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Abstract. Let { J ( X ί y y } ( x > y y ^ z d and {Kx}xeZd be independent sets of nonnegative
i.i.d.r.v.'s, <x,.y> denoting a pair of nearest neighbors in Zd; let β,y > 0. We consider
the random systems: 1. A bond Bernoulli percolation model on Zd + 1 with random
occupation probabilities

!

1 — β ~ 2βJ<x>y> iϊt = s9x9y nearest neighbors

1 — P ~ 2yKχ if v — v \t — <? I — 1i e 11 x — y, \ι i | — i

0 otherwise

2. Ferromagnetic random Ising-Potts models on Zd + 1; in the Ising case the
Hamiltonian is

ί <x,3>> x t

For such (d + l)-dimensional systems with d-dimensional disorder we prove:
(i) for any d ̂  1, if β and y are small, then, with probability one, the two-point
functions decay exponentially in the d-dimensional distance and faster than
polynomially in the remaining dimension,
(ii) if d ̂  2, then, with probability one, we have long-range order for either any β
with y sufficiently large or β sufficiently large and any y.

Introduction

Let / = («/<x,},>}<JC,),>c:zd and tf = {Kx}xeZd be independent sets of nonnegative
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independent identically distributed random variables, where <x,.y> denotes a pair
of nearest neighbors (or bond) in Zd. We will use E and P to denote the underlying
expectation and probability measure.

We will write X = (x,t), where XeZd + 1,xeZd,ίeZ. We will use | | to denote
the sup-norm, both in Z" or R".

Let β, y > 0. We consider the following random systems:
1. A bond Bernoulli percolation model on Zd + 1 with random occupation pro-
babilities

( ί—e~ 2βJ<x>y> if t = s, x, y nearest neighbors

l-e~2yKχ i fx = ;y,|ί-s| = l

0 otherwise

The corresponding percolation model probability will be denoted by Q. Notice
that Q is random, it depends on the choice of / and Ctf .

The two point function of interest will be the connectivity function

where by X -> Y we mean that X is connected to Y by a path of occupied bonds.
2. A ferromagnetic random Ising model on Zd+1 with Hamiltonian

H=~βΣ Σ J<Xty^(x9t)σ(y9t)-
t <*,)>>

and two-point function

When d=l9 this model has been studied by McCoy and Wu [1], in the case when
Kx is constant, and by Shankar and Murthy [2] for «/<x > y> constant but with Kx

not necessarily nonnegative.
3. Random Potts models on Zd+1 with Hamiltonian

where the spin variables σ(X) are allowed to take ge{2, 3, . . .} distinct values. The
case q = 2 coincides with the previously defined Ising model.

The quantity of interest is

These are all (d + l)-dimensional systems with d-dimensional disorder. In this
article we show that all these systems undergo a phase transition (for d ̂  2) in the
following sense:

(i) Assume E(eδKx) < oo for some δ > 0. For any d ̂  1, if β is small with y sufficiently
small (how small depends on β), we have, with probability one, that the two-point
functions G(q)(X, Y) decay exponentially in the ^-dimensional distance and faster
than any polynomial in the remaining dimension.

(ii) Assume P(J<Λ. ))> = 0) = 0. If d ̂  2, we have long-range order with probability
one for either any β with y sufficiently large or for β sufficiently large and any y.
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The fact that these are (d + l)-dimensional models with ^-dimensional disorder
makes them different in a nontrivial way from the corresponding models with
(d + l)-dimensional disorder, as studied in, say [13,8,14,5]. In the latter the singular
sets that give raise to the Griffiths singularities are finite, in the models studied in
this article those singular sets are infinite cylinders. This is the main difficulty we
have to overcome in proving decay of the two-point functions and is reflected in
a non-exponential estimate for the decay in the direction of the (d + l)-th coordinate
axis.

Our original motivation to study such (d + l)-dimensional systems with
d-dimensional disorder came from our joint work with J. F. Perez on localization
in the ground state of an Ising model with a random transverse field. By the
introduction of a path space the problem is reduced to the study of a model similar
to the ferromagnetic random Ising model we study in this paper, except that the
(d + 1) coordinate is now continuous. This model is studied in a companion paper
[3].

