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Abstract. For the operator iφ + m(x\ where m(x) can change sign, we develop a
cluster expansion for computing the determinant and Green's functions. We use
a local chiral transformation to relate the space-dependent case to the ordinary
Dirac operator.

1. Introduction

The study of multi-phase field theories with generalized Yukawa interactions
provides a natural structure for studying Dirac operators with space-dependent
mass. Different phases of such a model will have different effective ίermion masses.
If one attempts to analyze such a model via a cluster expansion, different cluster
will be in different phases and have different masses for the fermions.

Our specific motivation for studying operators like iφ + m(x) comes from trying
to understand the phase structure of two-dimensional Wess-Zumino models. While
the single phase case has been studied [15] and much is known for the system in
finite volume [9-12], the infinite volume multiphase problem remains unexplored.

A first step to understanding the behavior of the Wess-Zumino model is to
study a simpler toy model with almost no bosonic field. By "almost no" field we
mean that the only remnant of the boson is a restriction that each block of space-
time is in a particular phase. This results in the study of a Dirac operator iίβ + m(x)
in two dimensions where m(x) takes on a small number of values.

Dirac Operators with Space Dependent Masses. To obtain a view of the technical
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problems involved, consider first the Laplacian with a space dependent potential

-Δ + m2(x\

where

m 0 ^m(x)>ε>0. (1.1)

Exponential decay for the Green's function ( — A + w2(x))~1 can be established
using the Neumann series

(-Δ + m2(x)Γ1 = Ll+(-Δ + m2Γ\m2(x)-m2)Γ\-Δ + m2Γ1

00

-4 + mg)- 1 (1.2)

where convergence is guaranteed since |m2 — m2(x)| < m2.
Now consider the Dirac operator i$ + m(x) on R2. This is the operator defined

by

$ = iyE

0Bxo + iyΐBxl> (1-3)

where y Q, y^ are 2 x 2 matrices

-
The Neumann series technique described above again works so long as m(x)
satisfies a bound of the form (1.1). However in this case of the Dirac operator the
restriction to positive mass is no longer trivial; in fact the effective quantum field
theories of [11, 12] give rise to Dirac operators with m(x) taking different signs in
different space time regions.

In order to handle this problem we begin by remarking that the operators
iφ + m and ifi — m are related via a (chiral) unitary transformation by y5 = y 0 y l 5

where y0 - iy* andy^yf:

+ m)y5 - y0(i^ - m). (1.5)

Similarly we have, with U = e'α(*)y5,αeC^(IR2),

yo(ίf + e2i*(x}ysm - ^α(x)y5). (1.6)

If we choose α(x) = 0 in one region (region A), and α(x) = π/2 in region B (with a
boundary layer between), then

,(ί$ + m), in region^

,(i0 — m), in region £.

Thus the Dirac operator with masses of differing signs is related to the Dirac
operator with constant mass via a unitary transformation.

This is our main technical device for handling the Dirac operator with differing
signs for the masses. For simplicity we will consider the case where the function
m(x) = ± 1. We discuss the more general case in the appendix, where we combine
our methods with a Neumann series of the type discussed above (1.2). We could
also easily consider the case where the mass was chiral, i.e. proportional to
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iγ5smθ, #eR. Although we consider only the two dimensional case, we
believe an extension of our methods should work in any even dimension.

Before stating our main theorem, however, we must make the following remark.
Let γ0(iβ + m(x)) be the Dirac operator on J4fί/2 Θ ^1/2 > where J^α is the Sobolev
space Jf α = L2(R2, (p2 + I)ad2p). Let S = (γ0(iφ + I))"1 be the operator on
Jf = j(f _ 1/2 θ 2tf - 1/2 determined by the kernel

" (1 8)

i.e. the kernel (2.5) without cutoff. We wish to prove estimates on the putative
Green's function

l. (1.9)

In fact it is not difficult to write down functions m(x) for which this inverse will
not exist. To circumvent this problem we compute the "reduced" Green's function,
formally given by

[y0(# + mix))]'1 det3(S[70(i? + m(x))]) = (1 + K)"1Sdet3(l + K), (1.10)

where K = Sy0(m(x) — 1) is an operator on 34?. The object (1.10) is well defined
and given by a Fredholm series [14], whether or not y0(ifi + m(x)) is invertible.
Convergence of the Fredholm series is guaranteed by Lemma 2.1. Note that where
y0(i@ + m(x)) is invertible, the reduced Green's function differs from the inverse by
an irrelevant constant.

We may now state our main theorem.

