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Abstract. In this paper a topological construction of representations of the A-
series of Hecke algebras, associated with 2-row Young diagrams will be given. This
construction gives the representations in terms of the monodromy representation
obtained from a vector bundle on which there is a natural flat connection. The
fibres of the vector bundle are homology spaces of configuration spaces of points in
C, with a suitable twisted local coefficient system. It is also shown that there is a
close correspondence between this construction and the work of Tsuchiya and
Kanie, who constructed Hecke algebra representations from the monodromy of
n-point functions in a conformal field theory on P!. This work has significance in
relation to the one-variable Jones polynomial, which can be expressed in terms of
characters of the Iwahori-Hecke algebras associated with 2-row Young diagrams;
it gives rise to a topological description of the Jones polynomial, which will be
discussed elsewhere [L2].

Table of Contents

1. Imtroduction . . . . . . . . . . . L L L L L. 142
2. Topological Structure . . . . . . . . . . . . . . . . . . . . ... 143
3. Translation into Algebra . . . . . . . . . . . . . . . . . .. . . . 148
3.1 Construction of Chain Complex . . . . . . . . . . . . . . . . . . . 148
3.2 Form of the Boundaries . . . . . . . . . . . . . . . . . . . . . . 152
3.3 Action of the Braid Group . . . . . . . . . . . . . . . . . .. . . 155
3.4 Action of the Symmetric Group . . . . . . . . . . . . . . . . . . . 15
4. Examples . . O {1
4.1 m=1 and the Alexander Polynom1a1 Ot (0§
42 m=2 and Symmetrisation. . . . O (X
4.3 Symmetric Group Representations at q 1 B A |

* This work was supported by a SERC studentship grant
** The author is a Lindemann Fellow of the English Speaking Union



142 R. J. Lawrence

5. The General Case . . . I V&
5.1 Construction of a Subspace of Cohomology T &
5.2 Braid Group and Symmetric Group Actions . . . . . . . . . . . . . . . 175
5.3 Selection of Subspace Using Limiting Behaviour . . . . . . . . . . . . . 180
5.4 Relation with Work of Tsuchlya andKanie . . . . . . . . . .. . ... 183
6. Further Remarks. . . . . . B 1

1. Introduction

This paper is derived from [L1], which initiated the study of representations of
Hecke algebras using geometric means. We restrict our attention here to only the
most elementary application of the ideas presented. Representations of the
Iwahori-Hecke algebras H,(q) are obtained by producing representations of the
braid group B,, and then showing that they factor through the Hecke algebra.

The braid group, B,, is approached algebraically using the standard generators
and relations; namely o, ...,0,_, with relations:

1.1)

0‘10',-+1O'i=0'i+10',-0'i+1 fOI’ i=1,2,...,n_2
O',-O'j=0'j0'i fOI’ ll—]‘>1.

The Hecke algebra H,(g) of type A2, is given as an algebra by the generators
64, ...,0,-, With relations as above, together with the extra relations:

(6;—1)(0;+9)=0

for all i=1,2,...,n—1. Note that some authors prefer to define H,(g) to have a
relation in which the generators o, all satisfy a quadratic relation with roots —1, g,
in addition to the braid group relations, rather than the above relations where the
roots are 1 and —gq. This does not affect the essentials of the representation theory
of the algebra H,(q); it simply introduces some sign changes.

The geometric approach to B, is as the fundamental group of the configuration
space, )'(g,,, of n unordered points in the complex plane, C. A representation of B,
may thus be obtained from any vector bundle E over the base X, which is equlpped
with a flat connection, as the monodromy representation. In [J ] it is seen how link
polynomials may be expressed in terms of characters of the Hecke algebra H,(q). In
particular, the (one-variable) Jones polynomial can be expressed as a linear
combination of generically irreducible representations of H,(q) associated with
2-row Young diagrams. The group algebra of H,(g) reduces to CS, when g=1, and
as Wenzl demonstrated explicitly in [We], all irreducible representations of S, (as
specified by Young diagrams with n boxes) can be deformed to give represen-
tations of H,(q) as ¢ moves away from 1. When q is not a root of unity, the resultant
representations are irreducible, and when ¢ is a root of unity, they may be
reducible.

The initial motivation for the work was to better understand the significance of
the Jones polynomial for links [FYHLMO]. This led on to an attempt to
understand those representations of H,(g) associated with Young diagrams 4,
with n squares in two rows, the second row consisting of m squares. Such
representations have also arisen in the context of conformal field theory, see [TK],
where they arose as the monodromy representation of B,, of a class of n-point
functions. These n-point functions were found to satisfy a system of differential
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equations, from which it was deduced that the monodromy representation
obtained factored through H,(qg). The approach of this paper is to construct a fibre
bundle over:

X,={wy,...,w,)eC*|wy,...,w, are distinct}

whose fibre is the configuration space of m points in a punctured plane. Then there
exists a two-parameter local coefficient system on the fibre, and hence a two-
parameter family of homology groups of the fibre over any point in X,. There is a
natural flat connection on the vector bundle over X, whose fibre is given by such
homology groups. This gives rise to a two- parameter family of representations of
B,. Dually, one also has a two-parameter family of representations of B, on the
associated cohomology spaces. It is found that when the two parameters o, g satisfy
a=q~2, the resulting representation on cohomology contains as a sub-
representation, the representation of H,(q) associated with the Young diagram 4,,.
It is also found that the sub-representation may be constructed on a subspace
which may be deduced naturally from behaviour when « is varied around ¢~ 2, and
q is fixed.

When the cohomology is considered in terms of holomorphic functions with
certain twistings, the flatness of a section of the vector bundle can be expressed by a
system of first order partial differential equations. The comparison with the
methods of Tsuchiya and Kanie gives rise to the prediction of the existence of an
isomorphism between the two systems.

This paper is a shortened version of [L1], containing all the main results.

2. Topological Structure

In this section all the basic spaces necessary to enable the main theorems to be
stated, will be defined. Recall that in Sect. 1, X, X were defined to be:

X,={(wy,...,w,)|{w;} distinct in C} (ordered points),
X=X/8={{W1, . wa} | {3} distinct in C} (unordered points).

We shall now construct a fibre bundle over X, whose fibre has (complex)
dimension m, where me N is arbitrary, but fixed. For any we X, let:

Y, m={E1..nz)€ X, z;%w; for all ie {1,2,...,m} and je{1,2,...,n}}.
Then Y, ,, defines a subset of X,,. In fact, the projection map:

X m+n
tl

X,
given by taking the first n points only, of a set of m+n points in C, representing a
pointin X, , ,, hasfibre Y,, , over the point we X, There is an obvious action of §,,,
on Y, ,, given by permuting zy, ..., z,; this action will be important later in this
section. Over each we X, a branched covering Y, ,, of Y, ,, or equivalently, alocal
coefficient system y,,, ., Will be defined as a function of a finite number of complex
parameters. Now, a local coefficient system on Y, ,,, modelled on C, is specified by
a map, n,(Y, ,,)—C* However, n,(X,,) is the pure braid group on m strings, and
n4(Y,,») is the generalisation of this to the complex plane with n points removed
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(namely the points wy, ...,w,). An element of n,(Y,, ,,) is given by [y] where:
y . [09 1]_)Yw,m

is a collection of m curves in C\{w;,...,w,}, describing the motions of z,, ..., Z,,.
Using the usual braid notation, we obtain a picture of y like that in Fig. 2.1, as an
element of B, , ,, with the last n strands straight, corresponding to wy, ..., w, being
fixed.

~
/) b

7 | |

Fig. 2.1 z, z, .. z, W, W,y .. W,

To make matters more precise at this stage, we will introduce some notation for
particular elements of n(¥, ,). Consider only w’s for which no two imaginary
parts of w;’s coincide. Since Y, ,, is unchanged when we X, is changed to o(w) for
any o € §,, it may be assumed, without loss of generality, that w,, ..., w, are ordered
so that their imaginary parts are increasing. Choose a base point in Y, ,,, say z°,
such that:

Iz <... <3 <I(wy)<...<3Iw,).

Let 8 ,{,l denote the element of n,(Y,, ,) given by the curve fixing all z;% A, with 1
going round a curve in C which has winding number 1 about g, in a clockwise
direction. Here, p€{z;, ..., Zm Wy, ..., w,} and A=z, where 1< j<m. The curve
followed by 4, is defined by the statement that it does not cross any of the rays from
points in {zy,...,£} ..., Z,, Wy, ...,w,}\{u} in the direction R*. This defines §, ,
uniquely up to homotopy, as in Fig. 2.2.

curve followed w

by A

n

0
Zjy

Fig, 2.2 . !
2

Any such element [y] of =,(Y,,,) defines an element of B, ., as mentioned
above. It corresponds to a set of m curves in [0,1] x (C\{wy, ...,w,}) given by
{@t, 7)) |t€[0,1]} for i=1,2,...,m. If we draw time, ¢, in a vertical direction, we
obtain m oriented curves in R3, connecting m points on the plane t=0 to the
corresponding set of m points on the plane ¢t =1. This picture may be viewed by
projection onto the vertical plane [0,1] xiR, as indicated in Fig. 2.3. The two-
dimensional diagram so obtained gives, as illustrated in Fig. 2.4, the usual braid
picture for f,,. In this picture time moves upwards, giving a natural orientation
to the curves.
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The generalised pure braid group =,(Y, ,) is generated by {B,,|i=z,
je{1,2,...m} and pe{z;;y,...,z, Wy,...,w,}}. These generators satisfy gen-
eralised brald group relations, the details of which we shall not go into here. A one-
dimensional representation of 7,(Y,, ,) is given by specifying the images of these
generators:

nl(Yw,m)_)C* s

ﬂ An = ‘1;,41 ’

where g,, are non-zero complex numbers. There are no relations imposed on g,
as can be seen by noting that:

f[ <,ﬁ (zi—z; )k"” H (z:— Wt)""“")

j>

defines an analytic function of 215200 %m with branch points where z;=z; or z;=w,.
This function multiplies by g3,' as A goes around p along the curve ﬂ e Here {k )
is defined so that:

45, =exp(2mi/k,,).

For any given set of non-zero complex numbers {q;,,} we can therefore define a
local coefficient system ,, ,(q) on ¥, ,, or equivalently, a branched covering ¥, ,,
We have thus shown the followmg result:

Lemma 2.1. Given any q={q,,} with q,,€C\{0} for any A, u of the form A=z,
1SjsSmandpe{z;,q, ... 2 Wi, w,}, there exists a well defined local coeffi cient
system x,, .(q) which tw1sts by q;, around the curve represented by [B;,] € ny(Y,, ).
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Let E,(q) be the vector bundle over X, whose fibre over the point we X, is the

vector space:
H (Yo, m Xw, (@)= E o, Q) -

Since homology is homotopy invariant, there is a natural flat connection on this
vector bundle. The monodromy of this connection gives rise to a representation of
n,(X,)=P, on the homology. If [y]en,(X,), then y defines a curve [0,1]-X,
such that y(O), y(1)e X,, differ from each other by a permutation. The natural
connection on E,(q) then gives a parallel transport along y from the fibre over
7(0) to that over y(1). However y(0), y(1) differ by a permutation, and thus for
suitable q (see below), we have E %), @ =E, ;) (@)

As mentioned earlier in this section, ther€is a natural action of §,, on Y, ,, given
by permuting z,, ..., z,, This carries over to an action on ¥, ,, so long as the local
coefficient system x,,,,,(q) is preserved by the action of S,. In particular, this

requires that q must be such that,
d..z;is independent of i, je{1,2,...,m}, for i<j; } o

4w, is independent of i€ {1,2,...,m}, for j=1,2,...,n

Going back to the action of B,, if [y] € n,(X,) with y(1) = a(w,), y(0)=w,, then ¥, ,,
=Y, The local coefficient system Y,y m(q) ON Y, (4, m iS €quivalent to a local

a(wg), m*

coefficient system x,, . .(o(q)) on Y, ., where o(q) is defined by:
@1y for pe{wy,..,w,};
L@l = {qlu for pef{zy,...zp\4.
Hence if q is such that o(q)=gq, then there is a natural isomorphism between:
m( wo, m? Xwo m(q)) Ey(O) m(q) and H m(Y;'(wo) m> Xo'(wo) m(q)) Ey(l) m(q)
Together with the parallel transport, we obtain a map:

E,0),m @~ E, 1), @ = E, o), (@)

which thus gives rise to an action on E, g, ,.(q). Hence we obtain an action of B, on
the fibre E, o) .(q) so long as:

o(q)=q Yoes,. 2.2)

This requires that g,,,,, is independent of j€ {1,2, ...,n} forallie {1,2, ...,m}. Hence
we have:

Lemma 2.2. The natural connection on E,(q) induces natural actions of B, and S,, on
the fibres of E,(q), whenever q satisfies conditions (2.2) and (2.1), respectively. Hence
there is an action of B, % S,, on the fibres of E,(q), whenever q is of the form:

qz;z, = 2 qz,-wk = q H (2'3)

where i,je{1,2,...,m}, ke {1,2,...,n} and g, a.e C*.
When g satisfies (2.2), the action of B, on the fibres of E,(q) may be expressed
more simply as follows. Let E,(q) be the vector bundle over X, whose fibre over a

point [w]e X, is the vector space E, ,(q). This is well-deﬁned so long as we
identify the vector spaces correspondmg to a(w) and w as outlined above. Then the
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natural connection on E,(q) induces a natural connection on E,(q). The two vector
bundles E,(q), E,(q) have identical fibres, but their base spaces differ, being X, and
X,, respectively. The action of B, on the fibres of E,(q) is now more s1mply
expressed as the monodromy action of © (X ,)=B, on the fibres of E,(q). Since the
fibres of E,(q) and E,(q) are identical, the action of S,, on E,,,(q) naturally identifies
with an action on E,(q), so long as q also satisfies (2 1), that is, for ¢’s of the form
2.3).

