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Abstract. We show that the weak-L2 limit of a sequence of solutions of the two
dimensional incompressible Euler equation is still a solution, provided that a
(strong) concentration set for the reduced defect measure has locally finite one
dimensional Hausdorff measure in space and time.

1. Introduction

In studying the two dimensional incompressible Euler equation with vortex sheet
initial data, DiPerna and Majda [4] proved that concentration for the so-called
reduced defect measure θ could occur on a set of (cylindrical) Hausdorff dimension
at most 1 in space and time. Recently, Alinhac [1] proved that if a concentration
set for the weak star defect measure σ is of "finite type," one still obtains a weak
solution in the limit. A set is of "finite type" if, speaking informally, it consists of
a finite number of C1 -curves plus a "small" part. In this paper we generalize
Alinhac's result in two respects. First, we enlarge the allowed set of concentration
by an arbitrary set of finite one dimensional Hausdorff measure. Second, we employ
the more precise notion of a strong concentration set for θ (see below or Definition
1) instead of the notion of a concentration set for σ. In particular, our result allows
for an everywhere dense strong concentration set which could be purely
(Hl, l)-unrectifiable, so long as it has finite one dimensional Hausdorff measure.
The proof combines the shielding technique employed in the aforementioned papers
[4] and [1] and a structure theorem of Federer [7].

We define a set £ to be a strong concentration set for θ if θ (Vc) = 0 for all
open sets V => E. A concentration set for θ (in the sense of DiPerna-Majda [4])
is defined to be the intersection of a (decreasing) sequence of open sets whose
complements are null sets of θ. It can be seen that each such open set is a strong
concentration set. This connection actually also gives us an estimate on strong
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concentration sets, since DiPerna-Majda's estimate on concentration sets is
expressed through an estimate on strong concentration sets. Detailed properties
of strong concentration sets and relations between various concentration sets can
be found in the next section. We point out that the advantages of strong
concentration sets are first that one can use its structure as well as its size to
enhance the weak convergence, and second strong concentration sets are generally
much smaller than concentration sets for σ. The disadvantage of strong
concentration sets is that they are generally larger than concentration sets for θ
in the sense of DiPerna and Majda.

There is therefore still quite a distance between the present result and the final
expectation, which is to establish the existence of weak solutions to the two
dimensional Euler equation with vortex sheet initial data. See DiPerna-Majda
[4-5], Greengard-Thomann [8], and Evans [6] (and references therein) for more
background on this problem.

2. Concentration Sets

We shall consider a sequence of measurable functions {vk}™= 1 mapping R2 x [0, Γ]
into R2 such that, for each R > 0 there exists a constant CR with

sup J \ιt(x,t)\2dx£CR, fc=l,2,.... (1)
O^ί^Γ |x|^JR

By Passing to a subsequence, we can assume that this sequence converges weakly
in L,2

OC(R2 x [0, T]) to a function veU°([Q9 TlLfJR2)):

vk -> v weakly in L2

 C(R2 x [0, T]). (2)

We may also assume, by still passing to a subsequence, that

(μij)2x2 = μ, (3)

where μ denotes a 2 x 2 matrix-valued Radon measure on R2 x [0, T] and
vk ® vk = (vkvk)2 x 2. This means

for all matrix-valued test functions (/>eCc(R2 x (0, T)). Here ":" denotes inner
product of matrices, A:B = trace (A*B). The weak star defect measure σ in the
present context is defined by requiring

for all 0eCc(R2 x (0, T)). The reduced defect "measure" θ is defined on each Borel
set E ci R2 x [0, T] by setting

Θ(E) = lim sup j>* - v\2 dxdt.
fc^oo E

Note that θ is only finitely subadditive. A concentration set for σ is any Borel set
E ci R2 x [0, T] such that
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for all Borel sets A c R2 x [0, T]. A concentration set for θ in the sense of DiPerna
and Majda [4] (see also Greengard and Thomann [8]) is a set E cR2 x [0, Γ]
for which there exists a decreasing sequence of open sets

