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Abstract. We present a detailed study of the Schrodinger picture space of states
in the SU(2) Chern—Simons topological gauge theory in the simplest geometry. The
space coincides with that of the solutions of the chiral Ward identities for the
WZW model. We prove that its dimension is given by E. Verlinde’s formulae.

1. Introduction

The most characteristic feature of two-dimensional conformal field theories is the
separation of left-moving and right-moving degrees of freedom. In the euclidean
world, this translates to the factorization of Green functions into sums of products
of holomorphic and antiholomorphic expressions: the conformal blocks. In the
simplest case of rational conformal theories the sums are finite. Conformal blocks
are multivalued and may be naturally viewed as sections of finite-dimensional
holomorphic vector bundles over the moduli spaces of punctured Riemann surfaces.
The way they are put together to form Green functions is determined by a hermitian
metric on the bundles. This point of view was advocated by Friedan and Shenker
[3] who formulated conformal field theories in terms of modular analytic geometry.
A lot of effort has been invested in analysis of the general structure of Friedan—
Shenker bundles, especially in translating the information they encode into an
algebraic language [17, 16, 13, 14]. In particular, E. Verlinde’s work, based on the
expected factorization properties of the bundles and their modular properties, has
allowed to come up with a formula for their dimensions, see also [14].

Among rational conformal field theories, a special role is played by Wess—
Zumino—Witten (WZW) sigma model with fields taking values in a compact group
G [18,10,6]. They generate through the so-called “coset construction” [7], a rich,
possibly exhaustive, family of rational theories. For the WZW models, the Friedan—
Shenker bundles are composed of solutions of current-algebra Ward identities. In
[19], Witten has observed that they may also be viewed as bundles of Schrodinger-
picture quantum states for a three-dimensional non-abelian gauge theory with
action given by an integral of the Chern—Simons form. The insertion points of the
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Green function correspond in the three-dimensional theory to Wilson lines. Both
pictures lead to a mathematical description of fibers of the Friedan—Shenker
bundles as composed of holomorphic sections of a power of the determinant bundle
over the moduli spaces of stable holomorphic GS-bundles [1] with parabolic
structure at the insertion points [12].

In the present paper, we give a detailed rigorous analysis of spaces of
Chern-Simons theory quantum states in the genus zero case for G = SU(2). Instead
however of employing algebraic geometry of moduli spaces of parabolic bundles,
we shall start in an infinite-dimensional setup which will be reduced to finite-
dimensional analysis differently. The reduction realizes the Friedan—Shenker
bundles as subbundles of a trivial bundle with a space of SU(2)-invariant tensors
as the fibre. We show that they are invariant under a holomorphic connection in
the trivial bundle, introduced by Knizhnik and Zamolodchikov [10]. We study
the behavior of the subbundles when two punctures in the Riemann sphere coincide
or, equivalently, when the sphere is pinched leaving two insertion points in
one component. Using the Knizhnik—Zamolodchikov connection, we prove
factorization of the subbundles in the special case. This allows us to show by a
simple inductive argument that the dimensions of the subbundles are given by
Verlinde’s formulae.

The present paper is a preparation to a detailed study of the hermitian metric
on the Friedan—Shenker bundles which, in the Chern—Simons picture, corresponds
to the scalar product of the gauge-theory states. As argued in [4], this scalar
product is given by a finite-dimensional (Coulomb-gas) integral representation. In
the simplest cases, the integral converges producing exact solutions for the WZW
model Green functions at genus zero. We have conjectured in [4] that this is
generally the case, i.e. that every Chern—Simons theory state is normalizable. The
dimensional count proven in the present paper provides a strong argument in
support of that conjecture: this is for the normalizable states that we would expect
Verlinde’s formulae to apply.

An alternative way to construct the genus zero Friedan—Shenker bundles for
the WZW model is from invariant tensors of the quantum deformation G, of group
G for a suitable root of unity g [11]. The hermitian metric on the bundle plays
an important role also in this construction. We plan to discuss the relation of the
two approaches in a future publication.