We are now in a position to give precise versions of the main theorems. The
local coefficient system g, ,(q) (defined in Lemma 2.1) in which q takes the special

values given by: 5

%G, =4 " em =4 (24)
will be denoted by yx, .(q). Here q refers to all the coefficients gq,,, whereas gq
indicates the special value of q given by (2.4). This special local coefficient system
satisfies both the conditions in Lemma 2.2 (that is (2.1) and (2.2)). Thus, by
Lemma 2.2, natural actions of B, and §,, exist on the fibres of E,(q), and,
equivalently on the fibres of E,,,(q)

Theorem 2.3. The monodromy action of B,=m,(X,) on the S ,-invariant part of the
vector bundle E (q) contains, as a quotient, the representation of B, obtained from
4, of Hyq™"). The remaining component of the monodromy representation has
dimension of order 1/n times that of m, .

The proof of this theorem occupies the next section and Sects. 5.1, 5.2. In
Sect. 5, the local coefficient system is restricted to that of the form (2.4). However,
since it is no more complicated to do so, the results of Sect. 3 will be proved for
arbitrary local coefficient systems y,, ,.(q) satisfying (2.1) and/or (2.2) as appropri-
ate. As it stands, the extent to which m,  can be naturally picked out of the larger
monodromy representation on E,, m(q)s"' is not clear. However the monodromy
representatlon consists almost entirely of 7, and in Sect. 5.3, a construction will
be given which enables the sub-representatlon to be isolated, at least in certain
cases. For any local coefficient system y,, ,(q) for which q satisfies (2.2), there is an
proved in general, but from Theorem 5.13, the proof would be complete if it was
verified that the symmetric part of the derived representation contains nothing
other than n, _, by, for example, a dimension count.
action of B, on E,, ,(q), giving a family of representations of B,, which contains the
special case in which q is given by (2.4). There is an action of S,, only on the two-
dimensional sub-family obtained from those q of the form (2.4). In Sect. 5.3, a
quotient representation of the special braid group representation is constructed
from the family of braid group representations with neighbouring q’s. This
quotient representation will be referred to as the derived representation of the
family. As was mentioned above, there is no action of S, defined on a general
member of the family; however, the derived representation exists at the special
value of q given by (2.4), and at this value of q, an action of §,, exists.

Conjecture 2.4. The symmetric part of the derived representation of the family of
monodromy representations of B, on the vector bundles E,(q), for q satisfying (2.2), at
the value of q given by (2.4), is my,.

This Conjecture is proved in Sect. 4.2 in the special case of m=2. For general m,
it is shown in Sect. 5.3 (see Theorem 5.13) that the derived representation referred
to above contains the representation n,, of H,(¢~!). Conjecture 2.4 has not been



148 R. J. Lawrence

Another point of view on the construction 7, _is given in Sect. 5.4, where it is
shown that the following result holds (see Corollary 5.18).

Theorem 2.5. The monodromy action defined above is equivalent to that obtained
from a system of differential equations of the form:

o c;f

ow; j*i(Wi—Wj)

for a vector valued function f on X,, where c;; are constant matrices.

In Sect. 5.4, a comparison is made with the constructions of Tsuchiya and
Kanie [TK] and Kohno [Ko], which also give rise to Hecke algebra represen-
tations. One of the main themes of their methods is the reduction to the study of a
system of differential equations whose form is that given in Theorem 2.5.

In the next section we confine our attention to the homology construction
involved in Theorem 2.3. The action of B, x S,, on homology is determined by
obtaining the full action on a suitable chain complex. The obvious basis for chains,
in terms of iterated loops, is used, and recurrence relations are obtained from
which matrices for all the actions can, in principle, be computed. The homology
space is also identified with the kernel of a certain map on the space of chains, the
matrix for which can also be determined from the recursion relations. The rest of
the proof of Theorem 2.3 is outlined in Sect. 5, all the main steps being carried
out explicitly for the special case of m=2, in Sect. 4.2.

To prove Theorem 2.3, a concrete basis for a subspace of cohomology is
constructed, in Sect. 5.1, and the actions of B, and S,, on this subspace are
computed in Sect. 5.2. It is found that it is easier to work in the dual system, in
terms of cohomology, rather than using homology. The action of B, on
cohomology is dual to that on homology, and Theorem 2.3 is equivalent on
cohomology to stating that a sub-representation of the monodromy represen-
tation of B, on cohomology, factors through H,(q) (rather than H,(¢~?') as in
Theorem 2.3). It turns out that, in terms of a concrete basis for the sub-
representation, the action of B, is given in a particularly simple form, and it is then
easy to deduce Theorem 2.3.

3. Translation into Algebra
3.1. Construction of Chain Complex

In this sub-section we will construct a concrete chain complex on Y, , with local
coefficient system y,, ,(q). On {z,,...,z,, Wy, ..., w,} define an ordering so that:

zi<z; ff i<j; we<w, iff k<l; z;<w,

fori,je{1,2,...,m},k,1e{1,2,...,n}. Choose a base-point z°, as in Sect. 2, at which
3(4) <3(n) whenever A, pe{zy, ..., 2, Wy,...,w,} and A<p.

For A< p,leta,, denote the motionin Y, , in which all v+ 4, u are fixed and 4, u
moveso that they transpose while following curves which are such that they do not
Wi, .. W} \{4, u}. We suppose that 4, u swap round by going around each other in
a clockwise direction. We thus have the diagrams found in Fig. 3.1 for a,,, as a
motion in the complex plane, and in terms of the braid picture.
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In Sect. 2, the curves f,, were similarly defined by motions in wh1ch A went
once around p in a clockwise direction. It is now obvious that 8,,=o3,.

Definition. For any we X,, and re {1,2,...,m}, let:

Fe={a=(0s, s ) [0 E{Zis 15 s Zpy Wy, s W} 5
Ta={acFy|o;e{wy,...,w,} and o; are all distinct};
={aeTy|a;>0,>...>a,}.
This definition gives rise to sets %, ., U\, of respective orders:
n+m—1)...(n+m—r),
nn—1)...n—r+1),
nn—1)...(n—r+1)/r!.

For each g € ! we will now proceed to define an embedding of the r-dimensional
torus T" in Y, . This torus will have z,=z? whenever s>r. The map:

Yo T =Yy ms (g, t) Yty .00 t,)

is then defined by giving the i component of y,(ty, ...,t,) starting at i=r, and
working back to i= 1. This definition will be such that, for all i, this i component
is independent of ¢, ...,t;_ ;. So we start by setting:

(yqz(tla esey tr))r = ﬁz,a,(tr) .

For a particular value of ¢,, we have defined the value of the position of z,. The loop
defined by z; as t; increases from 0 to 1, with ¢, , , ..., ¢, fixed is defined so as to be a
deformation of B,,. Suppose that z;,,,...,z, have already been defined as
functions of ti+1> -+t Then we deform B, ,, contmuously asz;,q,...,z, move from
22 4,...,20 dueto the variation of (¢, , ..., t,) from (0, ..., 0). The deformed curve is
the curve we use to define the motion of z;. Thus for ¢4, ..., ¢, small, the values of
(4(ty, .--»1,)); are given by B, ,.(t), for 1<i<r. When t,,...,t, are increased, we
define 7, so as to give a continuous embedding in ¥, ,.

We can now think of y, as a cycle on Y, ,, whenever a € %,. When w moves
along a curve in X, the torus y, can be continuously deformed in a unique way (up
to homotopy). This deformation corresponds at the level of homology to the
natural connection discussed in Sect. 2. For each o € &7, it is now possible to lift the
torus y,, which is embedded in Y, ,, to Y, ... When this is done, one obtains an
embedding of [0, 1]" in Y, . with base-pomt z° Thus for any such g, y, defines a
chain on Y, ,,; elements of & will often be loosely identified with chains.

The homology H (Y, m Xw,m(qQ)) may be computed in terms of the homology
groups evaluated with a trivial local coefficient system, y,, by using the following
lemma.
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Lemma 3.1. The homology H,(Y . Xw.m(@) can be computed from a finite
dimensional chain complex 9, given by:

9r= Hr(Yw,m’ XO)
as the kernel of a suitably defined chain map 6:9,,— P, .

Proof. Throughout this proof, w € X,, will be fixed, and we will abbreviate Y, ,, to Y

and xy, m() to ¥
It is also assumed that {3(w;)} are ordered as in Sect. 2. Consider the space:

Y, ={z+1sZ) € X, | i+ w; for r<i<mand 1<j<n}.

Then Y,=Y and for all r=1,2,...,m—1, there is a fibration of ¥,_, over Y, the
fibres being one-dimensional. The fibre over (z,. ¢, ...,Z,) € Y, is the punctured
plane C\{z, 1, ..., Zp Wy,...,w,}. A filtration of this fibre is defined by:

K§™V=0;
K{™V= | R¥+a);

K(zr_ 1)=C\{Zr+ 19 cees Zm, Wl, ceey W,,} 9

where K¢~ is a union of (n+m—r) cuts emanating from z,. y, ..., Zp, Wy, ..., W,
and R* denotes the positive real numbers. (For r=m, the above defines a
filtration of Y,,_,.) This filtration defines a cell decomposition of the fibre, in which
the d-dimensional cells are the components of K§ ™ — K§~ ), so long as no two z,’s
(i<r) have identical imaginary parts. Whenever two or more z;’s have identical
imaginary parts, we obtain non-distinct cuts, but it is still possible to define a
filtration of the fibre by suitably deforming these cuts, in such a way that they no
longer intersect.
Since there is a tower:

Y=Y-Y>..»Y,_,-0.

we can define a filtration, §= KoCK,C...CKy, =Y of ¥, in which K, is of
dimension r, and is obtained as the union of spaces of the form

KOx..xKmr-D (3.1)

over all ry,...,7,,—;€{0,1,2} with sum r. Here the product is identified in the
natural way, with a subspace of Y, so that the s'™ term gives the possible values of
z, in this subspace, once the values of z,, |, ..., z,, are fixed. Now K" —K® , isa
disjoint union of Euclidean spaces for i=1,2 and any r, and thus so also is
K,—K,_,.Hence {K,} may be viewed as providing a cellular decomposition of Y,
in which the r-dimensional cells are given by the components of K,— K, _,. This
is a slightly unconventional use of the term “cellular decomposition,” since Y is a
non-compact space; however, K,—K,_, is still a disjoint union of Euclidean
spaces.

Since K@ =0 for all i, so K, =0 whenever r <m. Also, K,, consists of a disjoint
union of products of one-dimensional rays. The components of K,, are indexed by
(ay, ..., &), Where «; indexes the components of K§~ 1), That is the components of
K, areindexed by a € & It is also seen that K, , , is a disjoint union of products of
the form (3.1), with all but one r; being 1, the remaining one being 2. Hence K, . ,
naturally splits into m parts, the k™ part having components indexed by
(0tgy -+ gy .- O), Where g€ S, This part is given by r;=1+Jy.
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The natural fibration of Y,_, over Y, has fibres homotopic to a wedge of
n+m—r circles. Hence if a tower:

Z=Zy>Z>..~»2Z,_ -0,

is defined so that the fibres in the fibration of Z, _, over Z, are wedges of n+m—r
circles, for all r, then the homology of Y can be computed from that of Z. It is also
easily seen that K, ,,— K, .- consists of a union of products of K¢ — K¢’ and
K spaces, with s of the former type in each product. (Once again the product
refers to the subspace of Y with the z’s as specified by the factors in each term.)
Hence K, ,,—K,,-; is homotopic to a wedge of s-torii. In particular, the
components of K., —K,,,—, are in 1-1 correspondence with those s-torii
embedded in Z, obtained from one of the components of a slice of Z by fixing one
or more of the coordinates. The cohomology of Y can be computed from the chain
complex:
9r=I{;(I<r_I<r—1)’

where H* denotes cohomology with compact support. In the case of a compact
manifold this would follow from the standard theorem giving cohomology in
terms of a cell decomposition. Although Y is not compact, its cohomology can still
be computed in this way, with the compactly supported cohomology H¥ replacing
ordinary cohomology, since the interesting structure of Y comes from those points
z for which z, is near to z;, 4, ..., z,, OT Wy, ..., W, for each i. As noted above, 2"=0
whenever r<m, while 2™ ={%™> and 9™*! splits naturally as a product of m
spaces. In the dual picture, it is seen that the required homology is given by the
homology of the chain complex 92, ~%>™". Hence the m-dimensional homology
is given by:

ker(0: D= D - )/IM(0: Dy 1~ D) ker(6: Im—>P™*1).