Vn^Va+1, n = 1,2,3,...
such that

θ(Vc

n) = 0, n = 1,2,3,..., and £= f) Vn.
n=l

Note that an empty concentration set in the sense of DiPerna and Majda does
not necessarily imply strong convergence (see also Ball-Murat [2]). We introduce
the following

Definition 1. A set E c R2 x [0, T] is called a strong concentration set for θ if
Θ(VC] = Qfor all open sets V ID E.

An empty strong concentration set for θ now implies strong convergence. For
a fixed sequence {vk}™=1, any Gδ strong concentration set for θ is a concentration
set for θ in the sense of DiPerna-Majda, and any concentration set for σ is a
strong concentration set for θ. The latter is true because

0 ̂  Θ(VC) ^ σ(Vc] = σ(Fcn£) - 0

for any open set V ^ E, if E is a concentration set for σ. Also, any one of the open
sets {Vn}™=1 defining a concentration set in the sense of DiPerna-Majda is itself
a strong concentration set. Therefore from DiPerna-Majda [4], we obtain an
estimate of a sequence of strong concentration sets {Vn} for a sequence {vk}™=1 of
approximate weak solutions to two dimensional Euler equation with uniformly
bounded energy and total vorticity:

where δ is any positive number and Hδ'1+δ denotes the (δ, 1 + <S)-order cylindrical
Hausdorff premeasure at level r. This premeasure is determined by the most efficient
countable cover with cylinders of height hj and sectional radius r,-:

Hδ

r<
1 + δ(E) = M{Σήhj +δ:E c u C(rj9 Λ,)},

where r7 ̂  r, hj ̂  r and C(rj9 hj) denotes a cylinder. On the other hand,
Greengard-Thomann [8] have an example where σ is concentrated on the entire
box [0, 1]2 x [0, T]. In summary, the heuristic relation between these three con-
centration sets is as follows:

a strong concentration set is "slightly bigger" than a concentration set
in the sense of DiPerna-Majda, and "much smaller" than a concentration
set for σ.

3. Main Theorem

Theorem 1. Suppose {vk}™=1 satisfying (1\ (2) and (3) are weak solutions to the two
dimensional Euler equation in 1R2 x (0, T),

\vk

t + άiv(vk ®vk)=- Vpk + fk

divi^-O
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withfkeLϊoc, fk^f weakly in L^oc. Assume there exists a strong concentration set
E c IR2 x [0, T] for the reduced defect measure 0, which has locally finite one
dimensional Hausdorff measure:

x [0, T])) < oo (0 < R < oo).

Then v is a weak solution to the two dimensional Euler Equation:

div v = 0

The proof of this theorem will be given in the last section. The precise meaning
of (5) is

T T

ί I (vφt + v®v:Vφ)dxdt = — J f f φdxdΐ,
O R 2 O R 2

T

J J v-Vφdxdt = 0
0 R2

for all divergence-free vector fields φ = (φ1,φ2)eCc

1(lR2 x (0, T)), with div φ = Q
and all φeC^JR2 x (0, Γ)).

Remarks.
1. The theorem is still true if there exists a strong concentration set E which
consists of two parts E1u£2? where E± has locally finite H1 measure and E2 is
of "finite type" in the sense of Alinhac [1]. The proof is similar.
2. The theorem is still true if there exists a strong concentration set E which takes
the form

where ScR2 has zero one dimensional Hausdorff measure, and φ = (φι,φ2)ε
Cl[Q, T]. This is not contained in the theorem, nor is it contained in Remark 1.
The stationary solution provides such an example (φ = constant). Its proof is
contained in the proof of the theorem.

The proof of the theorem depends largely on a structure theorem of Federer
[7], which we recall next.

