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Abstract. We study the zero-temperature behavior of the Ising model in the
presence of a random transverse field. The Hamiltonian is given by
H=~J Y 030)030)~ Y h(x)o (x).
ayy x
where J > 0, x, yeZ?, 5, o5 are the usual Pauli spin$ matrices, and h = {h(x), xe Z*}
are independent identically distributed random variables. We consider the ground
state correlation function {o;(x)o;(y)> and prove:

1. Let d be arbitrary. For any m > 0 and J sufficiently small we have, for almost
every choice of the random transverse field h and every xeZ¢, that

{o3(x)o3(y)) = vahe—mlx—yl
for all yeZ? with C,, < 0.
2. Let d = 2. If J is sufficiently large, then, for almost every choice of the random
transverse field h, the model exhibits long range order, i.e.,
lim <o3(x)3(»)> >0

|yl—o0

for any xeZ*.

1. Introduction

Quantum spin systems with random parameters have been introduced to study
the effects of impurities in several physical systems (see for example, Halperin, Lee
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and Ma [1] where models related to superfluidity and superconductivity were
discussed).

Examples of such systems are given by quantum X — Y, Heisenberg and Ising
models in the presence of a random transverse field. In [1] it was argued that for
such models localization should take place in the ground state of the system
destroying the long-range order of the non-random component of the spin system,
for sufficiently high disorder.

Klein and Perez [2] have studied the quantum X — Y model with a random
transverse field in one dimension and proved localization in the ground state of
the system for any disorder. In particular they proved exponential decay for the
two-point function, which is to be compared with the polynomial decay obtained
by Lieb, Schultz and Mattis [3] for zero transverse field. Their method was to
map the model into a free Fermi gas in the presence of a random external potential;
the one-particle Hamiltonian for the Fermi gas turned out to be the one-
dimensional Anderson Hamiltonian and exponential decay for the two-point
function followed from Anderson localization.

In this article we study the Ising model in the presence of a random transverse
field. The corresponding deterministic model appears in the pseudospin formulation
of several phase transition problems and was used to study order disorder
ferroelectrics with a tunneling effect by de Gennes [4] and magnetic ordering in
materials with singlet crystal field ground state by Wang and Cooper [5]. The
one-dimensional deterministic model was studied by Pfeuty [6] following Lieb,
Schultz and Mattis [3].

The Ising model with a random transverse field is given, in a finite volume
A cZ* by the Hamiltonain

Hy=~J Y 03,0050)~ ¥ h(x)o,(x)

(yycA xeA
acting on the Hilbert space # ,= (X) #,, with #, = C? for all x, where J >0,

xeA
{x,yy denote a pair of nearest neighbor sites, o,,0; are the usual Pauli spin %

matrices:
(1 0 (0 1
o —1) 7\ o)

with o;(x),i = 1, 3, xe A, the corresponding operator on J# , acting only on 5. The
random transverse field is h = {h(x), xeZ?}, where the h(x), xeZ‘ are taken to be
independent identically distributed random variables. Since for any x,eA we have

03(x0)HA03(x0) = H s+ 2h(x4)0 (o),

we can take h(x) = 0 without loss of generality.
If h(x) > 0 for all xeZ¢ H , has a unique ground state £, for each A and, the
correlation functions

(03(X)a3(3)) 4 = (€24, 03(X)03(1)€24)

are monotone increasing in A and decreasing functions of each k(x). These follow
from the representation of H , as the generator of a positivity improving semigroup
plus correlation inequalities derived in the corresponding path space (see the
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discussion in Sect. 2). We can thus define the infinite volume ground state correlation
function by

53(x)a;3()> =A1ifnzld<63(X)03(y)>A, (1.1)

preserving the monotonicity in each h(x). We will always assume P{h(x) >0} = 1.

The deterministic uniform model, i.e., h(x) = h > 0 for all x, is one of the simplest
quantum spin system with a non-trivial phase diagram, typical for a large class of
models exhibiting discrete symmetry breakdown. The relevant parameter is { = h/J.
In any dimension there exists 0 < {, £ {, < oo such that if { >, the correlation
function (1.1) decays exponentially and if { <, there is long range order [7,8].
In one dimension it is known that {; ={, =2 [8].