Since 2,,_ , naturally splits into a product of m vector spaces, this homology space
is the intersection of the kernels of m maps on @™~ {F>.

Finally, when the local coefficient system is trivial, all the boundary maps 0
become trivial, and thus*9, may be identified with the space H/(Y,, ., Xo) of the
theorem. [

In Sect. 3.2, the precise form of ¢ will be investigated. In particular, the
components of § corresponding to the decomposition of 2™* ! noted above, will be
evaluated. The above analysis in terms of cellular decompositions has a more
geometrical formulation in which each cell in K,,_, is represented by an
embedding of a torus in ¥, with base-point z°. Thus a cell in K,,,_ is given by a
choice of ;s satisfying (3.2) for i € I, where I is some subset of {1, 2, ..., m} of order s.
The subset I labels those i for which ;=1 in (3.1), the rest of the r;’s being 2. Such a
choice of ;s defines an embedding of T*in Y, as given by y,. When this is lifted to Y,
it defines an embedding of [0, 17°, and the different components of J, mentioned
above, are obtained from the s pairs of opposite faces in the boundary of such a
hypercube. The tower given by the spaces Y; will play a central role in all the
calculation of the rest of this section.

Let %, denote the vector space generated by formal C-combinations of y, for
aeSLr. :

Then %, can be identified with a subspace of the space of r-chains on Y.

As noted above 2,=%,, and so H,(Y, . X+ =(q) may be identified with a
subspace of €,,.

Before determining the actions of B, and S, it is necessary to first set up some
notation. Whenever o € &, and s<r, we denote by o’, that element of &2 given by
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truncating g, i.e. o =(ay, ..., o). f a € & and s >r, then we shall denote the element
(ay,...,0)eF s by a- ..y -...-a,. For any ae ¥, the r-torus y, has z,,4,...,2,
fixed, and a section on which z, , , is constant looks like y,, or a deformed version of
it. In future sections we shall often write y, - a, + ; for y,.,,_, ,, where it is understood
to mean that sections in which z, . , is constant are deformed versions of y, and also
that z, ., varies around a loop B, , ..,

Under the motions of z,,,,...,2,, W;,...,w, specified by «;,, f,,(z,+1 =
<u=w,), the elements of &, will transform to other chains, which are thus
expressible as linear combinations of elements of . We denote by AY), bY) these
transformations; they will be square matrices of order |Z2]. The action of S, on the
chains is specified in terms of the action of the generator which interchanges z;and
z;+. This action is denoted by Jj¥), on the chains y, for € &, with r2i+1.

To obtain the homology, it is necessary to compute the boundary map é: 2,
—9,,,. This map is specified by {n; 0 :i=1,2, ..., m}, where m; is the projection of
9,,_, onto that part in which z, is fixed. Then =; o § gives rise to a matrix with ||
rows; these matrices are denoted by D{™. The corresponding matrices, for
r=i,i+1,...,m, representing the boundary map on €,, with z, , ,, ..., z,, fixed will
be denoted by D{”.

The above definition of the 4’s means that the action of B, on the chain space
%, is given by: e

WiWi+1°
Thus the aim of this section is to produce formulae from which A%, . ., b5, .,
jm . and D{™ can be computed. We note that at zeroth order,

b(o) = qw s A(O) =1

for any A, u. Note also that A{) is only well defined if the chains at w, and at the
vector obtained from w by transposmg Aand p, can be identified. That is, only if the
local twists q are invariant under a transposition of A and u. In the future,
{v.|xe &>} will often be referred to simply as &3

3.2. Form of the Boundaries

The homology is the kernel of the boundary map, ¢ on %,. When ae%y,
corresponding to a basis element of €,,, the i"™ component of d(y,) is given by:

5i('y¢1’aitxi+1 Ceee 'otm)=5,-('y¢e-1 'ai)'ai.'.l NIRRT A

Here we know that 5(y¢¢ a;) is the boundary of the torus T* in which a section with
Zy,...,2Z;- 4 fixed is given by the loop ﬁm &for o;. Its boundary is thus the difference of
two (t—-l) -torii corresponding to ¢'~! and its deformation when z; has gone
around B,,. Thus we obtain:
0vs)= (bﬁa,” D)pge-1Gigqeee Oy

where this denotes an (i— 1)-cycle in which z; is constant at z?. Hence a suitable
matrix for J is given by:

D= Y —1]...pe V—1b¢ D —1].. |b¢ D —1). (3.3)

This is a partitioned matrix acting on (%), and mapping it to (Z:~1>. The
corresponding matrices D{” for i<r<m acting on (&) are given by:

" Dgr—l). .
D= " pr-1 for i<r<m. 34
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In all cases, the matrices are partitioned according to the values of o, € {z, , 1, ..., Zp,
Wl, ooy Wn .

We hztve now shown how the action of the boundary map on the space of
chains %, can be computed; it is given by D{™. In the rest of this work, D{™ will be
referred to simply as D;. It is given by a diagonal matrix with blocks D{’ down the’
diagonal, where the separation into blocks is specified by the values of a; 4, ..., %,
Thus we obtain the lemma:

m
Lemma 3.2. The space () ker(D;)C%,,, where D, are the matrices D{™ specified by
AR .

(3.3)and (3.4),is in 1-1 'correspondence with the homology of Y, ,, with the twisted
local coefficient system y (@)

The reason for the non-trivial boundary map is that the local coefficient system
is non-trivial. Thus when y, is lifted to Yw m it gives rise to an embedded m-cube
[0,1]"—Y w.m> and there are components in the boundary arising from each pair of
opposite faces; that is from each i {1,2,...,m}. See Fig. 3.2.

<D

Faces z;= constant

' associated with the i component
Fig. 3.2 of the boundary

From the definitions of A, b matrices, it is possible to derive the relations
given in the lemma below. So as to avoid unnecessary indices, A§) and b{) have
been abbreviated to 4,, and b,,, where it is always understood that they are
transformations on (%> for a common value of r.

Lemma 3.3. The following relations hold between A® and b® matrices, for all
OSrsmandi, j, k, A€{Z, s 1, .cs Zppy Wi, ooy Wy}
(1) Ajkbij=bikAjk»'

(i) bubtkAJk = ;kbijbik»'

(i) A;;ApA;j=ApAiiAjp;

(lV) A;j"‘qubul

\)) Ajk commutes with b;; whenever A<j or A>k;
(vi) by 'Aub;; commutes with b;;, whenever j<A<k;
(vii) by commutes with b;, whenever A<j or A>k;
(viii) b,, b;b;; commutes with b;, whenever j<i<k;
(ix) bjbijby="bibybu=bybub;;
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Proof. (iv) The matrix A4;; represents the action on (&, given by a;;€ 74(Y,, ), and
similarly b;; corresponds to the action of f;;. However,

and so, at first sight, it would seem that b;; should be given by 47%. However it must
be recalled that the natural connection of Sect. 2 gives rise to a map from chains at
{22 1,...,23 Wy, ..., w,} =a? to those where i and j have been transposed, induced
from «;;. There is a correspondence between the chain spaces obtained by using the
natural identification which exists between the spaces Y, ,, and Y, . for any
o €S,. The matrix A4;; is defined to be the composition of the map induced by the
connection with this identification map. The square of the map induced by the
connection here is precisely b;; However the composition of the identification
maps:
{chains at a?} <> {chains at (ij)(a?)}
and
{chains at (ij)(a’)} <> {chains at al)}

which occur in the two applications of 4;;, leaves a residual factor of g;;, coming
from the fact that overall, i and j have gone round each other once in a clockwise
direction. Here (ij)€ S,, ., acts on a? in the usual way (see Fig. 3.3), and thus (iv) is
obtained. '

multiplication \ § space of chains(é’ﬂ)g
by g; /

lij)al

T "
Fig. 3.3 al

It is clear that (vii), (viii), and (ix) follow directly from (i), (ii), (v), and (vi). We are

now left with (i), (ii), (iii), (v), (vi). However 4;; and b,; are defined in terms of the

actions of the braid group, as is illustrated in Figs. 3.4 and 3.5.

—
£
B)

Zrat !

Fig. 3.4 20 i i v

Fig- 3-5 Zra !

Thus we can verify all the relations by checking that the corresponding
equations hold on the braid group. (The extra factors of g;; which may appear, due
to the reason outlined above in the proof of (iv), are identical on either side for all of
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the relations considered, so that we need only consider the maps induced by the
connection.) We obtain Figs. 3.6-3.9 for (i), (ii), (iii), and (iv). Finally (vi) states that
for j<A<k, b;; commutes with b;;'4,b,. This latter transformation is given by
Fig. 3.10, and the commutativity of this with b;, is given by Fig. 3.11. This
equivalence follows by sliding the twist of i around A down the diagram until it
comes out at the base. Since the relations can be checked at the braid group level,
they can all be derived algebraically from the braid group relations. However it 1s
nicer to derive them geometrically! []

(i) i j k i j k
Ak b
b} \> A7
ij ) ik
Fig. 3.6 i J k i j k

biy T >/. Ak >/

S

i j k
Fig. 3.7
i) J ) ’ ; )
Aij A / /
’ / S
A ) A %
Fig. 3.8 i j k i j k

3.3. Action of the Braid Group

We are now in a position to derive recursion formulae for AY) and b{), in terms of
the matrices {47, "} and {b{,V}. Such relations connect “the transformation
properties of embedded r-torii thh Zyy1s .- 2y and wy, ..., w, fixed with those of
embedded (r — 1)-torii with z,, ..., z,,, w4, ..., w, fixed. One can think of the space &,
as equivalent to &, where one replaces {z 1> - Zm) BY {21, ..., 2.}, and {wy, ... ,,}
bY {Z, 415 -+ s Zms W15 ..., Wy} Passing from & to Frlis thus given by thmkmg of
one of the z’s (namely z,) as part of the set of parameters on the base (the w’s) rather
than as a parameter on the fibre.
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Theorem 3.4. The actions of AY) and b, on {¥) are given in block form by the
following matrices, in which the blocks are separated by thevalue of 4, €{z, 115 ..., Zps

Wiseeos W,,}
column
A
) I
A
. A
0
A=

A

\

column
Jj
1)

(bl— 1)b; 1Ab). coe

b; 1A4b,

A1—b) ...

column
u
!

b,A

uw

A(1—b,)

A

ey
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and:
column column column
i j I
1 1 1)
b_‘
b
b ... bb(1—b;Y)(1—b) ... b,b(1—b,)
b= " by,

b1—by) ... b(1—b)(1—b) ... b(1—b,+b;b,)
b,
b J
where all entries vanish except those given above; b a=ba D, b=b Y, A=A Y.

oM

Fig.3.12

Proof. To determine the action of AJ) and b{) on an r-torus y,, for e &, we
consider separately the four cases of the dlfferent relative positions of «, with
respect to A and p. In each case we evaluate the actions of A and b{) on the r-torus
7B.,, where =o' "€ ;7 1, in terms of the action of the brald group on (r— 1)—
torii.

Case (i): Either a,> A, u or 0, <A, p.

In this case, under transposition of A and , the loop B, ,, is unchanged, and
thus y, transforms to y,, that is:

(’)((x) A(r 1)(!; ‘.
Similarly one obtains b{)(e)=b{, (a, -, - o).
Case (ii): a,=A.

In this case the transformation given by 03 B, Will deform the curve , ; asin
Fig. 3.12. To obtain the deformed curve in terms of the basis loops, we cut up the
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image loop under f,, into three parts; see Fig.3.13. This gives rise to an image of
the r-torus y, which is:
b VB ot b b VB A b B b b
under b{); and A§, Vg - u under Af). In the notation of the theorem,
Af()=AB-n }
b{)@)=(1—b, 'b;b,)bp- p+b,bp- A

bR.u

- -1 - -
-ba by by bR

by'bR.A

Fig. 3.13 2

However, by Lemma 4.3(ix), b,b,b=b,bb,, and so (1—b, 'b;b,)b=b(1—b,).
This gives the o, =1 columns of AY), b}) as required in the theorem.

Cases (iii), (iv): a,=p, A<a,<p.

These cases proceed in a similar way to (i) and (ii) above. The deformed versions
of theloop B, ,,, under the motions a,,, B;, are shown in Figs. 3.14 and 3.15 in these
two cases. Using Lemma 4.3, the expression so obtained may be reduced to those
given in the theorem.

