the Green distributions, obtained from
the study of the Bethe—Salpeter equation. This gives precise information about the
spectrum of M, the mass operator (see the references in [2], to which we must add
now [1]). Another method, not completely independent, is the variational perturba-
tion method, intially proposed by Glimm, Jaffe and Spencer [8], and studied in
[2] for same P(@),-models. For all feL!nI*(R?), f #0, a vector Y(f) is
constructed, which satisfies the following conditions:

1. it is a linear combination of zero-time fields acting on the vacuum, 2. it is
orthogonal to the vacuum and to the one-particle states, 3. it lies in the domain
of M, and 4. it verifies the following formula:

UMY ., 2SS
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for A, the coupling constant, sufficiently small. Here (-;-) is the state-space scalar
product m is the one-particle physical mass, {-;-> is the [*(IR?) scalar product
and H"X is the relative Hamiltonian of the Non-Relativistic limit, written for A = m?.
A careful study of the remainder, which is O(4%2), has been made. The above
formula has been established for all P(¢),-models with even interaction polynomial
P having a non-zero fourth degree term. For a discussion on the conclusions that
can be drawn apropos of the spectrum of M and its eigenvectors, see [2].

+0(2%?)
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The generalization for all P(p),-models with weak coupling [3] and the
calculation of the higher perturbation terms [4] require the knowledge of
one-particle states given by polynomials of zero-time fields acting on the vacuum
state, and of some products of such states.

Contents. This work is concerned with the zero-time fields acting on the vacuum
state (we call them zero-time vectors) for all weakly-coupled P(¢),-models. We
show in Sect. 1 that all vectors given by a product of fields acting on the vacuum
state can be approached perturbatively by a linear combination of zero-time vectors.
With Theorem 3 we see that the series are asymptotic. Thus for all perturbation
calculations, it is enough to consider only zero-time vectors. In Sect. 2, we expand
(M? —z)" ¢, for zeC and ¢ a zero-time vector, as a perturbation combination of
zero-time vectors, and in Theorem 5 we show that the series is asymptotic. In
Sect. 3, we construct approximations of one-particle states at zero-time, and collect
their properties. Section 4 introduces vectors obtained by some tensorial products
of such states, which will give good ansatz to approach the n-particle states at low
energy.

Notation. The weakly-coupled P(¢),-models are defined by their Schwinger

distributions S,, given by the moments of a probability space (Q,~, u), where

0 = #'(R?) (real valued), X is the Borel o-algebra of Q (given the weak topology),

and yu is a probability measure on X. For all fe%(R?) we introduce ¢(f), the

Euclidean fields, defined by ¢(f)(q)=q(f) for all geQ. Then the Schwinger

distributions are given by: S,(f)=[¢(f,)--¢(f)dp for all fe(F(R?)". The
Q

measure p is constructed as a double limit: u(B) = lim lim yu,, ,(B) for all BeZX,
R? g4

A
where for all A compact set of IR?, ge L’(IR?) and ge@:

g, A(9) = (Z4. )™ 'dpo(q) CXP< —4 !; dzxtP(¢(X'g)(q)):>,

where Z,, , is the normalization factor and y, is the probability measure on X
such that [dugexpig(f)=exp—3{f,(—A+my®)~1f) for all feS(R?). P, the
o)

interaction polynomial, is an R — R polynomial bounded from below, A = 0 is the
coupling constant, my > 0 is the one-particle mass of the so-called free theory, the
theory in which 4 =0. :.: denotes the Wick polynomial procedure. There exists
A >0, depending on m, and P, such that the double limit exist if Ae[0, 1], which
will be assumed throughout this paper. The Schwinger distributions satisfy the
Osterwalder—Schrader axioms, thus they define a Wightman Quantum Field model,
with state space #, Hamiltonian H, momentum P, vacuum £ and. field ¢. We
denote by W the canonical map L*(Q, u)— #. For more details, references and
other notations (such as for the Fourier transformation), see [5].

Background. For neIN*, let 08"(f, x) be the Wick-monomial of Euclidean fields with
fixed Euclidean times given by:

0°(f, %)= | A" f(X): (X1, X 1)+ DXy X,):
e

for all XeIR" and feZ#(IR"). Such objects can be defined as strong limits in L*(Q, p);
here ¢(x) stands for ¢(x-9). Let %, and % for all xeN be the spaces of generalized
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functions fe%’(R") with continuous Fourier transform feC°(R") and with
bounded semi-norm 4,(f) and norm #£%(f) respectively, given by:

(J,.(f))2=f<lﬂl — J))mknz ) Hé(Zk)

R" \J pe#, Jep  \JjeJ

@iy = f

k k)
0(k)lf( )2 (wo(k))

and for n>1:

@)= Z f(ﬂ >|fs(k)|2< > wo(k,-)) > ]‘[5(2 k,->,
i=1Rr\J o(k i) j=i+1 pez Jep  \jel
where w,(p) = /p* + m,? for all peR and 2, is the set of all partitions of {1,...,i}.
fs is the function obtained from f by symmetrization. It is shown in [6] that
0"(f,%) can be defined for fe4, and £, as strong limits in L*(Q, y), and that the
vectors WO"(f,X) and their scalar products satisfy the following theorem. We use
the notation R, = [0, o) and E,, is the orthogonal projector of # on Q.