It follows from the monotonicity of (1.1) in each h(x) that, with {(x) = h(x)/J,
the random model correlation function decays exponentially if {(x)>{, with
probability one, and exhibits long range order if {(x) < {; with probability one.
Thus, if 0 < a £ h(x) £ b < o0 with probability one, the random model will exhibit
a phase transition by varying J.

The interesting nontrivial case is thus when the events {{(x) > {, } and {{(x) < (;}
both have nonzero probability, so the system exhibits Griffiths’ singularities.
Typical cases would be when each h(x) is uniformly distributed or the interval
[0,1] or exponentially distributed. Let p; = P{{(x) < {,),p, =P{{(x)>{;), and
recall P{h(x)>0} = 1. Then, we have hm p; =0, 11m p, =1 so for J sufficiently

small we should expect exponential decay of the correlatlon function (1.1) with
probability one. On the other hand, J}1m pi=1, Jhm p, =0, so for sufficiently large

the system should exhibit long range order.
Our results are

Theorem 1.1. Suppose E(h(x) %) < oo for some 6 >0. Then for any d=1,2,... and
m > 0 there exists J; > 0 such that for any J < J, and for almost every choice of the
random transverse field h and every xeZ® we have

{o3(x)a;3(y)) = Cx,he_mlx*y(
for all yeZ? with C,, < c.

Theorem 1.2. Let h(x) have an arbitrary distribution. Then for any d = 2 there exists
J, < oo such that for all J>J, we have, for almost every choice of the random
transverse field,

Jim (373> >0

for any xeZ°.

Following Driessler, Landau and Perez [8] we write the correlation function
(1.1) as the limit of two-point functions of (d + 1)-dimensional classical Ising models
with d-dimensional disorder. In Sect. 2 we show that

(03(x)3()> = lim <o(x,0)5(7,0)>,

. 1 .
where ¢ >™ is the expectation for the classical Ising model on Z% x ZZ with
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Hamiltonian

H® = =7 Y X alx 0oyt =Y Y K, (x)a(x, t)o'(x, r+ 1), (1.2)

nT Gopy x 1 n
where tanh K, (x) = e~ ?M"™)_Models of this type were studied by Campanino and
Klein [9], who developed a multiscale expansion to prove exponential decay for
the (d + 1)-dimensional system with d-dimensional disorder, and gave a simple
percolation argument to show long range order when d > 2. They proved analogous
results to Theorems 1.1 and 1.2 for such models, but their results can be applied
directly only for » fixed. In this article we refine their methods to obtain estimates
uniform in » for n large.

This paper is organized as follows. In Sect. 2 we discuss some general features
of the deterministic model, construct the associated path space and the approxi-
mation by classical Ising models. In Sect. 3 we obtain mean field type bounds on
the deterministic system which will give the initial step for the multiscale analysis.
Section 4 contains the multiscale analysis and the proof of Theorem 1.1. In Sect. 5
we prove Theorem 1.2.

2. The Approximation by Classical Ising Models

Let 9,= {1, — 1} if €%, we have o = {a(x), xeA} with each a(x)e{l, — 1}.

If we identify C* with I*({1, —1}) in the obvious way we can identify 5 with
I?(%,); notice that the matrices of linear operators with respect to the standard
base in either C* or . are now the kernels of the same operators on [*({1, —1})
or 1*(%,), respectively.

In this representation the operator o;(x) is given by multiplication by the
function a(x), for each xeA. Thus, if we write

H,=H' + H',
with
HYy=—J Z a3(x)a3(y),
{xyyc A
HY is given by multiplication by the function —J ) a(x)o(y) and H'=

oyyeaA
- Z h(x)o,(x) generate a positivity improving semigroup since h(x) >0 for all x
xeA

and
et = cosh t + (sinh t)o,

has a strictly positive kernel for ¢ > 0.