2. Chern—Simons States on the Riemann Sphere

The basic object of our study will be the space of quantum states of the
Chern—Simons topological gauge theory with the action

k/(4n) | tr(AdA +343),
M

where A= — A* is a l-form with values in the Lie algebra s/(2,C) on a
three-dimensional manifold .# (a connection on the trivial bundle over .#). We
shall take # tobe ¥ x R, where X is a compact Riemann surface without boundary.
Coupling constant k, called the level, is a positive integer. The coherent state
quantization of the theory in the presence of Wilson lines {{,} xR, n=1,...,N,
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in representations of spin j,, leads to the following description of the Schrodinger
picture states Y of the theory [19,5,2]:
Y is a holomorphic functional of sl(2, C)-valued (0, 1)-forms A°! = A.dz (the dz
N

part of the two-dimensional gauge fields) on X. y(4°")e (X) V;,, where V; denotes
n=1

the space of spin j representation of SU(2) (and SL(2, C)). Besides i has to satisfy

the following differential constraint:

(F(&) — ; 2n/k 0(E — &,)15,) (A°) =0, 1)

where t* = 1/2 ¢ are the standard generators of su(2), the subscript j, indicating
that they act on the n-th factor in X))V, ;

S F=F = 0,4, +6,(n/k)5/(0A,) — [(n/K)3/(34.), A.]
stands for the quantized version of the curvature with A4, replaced by (— n/k)J/(6A;)
and the convention
OY(A®Y) = [tr (6/(0A,)Y(A°"))0A,d%z,

where d%z =i/2dzdz. To be completely precise, by a holomorphic function of 4°?
we mean a C®-map (in the Frechét sense [8]) with complex-linear derivatives on
the space .«/°! of smooth forms 4°! with the C* topology.

We shall denote the space of holomorphic maps

AR AR —>® Vi,

satisfying condition (1) by #7;,...;,(Z,(&,)). It will be more convenient to rewrite
Eq. (1) in a global rather than in the infinitesimal form. Let us denote by %€ the
space of smooth maps h: X — SL(2, C) (chiral gauge transformations) acting on .«/°?
by

A% r A0 = A0t hoR L

Equation (1) is equivalent to the following condition describing the behavior of i
along the orbits of ¥¢

Y("A°") = exp [kS(h ™1, A°)] Q) h(&,);, ¥ (4°"), @

where on the right-hand side h(¢,);, act on the n-th factor in the space X)V;,,

where /(4°!) takes values. S(h, A°!) denotes the action functional of the two-
dimensional Wess—Zumino—-Witten (WZW) field theory model coupled to the
right-handed gauge field, given up to the multiples of 2xi by

S(h, A°Y) = — i/(4m) [ tr (k™ Oh)(h™"h) — i/(127) | tr (R~ ' dR)®
z K]
+i/Q2m) | tr(hoh™1)A°, 3)

where h:% > SL(2, C) is an extension of & to a three-dimensional manifold £ with
08 =2
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Action (3) may be shown to satisfy
S(hh',"A°') = S(h', A°) — S(h™1, A°Y). 4)
If one defines formally the Green functions I}, ...; (2, (£,), A°Y) of the WZW model
by the functional integral

§ @9, exp [~ kS(g, A°)1[] dg(&)

teX

over SU(2) valued fields g then Eq. (4) implies formally the chiral Ward identity
Fjl'HjN(Z’ (én)’ hAOl) = exp [kS(h_ 1’ AOI)] ® h(én)jnrjx“'jN(Z" (én)a AOl)‘

Consequently, the space of states satisfying (2) may be viewed as the space of
solutions of the chiral Ward identity in the WZW model.

Equation (2) may be regarded as a defining relation for sections of a vector
bundle with fiber (X)V;, over the space of orbits 2/°'/%¢ which is effectively

finite-dimensional. In the simplest case when X = CP?, the orbit of 4°! =0 forms
an open dense subset of .o/°! [1] and as a consequence, (0) determines
completely. Notice that taking in (2) A°* =0 and h = const., we infer that

Y(0)elnv <® an>,

i.e. the subspace of tensors invariant under the diagonal action of SL(2, C). Putting
it differently, the map

‘/le...,N(CPl,(fn))alﬁr—»lp(O)eInv(@an> )

is 1 to 1. We would like to describe its image W;,...; (CP',(&,)) = W((&,).