Brn

BM(

oA — oA

0 0
Z,

r
z

This completes the four cases required to prove the theorem. []

z

Fig. 3.14
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Fig. 3.15 20

Theorem 3.4 can be used to recursively compute the matrices AY), b%), for all
)__ ,—1

z,+, SAS p=w, starting from the zeroth order matrices A{)=1 and b§))=qz,".
Using Theorem 3.4, it is easily seen that:

DOAD = ASS 1>D£'>}
DYBY, =b§ VDY |’
where D is given by (3.3). From (3.4), it may be observed that:

D£M)A("Z)=A(‘""‘_1)D$M)}, (3.5)

Db =5 D

where AJ; " and b~ V) denote the matrices obtained when a.,,,, B, are applied to
the space of chains (#™), where we replace {zy,...,z,} bY {z1, .. % o0y Zm}-
These latter matrices thus act on a space spanned by a=(a;,...,&, ..., ®,) With
€ {Zi4 15+ ves Zmy W15 ---» W, }. From (3.5) it can be seen that the matrices Ay, by
given by Theorem 3.4 preserve ker(D™).

Since by Lemma 3.2, the homology is given by the intersection of ker(D,) over
r=1,2,...,m, thus one may obtain the actions of AJ?, b§? on homology by
restricting to the subspace ker(D,) at the r'® stage of calculation. Under such a
procedure, starting with 4@, b matrices, we use Theorem 3.4 to obtain the AV,
b'™) matrices and then restrict to ker(D,). These reduced matrices are then used at
the next stage, being substituted into Theorem 3.4 again. At the end of the
procedure, the matrices obtained give only the actions of A™ and b™ matrices on
homology (and not on all chains). In Sect. 4 these procedures will be illustrated in
some simple cases.

3.4. Action of the Symmetric Group

As seen in Sect. 2, the symmetric group S,,, so long as q is suitably chosen, has a
natural action on the homology space H (Y, ,» Zw.=(@). This action is specified by
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the action of the generators (ii+ 1) of S,,. Let j7, , denote the action on (%) of the
transposition z;<>z; . ;, where i+ 1 <r <m. By this action we mean the following:
suppose that o€ #; this defines an r-torus in Y, ,, which lifts to an embedding of
an r-dimensional cube in Y, ,. Under the transposition z;>z;,,, it maps to
another r-dimensional cube in Y,, . However the transformed cube has base-point
29, ...,22 1, 2% 1, 20, ..., z%) and this base-point does not have its imaginary parts
ordered in the natural way. To correspond this with a standard r-chain, it is
necessary to move the base-point to (2%, ..., z0_ 1, 29,20, 1, ..., z0). When this is done,
the (i+1)-torus given by a“* transforms to another (i+1)-torus, given by

Ji1Pa* D, The whole m-torus y, transforms according to j{™ ; where:

ir—1)
oy _ [Jii+1,
]ii+1—< . -(,—1)>

Jii+1
forr=i+2,...,m; where the blocks are separated by the value of «,. The important
part of the matrix j{" , is given by ji1 . The action on (¥:*!> may be given by a
partitioned matrix in terms of actions on (i — 1)-torii of the braid group, in a similar
way to the recursion relations in Theorem 3.4. Using similar techniques to those
used to prove Theorem 3.4, the following theorem may be obtained.

Theorem 3.5. The matrix for ji1 1 as a partitioned matrix with blocks defined by the
values of a; and ;. is given by:

-6’ =b, (1—=byb' " (B, —1)+b;by by, —1)+(A—bb (b, —1) (b,—1)b' "’

=11 b1 —by)+b, ®1—1)(1—b)) 0
0 0 0 bt
0 0 1 0

where A', b, b,, b, denote AS; D b7V bETY and b1, respectively. Here the

2ZiZi+ 1% V' ZiZi+1°

entries correspond to z; A, AL, ud and Au, where A> p.

4. Examples

In this section we will discuss the two special cases m=1 and m=2 in detail. These
correspond to homology in one and two dimensions, respectively. The case m=1
gives rise to the simplest non-trivial braid group representation, namely the Burau
representation. The case m =2 is the first case in which the action of the symmetric
group is present. At the end of the section, the case in which the local coefficient
system, X, (@) is trivial, is also discussed. The examples of this section are
generalised in the next section, where we deal in detail with the case of general m.
All the main points which arise in connection with the general case are illustrated
by the examples discussed here.

4.1. m=1 and the Alexander Polynomial

When m=1, we have precisely one z,, so that %2 is given by {(A)| A=wy, ..., w,}.
The chains thus form an n-dimensional space on which the braid group acts. We
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can now apply Theorem 3.4 with r=1, starting with AY)=b{)=1 and b, =q~*

for all A, ue{w;,...,w,}. This gives rise to the followmg matrix for Aﬁ,‘}w‘“'

1.

4.1)

.,1

where the non-trivial 2 x 2 block occurs in the i and i + 1 rows and columns. By
(3.3), the matrix for D{ is the 1 x n matrix (4" *—1,...,g~* —1). Lemma 3.2 now
gives the homology H,(Y,, 1, Xw,1(q)) as the subset of €, given by kerD;. Thus the
homology space can be identified with the subset:

{(x .. xp) | X + ... +x,=0} 4.2)

of €, =(¥}>=C" This subset is clearly preserved by the matrix A{),. . above,
and thus the action of the A‘Y-matrices on homology gives rise to a representation
of B, on an (n— 1)-dimensional space. The eigenvalues of the action of A})), . on
%, are —q~ ! and 1 (with multiplicity n—2) and hence the action of B, on
homology factors through the Hecke algebra H,(q~?). Its action is known as the
Burau representation, m,,, and is important in knot theory in the context of the

Alexander polynomial.

Suppose that Lis a link. By Alexander’s Theorem [Al2], L can be expressed as
the closure § of some braid y € B,, for suitably large n. In this context, the closure of
a braid refers to the link obtained by joining the two sets of n points to each other,
as illustrated in Fig.4.1.

Fig. 4.1

The Alexander polynomial, 4;, of the link L, can now be defined ‘as a
polynomial in the one variable g by:
det(1—m,,(7))
: 43
1+q '+...+4' " (4.3)

AL=
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(see for example [J]). The original definition of 4;, however, was given in terms of
covering spaces (see [Al1], [R]). Consider the complement of the link S*\ L. There
is a natural map:

n(SP\L)>Z
[I"]—(the linking number of I" and L)

Fig. 4.2

where I' is any closed curve in S3, not intersecting the link L; and hence there is
defined an infinite cyclic covering S*\L of $3\L. The natural action, T, on S3\L
given by a translation in which each branch of the cover is translated into the next,
induces an action on the first homology, H,(S*\L). This homology is finite
dimensional, and the characteristic polynomial of the induced action, T, is the
Alexander polynomial. This definition of 4; makes it obvious that 4, is invariant
under continuous deformations of L, through non-self-intersecting curves.

The braid approach to 4,, as given by (4.3), can be considered as corresponding
to an embedding of L in S x §2, as opposed to an embedding in S3. The latter
approach (requiring the use of Markov’s Theorem [M]) is that used in the above
topological interpretation of 4;. For, a braid ye B, is represented by a map,
y:8*—>X,, where y(t)e X, is given by n points {w,(?), ..., w,(t)}, say. The subset of
S1x 82 specified by {(t,w(t))|teS', 1<i<n}, now gives the link L=7, as
embedded in S* x S2. Suppose next that I' is a closed curve in the complement of L,
with base-point (0,z°) €S2 Using the correspondence between Cu{co} and
the Riemann sphere S2, I’ may be defined by a map:

I':[0,1]—(S* x SH\L

with I'(0)=I'(1)=(0,z°. Such a curve I' is homotopic, in (S!xS?)\L, to a
combination of the curves I}(0<i<n) defined up to homotopy by:

(i) foreachi=1,2,...,n, I}(t)S {0} x S* for all ¢, with the winding number of I,
considered as embedded in $? >~ Cu{oo}, around w{0) being J;;;

() Io(e)=(t,z°).

Thus 7,((S* x $?)\L) is generated by the (n+ 1) elements associated with I,
I,,...,I,. Under the surgery S'x S2w»S3, the situation transforms so that I
disappears as a non-trivial generator, and n,(S*\L) is generated by n elements, of
similar form to I3, ..., I;. Hence, it is not surprising to find that the characteristic
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polynomial det(T—q~') is related to the local coefficient system on
C\{w,(0), ..., w,(0)} with twistings of g~ ' around each w;. This local coefficient
system can now be identified with x,, ,(g), as defined by Lemma 2.1 (see Fig. 4.2.).

The action of B, on H (Y, 1, X, 1(9) is m4,, as noted above, and the precise
relation between the S* x S% and S° pictures is given by:

det(1—m4,(7)
14q ' +...+q'"
S x §2 picture <> S3 picture
H,(Y,, 1> Xw,1(q) involved « H(S*\L) involved

twist x,,(q) < parameter ¢~ .

=det(T,—q %)

The interplay between S* x §2 and S* also plays a major role in the dicussion of
both the one-variable and generalised Jones polynomials, in Witten’s theory (see
[Wi] and [A]). However, this lies beyond the scope of this paper.

4.2. The Case m=2 and Symmetrization

When m=2, the space of chains %, has a basis given by {y,|xe€ %2} where:
FE={(001,05) |0ty €{zp, W15 ..ey W}, 03 € (W1, .., Wi} } -

We shall use the following local coefficient system y,, ,(q) specified by the three
parameters, ¢, g5, o:

quWj=qi’ qzlzz':a

forie{1,2},je{1,2,...,n}. Itis necessary that q,,,, is independent of j, for there to
be an action of the braid group B, on ¥,. For arbitrary non-zero values of the
parameters, the definitions of Sect. 2 give rise to a representation of B,. This is
computed by using Theorem 3.4 and Lemma 3.2. An action of S,, is only present if
q1=¢,, but we shall avoid making this specialisation until later, in order to
illustrate some points that will become relevant in Sect. 5.
Starting from the following matrices for i=1,2 and w; <4, A<w,:
A =1, B9=1, BB=gi', K=ol

WaWa +1

Theorem 3.4 may be used to obtain the matrices below for 4(), . and b%), .

column column column
A W Wisy
1
1
1) - 0 qu
WiWa+1 1 1 _ql— 1
1
‘ " 1)
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column column column
2, W“,[l</‘[ w,
a'e;t . —a;'(l—qr")? .. grlar'(l—gr?h)
d; !

b= |5 =) gz (=) (=g ) gr A —gr el
q2

-1

qz

By Lemma 3.2, the homology H (Y, 5, x.2(q)) can be constructed as the subspace
ker(D,)nker(D,) of the space (%2> of chains. The action of B, on this subspace can
be obtained by considering the matrix for A), . obtained from Theorem 3.4
using matrices AV, bV restricted to ker(D(llﬁ. By (3.3), D{ is given by the
1 x (n+1) matrix:

(“_1"1941_1—1,---a¢1f1—1), (44)

where the first element corresponds to z,. The actions of A(), ., b{l), on the
subspace ker(D{") can now be specified by n x n matrices defining the induced
action on the space, {(0,x,...,x,)} S{¥, > under the projection:

T2 (Xg X150 X)) (0, X1, ..y X,) -

This projection defines an isomorphism on ker(D'"). The matrices obtained for
AQ),.. and b, are:

WAWA +1
column column column
wy w, Wity
1
1
-1
AD 0 g
WAWA +1 1 1_q1—1
1.
1
column
Wa
!
-1
q2
1 -1,—-1/,—1 o1, -1 —-1(,-1
b, =1...q7 0" g7 —1)...q5 'q7 'a” ... gz g7 P 1) .|

-1

q,
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All the non-zero elements in b{!),  occur in either the main diagonal or the A™ row.

These matrices may now be substituted into Theorem 3.4, to obtain the matrix
for A2, . The result obtained is shown in Fig. 4.3 below, in which h denotes
—q7 'q5 'a~'. We can now restrict the action to the subspace ker(D,) in order to
obtain the action on homology. The matrix elements given are the only non-zero
elements except for entries of 1 on the main diagonal, corresponding to basis
elements (w w,)eF2, where A, pe{1,2,....n}\{i,i+ 1} Here ], k denote elements
of {1 f {i+2,...,n}, respectlvely The projection n? naturally glves a
prOJectlon (5" 2%,and, when this causes no confusion, the same notation, nf, will be
used to refer to both.

From (3.3) the matrix for D2 is specified by: D@ = (b}, —1|...|b3),, — 1), while
its A'™® row is given by:

3 O~ D, W= (0= D)
+ %, @5 =) 00w +ai a5 e = D ww)

+ ,-;a (g2 '™ gy ' = 1) (wywy). 4.5)

The subspace ker(D{) of {(w,w,) |1 <4, p<n) has codimension n, and is given by
n relations, one corresponding to each of the rows of D{ given above. The
projection:

n3 Awaw) [ 1S4, pSny—>d(ww,) 1S4, p<n, A p)

given by mapping (w,w,) to 0, will be an isomorphism on the restriction ker(D$)
whenever h=+0. In this case, we can obtain an n(n—1) X n(n— 1) matrix for the
action of AS.,{’WH ,» from the induced action on {(w,w,) |1 £ A, pu<n, A% p> under the
above projection. The matrix obtained for the action of the generator o; of the
braid group B, is that given in Fig. 4.4 below, where we have omitted diagonal
entries corresponding to (w,w,) with A, ue{1,2,...,n}\{i,i+1}, A<, which are
all 1’s.