2. Statement of Results

It follows from the Fortuin-Kasteleyn representation of Ising-Potts models and
from Fortuin's comparison principles (see Aizenman, Chayes, Chayes and Newman
[4]) that

Gty(X,Y)^Gty(X9Y) (2.1)

for all X, YE W, q = 2, 3, . . . , W c Zd + \ where G($ denotes the two-point function
of the system restricted to W with free boundary conditions. It thus suffices to
prove decay for the percolation model; we will write G(X9 Y) for G(ί}(X, Y). Our
result is

Theorem 2.1. Assume E(eδKχ) < oo for some δ>Q. Then for any d= 1,2,... there
exists β1 > 0 such that for 0 < β < β± and any v > 1 we have m(β) > 0 such that for
if 0<m<m(β) there exists γ1=γ1(β,v9m)>0 such that ifγ<γι we have, with
probability one,

G((x,t\(y,s)}^Cxe~ml(χ-y>(lo*lt-sl}v}l

for all(x,t),(y,s)eZd+\ with

Theorem 2.1 is proven in Sect. 3 by a multiscale analysis; we follow the strategy
of von Dreifus and Spencer [5,6] and von Dreifus and Klein [7].

We can identify βl and m(β) in Theorem 2.1. Consider the d-dimensional
percolation or Ising-Potts model we obtain by making all Kx = 0 and restricting
ourselves to Zd, let g(q)(x,y) denote the corresponding two-point function. It is well
known in the deterministic case (i.e., J<x,yy = J), and it follows in the random case
from [8,5] that there exists β%}>0 such that for 0<β<β(^ we can find
m = m(β)>Q such that g(q\x,y) ^ cxe~m\x~y\ with probability one. We can take

βι = W.
Since our models are ferromagnetic, we always have

t),(y,t)) (2.2)
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for any choice of 3C and y. Thus long-range order in the rf-dimensional model
always imply long-range order in the (d + l)-dimensional model for any γ. In
particular, for d ̂  2, if J(Xtyy = J > 0 we always have a phase transition for the
(d + l)-dimensional model.

We have a more general result:

Theorem 2.2. Assume P{«/<JC,y> = 0} = 0 and let d ̂  2. Let q = 1, 2, . . . . For any β > 0
we can find y2 = TiG^*?) < °° sucn that for y >y2 we have, with probability one,

for any XeZd + 1. Moreover, there exists /?3 = β^q) < oo such that we can take y2 = 0
forβ>β3.

Theorem 2.2 is proved in Sect. 4. We use a percolation argument to find a
sublattice of Zd + 1 isomorphic to Z2 in which the model exhibits long-range order.

3. The Multiscale Analysis

Theorem 2.1 is proven in this section. We restrict ourselves to the case v = 2, the
modifications for arbitrary v will be clear.

Let us consider the independent bond percolation model in Zd+1 whose
occupation probabilities are given by (1.1). If W c Zd + 1,X, 7eW, we say that
X - > Y if X is connected to Y in W by occupied bonds, i.e., there exists

Z0, Z1? . . . , Z fceW such that Z0 = X,Zk=Y, Zi+ 1 - Zt \ = 1 for i = 0, . . . , k - 1, and
the bonds (ZhZi + ιy are occupied for i = 1, . . . , k — 1. We set

We have translation invariance in the ί-axis for any realization of / and Jf,
in particular

Gw + (o,t)(* + (0, ί), Y + (0, ί)) = GW(X Y)

for any ίeZ.
We start by reviewing some facts about independent bond percolation that

will be needed (see Kesten [9], Durrett [10], Chayes and Chayes [11]).
Let w denote a configuration of occupied and vacant bonds in Zd+1, i.e.,

where <JΓ, F> denotes a pair of nearest neighbors (or bond) in Zd + 1, with <Jf, F>
being occupied if w((X, 7» = 1 and vacant if w«AT, 7» = 0. The collection Ω
of configurations comes with a natural partial order, w^w' if and only if
w«Jr, r» ̂  w'«X, y» for all bonds <*,7>. Functions on ί2 which are
nondecreasing (nonincreasing) with respect to this partial order are called positive
(negative); events are positive (negative) when their characteristic functions are
positive (negative). Events are measurable subsets of Ω.