Given woelnv(®VJ-n>, it determines via (2) a functional ¥ on the %‘-orbit
of 4°1 =0: "

Y(h™ " 0h) = exp [kS(h, 01 Q) h(Z,);, " Vo- (6)

¥(0) =, and ¥ is holomorphic on its domain since the map
4GS = {he%C|h(&y) = 1}sh—h ' Ohes !

is a holomorphic difffomorphism onto the open dense orbit 4¢-0. Functional
does not have, however, to extend smoothly to the whole .«/°!. To understand this
in detail, we need some information, which may be extracted from [1], about the
“geography” of the ¥-orbits in /%',

Given A% e.&/°!, we may write locally over a sufficiently small covering (%,) of ¥

Ay, = h; ' 0h,

for h,:%,—~SL2,C). If ¥ =CP'=Cu{w0}, %,s may be taken as two discs
having an annulus centered around the equator {z||z| =1} as their intersection.
(gup = hyhy ') form a 1-cocycle of holomorphic transition functions of an SL(2,C)
holomorphic bundle over X. The space or orbits .oZ/%€ coincides with the space
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of isomorphism classes of SL(2,C) bundles. In particular, the orbit of 4°! =0
corresponds to the tirivial bundle. By the Birkhoff theorem [15], on CP! each
SL(2,C) bundle is a direct sum L@ L™, where L is a holomorphic line bundle
characterized by its Chern number n (L™ ! is the dual bundle). In other words, the
transition functions of an SL(2, C) holomorphic bundle on CP! around the equator
can always be written in the form

2" 0
0 z ")

Orbits in .«/°! /%€ are just enumerated by [n| =0, 1,... . Let us denote them by
O,y- In particular 0, is the open dense orbit of A°! = 0. Orbits 0, stratify «/°" in
the following sense:

U 0, is an open subset of &#°! and 0, is its closed complex submanifold
I(:} écnc;)dimension 2ny, — 1.
If ¢ is a holomorphic functional on () 0, for ny =1 then, by the Hartogs
theorem, it uniquely extends to a holorlr;llogr;hic functionalon () 0, differing
from () 0, by a complex submanifold of codimension ;"i.é%:);lsequently, V]

In] £no

extends then to a holomorphic functional on the whole o/°'. We have only to
verify whether ¢ given by (6) may be extended to (O, L 0.
Consider a 1-parameter analytic family of smooth forms (4?') given by

0 for |z|Z1

A?lz 1 0 1 0 >
-17 <

where g, is a smooth SL(2, C)-valued map,

B z7t 0
do = 0 2

around |z| = 1. A3! is clearly in @;. On the other hand, if ¢t # 0 then

APt = h” 1 0ht,

1 t71z
<
<0 | ) for |z|£1

0 ! 1 0
<
(—t Z_1>g0<52_1 1) fOI' |1/Z|=1

are smooth SL(2, C)-valued maps on CP!. Thus for t #0 A?'€@,. Complex curve
t— A% crosses (), transversally. Indeed. The subspace tangent to O, at 43! is

where

h,= s (7
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(GA +[A81, AT|A: CP* 5 5l(2,C)}. Let

(O 0>dz' for |z|=1
o1 1 0

- 0
i ) oot ooz
Since
Jte(@1)*(@A +[43%, A1) =0,

a®! spans the subspace orthogonal to O, at AJ'. On the other hand,
0 -1 = 1 0

fr@h*oAg'= [ trgo’ 90d(1/2)| g6 090, _,
11/z| <1 0 0 V4 1

10 0 —1
= dt -1 |
Il/zjlél r(z_l 1)90 (0 0>g0d( /z)

1 0\ _,/0 —1 ;
:||§—1tr<z_l 1>901<0 0>g0d(1/z)=2m

which shows the transversality of the intersection. Locally around AJ', «/°! may
be parametrized by *A°! for h from some codimension four submanifold of %€
and this parameterization may be carried to other points of ¢, by chiral gauge
transformations. Hence y extends to a holomorphic functional on 0,u O, if and
only if the map

t- P (A7)

is holomorphic at zero.

Let us examine this condition more closely. It will be convenient to describe
spinj representation of SL(2,C) as acting on polynomials P of degree =<2j in
complex variable v by fractional transformations:

(j Z)- 1p(v) = (cv + d)* P((av + b)/(cv + d)).