It follows from the general theory that H, generates a positivity improving
semigroup and hence H , has a unique ground state €2, which is a strictly positive
function. In particular, there exists a path space, ie., a stochastic process
{o(x,1); xeA, teR} taking value on {1, — 1}, stationary and symmetric with respect
to t, such that, for example,

(24, 05(x)e "ag5(y)02,)
(Q24,e7M20,)

=<a(x,0)a(y,1),
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where ( ) denotes the expectation in the stochastic process (see, for instance,
Klein and Landau [10] for a general discussion).

In our situation # , is finite dimensional, H,, H',, H', are therefore bounded
self-adjoint operators, so it is possible to do everything more explicitly. For example,
to show uniqueness of the ground, let A < H,, we have

(Ha= D)7 = (Y= 27" Y (—HY(HYy = 27,

the series being uniformly convergent for A « HY,. It clearly follows that for such
A, (H,— A)~ ! has strictly positive kernel and hence the Perron—Frobenius theorem
applies so we can conclude that H, has a unique ground state £, which is a
strictly positive function.

The operator H', has the (normalized) unique ground state Q¢ given by

1
Qﬁ?)(a)=w

for all 0€%,. It follows immediately that
(2 4, -Q(,(;))) >0,
so for any operator A in # , we have
(Q1D, = B2HA o= BI2HA QO
(_Q(/(‘))’ e FH, _Q(/(‘)))
Following Driessler, Landau and Perez [8] we can use Trotter’s product
formula to conclude that, if Bc A,

<n 63(x)> = <QA, I1 O'3(X).QA> = ﬂlim lim <n o(x, O)>(") 2.1
A

xeB xeB T RO\ xeB AB

(A4 =(2,4,A42,) = lim
p— o0

. . 1 .
where < >4, is the expectation for the classical Ising model on Z¢ x ;Z with

Hamiltonian given by (1.2) restricted to the region A x <[ —E,E]01Z>, with
free boundary conditions. 22 n

Since our classical Ising models are ferromagnetic and we are using free
boundary conditions, we can apply correlation inequalities to obtain

(n) (n)
<Hdm> §<Hdm> (22)
XeW A,B XeW ALB
forany Ac A, B<p, Wc A x ([-é-’ﬂﬂ%z)

Thus we can interchange the limits in (2.1) to conclude

< I 63(x)> = lim < []ox, 0)>(n),
xeB A NP7 © \ xeB A

so using again (2.2) we obtain the existence of the limit

< I1 03(x)> = lim < [T (73(x)> = lim < []o(x, 0)>(n).
xeB A-Z% \ xeB A NPT\ xeB
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In particular we obtain (1.1).
More generally, for a fixed finite A we define

t

o3(x, 1) = e~ Hagy(x)e'lls,

so we have existence of

(o3(x,)05(y,9)) = limd (o3(x,0)03(,9) ) 4

and o
{o3(x,)a3(y,8)) = lim {a(x,t™)a(y,s™) >, (23)
1 ) .
where for reR we let r® =Z[nr] ifr=0and r = —|r|™if r <0.

3. Percolation, Self-Avoiding Walks and Mean-Field Bounds

. . . 1 .
For each n we consider the bond Bernoulli percolation model on Z*¢ x —Z with
occupation probabilities "

1—e 2UM ift=s, x, y nearest neighbors

1
K e e B
A, =1 1 —e 25 le—y,lt—s]—-;

0 otherwise

The corresponding percolation probability will be denoted by Q™; notice that
it depends on the choice of the random transverse field h.

1
If WcZ4 xR, we set W(”’=Wﬂ<Zd x;Z). If X,YeW®, by XVY we

mean that X is connected to Y by a path of occupied bonds in W™, We set
GR(X,Y)=Q"{X W Y3

It follows from the Fortuin—Kasteleyn representation of Ising models and from
Fortuin’s comparison principles (see Aizenman et al. [11]) that

(o(X)a(Y))W £ GP(X,Y), (3.1)

. . 1
where the left-hand-side denotes the two-point of the classical Ising model in Z“ x Y Z

with Hamiltonian given by (1.2), restricted to the region W with free boundary
condition.