Theorem 1. Let g, /zeC^(IR2) be supported in unit squares Δg,Δh. Then there exists
c > 0 such that

where

Λ_1 =supp(l —

A similar result holds for higher Fredholm minors. We also have the following
estimate for the regularized determinant (Proposition 2.7):

|det 3 ( l+K) |^exp[2 |Λ_ 1 | /π + 0(\dΛ^\)l (1.11)

where the coefficient of | A _ l \ has the expected perturbative value.
The main idea of the proof is to make use of the unitary transformation U to

relate γ0(i@ -f m(x)) to an operator equal to y0(i@ + 1) + ζ, where ζ is supported on
dΛ_1. The correction 2\Λ-ί\/π arises since, unlike a true determinant, det3 is not
invariant under unitary conjugation.

This result gives the main contribution to the weights of the contour expansion
for the multiphase N = 2 Wess-Zumino2 models. We would hope that a slightly
different version of this work, replacing determinants by Pfaffians, should give a
similar result for the N = 1 models. The cluster expansion for these quantum field
theories will be the subject of future papers [8]. For the reader interested in the
quantum field theories this paper should serve as a simple introduction to the
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necessary cluster expansion techniques. We hope however that this result may be
of interest in itself.

2. Estimates for the Determinant

Before turning to estimates on Fredholm minors, let us consider the determinant
alone. We want to be able to compute determinant ratios, such as that formally
given by

det3 γQ(if + m(x))/det3 γ0(if + 1). (2.1)

The existence of the determinant is guaranteed by the following, which is an
immediate consequence of Lemma 5.4:

Lemma 2.1. Let J5?3(jf) denote the 3-Schatten ideal, i.e. the ideal of operators tf
on ffl such that

Tr(Jf *Jf)3/2 < oo.

Then

The fact that it is regularized determinants which appear complicates our
analysis. While (formally)

^ = det(l-2S7 o)=l (2.2)z 0 + l )

because of (1.5), we (unfortunately) have

det3(l - 2Sy0) = exp lim TK9 (2.3)
K-> 00

where

Γκ = Tr[2Sκy0 + 2Sκy0Sy0]; (2.4)

here Sκ is the operator on «^_i/ 2®^-i/2 given by the kernel

where

Xκ(p) = e-
p2/κ2. (2.6)

Let Ξκ be the operator on Jf defined by

^ (2-7)

Then SK = ΞKS = SΞK.
It is easily seen that in a finite volume A

lim Tκ = 2\Λ\/π + 0(\dΛ\). (2.8)
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Thus in the local case we expect (finite) 0(|/1|) corrections from the difference
between det and det3, as well as boundary corrections.

Let the function m(x) take the values ± 1; let
2i*"-l-faγs)9 (2.9)

where we choose α such that m(x)e2lΛ(x) = 1 except in a neighborhood of dΛ _ ί . Let

Rκ = Tr ΞκlSy0(l - m(x)) + (Sγ0(l - m(x))2/2] + Tr ΞκlSζ - (Stf/2]. (2.10)

Then we have the following:

Proposition 2.2
(a) Then limit lim Rκ exists, and

κ-> oo

R= l imK κ = 2 | / l_ 1 | /π + 0(|δ/l_1 |). (2.11)
K-> oo

(b) The determinant det3[l + SγQ(m(x) — 1)] satisfies

det3 [1 + Sy0(m(x) - 1)] = det3 [1 + Sζ] exp(tf + r), (2.12)

where

r = — H 3 α | | * 2 . (2.13)
4π

Remark. The factor exp # is the ratio of the determinants expected from a naive
product formula. The additional term exp r is a correction resulting from the need
to place cutoffs on operators before such a formula can apply.

Proof. Part (a) follows by a straightforward calculation. We devote the remainder
of this section to proving (b). We begin with the following lemma:

Lemma 2.3. Let A9Bε&3(Jίf). Then

C = A + B + AB = (l + A)(ί +B)- 1 eJS?3(Jf), (2.14)

and

det3(l + Λ)det3(l +B) = det3(l + C)exp - Tr T, (2.15)

where

T = (AB)2/2 + AB2 + BA2e^1(J^). (2.16)

Proof. If A,B€&ι(3tf\ then

Tr T = Tr IA + B - C - A2/2 - B2/2 + C2/2], (2.17)

and the lemma follows by the product formula for Fredholm determinants and
the definition of det3. Since operators in Jδf3(jf7) may be approximated by finite
rank operators, the lemma follows.