The scalar product rendering the action of SU(2) unitary is
IPI1? = [IP@)I*(1 +|2|?)” ¥~ ?d%z,

In this realization, Inv (@ Vj"> becomes the space of polynomials P in variables
v,, of degree <2j, in v,, such that
P((vy)) = [ [ (con + d)*P(((av, + b)/(cv, + d))). ®)

In particular, P is translation invariant and homogeneous of degree ) j,. Let us
assume that all points &, lie in the disc |z| £ 1. By Egs. (6) (7), with polynomial P
representing Y,

Y(A2") = exp [kS(hy, )T P((v, + t71&,)) =t Lrexp [kS(h,, 0)1P((E, + t0,)).  (9)
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A direct computation using the formula
8,S(h,0) = i/(2n) [ tr (h™'0,h)0(h~*Oh)

shows that exp [kS(h,,0)] oc const. t*. As a result, we infer that expression (8) is
analytic at t =0 if and only if P(({, + tv,)) vanishes to order Y j,—k—1int.

Recall that W((&,)) denoted the space of the initial values y(0) of states .
Clearly, W((£,)) has to be constant along the orbit of the Mdbius group (of
holomorphic transformations of CP?) in the space X  of sequences (£,),n=1,..., N,
of non-coincident points in CP!. It is easy to see that, due to invariance (8), the
condition that P((¢, + tv,)) vanishes to some order in t is invariant under the
Moébius transformations of (¢,) inside the subspace X% composed of sequences
with all £,’s different from co. Since any such sequence may be brought by a Mobius
transformation to one with |£,| < 1, we obtain

0u, - 0 P((,)) =0 for

Proposition 1. For (£,)eX%, W((E,)) = {Pelnv (@ V-">
0S¥ L<Yj—k-1}, "
Now notice that for (¢,)eXy\X% with £, = co and &, #0 for n #m,
05, O P(v,)) lon=tp nem

N

= a:}ll . '.6511:1 H U’%J"P((U"_ 1))|z:l==%“ n#m,
n

= 1y Qi — [+ Bt D20l 00

Um-1 Um+1

11 vfj"P((vfl,...,v,;_ll,vm,v,;i1,...,01;1))l$:==46. ntm., (10)

n¥m
Equation (10) implies that vanishing of d. ---0'X P at v,=¢,, n#m, v,, =0 for
S+ 2(m— )<Y js—k—1andatv, =& ', n#Emv,=0for) [, <Y j,—k—1
are equivalent conditions. Since W((&,)) = W((£, !), we may use the first condition
to describe W((&,)). Notice that since

1 1 bo 1 1
5011 ...avfl"vplz,’;::%, ntm = ¢ v,..avll ...avr;P,?::%n, n#m,

vanishing of the left-hand side for Zl,, 4+ 2(jm—Ilw) <Y ju,—k—1 is a condition
translationally invariant in (£,),+, and our assumption that &, #0 for n#m is
nonessential.

Proposition 1*. For (£,)e X y\X% with &, = o0, W((£,)) = {Pelnv(@ Vj"> oL -+

af)};lvP((glaaém—1>0>ém+1”éN))=0 fOYOéZln-I'z(]m—lm)éZjn—k— 1}

Suppose that one of the spins, say j,, > k/2. We may assume that £, = co. Since,
due to the homogenuity of invariant polynomials P, 0, ---d,, P vanishes if
Y 1,23 j,, Proposition 1® implies that

511 “'alNP((éla' . '7§m~1509 6m+ 15 '7£N)) = O (11)

for I, =2j, and any l,, n # m. But, due to the translational invariance of P,
2.0, P((v,)) = 0. (12)
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It follows then by induction on [,, that (11) holds for any [,’s and P has to vanish.
This proves

Corollary 1. Spaces W((&,)) are non-zero only if all spins j, < k/2.

Spins satisfying condition j < k/2 are called integrable (they correspond to the
highest weight representations of the affine Kac-Moody algebra which integrate
to projective representations of the loop group). As we see, only such spins may
appear on Wilson lines in the Chern—Simons theory or in Green functions of the
WZW model [15,6].

Let us consider some examples of spaces W((&,)).

Example 1. Two-Point Case
Clv, — )" if jy=j,,
{0} otherwise.

Inv(V,,®@V;,) if ji=j,<k/2,
{0} otherwise.