We will use the following inequalities:

The Harris-FKG Inequality (e.g., [10]). If A and B are both positive (negative) events,
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we have

The van der Berg-Kesten Inequality [12], Let A be an event, %> c &. We set
A\<g = {wεA; w'eA for all wf such that w' = w on each bond in Ή}.
If A is a positive event, then A\% consists of the configurations of Ή for which A occurs
even if all bond in $\β are vacant.

If A, B are events, let A°B be the event of A and B occurring disjointly, i.e.,
A°B = {weAnB; there exists <£,D <=.<38,<SnD = φ9 with wεA^r\B\D}.

The van der Berg-Kesten (v — BK) inequality states that, if both A and B are
positive (negative) events, we have

The Hammersley-Simon-Lieb (HSL) Inequality. Let W, W c Zd+1, if

X e W n W , YeW'XW,

we have

Gw(χ, Y)^ Σ G W Π w(χ, z)Gw(z, n
Ze5(W,W)

where

δ(W, W) - {ZeWn W; there exists Z'eW'\W with |Z - Z'| = 1}.

The HSL inequality can be easily obtained from the v — BK inequality.
We will actually use a simple consequence of the HSL inequality: if

JTeWn W, 7eW'\W, we have

ι , Y ) (3.1)

for some Z1ed(JW,W)y where

Gw(X,δ)= Σ GW(*,Z)
ZeδW

withaW = 5(W,Zd + 1).
We now start to prepare for the multiscale analysis. For xeZd and L > 0 we let

ΛL(x) =

For X = (x,f),L>0,Γ>0, we set

BLtT(X) = Λ
and

(for arbitrary v we should take BL(X) = BLeL^(X)).

Definitions. Let ra,L>0. We say that xeZd is m-regular at scale L (or simply
(w, L)-regular) if

for all YεdBL((x, 0)). Otherwise we say that x is (m, L)-singular. X = (x, t)eZd+1 will
also be called (m, L)-regular if x is (m, L)-regular.
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A c= Zd mil be called (m, L)-regular if every xεΛ is (m,L)-regular. Otherwise A
is (m, L)-singular.

If x is (m, L)-regular we have

(3.2)

for all L sufficiently large.

We can now state the result of the multiscale analysis. We fix /?, y, d and assume
E(eδKχ) < oo for some δ > 0.

Theorem 3.1. Let p > 2d2. Suppose there exists m0 > 0 and L0 > 0 such that

P{0 is (m0, LO) — regular} ^ 1 -- .
^o

Lei αe( 2d,- 1, set L fc+ 1 = L£, fc = 0, 1, ____ T/zen, /or any 0 < m^ < ra0 ί/zerβ exists
V d/

L = L(p, rf, m0, α, m, y) < oo such that if L0> L we have

P{0 is (mn9Lk)- regular} ^l-~

Corollary 3.2. Assume the hypothesis and conclusion of Theorem 3.1. Then, given
0 < m < m^, we have, with probability one,

for all x,yeZd, t, seZ, with Cx = Cx(/, Jf, m) < oo.

Proof. Let xeZd. By Theorem 3.1

- i + l)' 3d

P{ΛLk+l(x) is (m., Lt) - singular} ̂
d

Since p>ocd the above probabilities are summable so we can use the Borel
Cantelli Lemma to conclude that, with probability one, we can find k1 =
k^x,/^} < oo such that ΛLk+ί(x) is a (m^LJ-regular region for all k^k^.

Let b > 2, Y = (y,s)eZd + 1. Except for finitely many Y's we can always choose
k>k± such that

In this case Ye5Llc+1((x,0)), and applying (3.1) repeatedly we get

G((x,0), 10^ Gj^onίteO^ 7),

where Zί+ 1 edBLk(Zi), i = 0, 1, . . . , n and Z0 = (x, 0).
As long as

π^min{^max{^^,|s|β-^jj, (3.3)
I Lk [ Lk J J

ZojZi •••ZneJ5Lk+1((x,0)) and hence are (m^L^-regular. Using (3.2) and
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G(Zn, Y) ̂  1 we get

G((x,0), y) g exp ^ - I «„ — Lkn V. (3.4)
^ \/Lk/ J

Since if bLk < (log|s|)2 we always have \s\e~^Lk Ξ> fc+1 for Lk large enough, the

right-hand side of (3.3) is always either or k+1.
Lx Lk

If I j; - χ\ ̂  (log|s|)2, we can take 1̂ '̂ ̂  n ̂  \y~x\ - l; if \y - x < (log |s|)2

we have (log|5|)2 ^ bLk and hence

~ Lk

for Lfc large. In this case we can take

Thus it follows from (3.4) that

2
-L,

- \(y-x,(\og\s\)2)\

if fc and Lfc are sufficiently large.