Following Campanino and Klein [9], we will prove Theorem 1.1 by showing
decay for G™(X, Y).

Since if X = Y we can always find a self-avoiding walk in W™ starting at X and

ending at Y, we also have

GW(X,Y) < SP(X,Y), (32)
where

SWX,Y) =Y q%, (3.3)

w
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the summation being taken over all nearest neighbors self-avoiding walks w in
W® that go from X to Y, ie, W:{0,1,...,|w|} > W® with w(0)=X,w(|w|)=Y,
and w(i), w(i + 1) nearest neighbors, w(i) # w(j) if i #j. Here

wl—
= l_[ w(l) w(i+1)

Another similar bound for {a(X)a(Y)>®™ (but not for G™(X, Y)) was obtained
by Fisher [12]:

(o(X)o(Y))e < (X, ), (3.4)
where S is defined also by (3.3) but with ¢, replaced by

tanh— if t =s, x, y nearest neighbors
n

q(n) — .
009 7 tanh K (x) if x=y, [t —s|=—
0 otherwise

Let W=A x [T, T], with A = Z* Following Fisher [12] we estimate (3.3)
by replacing the self-avoiding condition by the weaker requirement of no immediate
return after a vertical step, obtaining

’ |z]

S (0.0 S Y Y [[ (L e Mkl =2y, (35)

J:x-y ko,..., kIrI i=0

where the first summation runs over all walks 7 in A from x to y, the second
summation being over the number of vertical steps k; taken by t after the i'*
horizontal step, with k; > 0 if the steps are upwards, k; < 0 if downwards, the prime
in the summation accounts for the restriction

Iz]

_;0 ki=(s— 0" (3.6)

In particular,

i

3 1kl Zls—tln (3.7)

Recall ¢~ 2500 = tanhw and set h, = min h(x). We get
n
S(X)x [- T,T]((x’ 0),(y,9))

Y (A= @myd % <1 - tanhh">z
TIXy kokiy...,s k|f|

A

hA onlt—s| ' h J Jks|
g(l—tanh > Y (1—e @myt ¥ (l—tanhf)l“”.:o

TIXY ko,ki,..., ki

h onlt—s| , mrxkl
g(l—tanh—"> ¥ y <l—tanhh—A a-9 2 "
n N et n
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for any 0 <6 <1, using (3.7) and (3.6); where the sum over ko, ...,k _; is now
unrestricted.
Thus, we have

h on|t—s]|
S(/'\l)x [—T,T]((xa t)s (y5 S)) é (1 - tanh f) Z C'llf(IS’ (38)
TiIXy
where
21 — e 20m)

Cn,é_ 1-6°
1 —<1 —tanhﬁ>
n

2dR)1* !
el — (— -1 <(
t:;’yR ( RAA+ 1) (x,y)= 1—2dR 5

If 0 <2dR < 1, we have
(3.9)

where A, is the centered Laplacian in A = Z4, i, A (x,y)=1if x and y in A are
nearest neighbors, and equals zero otherwise. Thus it follows from (3.8) and (3.9) that

h on|t—s|
S -1,m((%, 1), (3,9))) = (1 — tanh f) (=CnsAa+ 1)1 x,y)

h_A>5n|t—s| (2dcn,6)|x—ﬂ

. . (3.10)

< (1 —tanh
We have

4J
l'lll =-———————‘
Jim C..s (1—0)h,

It follows that, if %‘ < 1, we have

4J

-1
mAA*" 1) (x,y)

'E—ngo 8Pt 1.1y (06, ™), (1, 5™)) < e“”’A"S'< —

<(1_ 8dJ _1e“”‘/‘"‘5' 8dJ \I*7I
- (1 —0)hy (1 =0)hy
(3.11)
for any 0 <o < 1.
Similarly, if (~—1_2_—d'5])—h; < 1, we have
Ti Q(n n n - t—s J -t
,,ILIE, SO 1.1y ((6, 1), (3, 5)) S 72l ‘( ~ _5)hAAA+ 1) (x,»)

= l—ﬂ._ _le—zah,,|,ﬂ| 2d4J Ix—yl.