4. Federer's Structure Theorem

Let k be an integer, 1 ̂  k ̂  n. According to Federer [7], we say a set A c ]R" is
countably (Hk, /c)-rectifiable if

j = ι

where Aj c: ΊHk,fj:Aj-+]Rn is Lipschitz (;' = 1, 2, . . .) and

H\A*} = 0.

We say a set A c R" is purely (Hk, /c)-unrectifiable if
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for every countably (Hk, fc)-rectifΐable set B. Suppose now that E a R2 x [0, T] is
an arbitrary set with finite one dimensional Hausdorff measure: H^(E)<ao.
Federer's structure theorem (Federer [7, 3.3.13 & 3.3.18]; see also Ross [11]) asserts
that (i) there exists a countably (H1, l)-rectifιable set R c E for which U = E\R is
a purely (H1, l)-unrectifϊable set. (ii) For a countably (H1, l)-rectifiable set R with
H1(R) < oo and any ε > 0, there exists a one dimensional CMmbedded submanifold
MczlR2 x [0,T] with

H\(R-M)u(M-R))<ε.

(in) For a purely (H1, 1 )-unrectifiable set U with H1(U)<oo, the following
projection property holds:

H\Pa(U)) = 0 for H2 - a.e. aεS2.

Here Pa denotes the projection operator on to the line which passes through the
origin with direction α, and S2 = {(x, ί)| \x\2 + t2 = I}. Furthermore, a one
dimensional C1 imbedded submanifold M c R2 x [0, Γ] with H 1(M) < oo can be
covered by

MCI U 0,[0,l]uM',
7 = 1

We now use the above knowledge concerning the structure of the set E to
build up an appropriate sequence of open covers for E.

Let us suppose we can find a direction aeS2 in the (x l 5ί) plane:

such that

Each curve 0 has a C1 projection on to (x l 9ί) plane:

By Lemma 4.1 of Alinhac [1], for any given ε > 0 there exist a finite number Kj
of functions φ^eC^O, T], k = 1, 2, . . . , K, and a set G7 such that

with
Hl(PtGj)<ε/N,

where Pxιt and Pt denote respectively the projection operators onto the plane
(Xi,ί) and ί-axis.

Therefore

with

G J u P X l t ( M ' ) < 2 f i .
7 = 1
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Let RX2^{(0,x2,0)|x26R},R^{(x1,x2,0)|(^1,x2)eR2}, Rr+ = {(0,0,ί)|0 ̂
ίeR} andR^1 = {(x1,x2,i)|x1 + yί = 0}. We then have

Mu(K\M)ul7

(PXlίM x RJuίPiORW) x R2)u(Pα[/ x R2,)

U 0 ί*ι - <WO = °) x RX2v(PaU x R2,)
j = l k = l

u JP/ U G uP^M'uORW)) x R2 (6)
I \ j = ι

and

fflίpt( U G7-I \ j = ι

Take an open set W c R?

+ such that

U
j = ι

Finally take open sets {Vm}™=1 on the line passing through α such that

Vm^Pa(U) and

H\Vm)<-, m = l , 2 , . . . .
m

Then we have

Kj ί 1 1 1

fc=ιl J/C H/J J

The sets on the right-hand side of (7) are open for all choices of integers {njk}^: fi :

and m as above.

5. Cut-Off Functions

Let us take

fO, if 5α/vTT?6Fm

Λ, if sα/yΓ+72^^,
and

Ί, if \s\>2/n

tθ, if | 5 | < l / n

with XnEC^^Q^Xn^l. The index n will later be replaced by other integral indices

{»*}•
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Take finally

N Kj

ΛΛ 1? / A/τt\ 1 ' ' Λ. \. J. Λ. Λ,Ai j jc\ 1 > J^V ' '' ^ '

We observe that χm is not necessarily continuous. However the smoothness of χn.k

is needed later in the proof. We also point out that the most important property
of this function is that it vanishes on an open set containing E\(W x R^).