Inv(V;, ®V,,) ={

Wiljz(CPI) (51’ 52)) = {

Example 2. Three-Point Case
Inv(V;, ®V,®V,,) = CPL"

if j1, =ji +Jj2—Jj3.J13 =Jj1 +j3—j, and j,3 =j, +j3 —j; are non-negative integers
and is equal to zero otherwise. The Clebsch—Gordan polynomial

P%m(l’nl’b v3) = (v — 0, 2(0; — ;)7 (v; — V)7 (13)
Inv(V,,®V;,®V;,) if ji+j+j35k
{0} otherwise.

Vlehh(CPl,(él, 52’ 53)) = {

This reproduces the standard SU(2) fusion rules [6]. From the point of view of
the Chern--Simons theory, the fusion rules were also studied in [2].

For two or three insertion points, due to the Mbius invariance, spaces W((£,))
do not depend on (&,). This is no more the case for four or more insertion points
forming a continuum of orbits under the Mbius group. For the sake of illustration,
let us consider

Example 3. Four-Point Spin 1/2 Case
Inv(VE3) = C(v; — 03)(v3 — v4) + C(v; — 03)(v, — v,).
Let us write any invariant tensor as
(v — 02)(V3 = va) + B(2vy — v3)(v2 — va) — (V1 — V) (V3 —4))

(which are spin 0 and spin 1 contributions in the intermediate channel of the tensor
product decomposition). For level k > 1 there are no restrictions on the invariant
tensors. For k=1, W((¢5,. .., £,)) is the subspace of Inv (V§3) given by the equation

Ca+(2—-9p=0,

where &= (&, — £))(E3 — &) (& — &3) 7 (&, — E,) ! is the anharmonic ratio of four
points.
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3. Knizhnik—Zamolodchikov Connection

We would like to compare spaces W((¢,)) for different (£,)’s. A convenient tool
for this is the flat [11] Knizhnik—Zamolodchikov (KZ) connection in the trivial

bundle X§ x Inv{ X) an> over X9 (recall that X is the space of sequence (&,) of
non-coincident points in C). It is given by [10]

Vgnzag", (14)

3
Ve, =0, —2/(k+2) Y (& Z L (15)

m#¥n

where ] are the SU(2) generators acting on the n-th component of @an. In the
polynomial representation,
ti=12w*—1)3, — jv,

3 =1i/2(v* + 1)9, — ijv,

2= —v0, +j; (16)
Proposition 2. Parallel transport in the KZ connection preserves spaces W((&,)).
Proof. Let for L=(l},...,1y), 01,22, Y1, <Yj,—k—1, DX =0} ---0% and

Pelnv(®V;),
R™=DP((£,)). (17)

The map ((&,), P)—((&,), (RY)) is a homomorphism J of trivial vector bundles
¥ xInv(®V;) and X3 x C*". We shall find a connection (which is not unique)
on the second bundle related by J to the KZ connection, i.e. such that

VJP=JVP. (18)
We may put

V:R'=0;: RL (19)
In order to find the (1,0)-part of the connection, let us compute
JVe P =D"0,, P —2/(k +2) Z (& —Cm)™ ‘Zt" 15, PN, -,

=0.,(D"P((£)) — 0, D P((¢,)) — 2/(k +2) ; (& — &) 1D"

(1/2 (vn - Um)zav,,avm +jm(vm - Un)av,, +jn(vn - vm)avm +] njm)P((vr))L;,z{r’ (20)
where we have used Eqgs. (16). On the right-hand side of Eq. (20), we shall commute
D" with Z t2 1 and shall show that the terms with more than Y j,—k—1
v-derlvatlves cancel. Let us denote by I (L,) multi-index L with [, increased (lowered)
by one (if [, = 0 then terms with L, should be omitted). We have then

JVe P =0, (D"P((£))) — {D¥" + 2/(k +2) ; [1/2(Ep — &)DM™

+ (=)D = by =)D + (€ — &)1 (1/2 {1y — D" — 1,1, D*

+1/21,(L,— DD + j, (1,D* — 1, D)+ j,(1,,D* — 1,D*) — j, ju D)1} P((E,)).
(21)
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By virtue of the translation invariance (12) of P,

Y 12(& = &IDEP((E)) = Z 1/2&, D™ P((£,) + 1/2&,D"P((£,))

m#n

= ) 1/2D"v,0, P((t,),=c,— > 1/21,D""P((&)) + 1/2&,DM"P((£,)).