Theorem 1. For all A€[0,1], n, meIN*, xe(R )", ye(R )™
i) For all fe,, E;WO"(f, %) is well defined, (W0"(f,X); 2) = [du6"(f,%) which

0
is a C* function of A, and for all veIN, |0, (W6"(f, %); 2)| < K¢,(f) for some K (0, o0)
independent of A, f and X.
ii) For all fe#?, (1 — Eo))W0"(f,%)e(1 — Ey)#.

iii) For all BeIN*, PPWO"(f, %) = WO"(*f, X)e #, where Pf (k) = ( El.)ﬂf(ﬁ)
1<izn

for all keR", provided that *f 0.
iv) For all fe®?, (1 — EQ)WO"(f,%) is in the domain of H. If X;=s for all
1 £i<n for some seR ., thenfor all f eBE, (1 — EQ)WO"(f,X) is in the domain of H.
v) For all fe#?, geR2,

(Wo"(f,%);,(1 — E))W0™(y, ) = (fz dp0"(f, —fé){G'"(g, - !z dp™(g, ﬁ)}
which is a C® function of A, and for all velN,

|0,"(WO(f, %), (1 — EQ)W0™(g, )| < K&(f)bnlg)

for some Ke(0, o) independent of 2, f,g,% and .
iv) For all Be{1,2,3}, fed:, ge Bt

(WO"(f, %) H*W6"™(g, J)) = (— 1)”5”fdu9 > =%)0™(g, ¥ + )= 40,

where j+ 1= +1,..., m + T), which is a C® function of A, and for all veN,
|02 (WO(f, X); H*WO™(g, J))| < KE4(f)6(9)

for some Ke(0, 00) independent of A, f,g,x and .
vii) The statement Vi) is also true for B=4if X;=s forall 1<i<nand y;=t
for all 1 £j < m, for some s,teR .

Remark. If the interaction polynomial P is even, the theorem is also true for other
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norms, still denoted by 4,(f) and £%(f), in the definition of which enter only the
even partitions, that is those partitions p = {I,,...,I;} where all |I,|,  <i <k, are
even numbers.

The proof of the theorem (in [6]) involves the details of the construction of
the weakly-coupled P(¢p),-models, based on techniques such as space cut-off,
uniform bounds, convergence of the cluster expansion, etc.... No use of such
techniques will be found in this paper; all results presented here follow as
consequences of Theorem 1.

1. Decomposition in Zero-Time Vectors

Let 2 be the span of {@,(1 — Eq)W0"(f, %), ncIN*, feB?, xe(R.)"}, the set of
vectors with precise Euclidean times. 9 is clearly a dense subspace of #. The span
of {2,(1 — E,)W6"(f,0), neIN*, feB?}, noted as 9,,, is the set of zero-time vectors.
The zero-time Euclidean and Minkovsky fields are connected by W6(f,,0)---
0(f,0) = o(fL ®9)--- o(f, ® )42, and thus 2, is also the set of all polynomials of
zero-time fields acting on the vacuum state.

Let @2 and suppose that there exists a perturbation expansion:

dj: Z ii(j)i’

iz0

where each ¢;€2,. Then for all ye2,:

0=(; ®—ZN¢)= k;O l"[(l//; D) — .io W d)i)k—i],

where we have expanded the scalar products, with the notation (4, B) = X1(4, B),.
Note that for fixed &, i takes only a finite number of values. Thus for all keIN we
must have:

(Vs dudo = (5 B — X, (5 B

Now we take @ =(1—E,)W0"(f,x) and write @; as (1 — E,) Z W6! with

= 0/(A4} (f, %),0), for some functions A | f x). If we take y =(1 — EO)WB’(g, 0),
the left-hand side of the previous formula is easily calculated (estimation of the
free theory), and is (y; W6})|,-. So the formula gives 6} in term of the sets
{6}, jeN} with i<k. The right-hand side involves the following Schwinger
functions:

5,i(% y) = (Izdﬂi¢(x1)~“¢(xi)t <r¢(y1)-~'¢(yj)t— (jzdu:¢(y1)'--¢(y,-):>

(almost everywhere continuous functions on R2¢*9). For i =0, “:¢(x,)--- d(x;):”
is replaced by 1. We give first the formal definition of AJ ;, and verify after (Lemma
2) that it makes sense.

Definition. For all neIN*, fe#? and Xe(R . )" let A}, ,(f, %) be the functions given,
for all kelN, reIN* and pelR’, by:
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~ 2 o r
A (f,X)(P) = ;'_F @) H wo(P;), where F is given, for all yeIR’, by:
! i=1
— 1. —
F(3) =045 1" f (®)spr.a((F, 0 %)
! 1=

k
i

! 1 L
) 5'?‘@ ; § 73 AL (f, %) F)sp, (T, 0% (X, 0))
= - j21 A=

0

0 0

(for k=0, the term containing the sum over i does not appear).
An example is given in Table 1. sp; ; denotes the partially connected Schwinger
Sfunctions (defined in Appendix 1). The connectibility property (not deduced from

the above algebraic considerations) is necessary to avoid d functions in Z;,k( £, %),
and to have the following results.