(3.12)
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In particular, from (1.1), (2.3), (3.4) and (3.12) we immediately get
Theorem 3.1. Suppose h = inf h(x) > 0.

xez?

Then, if 2dJ < h we have
J -1 247\ "1/ 2dJ ¥~V
(o3(x)o3(y)) = _ﬁA +1) eps(1-— =

for all x, yeZ?’.
More generally, we have

_ —J -1
(o3(x,)05(y,8)) = e‘z‘”"‘""<mll + 1) (. y)

£<1 o 2dJ _>—lefmsi< 2dJ _)"‘y'
“\ (1-9h (1—0)h

for any x,yeZ4 t,seR and all 0 £ 5 < 1 such that 2dJ < (1 — )h.

4. The Multiscale Analysis

We will now prove Theorem 1.1. Our proof follows the proof of Theorem 2.1 in
[9], the main difference is that we need to control the limit as n— oo in (1.1) so
we must perform a multiscale analysis uniformly in » for n large.

In view of (3.1) Theorem 1.1 will follows from

Theorem 4.1. Suppose E(h(x)°) < oo for some 6 > 0. Then for any d =1, m > 0 and
v> 1 there exists J, > 0 and ny < 0o such that if J < J,, then for almost every choice
of h we have

G(")((x t) (y S))< C heml(xw»(loglt-sw')l
s V) b = X,

for all n=ny,x,yeZ’ t,seR, with C, = C,,(J,m,v) < c0.

We will restrict ourselves to the case v = 2, the modification for arbitrary v > 1
will be clear. Notice we use the notation |(x, t)] = max {|x|,|t|}, where |x|= || x|,
for xeZ*.

The proof of Theorem 4.1 will use properties of independent bond percolation,
including the Harris-FKG, van der Berg—Kesten (v —BK) and Hammersley—
Simon-Lieb (HSL) inequalities. The first two will be used as described in [9], but
we will need a slightly different form of the HSL inequality which follows from
the v — BK inequality.

1
Let AA cZS LI cRW=AxI, W=AxI. Let W"= Wﬁ(Zd X AZ),
similarly for W™, We set n

1 1
OP(W, W) = {(y, 5)eWP A W'™: where <y, s+ ﬁ) or <y, 5 — ;)eW’(")\W‘”)},

AW, W) = (<39 (7,93 (1 DWW, (1) WO W),
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If W =7 x R, we omit W. We also write 0"W = dPWuU{Z;{(Z,Z'>ed) W
for some Z'}.
Now let XeW" W™ YeW O\ W™ it follows from the HSL inequality that

G&)'(Xa Y) é Z Gg:’)mw/(X’ Z)G(V'\'/)/(Za Y)
ZedP(W,W')
F(l—e20m) Y GR G(X.D)GEZLY). (&)

2,2/ yedP(W,W)
T~ . . . S
Forlarge n,1 —e ~ —; this factor is needed in (4.1) since a vertical line of
n
. . 1
length T contains nT points of Z¢ x —Z.
n

We will use the following consequence of (4.1). If XeW®, let
GRX, 0= ) GRX,Z)+(1—e ") 3  GRX,2)

zealw z.Zyed'W
Then, for XeW"” A W'®, YeW ™\ W® we have
GRP(X,Y) S GR(X,0)Gy(Z,,Y) (4.2)

for some
Z,edP(W, W)U {Z';<Z,Z"Yed}"(W,W') for some Z}.