6. A Lemma

Lemma 1. Let φeCl(JR) and let {Xi}^=1 be a sequence of measurable functions such
that O^Xi^l, %i(s)->l for a.e. seR as i-* oo. Let KeC^R x [0, oo)). Assume for
any T>0, there exists an Rτ>0 such that K(x,i) = Q on [-RT,RTY x [0, T].
Then for all ^eCc°°(R2 x R+) and v = (

R3

as /-^ oo, where

xi z-φ(ί)

»; ι̂,ί)= ί ί
— oo — oo

Proof. We have

/t- - J (V1^)'^- + (V^φ)'vdtηi + (dtψ)(dxιηjυ2 4- ψ(dxιdtηί)v2dxdt.
R3

Notice

xι-φ(t)/ z

1i= ί ί (1-L
- oo \ — oo

Thus

xi- φ(ή

Φ'(t) I (1 - χts))K(s + φ(t), t)ds

xι-φ(t) z AV

ί ί (ί-^s)) — (
- oo - oo at

for each (x1?ί). Since also
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we thus conclude that all the terms in /t go to zero except perhaps the last one.
For the last term we have

ί v2ι//(dxιdtηi)dxdt = J J —φ'(t)(\ —
R3 Ri R2

J \ J ^ ΛIV/ I ,

R3 V - oo J at

The second integral goes to zero. For the first integral, we notice

^MR2

uniformly in t and

R2

for each t. Thus the expression goes to zero by Lebesgue's Dominated Convergence
Theorem.

We remark that Alinhac [1] has a similar lemma. The difference is that we do
not require χf to be smooth.

The proof in the next section follows very much the same way as Alinhac [1].

7. Proof of Theorem 1

a. For any </>eC^(IR2 x (0, T);R2), with div φ = 0, we write φ = Vλη for ηeC%. To
show (5) is valid in the weak sense, it is sufficient to prove

(9)

However, from (4) we have for all fe = 1, 2, . . . , and ηeC™

$V^dtη vkdxdt + $VVλη:υk®υkdxdt = - J V V fkdxdt. (10)

By approximation this identity is valid if η belongs to W2'°°(R2 x (0, T)) and has
compact support.

b. Let ^eCc°°(R* x (0, Γ)) be fixed, with spt ψ c (xeR2 1 \x ^ R0} x (0, T). Then
the strong concentration set E restricted to spti/^ has one dimensional measure
finite. We will still use E to denote this restriction. According to the decomposition
of E in Sect. 4, we have

where R is countably (H1, l)-rectifiable and U is purely (H1, l)-unrectifiable. There
exists a dense set D of points on S2 so that we always have zero one dimensional
Hausdorff measure of the projection of U onto the straight line passing both
through the origin and any point of the set D. Since Euler's equation is rotational
co variant, we suppose without loss of generality that the (x l5 1) plane is one of the
planes which contain at least one such point, and we further assume (l,y) is such
a direction in the (x l 9 i) plane. Taking £eCc°°(]R), we want to establish a modified
version of (9) for η(xί9x29t) = ψ(x1,x2,ήξ(xι + γt).
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Given ε0 > 0, we can choose ε so small that

4εCRosup\ψξ"\<ε0/2. (11)

For the above ε > 0, E has an open cover as in (7). Using χ(x l 5 1) as in (8), we then set

ζ(xl9t)= j f χ(s9t)ξ"(s
— oo — oo

xι z + γt

= ί ί χ(s-yt,t)ξ"(s)dsdz
— oo — oo

= ϊ Txm(s)Π ΓΊ lnjk(s-yt-φjk(t))ξ"(s}dSdz.
— o o — o o j = 1 k— 1

Finally take η = ψζ in (10).
c. We find

and

MXI, 1) = χ(x,,t)ξff(x1 + γt) for a.e. (xl9 t).