Lemma 2. For all n,relN* and keN, A4}, ,: 2B x (R , '~ %L. Moreover, 62(AL (f, %)) <
K#2(f) for some Ke(0, ) independent of fe#B? and Xe(R.)".

This result is not trivial: it says that some Schwinger distributions can be evaluated
at the functions Aj ,(f,x), which are themselves combinations of Schwinger
functions partially evaluated at f.

Theorem 3. For all ® =(1 — EQ)W0"(f,%)eD, n= 1, feR°, the following sequence
of Do:{¢p;=(1—E,) Y, WOI(A] ,(f,%),0), icN} satisfies, for all NeN,
jZ1

N .
o~ 3 14,
i=0

for some Ke(0, o) independent of 1€[0,4], feA) and Xe(R. )"

< ANFIKEO(S)
H

l Table 1. Decomposition in zero-time vectors of (1 — E)W6(f,X)

T
|

N
Let Ae[0,1], and P(x)= Y’ a;x". For fe%? and % 2 0 we have:
i=1

N+1

| i
(1—Eo)WO(f,f’C)=(1~Eo){W9(Ai,o(f,f),0)+l _;2 W9’(A{.1(f,i),0)}+0(/12£,‘.’(f)) "

where, for all j > 1 and FeR/:

AL o(f, D)) = 8, f(B)exp { —%wo(F 1)}
Af (fi%)=0 for j=1andforj=N +2,

f(_i E) j j j |
AL, (f,9(F) = —¢;— it S A exp[—f > wo(ﬁi)]—exr)[—fcw(( > 2&)]}
, ( 7) —( n) 1

with

_(] + 1)aj+1

j—m, for 2§]§N+1
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Remarks on Theorem 3

1. Nothing is said here about the growth of K when N increases. Thus nothing is
known about the eventual convergence or resummability of the series.

2. A similar theorem exists for the decomposition in zero-time vectors of H® for
some @eD and of H>*® some PP,

3. When A varies we must suppose that n, f and X do not depend on A. Note that
A itself depends on A (via the construction of the measure p); let us denote it by
A, for a moment. In the theorem @, ¢;,e#,, so that A plays a double role: it
indicates in which Hilbert space the vectors are, and it is a small parameter which
allows perturbation expansion. The fibre bundle formalism would be better here,
with base [0, 1], fibre #,, with cross sections @ and ¢;, supposed to be sufficiently
smooth in an appropriate topology.

Proof of Lemma 2. For k=0, calculation of free theory gives immediately:

F() = 6,,J(7) Sym exp{ -% |>%i1wo<ﬁ,-)},

ERR S

where F = A4}, ,(f, %), for all reIN* and peR". The announced result is obvious here.
Take k # 0. From its definition, 4}, ,(f, X) is a sum of functions like T of Lemma 10
(in the Appendix). Thus: -

62 AL, %) <K'63(f) + K" ZO Zl 63(A47 (£, %))

i=0 jz

for some K’, K"€(0, o0) independent of f and x. But the sum over j is finite (because
955p, jl1=0 =0 for j>r+kdegP). The conclusion follows from these consider-
ations and from Lemma 10 by induction. [J

Proof of Theorem 3. 1t is sufficient to show that the first N terms of the perturbation

expansion of (@ — Y ii¢,~" vanish because of the definition of the 47 . In fact,
O0=<i=N

by Theorem 1 and Lemma 2, all terms of the series do exist, and by the Taylor

formula the remainder is automatically bounded as mentioned. This will be carried

out in three steps.
Ist Step. We establish that for all £ = W0™(g,0)eD, and NeN,

N
lim A~V (C; - ) liqbi) =0. That is to say, we can pass over the connectibility
A0 i=0

N
properties imposed in the definition of A} ;. Let us write ( Lo- Y Aiq&i) as:
i=0

f d"'?g@)[j &% f (%) 5 (7, 0); ) — z B Y (A2 AL (Z)s (5.0 Z. 0))].

With Lemma 9 (in the Appendix), this becomes a sum of the following terms,
involving the partially connected functions:
jvdm?g(j;)swm—k(m—kj;)

[I arxf (Y)spk,n((k—f9 0); x) — .;0 A Z j dj?Af;,i(f)SPk,j((k?, 0); (Z, 0)):|,

21
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where 0Sk<m, . 7= 1s--» Vi) m=i¥ = Fis1>---» V)- The symmetrization over
V1,---» Vm must be done. We expand in A the factor in brackets. The first N terms
vanish, because of the definition of the functions A ,.

2™ Step. We establish that for all E=W0™g,y)e2 and NelN the following

expression holds: lim A~V ( D — Z Al ¢,) = 0. That is to say, we can replace 9,
A—0
by 2 in the statement of the 1% step This is the crucial point of the proof.