We now apply the above lemma to our case. Let Ut = exp [fay 5ί], and let

^'-l-0ay5t). (2.18)
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Then

(2.19)

where

ζ? = Yo(e2*"t-l-t«γ5t). (2.20)

As a consequence of Lemma 2.3 we have the following:

Corollary 2.4. Let

T, = (Sζ»υ^Kυt}
2!2 + (Sζ°)2U~1KUt + (U^KUfSζ?. (2.21)

Then

det3 [1 + Sζ(] = det3 [1 + Sζ°] det3 [1 + U^KO,~\ expTr Tt

= det3 [1 + SCr°] det3 [1 + K~] exp Tr T(. (2.22)

On the other hand, some algebraic manipulation shows that

TrΓΞTrΓ,| I = 1

= limTrSKT
κ-» oo

- lim Ίr(Rκ + Eκ + FJ, (2.23)
κ-> oo

where

Eκ = Eκ.\t=ί, FK = FK.\t=1 (2.24)

with

£Kit = TrSK(Sit°-(SCt°)
2/2), (2.25)

and

F^^iTrS^SC^l/r'Kl/J. (2.26)

The term .Rκ was estimated in Proposition 2.2, part (a). For Eκt and Fκt we
have the following results:

Lemma 2.5.
(a) E(t) = lim Eκ tt exists, and

det3 [1 + 5Cr°] exp E(t) - exp —- [| δα \\2

2; (2.27)
4π

(b) lim FKft = 0.

To prove this we make use of the following lemma:

Lemma 2.6 The operator U~lΞκUt may be written as a sum

υ^Ξκυt = Ξκ + (9ly5 + Θl

κ, (2.28)
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where for any ε > 0,

| |0£||1 + β->0 as K^OO, (2.29)

||^5||2+ε-+0 as c^oo. (2.30)

Proof. We first demonstrate (2.30). The operator (95

κ is given by the kernel

®l(*>y)~ sin(α(x) — oc(y))e κ (x y) /4. (2.31)
4π

We write Θ^ = L* -f L2, where L^,L2 are given by the kernels

iy$κ2

1 ' 4π

L2(x, y) = $κ(x, y) — L\(x, y). (2.33)

We have

Using the notation of Lemma 2.1 of [13], L^ is of the form

const x f(p)g(x), (2.35)
where

f(p) = pκ~2e-p2lκ\ (2.36)

g(x) = d*(x). (2.37)
Thus

^ 0(|3/1 _ 1 \)κ . (2.38)

The Hubert-Schmidt norm of L\ is easily estimated using pointwise bounds,
yielding (2.30).

To deal with (2.29) we must get around the fact that Lemma 2.1 of [13] is not
directly applicable to (1 + ε)-norms. The kernel of &[ is given by

κ2

 2, ,2 / AβI(x,y) = (cos(<*(x)-oί(y))-l) — e-κ(χ-y)l*. (2.39)
4π

Let χ be the characteristic function of A _ ΐ. Then

φl — yβ)I _|_ φ1 γ — Ύ&1 Ύ (240)

and

Now we write

l)^||2 + ί. (2.42)
Now

(if + !)<(*, y) = K[(x, y) + K'2(x9 y), (2.43)
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where the leading term is

-ίκ2

K((x,y) = -- 3φ) (x - y)fa(x)e-*2(χ-y)2, (2.44)
4π

the kernel of an operator K[ whose (2 -f <5)-norm may be estimated similarly to
(2.38). The remainder K*2(x,y) is the kernel of an operator whose Hubert-Schmidt
norm vanishes as τc-» oo, yielding the lemma.

Proof of Lemma 2.5. To show (b), we note that

Fκ>( = iTr S(Ξκζ? - ζ?Ξκ}(U- ' K U,}. (2.45)

This can be expressed as a sum of terms, some of which are of the form
Ύτ(Ξκζf — ζ®Ξκ)(9, with 0eJSf 1? and hence vanish as κ-> oo. The remaining terms
may be estimated by

d2qd2y, (2.46)

where / is the Fourier transform of ζ°. Since α is smooth, / decays rapidly. We
also have

\XK(P) ~ XM ^2l^-^((\p\ + κ)χκ(p) + (\q\ + κ)χκ(q)), (2.47)
K

and thus Fκ >t is O(\/κ).
We are left with (a). First we note that

det3 [1 + SC?] exp E(t)\t = 0 = 1. (2.48)

To prove (a) we will show that

^log(det3[l+5C ί°]exp£(ί))-f ί | |^i|^ (2.49)
ot 2π

so that

||̂  (2.50)
4π

as needed.
Now

Jim I (det3 [1 + SζΠ exp Tr Sκ(SCf° - (Sζf°)
2/2))

= lim

det 3[l+SC t

0]exp£ κ,rI

= lim iτr(
K-OO
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det3[l+5C ί°]exp£κ, ίJ

= lim \ττ(—!—Sκ(ζ?y W[l + SC?] exp £κ, fI (2.51)

since the difference Tr[SCf°Sιe(ζί

0)/-SlcCί

C)S(ζί

())/] can be estimated in the same
fashion as Fκt was in Lemma 2.5(b), and thus vanishes as /c-»0. Explicitly writing
out the last line of (2.51) above we see that the derivative (2.51) is equal to

K^OO } ' *'* * ~* dt ' f /'