We will now show that Theorem 3.1 implies Theorem 2.1. In view of
Corollary 3.2 and the fact that L in Theorem 3.1 is nondecreasing in 7, it suffices
to show that there exists β1>0 such that for_0 < β < β{ we can find m(β) > 0 with
the property that given 0 < m0 < m(β) and L < oo we can find L0 > L and y± > 0
such that for 0 < 7 < y± we have

P{0 is (m0, LO) — regular) ^1 -- .
^o

If J<x^yy = J > 0, it is well known that there exists β1 > 0 such that for β < βl

we have for the ^-dimensional model

for all x,y<=Zd with m = m(β) > 0 and C < oo. Keeping β fixed and making explicit
the dependence of G on y, we have
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for any W = A x ([ - T, T] n Z). If A is finite we also have

lim Gw((x, Q),(y9 ί); y) - Gw((x, 0), (y, ί); 7 = 0)
yjO

for any x,ye/l,ίe[- T, T]nZ.
Since # Λ(x, y) ̂  0(x, }>) ̂  Ce ~ m(x ~ y\ we can conclude that, for any L > 0, we have

limP{GBL((0>0))((0,0), Y) ̂  2Ce-*L} = 1
yJO

for any YedBL((0,Q)).
Thus, given 0 < w0 < m, there exists L < oo such that if L0 > L we can find

7! > 0 such that

P{0 is (m0,L0) — regular} ^1 --
^o

for y < y 1 .
If J<x>y> is random it follows from the multiscale analysis in [5] that we can

find β1 > 0 such that for β < β1 we have m = m(β) > 0 for which

P{0 is (m, /,-)- regular} ̂ 1-^
^h

for some scale lj-> oo, where the notion of regularity for the d-dimensional model
is defined in a similar way. Let us fix β < β1 and choose 0 < m0 < m; let E(^ be
the event that 0 is (m0,L)-regular for the model with parameter y. The previous
deterministic argument implies that

lim E(£ => {0 is (m, L) — regular}
yjO

if L is sufficiently large. Thus,

lim P(E(£) ^ P( lim inf E(f ) ̂  P{0 is (m, L) - regular}.
y|o \y |o /

Thus given L < oo, we can always pick L0 = ljo > L for somejo, and find γί > 0
such that

for all y<7!
Thus Theorem 2.1 follows from Theorem 3.1.

We now turn to the proof of Theorem 3.1. We start with two lemmas.

Lemma 3.3. Let Λ be a (m, L)-regular region, and let W c A x Z. Then for any
X = (x, ί), 7 = (j;, s)e W w
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Proof. Applying (3.1) repeatedly we get

/^r / V T/Λ "̂ f (V 3\/~' i ̂  Λ\ /~* ί Γ7 ^\/° / ^7 V\L/\y(Λ , I J ̂  L7βl^χ^Λ , U){jβL(Z^(£ ι9O) ••• LΓβL(Zn^(Δ, 1, <7JLr\y^Z/π + ^ , I J,

where Zί+ led(BL(Zί\ W),i = 0,1,...,n with Z0 = A\ as long as 7 is not in 5L(Z£)
for any i = 0,1,..., n, which we can guarantee for

'x —j; , , _
•s (-t- ^,\ ̂  λ

The lemma follows.

4v
Lemma 3.4. Let v = logE(eόKχ), σ = —. Then for any ΛaZd we have

δ

Proof.

-2γ £ Kx J

P e x p - 2 y
xeΛK

4y
Sopickε = exp v | Λ | 1.

Theorem 3.1 is proven by induction. The induction step is given by the following
lemma.

Lemma 3.5. Let p > 2d2,aε(2d,p/d), and L=l*. Suppose

P{0 is (m, /) — regular} ^1 ,

with m > —.