m#*n m#n

Invariance (8) implies also that
Zémava( )— Z]m (é )

Consequently,

Y 12— E)DMP((E) = = 1/2D%'0,0,, P((0))],, =, + 1/23 juD™"P((&))

— 2 121,DY"P((&,) + 1/2&,D""P((,))

= -1/2<1 +;lm—;jm>DL"P((é,)). (22)
Similarly,
...; (InD"" = 1,D*™)P((&,)) Zl D™¥"P((&)) 23)
and
m;” (jnD"" = jmD*")P((&,)) = — ;ij”P((é,)). (24)

Substituting Egs. (22)-(24) to (21), we obtain

JV. P =0, (D"P((&)) — (k+2)~ {<21 —Z]m+k+1>D”

+ Z (ém - én)_ 1[lm(lm - I)DL"’ - 2lmlnDL + ln(ln - I)D

+ zjm(lnDL - lmDL"m) + 2jn(lmDL - lnDL:’) - zjmjnDL] }P((ér))
=0, (D"P((¢) + ;AnLL’((ér))DL’P((ér))’ (25)

where on the right-hand side only L' = (I}, ..., ly) with ) I, <Y j, — k — 1 contribute
non-zero terms. " "
Equation (25) shows that the relation

V, RE=0, RE+Y A, .RY, (26)
2

together with Eq. (19), define a connection on X$% x C*- which is intertwined (see
Eq. (18)) with the KZ connection by the homomorphism J. In particular, if
t—((&),P,) is a horizontal curve with respect to the KZ connection then
RE = DLP,((&)) satisfy the system of linear differential equations

d/dtR{ = — ZL dé,/dt A ((5)RE (27)
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As a result, if RL vanish at t =0, they vanish for all ¢. This proves Proposition 2.
The following

Corollary 2. The dimension of W((&,)) does not depend on (&,).

is an immediate consequence of Proposition 2. Let us denote by W, ..., the kernel
of homomorphism J. In the words, W .,.= () {(&)} x W; .. ((&)).

Corollary 2 implies (eXy

Corollary 3. W;,...;, is a holomorphic vector subbundle of X3 x Inv <® an>.

4. Factorization

Wi, ...;x may be viewed as a concrete realization of Friedan-Shenker bundles [3]
over moduli spaces of punctured Riemann surfaces for genus zero WZW model
with group SU(2). In order to find the dimension of these bundles, we shall study,
much in the spirit of [3], the behavior of W, ...;. at the boundary of X§ in a
compactification of the moduli space of a punctured sphere. The boundary points
correspond to pinched surfaces with punctures distributed between the smooth
components of the surface. In the language of X%, one approaches the boundary
points of the moduli space by letting points &, converge to each other in groups.
More concretely, we shall study the situation when ¢, » &, =0, i.e. when we pinch
off two punctures. We shall also assume that spin j, = 1/2. Values of spins at other
points will be taken between 1/2 and k/2 which is an inessential restriction since
insertions with spin zero may be dropped altogether and presence of spins > k/2
reduces W, ...;, to zero.

Let us restrict bundle W, y5j,...;5

(OaCZ(k+2)>§39"'9€N)€XI(\)I (28)
with { # 0 from an e-disc D, and &,,.. ., &y fixed. { = 0 is the compactification point.

We would like to extend the trivial bundle (D,\{0}) x Inv( X V-n> to a buundle

to points

U over D, so that the (restricted) KZ connection becomes smooth at { =0. This
will allow to extend subbundle W;,...; to {=0.
Let us decompose

N
Inv (@ an> ;j=j®—l/2 Inv(V,,®@V,,® Vj)®Inv<Vj®<'@ VJ">> (29)
or j1+1/2

In the polynomial realization of Vs, this becomes

2 - o o
P((vn) =), IZO (— 1)'0H 7Y, oo PEG P (01,02, 0)0 |y o PPN (W, 04, .., DY)
4

= P((P7279%))((v,)), (30)
where P{J*/* are given by Eq. (13). The terms of the KZ connection (15) which
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develop singularity when &, > ¢&, =0,
20k +2)& 1 Y s td ),

are diagonalized by decomposition (29) since
2 Z t?l ‘i/Z = Z (t?1 + t‘;/Z)z - Z (t;l)z - Z (t‘;/z)2

—j;—1 for j=j, —1/2,

=](J+1)_11(J1+1)_3/4={ J1 for j=j,+1/2.