To see how this works, we look at the first order term:

<M'i§o”¢">‘z=o="”<ﬂ iy )
[ 6] () Sym exp{ -% |9y°i~>%i1wo(%i>}

EgsesXy

- F(T") Sym eXP{ - Z lefilwo(ﬁi)}jl
}51 vvvvv .‘"m i=1

with F = A7,(f,%), where 0); = — y,. Because of the signs of X; and 6y;, all the

dependence in y can be collected in a single factor giving:

N ndk;, \= - oo
(0= 20)| _ =nt3( [l sty JAOZ oty sym e = & s,
i=0 A=0 i= 12 (k) F1reesPm i=1
where & (---), not depending on , is the same as in the case y = 0, and thus vanishes
because of the property established in the first step. Thus (é; o— Y A‘kﬁ,—)' =0.
0<T=N 2=0
We will see that at each perturbation order, the Euclidean times ; will appear
only in a factor exp — X'§,w,(k;), multiplying an expression which vanishes because

of the first step.
Let 1 £v< N and suppose (induction hypothesis) that A~/ (é; o— ) Ai¢i>—+0
0<isN

as A—0 for all j<v and all £ =W68™(g, ))e2. Let us write:

N v 1
I= 6}(6; D — iZO /1’4)1.) = z;ol_n{ d'2F(2),

=0
where
F\(2y,....2) = [d"Yg(Y)fd"3[dZ
A R)smn(0y; %215, 2,) = A} o(X)53,0(0y; (X, 0); 24,5, 2,)}

and forall 0 I<v:
Fl(Zolv"bzol) —_fdm g(y) Z Idjxjdl_Z’A}II v— l(x)sm](0y9(x O) Z15-- 9zl)'

We have used the following notation: 8y = (— y,y); « j d'z” =1 when | =0. s,,; are

the functions such that d%s,, ,(y; X)| ;= ¢ = [d*zsh,(y; x; z) (see the derivatives of the
Schwinger functions in [6]).
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With the Wick theorem the functions s.,; can be written as follows:

sinj(ey;x;zb'“,zl)

=X 2 [d"k S0 K x;zl,...,z,)exp{— 2 tey:-—faa,lwo@)}

sym r,6,t

.eXp{ - '_21 16y; — Zot(i)lwo(zi)}
with 0 <r <min{m, j} and some maps o:{1,...,r} > {1,...,j}, T:{r+1,....m} >
{1,...,1}, where the functions f, , .(---) do not depend on .

Let us suppose that only the Z > 0 contribute to I, that is:

v ] ©
I= Z ﬁjdilfdlel(él”il) (A)
1=0¢ 0 0

We call this curiosity (A). If (A) holds, because of the signs of 6y; and %}, all the
dependence in the variables J; occurs in a factor exp — Y j;w,(k), multlplymg an
expression which is the same as in the case y = 0 and thus vanishes because of the
first step. Then the statement of the 2™ step is clear.

We have now to prove (A). This will follow from the induction hypothesis.
Because the functions F, are symmetric, we can write:

! ) 0 ] [ ] ©
jldlzoFl(i)= Z <‘) j‘ dz°1--- j‘ dZOJ j dfj+1 cee I dzanl(Zel,...,Zol)‘
R i=o\J/ - “ "0 0

Thus I becomes:
v 1

Izjgoj—' j‘ le fwdfij(fl,...,fj),
where
v 1 o <]
Ji2y,...,2) = _f --jdz°,F,(z°1,...,z°,) forall 0<j<v.
&= s 0

(A) holds if I = J,, which is true if:
J{24,...,2)=0 forall 2, <0,..,2;<0, foralljwithl1<j<v. (B)
We call this statement (B). Let us introduce slightly different functions J”:

1
TGyt = Z | @i dFG,2) forall 0SSy,
J( ]) R

The following statement (C) is equivalent to (B):
JiZy,...,2)=0 forall 2, <0,...,Z;<0, forall jwith1<j<v. (O
That (B)=>(C) is proved by looking at the formula:

s e v - e T s R e rrs s
J;'(Zlv"azj) Z Y] < J) _f dZ : 5 er f dzr+1"' f leFl(Zp...,Zl)
=il J) “o 0 0

0

- § dz",.H.-._j 3,0 ,(31,...,3,).

=,Z:j (r—
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That (C)=(B) is proved by induction on j, because J, = J', and with the following
expression (deduced from the preceding formula):

Ti2is2) =T i)+ Y

0
s g § )
r=j o

forall 1Sj<v.
We prove now that (C) actually holds. For 1 <j<v:

J}(z"l,...,z"j)

( 6" dmyg(P) [ Z [d"X [ (X)sh, n0p; %; 24,...,2,)

<

V9P [d'X[d* 7 A, ((3)sh,409; (X, 0% (21, 2)).