We will now start the multiscale analysis. For xeZ¢ and L > 0 let us consider
the hypercube

Ap(x)={yeZ%|x—y| < L}.
For X =(x,t)eZ® x R, L>0, T > 0, we consider the cylinder
B p(X)=A(x) x [t =Tt + T]
and, in particular
B.(X) = B, (X)
Definitions. Let m >0, L> 0, 1> 0. A site xeZ? is said to be (m, L, n)-regular if
GE) (op((x,0), V) Se™ ™"

for all n= 71 and Yed™ B, ((x,0)). Otherwise x is said to be (m, L, i)-singular. A set
A cZ%is called (m, L, i1)-regular if every xeA is (m, L, i)-regular.
If x is (m, L, n)-regular we have

GE) (e ((x,1),0) < emALL (4.3)
for all n>n, teR and all L sufficiently large.

Theorem 4.2. Assume E(h(x) %) < co for some 6 >0. Fix J >0, and let p > 2d>.
Suppose there exists my >0, Ly >0 and ny >0 such that

1
P{0 is (mg, Lo, no) — regular} 2 1 — —.

L§

Let ae<2d,§>, set Ly, =L{Lk=0,1,.... Then for any 0 <m, <m, there exists
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L(p,d, mg, m_,,a,J) < 0o, nondecreasing in J, such that if Ly > L there exists i1 < o0
such that

1
P{0 is (m,, Ly, n) — regular} = 1 17
k

for all k=0,1,2,....

Theorem 4.2 implies Theorem 4.1. For given m > 0 let my, = 2m, m, = m, take
A= A,(0) and suppose that

h,> 16dJe*™ (4.4)
and
hy> 4mgLev". (4.5)

It follows from (3.2) and (3.11) that if (4.4) and (4.5) hold we have that 0 is
(mg, L,n;)-regular for some n, > oo if J is sufficiently small and L sufficiently large.
Let E; ; be the event that (4.4) and (4.5) hold. We have

P(ES ) < 2L+ 1)/[P{h(0) < 16dJe*™} + P{h(0) < 4m,Lev"}]
< QL+ 1E(h(0) %) [(16dJe*™)® + (4myLe ~")].

Thus there exist J, >0, L < oo such that if J <J,, L> L we have

1
PE;;)=21——.

LP
Now pick L(J,) from Theorem 4.2, take L, > max {L(J,), L}, and pick 0 <J, <J,
1 - L
such that P(E; ; )= 1 — 7 for all J £ J,. Since L(J) is nondecreasing in J we have

0
L(J) < L, and hence we can apply Theorem 4.1 for J < J,.

Theorem 4.1 now follows from Theorem 4.2 by the proof of Corollary 3.2 in
[9]. Notice that under the conclusions of Theorem 4.2 the estimates can be done
uniformly in » for n > n.

Theorem 4.2 is proved in a similar way to Theorem 3.1 in [9]. Again, the main
difference is that the estimates have to be done uniformly in » for n large enough.
This has been built in our definitions of regular sites and regular regions, which
include the uniformity in » for all »n large enough.

For the benefit of the reader we will sketch the proof stating clearly the main
steps in the framework of this paper and highlighting the differences from [9].

Theorem 4.2 is proven by induction. The induction step is given by the following
lemma.

Lemma 4.3. Let p > 2d?, ae(2d,p) and L= I* Suppose

1
P{0 is (m,1,n) — regular} 2 1 — 7

with m = Then, we have

3
ﬁ.

1
P{0 is (M, L,n) — regular =2 1 ~Ir
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with

Mzm—(aim+ a,)
YR L

for some constants a,,a, independent of I, in case | and 7 are sufficiently large.

As in the proof of Lemma 3.5 in [9], one starts by picking a positive integer
R such that

(R+1)p
p+ R+ 1d

For [ large enough we can show that

j=0

R
P{there exists x,,...,xgeAL(0) such that A, (0)\ () Ay(x;)

217

We now want to estimate GY§) (0, Y) for Yed™ B, (0) and n = 1. There are two
distinct cases: either Y is in the vertical boundary 8%’ B,(0) or in the horizontal
boundary 0% B, (0). We can restrict ourselves to the case when the event described
in (4.6) holds.