Consequently, the restriction of the KZ connection to points (28) becomes in terms
of representation (30)

V,Piiin = g piis i, 31)
VPN = [0, — (2j(j + 1) = 2j;(jy + 1) = 3/2) 71 IPHIy + 0(0473), - (32)
where O({%**3)is linear in P2 "/~’s It is easy to see that the gauge transformation
(PIsiny s (Pidrrin) = ((~ 200+ D+ 211G+ 1)+ 32 pija---jn) (33)

renders the connection given by (31) and (32) smooth at { =0. Indeed, trans-
formation (33) removes O({ ~!) terms on the right-hand side of Eq. (32). Moreover,
since (2**3-22iv* 1 g regular at zero, O((%**3)-terms in (32) stay regular. The
resulting connection in the bundle

U=D, x [@Inv<VJ.®<é<)3 an>>}

is clearly flat everywhere. We shall call it the I?Z connection.

As we have seen above, the KZ connection preserves subbundle W, 5;....;,
which after restriction to points (28) and gauge transformation (33) becomes
subbundle W i1/2j5jn O Ulp 0~ We shall denote its fibers by Wj /5.5 (0).
Obviously, subbundie Wllm3 jn is preserved by the KZ connection which
moreover allows to extend it to whole D, by addition of fiber W i1/2j5--jn(0) related
to fibers at { # 0 by the parallel transport. We have the following factorization result:

Proposition 3. W 11,2“ WO = P Wy, (0,8, Ey)).

j=j1—1/2

orji+1/2
~ N
Proof. Let for L=(l,,15,...,1y), ,=0,1, [, <2j, for n=3, ZZ L<j+12+
Z j,—k—1, DE= 2 ..ol (P iv)e P Inv<V ®< >> and { #0,
i B
RZ=Dip((gzj'm1)—2;'1(11+1)—3/2131j3~~j~))|m 0. =g, (34)

o
(compare Eq. (17)). The vector-bundle homomorphism J: U] oo~ DA\ {0}) x cH
sending ({, (P73 %)) to (¢ (RL)) intertwines the KZ connection w1th the one given by
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VC—RLz 6C—R", (35)

VRl = aCRL—z[(]lu—212)—12(2—12 ))RE— ZIZ(Z—IZ)RLZ]C

N N
_24’2k+3<z Z +k+1/2>RL +2C2k+3 Z (é CZ(k+2))—1
n=2 n=
‘L1 = 215)(ju = L)RE+ 1,2 — L)RE: + 1,(2j, — 1, + DR, (36)
This follows immediately from relation (18) together with Egs. (19),(25) and (26)

defining the right-hand side connection of Eq. (18), provided that we observe that,
due to the translational invariance of polynomials P,

R4=_Rl— \Zj R
n=3

Equation (36) may be put into the form

VcRizacRi_zjlg ‘RL+ZA--RL for 1,=0,

&)

+2(j1+1)C‘< + 2+ 1" i >

+Y AR for I,=1,
z’

||Mz

VC<RZ+(2j1+1)” ZRLz) a<Ri+(2j1+1)-

where A;p = O((***3). As a result, the gauge transformation
(RP)—(RP),
where
RE=(¢=2'RE for I,=0,

. N
RI— C2(11+1)<RL+(211+1 Z ) for I,=1,

removes the singularity at { =0 from the covariant derivative (36). Consequently,
if t+({,,(P#* 7)) is a curve horizontal with respect to the KZ connection and
(o =0 then

d/deRE = —dt /e ¥, App(C)RE (37)

with A;; analytic at { =0. From Egs. (30) and (34), it follows that

Lr

ST

RV=(2jy + D10 0y PO+ 1259m (0,85, &)
+(2j)IPEFD0,60, - O PO UDITINO, 5, Ey)
+ (2j1 - 1)!§2(k+1—2j1)af)z...a£7v'p'(jx—1/2)j3~~j~(0’§3,_..,éN) for =0
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and

N
=

= Q]2 05,80 Ay PO HIIIN0,E5, )
+(2jy = IO - ol PUr—UDI N £ EL)

N
Qi+ )T YRR for =1

But Eq. (37) implies that spaces W ii1/2j5--jx(C) are selected by conditions

RE=0 (38)
for all {. In particular, for { =0, we obtain the equations
—~ . . . N N
O e O PUYF DS IN(Q, E4, L EN) =0 for Z L,Zj,+12+ Z Ja—k—1
n=3 n=3

and
- . . N N
oy by PUr N0, 8y E) =0 for Y L<j 12+ Y jy—k—1
n=3 n=3

which, by virtue of Proposition 1 and of translational invariance of polynomials
Piis N imply Proposition 3.