V'Then, if I is large enough,

with

P{0 is (M, L) - regular} ^ 1
L^t

2 5 J

- m (3.5)

Proof. Since p > 2d2,ae(2d,p/d),wQ can pick a positive integer J such that

oe<
p + (J + \}d

Thus, following [5-7], we have that
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P (there exists xί9...,xj + lε ΛL(ty (m, /) — singular with ΛL(x f) n ΛL(XJ) = φ if i φ j }

if / is large enough. In this case,

ί J

P< there exists x l 5 . . . ,Xje.Λ L (0) such that ΛL(0)\ [j Λ2ι(Xj) is a (m, /)
( j=o

— regular region > ̂  1 -- . (3.6)
J 2LP

We now want to estimate GβjL(0)(0, 7) for 7ed£L(0). We have two distinct cases
that we must treat separately: either Y is in the lateral boundary or 7 is in the
top or bottom boundary of the parallelepiped BL(0). We can restrict ourselves to
the case when the event described in (3.6) holds.

Sublemma 3.6. Suppose there exists x l 5 . . . , XjeΛL(0) such that

ΛL(0)\ (j Λ2l(Xj)
j = l

is a (m,[)-regular region. Let Y = (y,s)<=dBL(Q) with yedΛL(0). Then, ifm> — ,

V^

with

for I sufficiently large.

Proof. We can find yl9...,yj.εΛL(0), with J'^J, and j1 ?... j>ε{l,2,...,J} with
h + ' ' ' + Jj' = Ά sucn tnat ώe boxes A2jil(y^9 i = 1,..., J' are disjoint with

j j'

j = 1 i = 1

j'
and hence Λ' = ΛL(0)\ (J ^2jIo(3;i) ^s a (m,/)-regular region.

ί = l

5\ (j 5f; if Oe5' we set dB0 = (0), otherwise OεJ3Γ for some f and we set

a^o - δ5Γ. Similarly if YeB',dBj, + 1 = {Y}9 otherwise dBJt + ί = dBr with YeBr.
Let C > D mean the existence of a connected occupied path from C to D

in W. We have

(0 > Y} = \J \J (there exist disjoint occupied paths
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= U U {SBo-^dB^.
r = 0 (iι,...,ir}c{l,...,J'}

By Lemma 3.3 we have

Q{dBt —» dBk} ^ (2d(2Jl)d~12e^L)2

Thus, it follows from the v — BK inequality that

GB(0, 7) = Q{0—-> 7}
B'

2
^(J+ l)!(2d(4JOd~12£r/TJexp^ - m-

l

where

5 5J 3Ji

3

L

if / large enough, since m ̂  — and u>2d.

Sublemma 3.7. Suppose there exists xl9...,XjeΛL(Q) such that A' = ΛL(0)\
J α ^ / J \
(J Λ2/(x_/) is a (m,l)-regular region. Let 1 <κ< — >Λ = \ [J ΛIK(XJ) JnΛL(0) and

j=ι 2^ \ j = ι /
suppose

exp( -2y Σ Kx}^exp(-σy\Λ\). (3.7)
\ x e Λ /

Let Y = (y,T) with \ T\ = {_e^L\ andlet{<τ<κ- 1. Then, ifm^ — ,

V '

for I sufficiently large, with

Proof. We take T= \_e^L~\, where [x] denotes the largest integer ^ x, the other
case being similar. Let also Tl = 2[|e/τ]. We define

,(j-$T1)) for ; = 1 , 2 , . . . , ~ .
* i
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In addition, for

r =

we set

Notice that events in different <9Vs are independent. Now let us define the event

Ds = {all bonds <(x,s),(x,s + 1)> are vacant for all xeλ}.

Ds is the event that there exists a vertical disconnection at height s in a certain
neighborhood of the singular region.

For each fixed 5,
-^ Σ κ*

for / large enough by (3.7), with ξ = 3dσJ.
Let Er = £(3 r-ι-ι/2)7v the event that there is a vertical disconnection in the

middle of

Now let A = ( (j Λ2l(Xj) nΛL(0), and for A c Zd let BΛ= A x
\ j = ι

We define the event Fr by

i.e., Fr is the event that there is no connection inside ^X^from B^ to B
But SΛ^^^^Λ' and '̂ is a (m? O'regular region. Hence we can use Lemma 3.3
to get, for / large,

Q(Fc

r) ^1(^(2^(41 +\y-1)(T1(2d}(2lκ + iy-^

for some c> 0 independent of m and /, since K — \ > τ > \ and m ̂  — . Now let
V

^4r = Err\Fr. Since both £r and Fr are negative events, we can apply the Harris-
FKG inequality to get