The eigenvalues of this matrix are 1, —q; !, —q5 !, +q7'q; 'a~ 2. We can
only proceed further by specialising the values of q,, q,, «. There is an S, action on
the homology (and also on the space (#2) of chains) so long as q, =g, =g, say and
in this case, the matrix for j, , as obtained from Sect. 3.4 (see Theorem 3.5) is given
by the matrix of Fig. 4.5, as an action on the chain space.

The natural orthogonal projection:

(L= Waw ) 1S4, p<n, A% p1)

is an isomorphism on ker(D,)nker(D,) for a#g~2 and so there is an n(n—1)
x n(n—1) matrix giving the action of j,, on homology, namely (w,w,)—a(w,w,)
and (w wﬂ)H(wlw,‘) whenever A>pu. This matrix has eigenvalues +a‘/2 with
corresponding eigenvectors a'/*(ud)+(Au) for A>pu. Let us denote by f;, the
element of homology given by a'/*(uA)+(4y), for each 4> p. Then the symmetric
part of homology, under the action of S, given by j, ,, is spanned by { f;,|4> u}.
From the matrix in Fig. 4.4, for the action of o; on homology, we obtain:
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Theorem 4.1. The action of B, on the symmetric part of the homology H (Y, 5,
Xw, 2(Q)) is given by the matnx of Fig. 4.6 for the action of o;. This holds for all values
of o and q with a4 q~2. Here i,j, k are arbitrary with 1<]<t<k<n

Sirai L firny Jui Jrir1
Jirus q a2 g (AT =1am? Mg =1
fu 0 ‘l—1
fi+1j 1 1—4_1
S 0 q?
Fig. 4.6 Jui+1 1 1—q7!

On the other hand, for any «, the symmetric part of the space of chains &2 is
found to be spanned by:

£ =0 (pd) +(Ap) +a'*(q ™" — 1) (z,) } 46)
fi=(q" ' +(q" " — Do) @A) +A +a) AN '

The subspace <f,,,f;) of the span of chains intersects ker(D;)nker(D,) in a space
which is isomorphic to the symmetric part of the homology. However, the map:

n3omy  (FE>>HWw) 1S4, usn,A+p)

is an isomorphism on ker(D,)nker(D,) when ¢ ?#a. In this case,
(nzonl) Y(w,w,) defines the element of (%2> given by some complicated
expression, namely:

)+ B A+ 4 )+ e o

X(1=q" A +@ % ~1+q7 =g ) (zp) for A>p| @47
1—q7! oy 1—q7*

(}»ﬂ)"‘m((u)'l'q la l(ﬂﬂ)+(a-1_1)(q—za—1 )
X(A—q" ) (2 +@ '™ =1 (zp) for A<p

In fact it can be seen that the inverse image of a'/%(u1)+ (Au) under this map is
precisely:

1—q !

*T U +a) g T 1)

So, in the case ¢~ 2, when we refer to f,,=a'/*(ud)+(Ag) in the homology
H (Y, 2, Xw,2(q), as identified with {(Au)[4, pe{wy,...,w,}, A+ u), we are really
referring to the element given by (4.8).

In the case a=g~ 2 all of this breaks down, since 72 is no longer an
isomorphism on ker(D$). However, inside ker(D,)nker(D,), there is a subspace of
dimension n(n—1)/2 given by j,, =a'/%. Unlike the case of a+q~2 above, there is
no natural basis in terms of which the actions of B, and S, on homology can be
given.

If we now switch to the dual picture, then the cohomology is given by
%?%/{Im(DY), Im(DJ)), where % is a vector space dual to the space ¢, of chains.

£t

[f,+o'/?f,]. 4.8)
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However, in this dual picture, n? gives rise to an identification of ¢%/{Im(D7))
with:
V= <(@) I ®%y, % € {Wl, ceey Wn}> .

Hence, there is a representation of B, on ¢?*/{Im(DT)> which preserves Im(DJ)
and depends on the parameters q,, q,, and a. To simplify the notation, let:

I/h=Im(Dg)=<el’ coey en> s
where
ei=(42_l“‘1))§,_(wiwl)+q; Yar'-1) Z.(wkwi)

+g;'a (g7 —1) 2_(iji)+(q1 g5t —1) (ww).
j<i

Then
W=L{(@)|a;,a,€ {Wx, oo Wn}; oy Fay)

is clearly transverse to ¥, whenever
q1'q; 'a" ' —1=—h=+0.

Let A(h) denote the action of 427" where A2, has the matrix form given in
Fig. 4.3. Then V/V, can be identified with W whenever =0, and so the induced
action, B(h) of A(h) on W, gives the action of o; on the cohomology at o~!
=4q,4,(1—h); it is given by the inverse of the transpose of the matrix of Fig. 4.4.
Clearly, B(h) depends smoothly on & near 0, and we may denote its limit, as h—0, by
B,. It may be deduced that B, preserves the subspace V;, of W, while the action of B,
on W/V, is identical to the restriction of A(0) (i.e. the action of o; on the
cohomology for a =g 'q; *) to W/V, < V/V,. We call this action the derwed action
of the family {A(h)} at h 0 see Sect. 5 for more details. This gives an action of a;
on a space of dimension n(n— 1), since dim W =n?, dim V, =n. The action of B, now
has two parameters, namely g, and gq,.
There is an action of S, on ¥? or H?, only when g, =g¢,. In this case,

Vo=( X (w0d+a™ L (wwd+a T wpw)i=1,2...n)
12 >i J<[

lies within the symmetric part of %2, since the symmetric part of %2 is spanned by:

(wiw)+qww)=f; for i>j
2ww)+(1—q) Y ww)+q~ (g~ 1) ¥ (ww)=1£; foralli.
Thus i<i k>i

Vo=< Y f+q7 ' Y £ i=1,2,...,n>.
Jj<i k>i

Under the action of gj,,, € splits into two halves of dimension n(n+1)/2; and
similarly H2~V/V,=~W splits into two equally sized spaces of dimension
1/2n(n—1). However, ¥, is contained in the half with gj,,=1, and thus the
dimension of the symmetric part of W/V is:
Inn—1)—n=3n(n-3).
It is spanned by {f;;|i> j} considered as elements of W/V,, with the n relations:
qy ij+ kg,fki=0-

Jj<i
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The action of ¢; on this subspace of cohomology is equivalent to an action on a
quotient of homology. Alternatively, this dual action may be expressed as the
action on a subspace of a space dual to {f;;|i < j}. This gives the matrix of Fig. 4.6
specialised to a=q ™2, while the subspace concerned is given by the kernel of the

map:
fip—C
fi=0,0q7 Y 0 1,..,0).

J i
It is easily seen that the matrix of Fig. 4.6 preserves this subspace, and hence there
is an induced action of B, on this subspace. The action of g, is given by a matrix of
the same form as Fig. 4.6, except that the first row is replaced by a 1 on the diagonal
and zeroes elsewhere. It is clear that this action on homology factors through

H,(q™ 1) since the eigenvalues of the matrix representation of the action of o; are all
1

1, —q~*.

We have indicated above how this action may be obtained on either a quotient
space of (H,)52 at a=gq~2, or as a subspace of the limiting space (H,)" for a—q 2.
The space obtained by either procedure has dimension in(n—1)—n==4n(n—3),
and the action obtained factors through H,(g~!). In terms of cohomology, this
implies that a quotient action of that on the limiting space (H*)>? for a—q ™2
factors through H,(q). Indeed, this quotient action is given by the dual (inverse

transpose) of the matrix above, in which the relations imposed are:
Y f+q ' Y £u=0
Jj<i k>i

for1<i<n.

The work of Wenzl [We] showed how, for any Young diagram A with n
squares, one could construct an irreducible representation 7, of H,(gq). These
representations are deformations of the standard irreducible representations of S,,,
as g—1. Consider the two-row Young diagram, A,, with n—2 and 2 squares in its
rows, as shown in Fig. 4.7; in each square, the integer indicates the hook length
I(i,j) as defined in [J]. By the hook length formula the dimension of the
corresponding irreducible representation of S, (and thus also that for H,(q)) is:

n!

((n—1)(n—2)(1.1—4)...1)(2.1) =in(n—3).

Fig. 4.7

The representation of H,(q ') on the quotient space of the symmetric part of
the cohomology discussed above can now be identified by considering the limiting
action as g—1. This gives a representation of S,, and indeed the matrix for the
action of g; on (fj;) is precisely that of the representation of S, given by
symmetrising the rows of 4, ; thatis, n,,®n,, @7 4,. There are n relations imposed
on the f’s, and they transform amongst themselves (in the case g=1) according to
the natural representation of S, given by permuting the factors, namely n,, ®7 4.
Hence the reduced action of B, on the quotient space is given by 7 4,.
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Theorem 4.2. There is an action of B, on the symmetric part of the homology
H (Y, 2, Xw,2(q)) for any local coeff cient system q specified by two non-zero complex
parameters q and o«. When o= q~?, this action preserves an n-dimensional subspace
of this 3n(n— 1)-dimensional space, and the quotient action induced is the irreducible
representation, m 4, of the Hecke algebra H,(q~*) associated with the two-row Young
diagram wit n—2 and 2 squares in its rows.

In the dual picture, in terms of cohomology, we also have:

Theorem 4.3. Consider the family of representations of B, on the quotient of the
chain space 6> obtained by dividing out by the boundaries Im(DT), and using the local
coefficient system, y, specified by q, o, as given in Lemma 2.1 and (2.3). Then the
derived representation of this family at a=q~?, is a representation of B, on a
subspace of the cohomology H*(Y, . x). Moreover, the part of the. derived
representation invariant under the action of S, factors through H,(q), and is the
irreducible representation m,,.

4.3. Symmetric Group Representations for q=1
In this section we will discuss the case when g=1. In this case, the local coefficient

system is trivial. Thus the A and b{)) matrices are all just 1. Theorem 3.4 allows
one to compute the matrices Af{},, by) for arbitrary A, y, and r, and it is found that:

by =
while the action of A{) on (&) has A{)(x)=p for a, f &}, where:
o if o=FApu
ﬂi= ﬂ if O(i=),
1 a=p

The representation of B, on homology thus factors through S,, the action of 6 € S,
on & being given by:

o(@)=p,
where f; is obtained from a; by the induced action of 6 on {z; 4 1, ..., Zp Wy, ..., W,}.
The character of the representation is thus given by:
x(0)=(ct+m—1)...(c* + Da!,

where ¢” is the number of cycles of order r in the disjoint cycle decomposition of .

The formulae given in Sect. 3.2 for the matrices D{” also simplify greatly. Thus,
from (3.3), it is seen that D{? =0 for all i. Hence D{” =0, by (3.4), and so Lemma 3.2
reduces to the trivial statement that the homology Ho (Yo, mo X, «q) can be
identified with ,. The action of S,, on the space of chains is specified in
Theorem 3.5 in terms of the matrices:

—A A
AI
Hi+1)
Jii+1 A/ ’ (4'9)

A/
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where A'= A%,V and the blocks of the above matrix are associated with the values

Zig 14y A4, ul,z jﬁ(ll> ) of the pair o,0; , ;. The matrix gives the action on (Fi*1),
and it is extended to give the action on €,,, by putting blocks of ji11 down the
diagonal.

However, the representation with which we are concerned here, is that on

V= [Hm( Yw,m9 Xw, m(q))]sm ’

that is, the subspace of (&) on which j;,,=id Vi=1,2,...,m—1. By (4.9), the
subspace given by j;;, , =id is spanned by:

0 a
0 (A'+1)a
A and 0
a 0
for arbitrary ae &~ 1. The action of A¢ D = A’ on #.~! is the natural one, under

which z; and z;, ; are interchanged. Hence V consists of elements Y (4, -a) of

aeSm

(&> such that:
(a) A,=A; whenever a, B are both vectors of distinct elements, which can be
obtained from each other by exchanging z; and z;,, while, at the same time,
interchanging the i'® and i+ 1™ elements, for some i with 1<i<m;
(b) all the A, are given by well defined linear combinations (which we will not give
here) of those A, for which «y, ..., a,, are all distinct.

This implies that all the 4, are determined by {4, |« € 7"}, where ¥" is a suitable
subset of & of order (n+m—1)...(n+1)n/m!

Example 1. Consider the case of m=2. Then it is clear that:
V' ={ww)|1Si<jsnjo{(z,w)|1<i<n}

will do. The action of S, here is the natural action, and splits into a direct sum of
representations:

(i) the induced representation coming from the identity on S, xS,_,<S, (of
dimension n(n—1));

(ii) the representation of S, induced by the identity action of S; x S, _; <S, (that s,
the natural n-dimensional representation of S,).