Now

— (U~ίS~iUt)= — ίay5U~1S~lUt + ίU~lS~lUtay5, (2.53)

so that (using trace cyclicity)

dC r

^[/-^-^vs, (2.54)

since y5 is traceless.
Writing

(2.55)

we see that

(2.56)

The first term is clearly zero, and the second term goes to zero as K -> oo since it
can be bounded, e.g., by || 0^\\3. Similar computations with the third term lead to

3
— (det3[l +SCί°]exp£(ί)) = det3[l + Sζ°]exp£(ί) lim ΎrSy0(9^oί). (2.57)
dt ^^«

We can write

>V«2^)2/4sinί(α(x)-
4π

- ̂  κ*(X-yW4[(y _ χ).δα ̂  0((χ _ ̂ 2^? (2.58)

4π

and the singularity of the fermionic covariance is

(2.59)
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so that the trace in (2.57) can be evaluated:

— tκ2 1
lim TrSy00*(#α) = lim - $d2xd2ye-κ2{x~y}2/4 - [(x -j/) δoφc)]2

K^OO K^OO 4π2 |χ — y\2

+ higher order terms which vanish

= ~^\da\2d2

X, (2.60)
2π

completing the proof.
Finally, we obtain the following simple estimate on det3 [1 + Sγ0(m(x) — 1)]:

Proposition 2.7.

Proof. Let K = Sζ. In view of Proposition 2.2, we need only estimate

|det3(l + £)| = |det 4(l+ £)exp[-Tr£4/4]|

^expconst \\K\\*

^QxpO(\dΛ_1\) (2.61)

by Lemma 5.4.

3. The Cluster Expansion

Let us consider the Fredholm minor

fetjk(gj9 [yoO? + "φc))]~ 1Λk)L2det3 [1 + Sγ0(m(x) - 1)], (3.1)

where gj9 /zfceC^(R2). The reduced Green's function of Theorem 1 corresponds to
the special case where there are only two test functions, denoted g, h.

Now the expression (3.1) is clearly equal to

det3 [1 + Sy0(m(x) — 1)]
dεtjk(9j> U [1 + £Q SUhk)L2 det3 [1 + Sζ~] . (3.2)

det3 [1 + Sζ]

The ratio of regularized determinants was calculated in Lemma 2.2, and is equal to

e x p P I / i - i l / π + Oίlδ/l _!!)]; (3.3)

hence we will only need to perform the cluster expansion on the Fredholm minor

aeljk(gpV~l[\ +SCΓ1St//z/c)L2det3[l + SQ. (3.4)

It will simplify the analysis considerably to work in ^' = L2(R2KB>L2(IR2)
instead of 2tf = 3?_ 1/2 0 ffl_ 1/2. This results in replacing the operator K = Sζ by
D1/2SζD~112, where D = (-Δ + 1)1/2. Thus we have

= detJk(Sj, [1 + SG - 1S^)L2det3 [1 + SC]
1/2], (3.5)
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with

gj=U-1gp hμ=Uhk. (3.6)

We wish to express the Fredholm minor (3.4) as a trace of an antisymmetric product
k

of [1+SC]"1 multiplied by an operator on Λ ffl'. This structure will be

maintained throughout, and is necessary in order to obtain the proper estimates
on the terms produced by differentiation. We write the expression (3.5) as

/ !Tr Λ j r Λ ll+D1/2SζD-1/2Γ1Pj det3[l+D1/2Sί£r1/2], (3.7)
\ j = ι /

where P 3 is the operator on $?' given by

Pj^φ-WgjΛD^Shj. (3.8)

We now introduce decoupling parameters on the bonds of the lattice l%2; for
all sb = 1 we have the same equation as before, while we have complete decoupling
across bonds with sb = 0. We only decouple bonds that are far away (0(1) - the
specific distance will be chosen later) from regions where the mass is changing, i.e.
far from the region where α(x) is changing. We denote the subset of bonds on
which we decouple by J*(α).

We use the decoupling method of Balaban and Gawedzki [1], with A on the

/-lattice. Let A, A' be /-lattice squares, and take se[0, l]^(α). Then define

f inite y c <#(α) beγ bφγ

where

CΓ(Δ9Δ') = \dx I dyCΓ(x9y\ CΓ= (- AΌ

Γ+m]γl\ (3.10)
Δ Δ'

AD

Γ is the Laplacian with Dirichlet boundary conditions on Γ and mc > 0 is a
sufficiently small constant to be chosen later.

Definition 3.1. Let A be an operator on 3f'. Then we define

H(s,Δ9Δ')χΔAχΛ,.
Δ

The decoupled version of Eq. (3.7) is

/!Tr Λ [l+K(s)]-^PJdet3[l+lί(s)] = Z(s), (3.11)

where
)s(D-ί'2)sζ(D-ί^ (3.12)

and where
Pj^^ttD-^g^D^SWj. (3.13)

Note that Z(s) factors on connected regions whose boundary consists of bonds
with sb = 0.