Split A into the two integrals

A= J J \l/χξ"υk

ίvf'2dxdt+ J j \l/χξ"v\vk

2dxdt
W R2 ί̂ c R2

We obtain |^x | g ε0/2 by the choice of PT and (11).
We then pass the limit as /c->oo in terms ,42, 5, C and D. By construction,

the integral in A2 lies on a compact set disjoint from £; on such a compact set,
the convergence of {vk}™=1 to v is strong in L2. Therefore

Λ2-> J j ψχξ"v1v2dxdt.
W R 2

The terms £, C and D go to terms £', C' and D' of the same form, where vk ® vkdxdt
is replaced by dμ, according to (3). Finally

and

d. From c, we have obtained

$V Ldtη'vdxdt+ J J
We R2

Therefore
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Now we let the indices m and {njk} go to infinity one by one; i.e., let m-> oo,
then WH-KX), and so on. To deal with the first term §Vλdtη vdxdt, we need
Lemma 1 repeatedly. In the limit m-» oo, we apply Lemma 1 with φ = — yt and

= Π Π M5 -

and obtain

J1 J K0(s,t)dsdz\vdxdt
— 00 — 00 /

as m -» oo. We have thus eliminated χm in the cut-off function χ. In the limit nlί ^co,
we will eliminate χπ ι l in χ by applying Lemma 1 with φ(t) = φu(t)9 &(s) = χnι l(s)
and K(s,t) = KQ(s,t) without the factor χπιl(s- (/>n(ί)). Let nl2,n2l9...9nNKN-+cc>
in a similar way, we obtain in the end

Using Lebesgue's Dominated Convergence Theorem, we pass the limits m,
{njk} -> oo in the second term to obtain

The terms B',C',D' and §Vλη fdxdt converge also to terms of their own forms,
only with η = ψζ replaced byη = ψξ. This is because ζ and dxίζ converge uniformly
to ξ and dxιξ respectively on compact sets. To see this, let (x,i)eBRo(0) x [0, Γ],
we have

dxιζ(xl9t)- j K0(s,t)ds ί (l-

^ \\Ko\\L.

γt))K0(s,t)ds

and

So

ζ(xl9t)- J J K0(s,t)dsdz
— oo — oo

— oo

K0(s,t)dsdz

uniformly on BRo(0) x [0, T] as m-> oo. Similarly, we can let {nj7c} -̂  oo to conclude
that ζ and dxιζ converge uniformly to ξ and dxιξ respectively on compact sets.

We finally deduce |/| g ε0, where
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Since ε0 is arbitrary, we have

7-0. (12)

e. We actually have proved that (12) holds for all functions of the form
ξ(d-x + γt), ξeC^IR), where {d χ-hyί = 0} forms a dense set of straight lines
through the origin. By Radon transform [9], which asserts that finite linear
combinations of functions of the form ξ(d x + yt) can approximate a given test
function ηεC2

2 in C2-norm, we pass the limit in (12) to find

^η:dμ + f Vη ® Vλψ:dμ + $ηVV^ψ:dμ + $Vλ(ψη)-fdxdt = 0.

Letting ψ = 1 on spt η, we obtain (9). Π

8. A Special Extension

Comparing Theorem 1 with DiPerna-Majda's result [4] that there exists a
concentration set of "cylindrical" Hausdorff dimension at most 1, we see it would
be interesting to shield a strong concentration set comprising a one dimensional,
time-like curve defined on [0, T] with infinite one dimensional Hausdorff measure.