Both of these parts split into irreducible components, namely as n,, ®m,, @74,
and n,, ®n 4. Hence the total representation is 7, @27, @27 4. Although it still
contains 7 4,, it is by no means irreducible! The representation of S, (or B,) on the
symmetric part of the homology has character y(o)=%c'(c'+1)+0? for c€S,.
This should be compared with y ,,(6)=30'(c' —3)+ 0>

Example 2. When m=3, a suitable set ¥~ consists of all &= (a4, &5, «3) in &2, of one
of the following forms:
(wiwwy), (<j<k); (zoww)), (<)); (zaww)), (i<)); (z223w).

This set has order in(n—1)(n—2)+2-in(n—1)+n=2%n(n+1)(n+2), and the
representation of S, so obtained is 7, ®3n 4, D4m,, @47, . It is possible to prove,
in the general case, the following theorem.
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Theorem 4.4. The monodromy representation of B, obtained in Theorem 2.3 when
q=1, factors through S,, and as such, has the direct sum decomposition:

m
D A 7y,
k=0

where A,= Y ("Z1) for k>0 and Ay=A,.
r=k

Note that only two-row Young diagrams enter here. This would not be true if
we expressed the representation of B, on the whole homology space
H, (Y, Xw,m(q)) With g=1 (without restricting to the S,-invariant part), in the
form of a direct sum decomposition.

When ¢ differs from 1, but is nearby, the dimension of the homology is less than
that at g=1, since the boundaries are non-trivial in such a case. There is thus a
discontinuity in the dimension of the representation obtained at g=1. Similar
discontinuities exist at other roots of unity, but only a finite number of roots of
unity are affected for a given m. In all cases, however, m, occurs with multiplic-
ity 1, and is the major part of the representation.

5. The General Case

In this section we will discuss the theory for general m. In Sects. 5.1, 5.2, the proof of
Theorem 2.3 will be completed using methods similar to those used in Sect. 4.2 in
the case of m=2. We start by constructing the subspace of cohomology in terms of
the dual basis for chains described in Sect. 3.1. The actions of B, and S,, on this
space are computed using Theorems 3.4, 3.5, in Sect. 5.2. The subspace of co-
homology was defined in terms of a limiting procedure in Sect. 4.2, for the special
case of m=2, and the result that was used in that case is explained in a general form
in Sect. 5.3. Finally, in Sect. 5.4, there are some remarks on the comparison with
Tsuchiya and Kanie’s approach to Hecke algebra representations.

5.1. Construction of a Subspace of Cohomology

The picture we have obtained up until now is that B, x S,, acts on %, a space of
chains. This action preserves the subspace ker(D)S%,, where D denotes the
matrix:

D™

Dim)
For, ker(D)= ﬂ ker(D{™), and by Lemma 3.2, there is an isomorphism between

this space and the homology, H, (Y, . Xw,~(@)) (Which we shall in future abbreviate
to H,, since the context is clear).
The duality between homology and cohomology which exists via the natural

pairing: H, xH">C

(¢, @)

induces natural actions of B, and S,, on cohomology. In the dual picture, we have
an action of B, x S,, on the space ™ dual to the space of chains %,,, which preserves
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the subspace Im(D’) C %™, where D’ corresponds to the differential map d, just as D
corresponds to the boundary map 6. The cohomology space H™ is now isomorphic
to ¥™/Im(D). To an element, f, of €™ one may associate a vector:

{L{’ Qze‘gm}.

The boundary map 6:%,,—%,,—, gives rise to the differential map d: %™ ' >%™,
which is specified by the transpose of the matrix for §; that is D’'=DT.

We wish to define a quotient H,,/W of homology; or equivalently a subspace of
cohomology. This is done by defining a subspace W’ of ™, the dual to the space of
chains. The situation which we now obtain is embodied in Fig. 5.1. The subspace
W' C ™ gives a natural embedding s'. The map ' induced by s’ on W’/Im(D’) gives
the required subspace of ¥™/Im(D’)~ H™, as its image. This subspace may be
reached, alternatively, as the image of j, giving W’/Im(D/,) where:

D, : D'~ (W)W’
is the restriction of D' : €™~ 1 %™ to D'~ {(W").
In the dual picture, W’ is dual to a quotient €,,/W of the space of chains €,
giving a quotient map s. Restricted to ker(D), this gives the map r, whose image is

ker(D)/W, the required quotient of homology. Alternatively, one can obtain this
result as a subspace of €,,/W, using j; namely ker(D*) where:

D*:8,/W %, /D(W)

is a quotient of D:%,,»%,,—1.

G W
e AN

ker(D)/W «— ker(D) —— &,
W' [Im(D')— €™/ Im(D') —&™
i 4
N ow
Now, to define W'C €™, we use the natural pairing between ¥™ and %,,, and put:
W= {fe(ﬁ"' ff=0 for all gcey,;"\f,:"},
Y

Fig. 5.1

where Tt ={(ay, ..., 0y) | 0; € {Wy, ..., w,} for all i, and o; are all distinct elements}.
From this definition it is clear that 7., and thus also W, is trivial when m>n. It
will be seen later in this section that W’/Im(D’) is also trivial when m >n/2. Dual to
the basis for ,,, indexed by &, there is a basis {(o)|a € F'} for €™; and W' is
spanned by those (¢) associated with e 7"

The action of B, on H,, given by the matrices 4%, .. for the action of the
generator o;, corresponds in the dual picture to the action of B, on H™, given by a
matrix 4%, where:

AR WIAGD,,, VD =<W]V)

for all ve H,,, we H™, where {|) denotes the natural pairing between H™ and H,,.
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Thus the matrix A, is the transpose of the inverse of A%, . , giving rise to a

WiWi+ 1

representation of B, which is the dual of the representation obtained on H,,. Thus
the statement of Theorem 2.3, namely that the action of B, on H,/W is an
irreducible representation of H,(q ') is equivalent to the statement below in terms
of the action on cohomology.

Theorem 5.1. There is a natural action of B, X S,, on the subspace (W'/Im(D")) of the
cohomology H™(Y,, .., Xw.m(q)) and the action of B, on that part of the space that is
totally symmetric under the action of S,,, factors through the Hecke algebra H,(q).
Moreover this action is irreducible and corresponds to the Young diagram with two
rows of lengths n—m and m, for m<n/2. When m> n/2, the subspace defined by W is
trivial.

5.2. Actions of B, and S,

Theorems 3.4 and 3.5 may be used to compute the actions B, and S,, on W', Recall
the definitions of %, 7, and 44 in Sect. 3.1. There is an obvious action of the
symmetric group S,, on ', given by: A

(%) = (0t (1)%a(2) - -Xrom)) -

Under this action "/S,, = %" In this notation, the subspace W’ C ™ of Sect. 5.1 is
given by:

" =<()|ae Ly
W={(@)|eeTy>}"

From Theorem 3.4, the following lemma can be deduced.

Lemma 5.2. The actions on b§)" and A)" on (¢) are given by multiplication by q3,!

and 1 respectively, whenever o€ &, with o;¢{z,,...,2,, A, u} for all i. Here r is an
integer, 1 Sr<m.

Definition. For any o €S,,, define () e NU{0} by:
&(0)= Y, H(a())—0()),
i<j

where the sum runs over all pairs (i,j) in {1,2,...,m} with i<j; and H(x) is the
Heaviside function: { for x>0
H(x)={ =

0 for x<O.
Then &(0) denotes the number of pairs of elements of {1,2,...,m} whose
numerical order is reversed under the action of o.

Definition. For each ae %, define fi= ¥ ¢*?-(a())e W'
ceS,

Lemma 5.3. For all ae %, f;" is preserved by the action of S, defined in Sect. 3.1,
on ™.

Proof. 1t follows at once from Lemma 5.2 together with Theorem 3.5, that the
action of o;€S,, on (x)e %™ is given by:

(‘llzT:+ D@= {

—1 .
q oy 0 0y 1. 0,) fOr <oy
qlorg...o_ 104 10G...0,) for o;>a;, 4,
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where o € 4, while a;, «; . ; are distinct elements of {w, ..., w,} and o; %z, z; , |Vj.
The lemma now follows from the definition of f;" when it is noted that ¢(o) satisfies
the following two relations:

g1)=
goo(ii+1)=e0)+sgno(i+1)—o(i)); VoeS,,1sism. O

Lemma S4. The dimension of the symmetric part of W'C¥™ s
! 1 1
mn(n— )... (n—m—+1).

Proof. When g is moved away from 1, dim W’ cannot increase locally, since the
symmetrised part can be thought of as an intersection of subspaces of €™:

n {ve(g lq,u+lv V}
However by Lemma 5.3, { fg Iae%’”} defines a set of ( ) linearly independent

elements of the symmetric part. The lemma follows from a dimension count for

q=1; in this case, the action of S,, on W’ reduces to the natural action on (7>

given by permuting o;’s, so that the symmetrised part has dimension (1/m!)| 77|
n

“(n) ©

m
Corollary 5.5. The symmetric part of W' C€™ under the natural action of S,, given
by Sect: 2 is precisely {f"|aeUy>.

In Theorem 5.1, the space on which B, acts is the symmetric part of the
subspace W'/Im(D’) of the cohomology space ¢™/Im(D')=H™ By the above
Corollary, this space is given by:

G eely

where, for ve €™, i'(v) denotes the corresponding element of H™. To calculate the
monodromy action of B, on this subspace, we start by evaluating the action of B,
on the corresponding chains f;", where a €%, and then determine the relations
which exist between these chains when they are mapped, under 7, into the
cohomology space. The first part is given by the following theorem.

Theorem 5.6. The generator o; of the braid group B, acts on { f;"|a € Uy ) S€™ by
the natural monodromy representation, according to:
fa+A=9f i {wswirfo{ag, o) ={w;}
o af if {Wuwir JO{0n, oo U} = {Wis 1}
A otherwise,
where «; denotes o with any entry w; changed to w; , ,, and any entry w; .. | changed to
w;.

Recall that the action of B, on ™ is the dual action to that on €, The action of
the generator g;€ B, on %, is given by A%, . - and the dual action is thus given by

Am,. ) Hence the theorem is equivalent to showing that the action of
(Aﬁ;':{ml)T on the subspace of ¥™ spanned by {f"|xe %} is given by:
q_lfg'? if {wywip i fo{ag, . amp ={wi;

f;m—’ f;:"’_(l _q— l)fgm ) lf {Wi’ Wit l}n{ml’ ceey “m} = {Wi+ 1}; (5]
Jay otherwise.
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The matrices (4™, . )fori=1,2,...,n—1, are given by the recursion formulae of

WiWi+1
Theorem 4.4 (Sect. 4.5), and the proof of Theorem 5.6 proceeds by applying
induction on m to prove many intermediate results. To avoid the necessity for
using extra brackets, we shall in future use g to refer to the corresponding element
(o) of ™, as well as an elements %, so long as the context is clear.

Lemma 5.7. Whenever a €%,
f Z qr a( a(a) aa)s

where oc(a) €U~ ! is obtained by removing the a™ element from «, to give (oty, ..., 04 1,
Ogt15- r)
This lemma may be deduced from the definitions of f; and &(o).