The Glimm-Jaffe-Spencer [5, 6] cluster expansion is essentially an application
of the fundamental theorem of calculus. For a partially decoupled function F(s)
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we have

F(l)= Σ }^/>W (3.14)
Γe^(α) °

where
SS

Γ=U^ dsr=Y\dsb (3.15)
beΓ beΓ

and we set sb = 0 for all bφΓ. We can put this all together with the following:

Proposition 3.2 (Cluster Expansion). The correlation function (3.11) satisfies the
following convergent expansion:

Z(l)= X Sdsrd[Z(s)9 (3.16)
Γe^(α)

and for some constants c and δ' obeys the bound

\Z(ΐ)\^c^e-δ'd((9^{h^e°(\dΛ-^. (3.17)

The remainder of this paper will be dedicated to proving the above proposition;
in addition to the factoring across bonds with sb = 0 the main fact we will need
is a bound on cluster activities that is exponential in the size of the cluster.

A typical term in our expansion will have the form

/ * \
k\ Trί Λ [1 + K(s)Yl G jdet3 [1 + K(s)~] = τk(G\ (3.18)

k
where G is an operator on Λ 2tf" given by antisymmetric products of operators
of the type A, E and P defined below. The result of performing one differentiation
on τk(G) is then [3]

Λ / *\f~1 \

-τfc(G) = τk( — Uτ k + 1(GΛ4)-τ,(G dΛ f c£ s), (3.19)
ds \ds J

where

, (3.20)

k

and the operator d/\k identifies Es with an element of Λ ffl' .

fc— 1 times

We can now write down the generic term in the cluster expansion,

Λ Pj(s)
j = ι

= Σ Σ d π ° τ r ( P ( π P ) Λ A ( π A ) dArE(πE)). (3.22)
πe^(Γ)decompπ

Here the set of derivatives that have been applied to the Fredholm minor is
decomposed according to whether they result in a factor of type A, E or P, or
produce a higher derivative of such a term, as follows:

π = π0 u Tip u πA u π£, (3.23)
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and 3P(Γ) denotes the set of partitions of jΓ. The other terms appearing in (3.22)
are:

P(πP) = Π < 3 j ( s ) Λ -. Λ P/(s) (3.24)
\ γeπp /

(where each dy

s acts on a different P/(s)),

A ( π A ) = Λ K2(s)dy

sK(s\ (3.25)
γeπA

d/\rE(πE) = Π dΆr(l - K(s))dlK(s)9 (3.26)
yeπjE

where r = / + πA\ and the d' Λ means that terms where E derivatives precede A
derivatives (according to an arbitrary ordering of the bonds) are omitted, and finally

dπ° = Π dl; (3.27)
yeπo

each dy

s acts on an undifferentiated K(s) in an A or E factor.
We will be estimating (3.22) by fixing all the localization squares in the

decoupling (Definition 3.1). To indicate a term so localized we write Al9 Eh etc.
We re-write (3.22) to make this explicit:

Lemma 3.3. The derivative 9^Z(s) may be written as the following sum over localized
terms:

= Σ Σ Σ a-'τXΛMΛ^πJ dΛ'E,^)).
ecomp π localizations

4. Combinatoric Estimates

We will estimate the sums in Lemma 3.3, primarily using the following lemma:

Lemma 4.1 (Method of Combinatoric Factors). Given two sequences {an} and {cn},

First we see that

|d/Z(s)|^£4W sup Σ l^τΛPjΛΛ^'Λ'E,) ! . (4.1)
π decomp localizations

We can localize the A factors (this means choosing a particular square from each
of the sums over characteristic functions implicit in the definition of the decoupling)
with a Combinatoric factor

0(l)|y|0 ( 1 )Πexpεd(4k,y) (4.2)
k

since

— £exp[-ed(4,y)]<0(l) for 8 / > L (4.3)
\y\ Δ
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Similarly we can localize the P factors with combinatoric factors

,Δ7) + d(Δ'J9 fyl (4.4)

where Aj and A. are the supports of the test functions h*3 and gjf

For the E factors, in addition to fixing a localization we wish to fix a choice
of terms in the exterior derivative. For the localization we proceed just as we did
for the A factors, yielding a combinatoric factor like (4.2).

Combining the above we get the following:

Proposition 4.2.