Let us denote N; . ; =dimW; . ; ((S,)). Clearly, N
Jis---» jn- The following

ji-jn 1S symmetric in

Corollary 4. N; 1/, j = Njs 1235wy + N+ 1/2)j5- -

Follows immediately from Proposition 2.

5. Count of Dimensions

E. Verlinde has observed [17] that the dimensions N; ;,;. of Friedan-Shenker
bundles of rational conformal field theories may be related to the matrix realizing
the 17— — 1/7 modular transformation in the bundle corresponding to the toroidal
geometry with no insertions. For the SU(2) WZW model, the relation is

k/2
Njjjs = _ZO S5,1852i812i/S0js (39)
=
where
=(2/(k +2))"?sin [z(2j + D)(2j + D/(k +2)] (40)
with 0 £ j, j/ < k/2. Formal factorization arguments [3, 17] suggest the relation
k/2
Z N ]Jm+x N (41)

for m < N. Since square of the symmetric matrix (S;;) is 1, Egs. (39) and (41) imply
that
k/2

Niyjn= 2 i S ilSo)" 2, (42)

j=0

see [14].
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Having, due to Proposition 3, a special case of factorization under control, we
may now prove (42) rigorously. First, let us notice that since

N Uil j=j;=1220 or j=j; +1/25k/2
i otherwise,

Corollary 4 is a special case of (41). Its subsequent application allows to show
formula (42) for j,,..., jy=1/2 by induction on the number of insertion points.
Next, let us order sequences (J;,..., jy), 1/2=<j,<k/2, so that the earlier ones
have either smaller value of ) j, or, if these are equal, the bigger number N of

insertion points. Suppose that we have proven formula (42) up to some place
in the set of sequences (j,---jy). If the next sequence is composed only of
spins 1/2, we may proceed further. If it has one spin (e.g. j;)> 1/2 then, by
Corollary 4,

le"‘jN = N(jx —1/2)1/2j3jn — N(J'l - Djsjn (43)

where on the right-hand side only N, ., with earlier sequences (J},. .., jy-) appear.
Representation (42) for the left-hand side follows then from that for the terms on
the right-hand side. This establishes

Theorem. Dimensions N, ...;, of spaces W, ...;. of SU(2) Chern—Simons states on
the Riemann sphere are given by formulae (40), (42).

6. Conclusions

We have achieved a finite-dimensional realization of bundles of SU(2) Chern—
Simons quantum states in the presence of Wilson lines in representations j, in the
spherical geometry. The resulting holomorphic vector bundles W, ...; over spaces
X of sequences (¢,) of non-coincident points in C carry (the restriction of) the
flat Knizhnik-Zamolodchikov connection. Their dimensions N, ..., are given by
Verlinde’s formulae.

The spaces of quantum states come usually with additional structure: the scalar
product. For the Chern-Simons states this is formally given by

W12 = [ [(A°)? exp [ — ik/2m) [ tr (A°1)* AP IDAPID(A®T)*. (44)

It was shown in [4] how to reduce functional integral (44) to a finite-dimensional
integral which (if convergent, which remains to be proven in the general case) gives
rise to a hermitian structure on the bundle W, ..., preserved by the Knizhnik—
Zamolodchikov connection. Existence of such a hermitian structure is equivalent
to the unitarizability of the holonomy representation of m,(X%) given by the
connection. The latter is related to unitary representations of Jones algebra [9]
with index 4 cos? (m/(k + 2)). The hermitian metric on W, ...;, allows to express the
Green functions of the WZW model in a simple way. For example, at zero gauge
field,

NJl"'J.\'

I, (CPL(E)) = ; P,®P,
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where (P,) is an orthonormal basis of the fiber W;,...; ((£,)). We shall return to
the study of metric properties of bundles W;, ..., in a future publication.
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