Lemma 5.8. Suppose that oy, o, € I} are such that % and o, differ only in the k™
component where they are w, w; . 4 respectwely, somei, kwith1<k=<r,1Zi<n—1.
Then b7 .. bDT ., preserves the element (¢,)—q(a;)€ W'

Zr+1Wi+ 1

Proof. For r=0, the result is trivial. Assume the statement of the lemma holds for
r—1. When k<r, the result follows immediately from the inductive hypothesis
using Theorem 3.4 and Lemma 5.2, since («,),, (¢5), & {Wi Wi+ 1, 21, ..., Z,}. The only
case remaining is that when k=r, o, =a-w;and ¢, = - w;,  forsome a € 77~ 1. By
Theorem 3.4, since o contains neither w; nor w; ,,

bg’?:;wi(aZ —qo,)= b’wT,(Q‘) Wir1—4 {(1 z,-+ 1)b (a) Zrt+1

+ Y [0-bD-b7, )br1(@®-A

Zr+1<A<w;

+ b5+ bubnbr,  —1D](@)- Wl},

where b,=b¢; ", b3=b,h" ') By Lemma 5.2 this can be reduced to:

(¢ —Da-z, 1 +(q" —1—qa-wi+q 'awipy +(@*—1) ) (1“b§)f!')»-

Zr+1<A<w;

When b®_ .. is applied to this vector, using Theorem 3.4 once more, together

with Lemma 5.2, one obtains:

Zr+1<j<wWi+i

(qz—l){q‘zec-z,+1+(1—q“)q‘zec~wi+1+q‘2(1—q) ) (1—bf)gc-wj}

+q7! {(1 —gq 'z (=g ) e Wiy

+q7(1-¢®) Y (1—bf)ec-w,}

Zr+1<j<wi+i

+H ' -l le w1 Y g (1B A

Zr+ 1 <A<w;

which reduces to «-w;,; —qa-w;=a,—qa,. This completes the proof of the
lemma. [J

We now return to the proof of Theorem 5.6. As remarked above, this is
complete, once (5.1) is verified for all « € %. For r=1, this follows directly from
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Theorem 3.4 applied at first order. Assume that the above action of 4%, . on
{fz |e€ ;) holds for r—1. Suppose f €%, By Lemma 5.7,

= 3. Usia' B 52)

Consider the action of Afzw“ , on the terms in (5.2) separately. When f does not
contain both w; and Wit 1, the required transformation properties of f4 at level r
follow, term by term in (5.2) from Theorem 3.4, Lemma 5.2 and the inductive
assumption. The only case we are left with is that for which f§ contains both w; and

W; 1. Those terms in (5.2) with f,+w;, w; , ; are preserved. Thus, to show that fEis
preserved, it is only necessary to show that the sum of the two terms in (5.2)
corresponding to a’s such that f,=w;, w;, , is preserved by A, ... Since fe ]
then B,=w;,, and B, ,=w; for some s. Thus, it is only necessary to show that
ADy . preserves:

-1 -1 o fr—1
afge Wirrtfiery Wi=afs Wi g Wi,

where a,, a, satisfy the conditions of Lemma 5.8. Since {1, ..., fs— 1> Bs+ 2 --- Br}
does not contain either w; or w;, ;, we deduce from Theorem 3.4, that:

A Sy Wi W)

=q{A"f; 7w+ [AT(1-b3,, b, b;.{:)]f'_ Wir 1} H(ATDS et Wiy

=‘1{q_1¢2 W +(q_142 qAwa,“b 1) Wz+1}+(Awa +1)frz_l'wi+1
by the inductive hypothes1s (In the above we have used the simplified notation in

which A=A§."D  b,=b¢;".) Applying Lemma 5.2, we can reduce this to the
form:
o LWk Lt ATEL L (e = 4D Wi
=fr w5+ AT — a7 D] wiey by Lemma 5.8
=frtowiafy T Wi
the last step again being a consequence of the inductive hypothesis. []
The relations existing between the images of { f;"|a€%}’> in H™ are given by
combinations of the f;” which lie in Im(D’). However, Im(DT) can be factored out of

the space of chains ™ by setting the component of (¢) to zero for all ¢ € & with a;
=z;,,. This is possible for i=1,2,...,m—1, so that:

" /AmDT)|i=1,2,...,m—1) ={(@)e FF | F2;4, fori=1,2,...,m—1}.
Hence the only part of Im(D’) which imposes relations on {j'(f;")| «€ %'} comes

from Im(DY). It can be deduced from Theorem 3.4, using Lemma 5.7, 5.2, that the
following lemma holds.

Lemma 5.9. Suppose a€%;,. Then in € we have
(bgz.“;;,j 1)./;:’ Z (fat...aJ...a,wl) qs‘ I(q—1 )a

iF aks

where s, is such that o, _>i>a, and s;€{1,2,...,r}.
This shows, together with Lemma 5.2, that:
DL )= Z @' =D w)+ Z Y ety Wa)a (@ 1)
*a;

Jj=1 i%a's
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Using Lemma 5.7, it is seen that the relations on the subset j/(W')= {j'(f;") |« € %r'}
of H™ are given by:

2 =0 (5.3)
i*aj
for all x e %™, using the usual notation for s;. As was shown in Theorem 5.6, if we
define: = T ¢ % (5.4)
ifa Jj

for ae %"~ 1, then under ;€ B,, {g,} transforms according to:

g, +(1—qyg, if {wi w1 Jn{oy, ---,“m}={wi};
8¢ 4984 if {WiaWi+1}n{°‘1,---,“m}={Wi+1};
g, otherwise,

since each term in (5.4) transforms in this way.
Definition. V™= {j'(f™) | xe %™}y CH™.

The action of ¢; on V™, as defined in Sect. 2, is the quotient of an action which
factors through the Hecke algebra H,(g), as is given in Theorem 5.6. Relations (5.3)
shows that this quotient is by another Hecke algebra representation, in which m is
replaced by m—1. The dimension of V™ is:

27— 2| = C:,) - <mf1),

since there are |%™ | relations satisfied by the spanning set {j'(f™)|xe %™} of ¥,
(see (5.3)). The hook length formula [J] gives the dimension of the Hecke algebra
representation n, , where 4,, is the two-row Young diagram with rows of length

n—m and m, as:
n!

n—m+1)...(n—2m+2)(n—2m)...1. m!

= :Tn(n—1)...(n—m+2)(n—2m+1)

=(m) ()

=dim V™.

n-m+1 n-2m+2 n-2m 1

Fig. 5.2

The Hecke algebra representation given in Theorem 5.6 corresponds to that
obtained by symmetrising along the rows in 4,,, but not anti-symmetrising down
the columns. As in the case of the symmetric group S,, such a representation of the
Hecke algebra has character:

Xamt oo T X4+ X405
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where y 4, is the character of the irreducible representation of H,(q) corresponding
to the Young diagram A, However V™ is the quotient of {(f;")|aey) by
{g,laey~1>, and the action of B, on (g, also factors through H,(q), with
character y,,,_,+...+ 14, The character of the action of B, on V™ is thus:

Ut o+ Xa0) = At s -+ Xt0) = Xt

Going back to WenzI’s definition of the representation 7 , it is easy to see that
the action on V™ of B,, is precisely that of 7, , and the basis that %" supplies at the
level of chains, is a natural basis for this action. Hence Theorem 5.1 is
proved. [

5.3. Selection of Subspace by Limiting Procedure

In this section we shall discuss a procedure by which a subrepresentation may be
obtained from a suitable family of quotient represenations. The subrepresen-
tation obtained will be called the derived representation of the family. This
technique was used in Sect. 4.2 to pick out the representation = 4, of H,(q) from the
family of actions of B, on cohomology with parameters g and a, where q is fixed
and o is varied around q~2.

Suppose M is a smooth manifold and V is a vector space. Let Grass(n, V)
denote the set of all subspaces of V of dimension n. The family of quotient actions is
given by a map A : M —-End(V) together with a family of subspaces of V preserved
by A, specified by f: M —Grass(n, V). This family is parametrised by points on M,
and we wish to construct an action on a subspace of V/f(x,), where x,e M is a
chosen point.

Definition. A map f: M —Grass(n, V) will be said to be non-degenerate at a point
xeM, if the derivative df, : T.M — T;,,Grass(n, V), when considered as a map:

Df.: TM®f(x)>V/f(x)

has maximal rank.

The simplest case of a limiting lemma occurs with a one-parameter family of
quotient actions A(h) on V preserving ¥}, C V. Suppose that W is chosen so that for
all sufficiently small 6:
(i) W, V,aretransversein V for 0 <|h|<J, and W is a maximal space satisfying this
condition;
(i) VocWCV.

Then we have the following lemma.

Lemma 5.10. Assume that A(h), V,, W, V are defined as described above; while {V,} is
non-degenerate at h=0. Let B(h) be the induced action of A(h) on WxV/V,, for
0<|h| <6 and assume that the limit B,= lim B(h) exists. Then:

h—0

(a) By preserves V,;

(b) A(0) preserves W;

(c) the quotient action of B, on W/V,, and the subaction of A(0) on W/V,CV/V, are
identical.

We will refer to the action of B, on W/V, as the derived action of the family
{A(h)} at h=0. By part (c) of the above lemma, it is identical to the sub-action of
A(0) on W/V,CV/V,. As was observed during the proof of Lemma 5.10, the
existence of the limit B, is equivalent to (b) in that lemma. This result may be
generalised to multi-parameter families of linear transformations.



Homological Representations of the Hecke Algebra 181

Theorem 5.11. Suppose that A: M—End(V) is a smooth family of linear transfor-
mations on V, and that
f:M—Grass(n, V)

defines a corresponding smooth family of subspaces of V which are preserved by A.
That is, A(x) f(x)E f(x). Assume that f is non-degenerate at xoe M, and W<V is a
subspace such that:

@) f(xo) S W, A(x,) preserves W;

(i) W/f(x,) is transverse to Im(Df, ),
(iii) W is maximal satisfying (ii).
"Then the family of actions A(y) (for ye M \{xo} ) on the quotients V/f(y) defines
a derived action By on W/ f (x,). Furthermore, this action can be obtained in either of
the following ways:

(a) the restriction of the quotient action of A(x,) on V/f(x,) to W/f(x,);

(b) the quotient of a limiting action on W.

Proof. The main idea of the proofis to break the family up so as to consider only a

one-dimensional variation at any one time; Lemma 5.10 may then be applied

repeatedly. Suppose Xx;,...,x; are local coordinates on M near x, Define a

sequence of spaces W,;C V fori=0,1, ..., k as follows. For each i, W, depends on the

parameters X;, , ..., X, and satisfies the conditions:,

(@) Wimy(xis ooy X/ f0, .., 0%, ., X)) X WXy, .00, %) for x;#0 sufficiently

small;

(B) f(O’ "'909 09 Xit 1500 xk)g I/I/i(xi+1s '”’xk)'

We start with the initial space W=V, and then W, = W without loss of generality.
At each stage, we suppose that {A(x)} has induced an action:

Bi— )i ..., xp) € End(Wi— 1 (x;, ..., X))

preserving the subspace f(0,...,0, x;,...,x,), where for i=1, B, =A. By Lem-
ma 5.10, this induces an action Bg(x;i1,...,%) on WiX;.y,...,X;), where
X;+1,---, X, are considered fixed and x; replaces the parameter h. This action
corresponds to that of B, on W in Lemma 5.10. By Lemma 5.10(a), the limiting
action By;(x; . 1, ..., X;) preserves the subspace:

JO,...,0,%;, ., X ) EWi(Xi 415 +-5 X)) -

To sum up, we have here applied Lemma 5.10, with:
A(h)—’B(i— 1)(xi’ s Xg)
W WXt 15 -0 %)

h—Xx;

Bo—’B(i)(xH 1rees Xg)
VoW (% X

I/h_)f(oa ses 0, Xis "'axk)‘

The spaces W, can be chosen to be independent of x;, i, ..., X, for sufficiently
small |x|=0, and thus, at the k™ stage, we observe that B, e End(W,) preserves
f(0,...,0)C W,. Thus in the notation of the theorem, W= W, and B, is the quotient
action of By, on W/f(x,). By applying part (c) of Lemma 5.10 at each stage, it may

be seen that B, can also be obtained as the reduced action of A(x,) on the subspace
W/f(x0)SV/f(x,)- This completes the proof of the theorem. []
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This theorem should be thought of as involving the transposition of the
operations of dividing out invariant spaces, and taking a limit. Thus B, should
be considered as being obtained by first dividing out the invariant space f(x)
from the action of A(x) on ¥, and then taking the limit x—Xx,. If instead we take
the limit x— x,, first, we obtain an action of A(x,) on V fixing f(x,), and dividing
by this invariant space gives an action on V/f(x,). The theorem states that one
obtains identical actions on the reduced space W/f(x,), namely the derived
action, if one takes either
(i) a quotient of the action obtained by first dividing out invariant spaces and
then taking the limit; or
(ii) a restriction of the action obtained by taking the limit first.

The space W/ f(x,) is isomorphic to V/{Im(Df, ), f(x,)>, and so should be thought
of as being constructed from ¥ by removing the subspace spanned by the first
order variation of vectors in the subspaces f(x) with x close to x,. That is, if

x:(—ee—>M and v:(—¢ eV

while v(t) € f(x(f)) Vt and x(0)=x,, then dv/dt|, -, lies in {Im(Df,,), f(x,)). Indeed,
the span of all such vectors v'(0) is precisely the subspace {Im(Df), f(x,)) of V.
The monodromy representation of B, defined in Sect. 2 is well defined for any
local coefficient system y,, ,(q), where q satisfies (2.1). That is, for any non-zero
complex numbers g, a; (1=<i,j<m, i<j), a monodromy representation of B,
comes from q defined by:
ngz,=aij$ qz,-wk=qi fOI' k=1,2,...,n.

There is an action of S,,, on the corresponding cohomology space, whenever (2.2) is
also satisfied; that is when «;;, g; are independent of i, j. Theorem 5.11 can now be
applied to the situation where:

V=¢"/{Im(DY), ..., Im(D;,_ ,)>
>2{)|aeLy 0;F2,,, fori=1,2,...m—1>

£()=Im(D?).

In the above x € M refers to (a;,,) € C" ™! with gi=1,2,...,m) and o;; (1 Si<j<m)
fixed. Here, the family A(x) used is given by the induced action of g;€ B, on the
quotient V of €™; that is, A7, where all the boundaries except those given in
Im(D]) have been divided out. The point x,e M is given by a;=¢; '¢; '

Theorem 5.11 now gives a derived action of B, on the space W/f(x,)SH™,
depending on the m parameters ¢, ..., 4,,. There is an action of S,, on ¢™ (and thus
also on H™) only when ¢;=qVi. In this case, the action:

S,,—End(H™)

. Gi+1)— Gjier
defines a symmetriser:
R:H™—>H"

Vo — Y. a(v).