\d^Z(s)\ ^ ̂ O(l)'Γ| sup \dπoτr(Pl Λ A t - d ' Λ r E t ) \
π decomps,

localizations

• π

7 = 1

We now want to use additional combinatoric factors to restrict the internal
structure of the A, P and E terms. These estimates involve exponential pinning;
see for example [1] p. 301. To fix a term in the exterior derivative, let eL(A) be
the number of E terms with left-most localization square A. Then the number of
terms is bounded by

2* + \Γ\l\eL(Δ}\^2/0(1)1 rl Π expεφ,4J, (4.5)
A yeuE

where AL is the left-most localization square corresponding to the E factor being
differentiated (by y^b). Now we consider restricting the sum over the P derivatives.
There are / factors and \πp\ derivatives, so there are less than (2£/)|πp| possibilities
(the 2 comes from the choice of the bra or ket). We have the estimate

(2/)l«^0(i)|πp| + / j-j exp[εmin{d(y,4),φ,Zz)}], (4.6)
yeπp

where Al is the localization square corresponding to 7 chosen via (4.4) and the
choice of the bra or ket, and Al is the corresponding test function square. We also
restrict our choice for the distribution of derivatives of π0. There are less than
[0(l)(|πJ + |π£|)] |πoί factors, so we get an estimate similar to (4.6),

[0(l)(|πx| + |π £ | )] l w o '^0(l)l«l Π e x p [ ε m i n { d ( y 9 Δ l ) 9 d ( γ 9 Δ f

l ) } l (4.7)
yeπo

where Al and A\ are the localization squares chosen via (4.2) or its equivalent that
surround the factor being differentiated by y.

Finally, because each K(s) has three decouplings each term can actually be
differentiated a number of ways, so that the partitions πA, πE and π0 must be
divided into sub-partitions. However, this simply gives a factor of 0(1)'Γ|, and we
will leave our notation unchanged for the time being.

The above discussion can be summarized by the following proposition:
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Proposition 4.3.

SUP SUP
decomps, πp-derivatives

localizations πo-derivatives
exter. derivs

π

k= 1

• Yl expεd(y,ΔL)

where the primes on π0,PhAl and d' Λ rEt indicate that we take only one term from
each summation.

5. Estimates on Kernels

In order to prove convergence of the cluster expansion we must now prove
analytical estimates on the expressions |δπότr(PJ Λ A\'d' ΛrE[)\ appearing in
Proposition 4.3 above. Each of these terms is of the form

r!Tr(Λ'[l +K(s)T1,Qΐ A Qy

2

2 Λ - Λ βr

yr)det3[l + K(s)l (5.1)

where each Q^ takes the form

Q]* = ArtE*Etf ..E^ (5.2)
or

gy t = pv^E^E^ £# (5.3)

and each A, P or E is fully localized as indicated above.
Let

G,(y9δ)= Σ exp-δ|/ σ ωi, (5.4)
σeS|y|

where SΠ denotes the permutation group on n elements, and where the "size" |/σ(y)|
of the linear ordering of γ determined by the permutation σeS\y\ is defined in [3],
page 12, and let

Gj>(β )= ifβ?.isofthcform(5.2)

lexp{ -

where A\., A*, are the localizations associated with the P factors.
The required estimate is as follows:

Proposition 5.1. Choose mc, the decoupling mass in (3.10), sufficiently small. Then
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there exist (5 l s . . . , δβ > 0 such that (uniformly in s)

r!|Tr(Λ'[l +K(s)Γ1,Qγ Λ β» Λ - Λ β»)det3[l

where {Δ^} are the localization squares associated with the differentiation ofγί, and

Note that the y{ correspond to the different ways the derivatives in y f can be applied
within each factor, as explained preceding Proposition 4.3. Also, since the P factors
do not contribute to decay away from δ/l_ 15 we indicate by a prime on the product
that the <53 term is absent for differentiations arising from P factors.

Proof. We have, using Lemma A.2 of [3],

r! |Tr(ΛΓ[l +X(s)]-1,βy

1

1 Λ Q^ Λ ... Λ flr

y')det3[l + K(s)]|

1 det3 [1 + X(s)] || Π I I QΓ I I i. (5-6)

We complete the proof with the following two lemmas. The first contains the
nonperturbative bound on the determinant; the second is a perturbative bound
on the kernels Qt.

Lemma 5.2. There exist cί,c2> 0, independent of s, so that

l |ΛΓ[l+^(s)]" 1 det3[l + K(s)] | |^c Γ

1 expc 2 | 5Λ_ 1 | .

Lemma 5.3. For mc sufficiently small the kernels βj1 satisfy

•exp

where δ1 ~δ6>Q(δ3 = Qίfyi comes from a P factor) are independent of s.

The fundamental estimates required to complete the proofs of the above lemmas
are the estimates on kernels given in [1]. We quote them here for convenience.