A typical set of this kind is a nowhere differentiable curve ΦeC°'α([0, T],R)
(the space of all Holder continuous functions with Holder exponent α) for all
0 < α< 1, but not α = 1. See Federer [7] or Ross [11] for explicit examples. More
generally, it is shown in Besicovitch and Ursell [3] that a set of the following form

E = {(xlsί)eR x [0, Γ]|xt = ΦΛOeC^ίCO, Γ],R)}

can have Hausdorff dimension at most 2 — α. And there exist examples for each
0 < α < 1 such that the dimension 2 — α is achieved. In the following theorem, we
actually shield a strong concentration set of the more general form

([0,nR2)}9 (13)

where α ̂  2/3. This set E can have Hausdorff dimension at most 3 — 2α: see
Mandelbrot [10] and references therein.

Theorem 2. Suppose {vk}™=1 satisfying (1\ (2) and (3) are weak solutions to the two
dimensional Euler equation in R2 x (0, T)

\υk

t + div(i;k <g> vk) = - Vpk +fk

div vk = 0

with fkeLιoc, fk ->f weakly in L^oc. Assume there exists a strong concentration set
E c=R2 x [0, T~\for the reduced defect measure θ which has the form of (13) where
α ̂  2/3. Then v is a weak solution to the two dimensional Euler equation:

\υt + div(ι; ® v) = - Vp +f

div υ = 0.

Proof. We shall mollify Φ(ί) = (Φx(ί), Φ2(0) by a standard mollifier:

wε(s) = - m ( S ) , meCc

c o(-l,l), O ^ m ^ l , f
β \ε/ -oo
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Extend Φ by constant outside [0, T] so that it is continuously defined on R. For
ε > 0, let

Φε(t) = mε*Φ.

It is easy to check that

(i) Φε(ί)eC°°[0,T],
(ii) \Φ\t}-Φ(t}\^Cε\ ίe[0,T],

(iii) \dΦε(t)/dt\ ^ Cε"-1, ίe[0, T].

a) Similar to the proof of Theorem 1, we shall use Radon transform. To show
(9), we need only to show that (12) holds for all

η = ξ(xl+γt)ψ(xl9x2,t), (14)

where ξ(s)eCc°°(R), yeR and ^eCc°°(R2 x (0, T)).
b) Take

Vε = {(Xl9 ί)eR2| \Xl - Φ\(t)\ < 2Cεα} x R*2

where C is the constant appearing in (ii). Then Vε is open and

V^E.

Choose a χε(s)eC°°(R) such that 0 ̂  χε(s) ^ 1 and

f O if |s |<2Cεα

γ S — .

'1 if |s|>3Cεα.
Set

α*ι, 0 = J
— oo

then Cε(xι,OeC°° and

5^^,0-0 on F,

Finally take

ηε(xι9x2,t) = ζ ε ( x ί 9 t ) ι l / ( x ί , x 2 , t ) .

The idea is to put ηε into (10), let fe-> 4- oo, then ε-*0 +, we will recover (12) for
η of the form (14).

c) Now put ηε = Cε^eCc°° into (10) and let fc-> + oo. We find

^^(d2

xιζε)v1v2dxdt + (15)

VC ε(8)V1ιA + CεVV-LιA):^ (16)

= -$Vληε'fdxdt. (17)

d) Let ε->0 + . Notice

ζε(x1,t)-+ξ(x1 +yί) uniformly on spti/^,

^Cε^iίO-^^ξίx! +yί) uniformly on sptψ,

^C^i^O^^^i + 74 Vίa.e. in x,
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We find that the second term in (15) and all terms in (16-17) go to the right limits,
for the first term in (15), we have

V^dtf v = (dxιdtζjv2ψ + (dtζε)v2dxιψ - (d^v&J (18)

+ (dXίζJv23tΨ + ίΛ^AΆ - &ι8X2dtιl,. (19)

The three terms in (19) go to the right limits. To find the limits for the second
and third terms in (18), we carry out the differentiation in dtζε, then use
dsχε(s) = — ds(l — χε(s)) and integration by parts to turn the differentiation on
ds(l - χε(s)) onto d2^, to find

Xί Z

d,ζε = y J J ξ'"(S + yt)χε(s-Φ\(t))dsdz (20)