Sublemma 4.4. Suppose there exist x,...,xg€A.(0) such that

Ar(0)\ '91 AZl(x_])

is a (m, [, n) — regular region} 1-— L (4.6)

3
is (m, |, n)-regular region. Then, if | is sufficiently large and m > ﬁ’ we have
G§ (0, Y) < e Mk
with

Mlgm—(a3m+a4) 2

B

for all YedP B,(0) and n= 7, for some constant, ay,a, independent of | and n.

Proof. Same as Sublemma 3.6 in [9].

Sublemma 4.5. Suppose there exist x,,. .., xg€A(0) such that A" = Ay o)\ | ) Ax(x;)
j=1

is a (m, [, n)-regular for 1 <k < i,

A =< C) (X,)>0AL(0)

A I1 <1 — <1 — tanh@>n>

and suppose

e oM 4.7)

lIA
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for all n = i, where o > 0 is a given constant. Then, if m 2 ——,% <1 < k — %, we have

3
i
G300, ¥) < e "
for YedPB,(0), n = A, with
My,2m—e "m+1),
for 1 sufficiently large.

Proof. The proof proceeds as in the proof of Sublemma 3.7 in [9] with one
important modification. The main difficulty in the proof is how to control the
percolation inside the cylinder based on the singular region. This was done in [9]
by introducing the event D of the existence of a vertical disconnection at height s
in a certain neighborhood of the singular region. In this paper we replace D; by
the events

D" = {all horizontal bonds <(x,t),(y, )} are vacant for x, yeA, nearest

. 1 ~ .
neighbors, te[s,s + l]m;Z, and for each xeA at least one vertical bond

of the type <(x, t),(x,t+%>>, t,t +%e[s,s + l]m%Z is vacant}.
We have
D < {there is no connection from A x {s™} to A x {(s + )™},
contained in A x %Z},
and

QMDY = (e~ #myAIT] <1 - <1 — tanh @> >
XE/‘{ n
By (4.7) we have
Q(n)(Dgn)) > e~o(21"+1)dR > e—gz’“”
where & =3%R, for all n=>7. Apart from this modification the proof is identical

to that of Sublemma 3.7 in [9].
To finish the proof of Lemma 4.3 we need only to show that

1
P{(4.7) holds for all n=7n} 21— —.
{(4.7) holds for all n =7} = 07

This follows from the following lemma.
Lemma 4.6. Let p=1ogE((1 — e "®)79),
6=20"12dJo + pu +log2), v=do.
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Then, there exists fi < co such for all n= 7 and all A = Z* finite we have

P{e‘z'”"‘| 11 (1 —(1 ~tanh@£x—)>n> < e”’""} <e AL
xeA n

Proof. Notice u < co since E(h(x)°) < co. Using Chebychev’s inequality we get

P{e—zuml I <1 - (1 — tanhh(:)n> §8}
< SéeZdJlAll:E[<<l — (1 - tanh?)r)—é:ﬂlm.

. . h\" N . _
Since lim (1 - tanh) =e " there exists i1 such that if n > 7 we have
n

E[((l - (1 —tanhg>n>a] S2E[(1—e™™7°]

Choosing ¢ = e ™14l the result follows.
This finishes the proof of Theorem 4.2.

5. Long Range Order

We first discuss the existence of long-range order and spontaneous magnetization
in the ground state for the uniform deterministic model. Related results may be
found in the literature (see Ginibre [7] for a finite temperature discussion, Pfeuty
[6] for an explicit solution in d = | with periodic boundary conditions, and also
Driessler, Landau and Perez [8]), but none are in the form needed in this work.

Our Peierls’ argument is performed in the classical Ising model approximation
coupled with Fisher’s trick [ 12] for summing over contours, which allows estimates
uniform in n.

Let, for xeZ*.

P.(x) :Li'_?lél.
Then
(PP () = lim <P (x,0P_(5,0)),
where
PL(X)=" i;(X), XeZd x %Z.