=i(l— J)'
The functions s/, ; can be written as integrals of sums of products of Schwinger
functions (see [6]), so that we find after some simple algebra:

;(Zo 1s- ’Zoj)

=[d"yg(y)[d'Z Y Gx(zl,---,zj)aicjzdu@(eyl)'--¢(9ym):

BK{1,....j}

Horwn- i g ol ree
=j i1 keK
for some & <v—j, for a.e. continuous functions Gg:IR% >R for all K and with

the notation {{T}}=T— [duT for all TeL'(Q, ). (Recall that all Schwinger

A=0

functions are a.e. continuous functions; the integrability of the above formula
with respect to the z; variables is assured only after having performed the

sum ) )
FeKe{l,...j}
With the Wick decomposition [6, Lemma III.1.2],
:9(0y,)-- ¢(9ym):IJtP(¢(zk)):= LZ heo(y, Z){Il ¢y, ];[ P(zi)™,
with suitable sets L, maps o and a.e. continuous functions k; ,. We have obtained:
;(Zo JERRRS] Z j)

—5 a"yg(y)[d'z ZaGK(Z)hL,a(y,Z)ai (jz du:g ¢(0yi),ﬂ< P(z,)™:

ffron-5 3

Let us suppose now that Z; <0,...,Z; £0. Then the last integral over du can
be written as a kernel of a scalar product of #, and the last line of the above
formula becomes:

aﬁ(W:n S0 ] 0z @— Y Mm)
ieL keK i=0

A=0

A=0
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Because £<v—j<v—1, it follows from the induction hypothesis that this
expression vanishes.

3 Step. We conclude with this step. From the 2" step, for all N and all £ < N:

N 2
i=0 F 4 A=0
¢! (¢,,¢ > M)

N
=6¢<¢;¢— Al i)
* i§0¢ 1=0 11(6 ])'
It follows from this and from the 2™ step again, for all N+ 1< E<2N + 1

le-39L )|,

ol er

S e (¢,~;a>—i;0ﬂ¢i)

j=N+1

The conclusion follows from the Taylor theorem, from Theorem 1 and then from
Lemma 2. [

=0.

=0

=0.

A=0

2. Decomposition of (M? —z)~ ¢ for £c9,,

For @=(1 - E,))W0"(f,0)€2,, @ #0, and suitable ze T, let us suppose that there
exists a perturbation expansion such that:

O=(M*—2) Y ig,
iz0
where all ¢;€2,. Then we have:

Mcpzz

iz0
We write ¢; as (1 — Eg) Z W6 with 6/ = 6(Bi ,(f,z),0) for some functions

3 l( f,z). Let us introduce the followmg notation: d(4, z), for a self-adjoint operator
A, is the smallest distance in € between z and the spectrum of 4, and M, is the
operator M for the free theory, that is for A = 0. We will use the following derivative
of the Schwinger functions: sp}"; P (x;y) = (A —2)sp; j(X;y1 + 8-,y + 8)|s=0 (in
the distribution sense). The definition of B],, similar to that of A,{ i(see Sect. 1),
uses the following functional spaces 8™ = {f,f and 2"*2fc#°} for all meN*
(for the notation ™f, (see Theorem 1, iii)).

Definition. For all kelN,n,reIN*, fe#%* and zeC with d(M3,2) > 0, let B, ,(f, 2)
be the functions given, for all pelR’, by:

y  F®) [ ou@)
Boulf 2P =2 ,—
Som) (37) -

||M~1
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Table 2. Decomposition of (M2 — z)~1Wo(, 0)

N
Let Ae[0,4], and P(x)= Y. a,x’. For fe#?? and zeO we have:
i=1

1
(1 = Eo) 35—

21,2)(f)
dM?,z)

WO,0)= (1~ B) Y, & T, WOUBL,(1,,0)+ 0<AZ
i=0 jz1

where, for all j = 1 and FeR’:

. 1
Bf,o(fs z)= 5,',1 £,
my2—z
2a
B! Z_f
11(fi2) = ( _Z)zf
4P
UtDae, 1 =i for 2<jSN+1,

P
§{,1(faz)(ﬁ)= - G-1)/2 3, 2 _ j 2 j 2
G mo Z(Z wom)) —(_Z n) ~z

Bf,=0 for j2N+2

where F is given, for all yeRR", by:

F(y)= Ak,fd"?f(X)spm((y,O),x)

k-1

-2 6’3‘i(k_i)! T J&3BLf A E)sor (3,05 (% 00|

i=

=0

=0

(for k=0, the term containing the sum over i does not appear).

An example is given in Table 2. Lemma 4 will show that this definition makes
sense.

We introduce on %y™ the norms [, ,(z)(f) given by:

m+1 1 m+1
dn,m(z)(f) = (1 + d(—A4R(2)—,Z—)> ) O(f) + (d(M )> gg(2m+2f),

where R is some fixed arbitrary number such that R > m,. We denote by O the
following open subset of C:

0 ={zeC,|z| < R,d(M?,z)> 0,d(M3,z) > 0}.
Lemma4. For all n,relN* and keN:

i) BL B0 x 0 B,
ii) for all feRBY* the function (z, p)o—»B «(f>2)(P) is continuous on O x R,
iii) for all fe@o" and ze0, 82(B;(f,2)) < Kd,, ,,(z)(f) and ¢}(B; . (f,2) <
K' &, (2)(f) for some K,K'e(0, ) independent of feBY* and ze.

Theorem 5. For all n,NelN, n2 1, fe B> and ze€0, the following sequence of D,
{p;=(1—Ey) Y, WOI(B](f,2),0), icN}, satisfies:
jZo

1

N+ 1Kdn,N+ 1(2)(f)
M?—z

dM?z)

N .
- ,-Z‘o A

<A
H
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where @ = (1 — Eq)W6"(f,0), for some Ke(0, o) independent of A€[0,A], fe &N
and ze(.