Q(Ar) ^ Q(Er)Q(Fr) ^ -ξ^d(l - e-clκ~ 1/2) ̂  e~2ξ^d

for / large enough.
R

Let A = [J Ar, since the ^4r's are independent events, identically distributed,
r= 1

we have

But ^ ̂  ̂ 1/2/α/2 for / large, and Kd < *, so

(3.8
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for / large enough. Now,

GBlXO)(0, Y) ϊ Q { {0 -— Y} n A} + Q(A<). (3.9)

By the definition of the event A we have {0 - > Y} n A c C, where C is the event
1 BiΛO)

that there exists a connection in #ΛZΛO)\Λ °f vertical length > 7\, so

U
0>l,Sl),0>2,S2)eB/lL<0)\λ BΛL(0)\Λ

|sι-s2 |>Γι

Thus we can again use Lemma 3.3 to get

L

| s2-sι |>Tι

)d2e^Ye-(m-2l^l(T^~^l-l)^eM^l2lτ (3.10)

since τ > \, with

for / large.
Thus, it follows from (3.8), (3.9) and (3.10) that

GΛt(o)(0, Y) ̂  e~M2el/2lτ + e-βl/4l*/2

for / sufficiently large.
This proves the sublemma.
We can now finish the proof of Lemma 3.5. Since M\ ^ M2 we only need to

show that the hypothesis of Sublemmas 3.6 and 3.7 hold with probability ^1 .
LJ

But this follows from (3.6) and Lemma 3.4, for / large enough.

Theorem 3.1 now follows from Lemma 3.5 if we pick L0 large enough so that

m0 ̂  and L0 is sufficiently large for Lemma 3.5 to hold, and, in addition

Y |Y __?_ΛJ^_ 2 ^Jl
-̂̂  I \ /T / r α — 1 Πj T <x/2 J

This finishes the proof of Theorem 3.1.

4. Long-Range Order

We now prove Theorem 2.2. Let us fix ge{l, 2,...,}. Consider the corresponding

deterministic model with d=l,«/<x,y> = J > 0, Xx_= K > 0, /? = y = 1. It is_well
known that, given J > 0, we can always find K = K(J, q) such that for K > K the
model has long-range order, i.e., the two-point function does not go to zero at

infinity.
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Now we consider the random model with d^2, with «/<x>>,> > 0 with probability
one. Fix β > 0. Then, given 0 < p^ < 1, we can find J = J(β,Pι) such that

Let us also choose 0 < p2 < 1, and find K = K(J,q). We choose yί = yι(β,q9pι,p2)
such that

Now let us consider the model of site and bond Bernoulli percolation on the d-
dimensional hypercubic lattice with the occupation probability for bonds being
p1 and the occupation probability for sites being p2. If pl and p2 are sufficiently
close to one, the event that there exist two disjoint infinite self-avoiding paths
starting from some point xeZd with both bonds and sites occupied has strictly
positive probability (see Chayes and Chayes [11] for bond percolation, the same
argument applies for bond and site percolation).

Thus, if P! and p2 are chosen sufficiently close to one, then for any xeZd is a
strictly positive P-probability that there exists a doubly infinite self-avoiding path
{φ(ri)}neZ is Zd such φ(0) = x and

Let G(*\x9y) be the two-point function between X and Y in the sublattice
Lφ = {Z = (z, ί); z = φ(n) for some rceZ} of Zd+ 1. Notice that Lφ is isomorphic to
the lattice Z2, and on this sublattice we have long-range order (use ferromagnetism
and Griffiths inequalities).

Thus, if X = (x,s), we have XeLφ, let also YeL,φ. We then have, with strictly
positive P-probability, that

for some Cx > 0 independent of X and
It follows that

for any X = (x, s).
It is now easily seen by standard arguments that

lim G(q\X,Y)>0m-oo v ' ;

for any XeZά+1. Indeed, by ergodicity, with probability one we can find xΈZd

such that for each S',

By the Harris-FKG inequality,

G^(X9 Y) ̂  G(*\X, (xf, s'))G(β)((x', s'\ Y)

so that
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with probability one since G(X, (Y, s')) > 0.
This finishes the proof of Theorem 3.2.
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