We now apply Peierls’ contour argument to the right-hand side to obtain

(Pi(x, 0P _(,0))" < Y e 570,

72 (x,0)

. 1
where the sum is performed over all closed contours 7 in the dual lattice of Z4 x EZ
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enclosing the point (x,0). For the deterministic model with h(x) = h for xeZ*,
J
E™(y) = 742K, + IMZ?

where y, are the horizontal elements of y and y, the vertical elements of y. We now
perform the sum over y by fixing |y,| = L, and an upper bound is obtained by
summing over all possible numbers of vertical steps (with no immediate returns)
after each horizontal step:

© 2(2d — 1) \*
(P (X 0)P_(3,0)" x Y L'Q2d)-e K" x (1(‘3——21/)>
L=2 -
h L
" 4d(d — 1)tanh -
_ al . n
Now
tanhﬁ
im "
e Y |
tztnhﬁ

and for n>J, and therefore,

n
e ~2j

PP Y, L<w>
L=2 J

4d(2d —1Dh\*> (hY\ .. [4d(d—1)h
(M)« ()

where: ¢,(x) is monotonically increasing in x for x = 0, ¢,(0) = 2d. Therefore for all

_ 2
w> ¢, <L The
J

x,yeZ, {a5(x)a5(y)> = a> 0 for some a > 0, provided < 3

above discussion may be summarized as follows.

Theorem 5.1. Let d =1 and consider the d-dimensional deterministic model with

h(x)=h. Then there exists h(J,d)>0, monotonically increasing in J with

J]im h.(J,d) = o0, such that if h < h.(J,d), there exists a(h,J,d) > 0 with
{o3(x)o5(y)> = a(h,J,d)

for all x,yeZ’.

Proof. From the above discussion h,(J,d) = h(J, d), where

4dd - 1R\ (R _1
(5 )ed5) =

Monotonicity of h.(J,d) follows from Griffiths inequalities. W
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Remark 5.2. If we consider the deterministic model restricted to a half space
Z4 ={(xy,...,x5)€Z* x, = 0} the same results with essentially the same proof hold
true with h} (J,d) and a* (d, Jh) substituting for the corresponding quantities. From
Griffiths inequalities it follows that

ht (J,d) < hd(J).

To prove long range order for the random system we first introduce the
independent site percolation model in Z¢, where a site xeZ¢ is said to be occupied
if h(x) £ (1 —e)hS (J,d), for 0 < e < 1. Therefore the probability of occupation of a
site is

p()=Ph<(1—ehl(J,d)).
Now, from Theorem 5.1 and Remark 5.2 h)(J,d)— co as J— oo and therefore
there exists J, such that p(J) > p' for all J > J,, where p¥ is the critical value for
the d dimensional site percolation problem. So, if J>J, with strictly positive

P-probability there exists an infinite selfavoiding path w of occupied sites starting
at the origin:

w:{0,1,2,...} »Z*
i-»wiwo=0, wy#w; il i#j, |w;—wl=1

We then consider the model in Z¢ given by

H,=—1J

It

a3(wi)as(wiy 1) — zd h(x)o (x).

i xeZ

Notice that the points xeZ¢, x # w; for all i, are completely decoupled from the
points in w. Therefore, the corresponding correlation functions are given by:

o3(wi)os(w))), = (a3()a5()> Y,

where the right-hand side is the two-point function of a one dimensional model
in the half line with A(i) £ (1 — &)h(J) for every ieZ . . Therefore, from Theorem 5.1
and Remark 5.2

Co3(Wo)a3(wi) >y, 2 a>0.
From Griffiths inequalities it follows that

{o3(Wo)as(w;) ) 2 {a3(wo)os(w;) ), 2a>0

which implies:
lim <o3(0)05(y)> Z a>0.
y—
Ergodicity then implies that, with probability one, there exists zeZ* such that
Jim_<03(2)03()) 2 >0,
y|—

As in [9] we now use the Harris-FKG [13] inequality, whose validity is
guaranteed by the path-space approximation, to get

(o;3(x)a3(y)> = {o3(x)a3(2) > <{a3(2)a5(»)>-
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This implies that if J > J,, with probability one

lim (o4(x)o5(y)) >0

[y]| =0

for every xeZ¢, thus proving Theorem 1.2. W
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