Remarks on Theorem 5

1. The requirement on f increases with the order N; but this concerns only the
dependence of f(X,,...,X,) in the variable X, + --- + X,,.

2. A similar theorem exists for the decomposition in zero-time vectors of the
resolvent of H.

Proof of Lemma 4. We write B} ; instead of B} (f,z). For k =0, calculation of free
theory gives easily:

1

E;,o(_ﬁ) = 5n,r.7(—ﬁ) ’ 2 r 2
<Z (Ih)) (Z ?5.-> -z

for all relN* and peR’. Thus ii) is obvious and :£2(Bj ) < £2(f)/d(M3,z) <
R™'4, o(z)(f). With the astute application of the following relation:

(Z 7)1-)2 +z *
(L onia) -(55.) - X

6i(*f) + REX(S)
d(M3, 2)

where we have used the notation ,B of the appendix. Take k> 1 and let us
suppose that the lemma is proved for all By, with k' <k; we also suppose that
82, By (f>2)) < K", 1(2)(f) for all k' <k, for some K”e(0, o) independent of f
and z. Then the definition of B}, gives a well defined function, satisfying ii). We
define a new function B’ by:

r 2 r 2 -
E’(ﬁ) = {(l; wo(ﬁi)) - (izl ﬁ;) - Z}B::,k(?)

for all peR". From the definition of B}, it follows that B’ is a sum of functions
like T of Lemma 10 (in the appendix). Thus:

=1+

we easily find:

47 (Br0) < 62(2B;,0) < 43(f) + <dn0(2)(f),

2B <ClAN+ 3 B+ 5B + R}

<C'dpi-1)f)
for some C, C’'€(0, ), independent of f and z. Then:

4;(B)

P09

<R7IC'4,,(2)(f)
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and with the help of the previous relation (x):

#°(?B’) + RE(B)
d(M3, z)

for some C"€(0, ), independent of f and z. [J

£/(Br) <67 (:B ) <£)(B) + <C"2,(2)(f)

Proof of Theorem 5. It is enough to prove that:
N
”(D—(Mz —2) Z A,
i=0 #

for K as in the theorem. As for the proof of Theorem 3, it is sufficient to show

that the first N terms of the perturbation expansion of |@—(M?—z) ), A'¢;|
0<TEN

vanish because of the definition of the B} ,. By Theorem 1 and Lemma 4, all terms
of the series exist (all ¢; are in the domain of H? which contains the domain of
M?) and by the Taylor formula the remainder is automatically bounded as
mentioned. The end of the proof is exactly the same as for Theorem 3, and all
arguments can be repeated. []

<AN* 1Kdn,N+1(Z)(f)

3. Zero-Time One-Particle States

We use now a new piece of information. In [9] it is shown that the spectrum of
the mass operator M is contained in the following subset of R , :

0 m 2m-¢

.- &
| 4 A d >

where 0 and m are eigenvalues, and m and ¢ are continuous functions of Ae[0,4]
such that m—m, and ¢—» +0 as A—0. The subspace corresponding to 0 is the
vacuum Ey 3 = {c£,ceC}. The subspace corresponding to m, which carries an
irreducible representation of the Poincaré group, is the set of one-particle states,
denoted as E, .

Thus for 4 sufﬁciently small, there exists a circle € in €, with center m?, such
that d(M3,z) > 3m and d(M?,z) > 4m2 for all ze% (see the figure just below). Let
us call 4 the maximal value in (0, ] for which these conditions hold for all &[0, 4]
We fix now 1€[0, 4]. We fix now 1€[0, 4] for the rest of this paper. The projector
E,, can now be written as:

E,= ——
ZmI
&
oo [ 7mN (D amie
A\ Vy o

Definition. The N'*® approximations of zero-time one-particle states, with NeNN,

are defined by:
Pn(f) =1 = Eo)WOx(f),

N
O(f)= Y. . 04Di(1),0),
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Table 3. First approximation of zero-time one-particle states ¥, (f)

N
Let 1e[0,4], and P(x)= )’ a;x". For all fed% we have:
i=1

N+1

() =01- Eo){ WOD(f),00+4 3, WoAD{(f), 0)}+ 0(22¢1(f))

where, for all j =1 and PeR:
Di(f)=8;, 1,
Di(f)=0 forj=1andforj=N+2,
j

U+ l)aj+1 f(z 1?

> 7
G-1i2 [ 2 7 2
e (Z wo(ﬁi)> —(zl m) —my?

for all fe%?, where for all ie{1,...,N}, jeN* and peR/:

forall 2<j<N+1.

binm = -

BISIF) = 52 2B (P
€

See Table 3 for explicit calculations. From Theorem 5 and from the knowledge
of the spectrum of M pointed out above, we deduce the following properties of Di( f).

Lemma 6. For all reIN* and keN, Dy:B1%*D 3% Moreover, ¢4(Di(f))<
K41%+(f) for some Ke(0, ) independent of f e B1<+1).

We collect now the properties of ¥y(f).