X1

J ξ"(z + yt)ll-χε(z-Φ\(t)]dz (21)

— oo — oo

X1

- oo

- ί ί Πs + 7ί)[l-χ«(s-Φe

1(0]ds<fa[. (22)
- oo — oo j

Using (ii) and (iii), we find that both (21) and (22) are of order ε2""1, and the
left-hand side of (20) equals dtξ(xί + γt) + 0(ε*). Therefore,

So the second and the third terms in (18) go to the right limits also.
For the first term in (15), we notice that

= 7 j ξ"(z + yt)χe(z - Φ\(t})dz + Φ*(t) ξ"(Xl + jt)[l - χε(Xl -

= dtdxιξ + 0(6") + Φ»(t)ξ"(Xl

Thus, the first term in (15) goes to the right limit if we can show that

0 R2

In fact, if we denote

Ue = { ( x l 9 t ) \ x, - Φ-ίOI < 3Cεα) x R^2,
then

^Cε--1 J j [l-χ^-
0 R2

^Cε""1 J \v2\dxdt

\ 1 / 2

^^2 J |ϋ 2 | 2 dxΛ
/
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as ε-»0. Therefore (12) holds for the choice of η in (14). Π

Acknowledgements. This paper is a part of my Ph.D dissertation. There are so many people to
whom I am grateful for having helped me, but there is so little space in which to recognize them.
However, I would like to give a special thanks to the following: to Professor Tong Zhang for
giving enormous help without expecting any returns; to my former dissertation advisor, the late
Professor Ronald DiPerna, for his precious time and his leading me into his fascinating world
of mathematics; to my dissertation advisor Lawrence Craig Evans for his encouragement, lots
of very stimulating conversations and substantial improvements to this paper; to Professor
Tai-Ping Liu and Professor Alexandre Chorin for their support, time, constant encouragement
and many helpful conversations; finally, to my dear fellow students Craig Hildebrand, Tom
Ilmanen, Helena Nussenzveig Lopes and James Shearer for stimulating conversations and
friendship.

References

1. Alinhac, S.: Un phenomene de concentration evanescente pour des (lots non-stationnaires
incompressibles en dimension deux. Commun. Math. Phys. 127, 585-596 (1990)

2. Ball, J. M., Murat, F.: Remarks on Chacon's biting lemma. Proc. Am. Math. Soc. 107, 655-663
(1989)

3. Besicovitch, A. S., Ursell, H. D.: Sets of fractional dimensions (V): on dimensional numbers
of some continuous curves. J. Lond. Math. Soc. 12, 18-25 (1937)

4. DiPerna, R., Majda, A.: Reduced Hausdorff dimension and concentration-cancellation for
2-D incompressible flow. J. Am. Math. Soc. 1, 59-95 (1988)

5. DiPerna, R., Majda, A.: Concentrations in regularizations for 2-D incompressible flow.
Commun. Pure Appl. Math. 40, 301-345 (1987)

6. Evans, L. C: Weak convegence methods for nonlinear partial differential equations. CBMS
Lecture Notes. Providence, RI: Am. Math. Soc., 1990

7. Federer, H.: Geometric measure theory. Grundlehren Math. Wiss., Bd 153. Berlin, Heidelberg,
New York: Springer 1969

8. Greengard, C., Thomann, E.: On DiPerna-Majda concentrations sets for two-dimensional
incompressible flow. Commun. Pure Appl. Math. 41, 295-303 (1988)

9. Helgason, S.: The radon transform. Coates, J., Helgason, S. (eds.) Vol. 5. Progress in
Mathematics. Boston: Birkhauser 1980

10. Mandelbrot, B. B.: The fractal geometry of nature, p. 374. New York: W. H. Freeman 1983
11. Ross, M.: Federer's theorem. Centre for mathematical analysis preprint, Australian National

University, CMA-R32-84

Communicated by A. Jaffe