Let

^Δ^Δ^n^χΛ-F+lϊD^χ^D-^fχ^D-^χ^. (5.7)

Lemma 5.4 (Proposition A.I.I of [1]). Let p>2. There exists ε > 0 such that

i | K(Δ, Λ', Δ", Δ'"; f ) \ \ p £ \\ f χ Δ , , \\LΛ exp - fi[</(4 Δ') -f d(Δ'9 A"} + d(Δ"9 Δ'")].

Proof. [1], page 388.
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Lemma 5.5. Let H(s, Δ, Δ') be given by (3.9). Then

(a) Q^H(s,Δ,Δ')^l9

(b) I dlH(s, Δ, Δ) I ^ exp(0(/)) exp(2mcd(4 Δ') - bmcά(l, 4 Δ^G^δ,) exp(c - δ2l) \y\.

Proof. [1], page 314.

Proof of Lemma 5.2. By standard determinant estimates, we have

| |ΛΈl+K(s)ΓMet 3[l+K(s)]| |

- || Λ r[l + K(s)] - ' det4 [1 + X(s)] || exp[ - Tr K

(5.8)

Now

= ΊrK*(s)K(s)K*(s)K(s)

= Σ Tr [X*(5; Δl 19 412, 413, 414; £)K(s; 421, z422, Zl23? zl24; δ)
Δijdl&i

•K*(sι 431J Z\32? 433, ̂ 34;

• Π H(S, 4ι, 42)^fe
k

s, 42, Δk3)H(s, Δk3, 44). (5.10)
/c

Now by Lemma 5.5(a) and Lemma 5.4, this is less than

Σ Π ΠχAjΛLv^P-εWΔ^ΔjJ + d^ΔjJ + d^ΔjM (5.11)
ΔijiΔi4 — ΔZI, j

Δ24 = ^31, ^34 = ^41

since suppζ c= δ/l_ 1 .

Proof of Lemma 5.3. We estimate

H^EJE;...^^^!^;^^;!!...!^;!!, (5.12)
HPiF^.-Eil l^l lPilUHFJI.. . !^; ! ! . (5.13)

Recall that

A = dVίKdy2Kd?3K9

where y1 ? y2 or both may be empty;

E = (ί- K)dyK or £ - - dyιKdy2K,

and P = P(s) or derivatives thereof. Thus
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|| A\ || ! = Σ K(s; Δ,,Δ2, Δ3, Δ4; δ)K(s; Δ4, Δ5, Δ6, ΔΊ; δ)K(s; ΔΊ, Δ8, Δ9, Δ10;δ)

Π δ%(s,4,4+1) (5.14)

s; Δlt Δ2, Δ3, Δ4; δ) \\ 3 1| K(s; Δ4, Δs, Δ6, Δ7; δ) \\ 3

H\\K(s ,ΔΊ,Δ8>Δ9,ΔlάS)\\3\d*'Ή(s,Δl,Δί+1)\.

Using Lemma 5.4 and Lemma 5.5(b) this is bounded by

exp - εEί/ί^!, Δ2) + d(Δ2, Δ3)+ + d(Δ9, 41

J(4, 4+ j) - <5mcί/(y';, 4b Δί+ J

The £ terms are estimated by

Using the same techniques as above, this is bounded by

exp - ε[d(Δl9 Δ2) -h d(Δ29 43) + - - + d(ΔΊ, Δ8J]

Π exP PM( A, 4 + 1) - δm^ίy;, Δi9 Δ. + , )

(5.15)

(5.16)

(5.17)

-^OIy .DG^y;,^). (5.18)

Finally,_to estimate dyP'l we note that (recall that the tis and '̂s are localized in
blocks Δ'9 and y =

s, Δ2, Δ')

, Δ2, Δ'),

where

Now by straightforward arguments (e.g. Theorem 2.2 of [13])

||£j || ̂  ̂  exp -ed^!, 2)11/1, H*,

|| Gj || ̂  , ̂  exp - εd(Δ2, Δ') \\ §j \\ x;

while

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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Combining (5.22)-(5.24), we get by Lemma 5.5

^ exp(2mc - ε) ,̂ Δ)_+ d(Δ2, 4')] _

exp[ - δmc(d(ϊi, Δ,, Δ) + d(yh Δ2, 4')

Π expKc-^OIy^GifoA) (5.25)
i = l , 2

as needed.

6. Convergence of the Expansion

We now want to complete our proof of the convergence of the cluster expansion.
First we take mc small so that, for example, (2mc — ε) < 0 in (5.16), (5.25). Then we
take / sufficiently large so that (c — <5 2/)<0 in (5.16) and (5.25) with enough left
over to beat the 0(1)' Γ' in Proposition 4.3. Then we can combine Proposition 4.3
and 5.1 to give

(6.1)
π {y/}

Here we consider for simplicity the case of the reduced Green's function, as in
Theorem 1, with only two test functions g, h supported in Δg, Δh. The decay between
Δg, Δh can be extracted from the factors in Proposition 5.1, assuming we allow for
an increase in 0(\dA_^\) to compensate for a possible lack of connections going
all the way from Δg to Δh.