Theorem 7. For all NeN and f,ge BN+ V:
i) Yx(f)e(l — Ep)s# and ¥y(f) belongs to the domain of H?,
ii) (1 — E,)Pn(N) = 0@ 141V D(f)),
iii) P¥y(f)= Py('f)

H2P\(f)= ¥a(/) + 0(/1” HZ i 0)))

iv) (Puf); ¥a9))=C |

some Ce(0, 00),

V% (k)7(?g(k)+0(1”“44(”“’0)4“”*“(g)) for

V) Let us suppose that f #0. There exist K, K'e(0, cv), depending only on m,
and P, such that, if A < 1/K’, then:
(PNl M*Pu(f)) _
I NN)1I%
K600
1-AK" 2%f)

2+12N+2'@ (/1 f)

where | Zy(4, )| <

Notation. We have used the function w(7€)~=_: /k? +1 m? and the following notation:
.f is the function deduced from f by ,f(k) = w(k)*f(k), and O(F(4, f,g)) is an
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expression with absolute value bounded by F(4, f, g) times a constant independent
of 4, f and g, where F is a positive function and 1€[0,4], f and ge BN * 1.

Remark on the Theorem

1. In the theorem, m is the mass of one particle with interaction, depending on 4.
2. To understand the sense of ii), we note that, by iv), the || ¥y(f) |, do not vanish
in general, as 1 —0.

3. v)states that the Rayleigh quotient is advantageous: it gives the eigenvalue up to
O(A?N*2) when the eigenvector is known only up to O(AV*1), but this requires a
limitation of the values of 1.

Proof of Lemma 6. Because 1 < A (thus € = () and by Lemma 4, ii) the function
P>Di(f)(P) is continuous. From the Cauchy Schwartz inequality, we find:

IDINP)I1 = %Idzﬁ’i,i(f, Z)(?) <K' [dz|B{ {f,2)(P)P
%€ €

for K’ = (length of ¥)/2n. From Lemma 4 we obtain:
4 DUf))? <K' I dz4}(BY i(f.2))

< Kug(l)(f)z + K///ﬁ(i)(2k+2f)2 < KZK?U&I)(]*)Z
for some K, K", K" e(0, c0) independent of f. []

Proof of Theorem 7. i) Follows from Theorem 1 and Lemma 6.
ii) We recall that from Theorem 5:

1 N .
W——_¢= ; N — N1 Ay 1S, 2),
where @=(1— E,)W6'(f,0) and ¢;=(1 — E,) Z WO04B i(f,z2),0) for all NeN,

i€{0,...,N}, feB2Y and z€0. Ay, (f,z) is a vector of # bounded as given in
Theorem 5. We integrate over ze% and divide by 27i to find:

E 0= Wo(f)+ I (4t (f,2), (0.
2mi,,

We obtain the result by applying (1 — E,,) to both sides (the term with /" can be
controlled using the same methods as in the proof of Lemma 6).

iii) The first formula holds for all zero-time vectors with suitable f. For the
second we apply M2 = H2 — P2 to both sides of (x*), which gives:

H> ¥y (f) = (m? + P2 () + 27 om? — Mz)ﬁf dz A y11(f,2)
€
Note that the methods of the proof of Lemma 6 can show that the term with /4~

exists, i.e. [ 4 is in the domain of M? = H?.
iv) Letusdenote by @(f) the left-hand side of relation (+*). Because E, 5 carries
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an irreductible representation of the Poincaré group, we must have:
D@g)=C ®)g(k
@1 0) = € [ TR

where C is some constant (which can depend on A). The announced relation follows

from the formula ().
v) We use (+#) and that E,, @ is an eigenvector of M? to obtain:

(Pa(); M*> Py(f)) = (En @ — AV K; MP(E, @ — AV 1K)

=m?| E,@|* — 2m2IN 1 Re(Py(f); K) + A2®(K; M?K)

= m? | ()12 + 220 DK (M2 — m)K),
where K = (2ni)~! j' dz Ay 1(f,z). Putting this into the Rayleigh quotient gives
(K;(M? —m*)K
W

bounded by a constant time £$™*1)( )2, For the denominator we use the Taylor

formula: || Pn(/)1I* = | ¥x(N)I*l1=0 + l( I ¥n(f) ||2> for some 0<¢ <A
Thus || x() 1% > 149(f) — AK"63(f) for some K"€(0, 00) by Theorem 1. [J

the announced formula, with %y(4, f)= . The numerator is

4. Some Interesting Vectors

For all N and nelN, n = 2, let us consider the following vectors:
ENf)=(1—Ey,— E)WOR(f),
M) = On(f1)--- Opf,)

for fe(#"**y. With the above methods these can be written as:

N
EN(f)=(1—-E,) .=ZO A ,;1 WOXE] (f),0)+ 04",

where the functions E;,(f) can be written explicitly. We now define new vectors
Y(f) by taking only the first part of the right-hand side of the previous formula:

N
i) =01- E°),~=Zo A ;1 WOI(E](),0).

Such vectors will be used in [3] to construct ansatz approaching the n particles
states at low energy. It follows from the previous results that they immediately
satisfy:

Proposition 8. For all n, NeN and fe(B{V*4)"
i) Yy(f)e(l — Eo)# and belongs to the domain of H?,

i) (1 —Ep)¥5()lle= 0<1”“ II s 1’(fi>>,
iii) PY%(f) = PH(*f).
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To understand the sense of ii), we note that the || ¥x(f) ||, do not vanish in general,
as 1—0.

Appendix. The Partially Connected Schwinger Functions

The Schwinger functions s; ; defined in Sect. 1 can be written as a sum of products
over the partitions of {1,...,i+j} (see [6]); the partially connected Schwinger
functions sp; ; are those obtained when the sum runs only over the partitions
connected with respect to {1,...,i} (defined in [6, Appendix B]). That is:

SPi,j(X; y)= Z 1—[ S rxnye

pe?(Iu)) I'vJepl'c 1) <J
where I={1,...,i}, J={i+1,...,i+j}, x, ={x;iel'} and y, ={y;jeJ'}. The
symmetric functions fy ; are given by:
Sx, (U, 0) = swi,,(u,v) — 0,01, 1 (U — V)
for all K,L =«IN,m = |K|+ |L|. The functions swt,, and c are given in [6].
Lemma 9. For all i,jeN, j = 1, and all xeR?*, yeR?%:

s”(x y)= Z SWpr [(xI )SP(I I lj(xl Y

I'el
where I ={1,...,i}.

Proof. This follows from the decomposition of (I L J) into connected partitions
(see [6, Appendix B, Lemma B10]), and from the definition of the Schwinger
functions sw;, swt, s;,sp; ;. O

For all n,reIN*, fe#?, xe(R,)" and ye(R.), let us define the functions:

THy) = 03 [ d"X f(X)sPy.nl; (75, X+3))ls=+0
for all aeN and yeR" (where X + s =(X; +5,..., %, + 5)). We denote by T#(p) the
Fourier transform of y+ T%y) (all other varxables being fixed). We will use the
notation ,f(P)= ( H wo(7; )) f(P) for all aeN, FeR" and suitable function
f:R"- C(do not confusc with the notation of Sect. 3, which uses w instead of w,).

Lemma 10. Fix n,reIlN*, xe(IR,)" and ye(R.). For all v,aclN with « <2 and
J €BL, the function

7":?7*—»( 11 wo(ﬁi)>627‘i‘(ﬁ)

satisfies: Te AP, and 62(T) < K62, f) for some Ke(0, 0) independent of A, f,% and .

Proof of Lemma 10. To see that T is continuous it is enough to show that j—T *“(¥)
is in L}(R") (the other variables being fixed). This is true because the truncated
functions like fx ; admit bounds which contain an exponential and products of
logarithms [6, 1st Part, Lemma, Sect. IV]. Because of the summation on connected
partitions only, the functions sp;; and then T7(y) admit such an exponent1a1 bound.
They are in L'. From the WTI Programme [6], T(k 1>---» k,) is a sum of the
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following terms:

oAb \rr 7w o T 2 v
f(l—[ p_. )f(k1,~~,ka1a-~-aPn—z)h(Psk,x,J’) 1_[ 6<Zk}+2p1>’

i=12wo(P)

where

S T4 3 o oo(P)dp; > r_oo(k)dk, ) o
h(p, k, %, y) = C,05 o = Jexp y(X + s, J,k,
755 ,j(gpizmo(pi)z 1 O Jow e 4s.0k0p

o 11 (Zk + Zm)z'f””({ki,pj,iez j

I Jep el

with

1 n—1 r

XX +s, ¥,k,p)=— Z |07; — X; — slwo(k;) + i Z ﬁj(v’%i +5)+i ISjJ‘}i,
i=1 ji=1 j=1+1
where 0 </ < min {r,j}, C, is a combinatorial factor, p is a partition of I' UJ’ with
I'={l+1,...,r} and J'~ {1,...,n— I}, which is connected with respect to I’ (that
is to say, all é distributions have at least one p; or one p; variable; thus all é can
disappear after some trivial integrations, to give an ordinary Lebesgue integral).
An overall summation for symmetrization on k,...,k,, on %,,...,%, and on
V1,.--» ¥, has to be done. The functions X are given and discussed in [6]. It is
proved in [6, 2nd Part] that h satisfies:

. n—1 . r - \¢
|h(D, k, %, )| < C’,<_Z1 wo(P;) + ‘—;1 wo(ki)>

for some constant C’,&(0, o), independent of %, j and A. Then T(k) is bounded by
a sum of following terms:

n—1 d—’i o~ - _
K/j(l_[ p—> >laf(k17~-~7kl’plr--,pn—l)l l—[ 5(1)<Zk +Zp]>
i=10o(Py) I10Je iel jed
for some K'e(0, 00). Thus by the Cauchy—Schwartz inequality:
n—1 d—’i /2
|T(k)|<K”[ZZZ§<]‘[ P >|af( II? H S k; +Zp1]
7 oym” \i=1Wo(Py) I10Jep

for some K”€(0, o0). We put this inequality in the definition of £°(T), which become
bounded by a sum of the following terms:

e (3R (2

oy (z +57)

IuJep iel jelJ

)J(kn K Bisee Ba)l

where p’ is a partition of {1,...,r}. Note that because of the imposed connectibility
properties, all J d1str1but10ns have different arguments. The integration over the
variables k., ..., k,(not appearing in f(---))is easily controlled. The result follows
from some change of variables. []
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