Let us insert this bound in the starting expansion (3.16), so that we may
complete the proof of Proposition 3.2. We obtain

{?/}

(6.2)

where we have written Gί out using (5.4). Now rather than sum over π we can
just as well sum over all partitions of Γ into {γi} - the original partition π can be
reconstructed from the structure of differentiations in {y^}. Furthermore, we sum
freely over the yf s, reconstructing 7" as their union. To sum over a single y\, we
use the estimate

11). (6.3)

The first bond yields the factor O( |δΛ_ 1 | ) , since it is localized to dA__l only.
Subsequent bonds are localized by \lσ(y{}\. The factor exp(0(/)) is beaten by the
decay in d(γj

i,dλ_1)~ϊor this we choose J>(α) so that d(J>(α), <3/l_ι) > #(/). This
may not be possible at Δ , Δh, however, so there will be two exp(0(/)) factors left over.
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Now in summing freely over N yj's, we count each partition of Γ Nl times.
Hence we have an estimate

|Z(l)|gexp(0(/))exp(-5'd(4ί,idΛ))exp(0(|3Λ_1|))Σ-ίθ(|3Λ_1|)
w. (6.4)

N N-

This completes the proof of Proposition 3.2. It is worth noting that all differentia-
tions were ultimately linked to dΛ _ 1 ? there being no interaction away from dΛ_±
after the chiral transformation. Hence it was not necessary to exploit factoriza-
tion of Z(s) or to compute a ratio of expansions with and without observables.

To complete a proof of Theorem 1, we have only to multiply back the ratio
of regularized determinants that we split off in (3.2). This yields the additional
factor exp(2|/l_1 |/π).

Appendix: General Masses

When \m(x)\ takes on values other than 1, we can prove a result analogous to
Theorem 1. We suppose m(x) takes on finitely many values; for defmiteness
suppose m(x) is real and constant on cubes of some size. The chiral case
m(x) = μ(X)exp(iy50(x)) can be treated similarly. By rescaling we can assume the
largest m(x)\ is 1. Corresponding to each value of m(x) there is a region in R2,
where m(x) takes that value. Each of these regions now has a different vacuum
energy (but explicitly calculable, as in [7], p. 333), and the bound in Theorem 1
has to be adjusted by the appropriate factors exponential in the volumes. For
simplicity we assume m(x) = 1 at infinity, but the more general case can be handled
as well by taking a limit on volumes, normalizing so as to cancel the vacuum
energy of the phase at infinity. Constants and decay rates in Theorem 1 will of
course not be uniform as the minimum \m(x)\ tends towards zero.

The chiral transformation can be performed as in the constant \m(x)\ case. We
obtain a Fredholm minor as in (3.4), only now the function ζ, as defined by (2.9),
no longer vanishes away from suppt doc. To remedy this, we perform a Neumann
series to bring the mass into the propagator S. Putting δ(x) = y0(l — |m(x)|), we
can define

S' = (S-1 - δ)'1 = S + SδS + SδSδS + -. (A.I)

This is convergent since || S \\ ̂  1 and 11 — |m(x)| ^ (5max < 1. Then with ζ' = ζ + δ
we put A = S'ζ', B = - Sδ, C = A + B + AB = Sζ and by Lemma 2.3,

det3 [1 + SC] = det3 [1 + S'Π det3 [1 - S<5] exp(Tr T), (A.2)

where

T = (AB)2/2 + AB2 + BA2. (A.3)

As in [7], Sect. 5.5, we can analyze the series for log det3 [1 — S(5] + Tr T and break
it into a sum over the values of m(x) of vacuum energies x volumes, with corrections
associated with the length of boundary.

It remains to analyze det3 [1 + S'ζ7] and the corresponding minors with a cluster
expansion. The new perturbation ζf vanishes except near boundary regions. The
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only essential new feature is the interpolation of S'. By analogy with (3.12) we put

/ 00 \

K(s) = (D1/2SD1/2)S(D-1/2U £ (δS)n C(D~1/2)S. (A.4)

Note that in contrast with [7], we decouple after the mass shift. While this is
inconvenient for some purposes it does enable us to get the necessary propagator
estimates. Specifically, the new estimates required are on ||%4(<55)Λχ^||. Using the
Combes-Thomas method [2], we conjugate δS by e\p(ηx) (x = x0 or x^. For
small enough η the resulting operator still has norm less than 1. (Near the diagonal
the conjugation is multiplication by 1 + O(η\ while far from the diagonal the decay
of S takes over.) Hence the series converges and a decay exp (— 0(η)d(Δ, Δ')) can
be extracted.
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