1
m: seS,.
Thus Im(R) consists of that part of the cohomology H™ invariant under the action
of the symmetric group, S,,. The best way to construct the symmetric part of the
reduced space W/ f(x,), is as a subset of Im(R), transverse to Im(R - Df, ). Here, we
are using the following maps:
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Df.,: T, M® f(xo)=V/f(xo)=H™
RoDf.: T M® f(xo)~H™.

Of course in order to apply Theorem 5.11, it is necessary to check all the conditions
of that theorem. For generic g, Df,, has maximal rank, as can be verified by using
the recursion relations of Sect. 3, together with g close to 1, but not equal to 1. To
do this, it is necessary to identify V with a suitable subspace of ¢™, and then to
investigate the action of DZ, on this space. Although W needs to be introduced in
Theorem 5.11, and this gives rise to an arbitrary element in the construction, the
resultant derived braid group action obtained, is natural, since it can be expressed
in terms of the action on the quotient V/<{ f(x,), Df,,>. We now make the following
conjecture:

Conjecture 5.12. Consider the family of representations of B, on the cohomology
with local coefficient system given by:

ngzj- = aij L] qwkzi = q

(for 1<i, j<m, 1=k=<n), and parametrised by {a;;}. The symmetric part of the
derived representation of this family at o;;=q "> factors through the Hecke algebra
H,(q), giving the representation .

In the case m=2, this conjecture has been proved in Sect. 4.2. In the general
case, it is easily seen that V™ is a subspace of the cohomology H™ such that:
(@) S, preserves V™, ie. V™ is contained in Im (R);

(b) V™ is invariant under the action of B,;

(c) for generic g, Im(Df, ) is transverse to V™.

The last result is obtained by considering g close to 1, and using the basis for the
space of chains, defined in Sect. 3. Since all the matrices involved depend on g in an
analytic way (indeed, they are polynomials in g and ¢ ?), it is possible to infer
results for generic ¢ from those which hold for all g+ 1, sufficiently close to 1. A
comparison of (a), (b), and (c) with the conditions of Theorem 5.11 shows that the
derived action can be obtained on a space containing V™; that is, W can be chosen
so that W/f(x,)2 V™, while W satisfies the conditions (i)(iii) of the theorem. By the
remark above, the derived action is independent of W, and thus contains the action .
on V™. Since V™ is also preserved under the action of S,,, thus the action referred to
in Conjecture 5.12 contains that of B, on V™. By Theorem 5.1, we now obtain the
following result.

Theorem 5.13. The symmetric part of the derived action of Conjecture 5.12 contains
T4, for all m and generic q.

All that is necessary to obtain a proof of Conjecture 5.12 is to show that there is
no other part to the totally symmetric piece of the derived representation. A
dimension count would suffice for this; however, dim Im(R - Df, ) is not simple to
compute!

5.4. Comparison with Tsuchiya-Kanie Theory

In Sect. 2, natural actions of B, and S,, on the homology space H, (Y, . X, m(@)
were defined. As mentioned in Sect. 5, there is naturally defined a dual action of
B, x §,, on the cohomology space H™(Y,, ., Xw.m(q))- To obtain useful information
from this point of view, it is necessary to express this cohomology space in terms of
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functions. Since Y, ,, is the complement of a complex algebraic hypersurface in C™,

it is a Stein manifold, and thus the cohomology can be calculated as the
cohomology of the complex of holomorphic differentials. This result also holds

when an abelian local coefficient system is introduced. Thus H™(Y, . Xw.m(q)
(abbreviated to H™) can be computed in terms of the space:

0={f:Y,, ,—C|f is holomorphic and twists according to ¥, .(q)}

of holomorphic functions f for which f((1)=(tu.»(@) )" /0(0) for all
[y]en(Y,,n)- Hence:

aof(3, 8

Lo fie(9fori=1,2,...,m}. (5.5)

By a theorem of Grothendieck (see [ABG, GJ), this cohomology can be
computed as the cohomology of algebraic differential forms. Let g(A, p) denote the
function of z,, ..., z, given by:

(ﬁ :1 (Zi—wj)_mj> (i ﬁ (Zi_zk)_lik> , (5.6)
ko

i=1j

where A=(4;) and p=(u;;). Any function f €@ can always be written as:
f=g2, (5.7)

where g° is the function g(A,p) with A, =a and p;;=b for all i, j, k; and g is a
holomorphic function ¥, ,,—C. Here b, a are such that e*™ =g, e*™*=q, so that
a= —2b in the situation considered in Theorem 2.3. The space Z < 0, of algebraic
differential forms, in the case in which the local coefficient system is non-trivial, is
given by:

{gg°|g is a finite linear combination of g(A, p), where {1;}

- and {y;;} are all integers}. (5.8

Any element g of ¥ defines:
8= <-l='l1 (zi—o)” ‘) ‘g°eR. (5.9

Lemma 5.14. Suppose that f is a function of the form g(—a, —b)e &, where {a;}
and {b;;} differ from a and b by integers only. For a€ %, define f, by an equation
similar to (5.9) in which g° is replaced by f. Then, up to the equivalence of (5.10),
f,(z.—A) ! can be expressed as a combination of f§’s, where wy, ..., w, are thought
of as fixed and A€{z,,1,...,Zm Wy, ..., W,}. Furthermore, the coefficients of fy in
f{z,—w,)™! can be expressed as constant linear combinations of (w;—w;)~ " over I's
not equal to j. Here 1<x<m.

This lemma may be proved by inductive techniques. Just as for each a e ™,
the chain y, was defined in Sect. 3.1, with {y,|xe ¥} providing a spanning set
for €,, and ultimately for the homology H,, similarly we have the following
result for cohomology.

Lemma 5.15. The subset {g2|a€ #} of R, when projected onto the cohomology H™,
provides a spanning set.
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Proof. By Grothendieck’s Theorem, H™ is the cohomology of the complex of
differential forms based on the subset # of @ defined in (5.8). It is thus given by a
similar expression to (5.5), in which @ has been replaced by £. To verify the lemma
it is thus sufficient to show that the function defined by (5.7), with g =g(A, p) (Where
{Axl1Z2isk=n}, {u;;]1 Zi<m, 1< j<n} are subsets of the integers) is equivalent
to a combination of y,’s with ¢ € &, up to the equivalence “~” in which:

% ~0 whenever feZ. (5.10)
This result is obtained by repeated application of Lemma 5.14. At each stage, {a;}
and {b;;} differ from a and b, by integer values, and the lemma is used to reduce gg°
[where g is defined in (5.7)] to a combination of similar functions,

{hgo ) <if[1 (zi—a)” 1)

where h is given by g(A,p) with each of 4y, p;; replaced by smaller integers (at
least, integers no larger than A;, u/, respectively).

From the last two lemmas, it is apparent that the action of the braid group B,
on cohomology can be computed from its action on {g°|xe %r}. Just as the
homology can be embedded in {{y,|x€ %'} ), similarly, in the cohomology H™,
{g2| e e F'} is not a linearly independent set, although it does span H™. Since H,,
and H™ are dual, dimH,,=dim H™ and thus the number of relations that exist
between {[g2]} is identical to the dimension of the image of the boundary map
0:%,,—%,—, (Whose kernel is H,,).

We now proceed to obtain a system of differential equations whose mono-
dromy action is identical to that defined in Sect. 2. As w follows a path in X, the
flat connection defined in Sect. 2 enables elements of the fibres over different points
w to be identified, using parallel transport. In Sect. 2, it was seen how such an
identification could lead to a representation of B, (and not just P,=m,(X,)). This
was accomplished using the natural identification of Y,, , and Y,,. , which exists
when w’ lies in the orbit of w under the action of S,.

The functions gg of (5.9) are defined for all € &, and give rise, over each
weX,, to elements of the fibre H™(Y, . Xw,m(q) of E,(q). These functions vary
holomorphically with w. By Lemma 5.15, any element of the cohomology can be
represented as [ f], where: f=Y Ag° (5.11)°

ee S

ecee%”},

for some coefficients A,. In this relation, we X, is fixed.

Theorem 5.16. For suitable constant matrices Cj, defined for each distinct pair of
elements j, k of 1,2,...,n, the system of differential equations:

a_A_(E Cie >A=0 (5.12)
5Wj k¢,~wj-—wk

for vector valued functions A on X,, with || components, has, as a solution,
A =(A,) only if the function f defined by (5.11), is such that the associated elements
Lf] of H™(Yy, m> Xw,m(Q)) define a flat section of the cohomology, with respect to the
flat connection induced by that of Sect. 2 on homology.
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Proof. The second half of Lemma 5.14 states that there exists constants C{(B, «)
such that: .

o(, -1 _ < (i) g_E_

g (zi—w) = §k§1 Ci(B,2) W— W s

k¥j 0

%8

" ow;

expressed as a linear combination of the expressions on the left-hand side above.

The theorem follows immediately when this is combined with the fact that (5.11)

where the first sum is over all fe . From the definition of g in (5.9) may be

defines a flat section if, and only if, % ~0 with respect to the equivalence relation
“~”0of (5.10). [

J

Theorem 5.16 shows that for any solution A of (5.12), the corresponding
element of cohomology defines a flat section of the vector bundle E™(q). The
dimension of W’/Im(I)) is less than the size of the vectors A in Theorem 5.16. Thus,
the monodromy representation of B, given in the above theorem, is defined on a
vector space, X, of dimension | %2, and is much larger than the representation of
Theorem 5.1.

Choose a fixed point w®e X,. Then (5.12) has |#™| linearly independent
solutions. Let Z denote the subspace of X consisting of those A for which the
corresponding element, [ f] of cohomology vanishes, where f is given by (5.11).
Then the solutions of (5.12) associated with A(w®)e Z are all such that:

AweZ ‘
for all we X, in the orbit of w°, under the action of S, on X,. The monodromy
action obtained from (5.12) thus preserves Z, and the induced action of B, on X/Z

is identical to the monodromy representation obtained on cohomology.
Let Y denote the subspace of X consisting of those A € X for which:

(L{) =y+z,

where f is the associated element of ™ defined by (5.11); y lies in the image of
Im(D)C¥™ under the map g— J' g); and z is a vector whose components
Ye

associated with o € "\ I vanish. In this definition, y and z are vectors with ||
components. This rather elaborate definition is analogous to that of W' C%™ in
Sect. 5.1. Indeed, [ f]e W'/Im(D’) is equivalent to A€ Y.

There is a natural action of S,, on X induced by the action on homology in
Sect. 2, and this preserves the subspaces Z and Y. The space (Y)*/(Z)S»=(Y/Z)5~
has the same dimension as that on which the monodromy action of Theorem 5.1
acts, namely, W’/Im(D’). From the above definitions of Z and Y, it follows that the
monodromy action of Theorem 5.1 is obtained from that given by Theorem 5.16,
by inducing the action of B, on X, onto (Y/Z)* at w=w,,. Since (5.12) ensures that,
for any solution, the associated function f has I f constant in w, for all . € " (see

7

Theorem 5.16), it is clear that the induced monodromy action preserves both Z
and Y.

Lemma 5.17. The subspaces Z and Y of X are independent of w.
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Note also that the action of S,, on X is independent of w; in fact, the matrices
giving the action of 6€S,, on X, in terms of the standard basis, have all their
elements 1, —1, or 0. Thus (Y/Z)% is a constant quotient of a subspace of X. Since
this space is invariant under the flow defined by (5.12), then the induced
monodromy action of B, on (Y/Z)%~ is given by the total monodromy action of a
similar system of differential equations to (5.12). In particular Cj, gives a well
defined action on (Y/Z)5=. We thus deduce:

Corollary 5.18. The representation of Theorem 5.1 obtained by restricting the
monodromy action on cohomology to (W' /Im(D'))>=C H™, can also be obtained as the
monodromy representation associated with the system of equations:

oA (Z Sk )A=0, (5.13)

aWJ Jj¥k Wj—wk

where A is a vector-valued function on X,, with constant matrices ¢

This may be compared with the construction of the representation =, by
Tsuchiya and Kanie; see [TK]. They obtained this representation from the
monodromy representation of B, on a space of n-point functions. This is found to
be given by the system of linear differential equations:

<x_a__ 3 >f(zl,...,z,,)=0, (5.14)

0z; 512,—z,
k*i

where f is a holomorphic vector valued function X,—V and €; denote
polarisations of a Casimir operator. Let V; denote a space on which the spin j

representation of sI, acts. Then we let ¥ denote the sl,-invariant part of V3;®V,,
while t=n/2—m. Let H, E, F denote the standard generators of sl,, and:

Q =3n(H)ymy(H) + nE)yny(F) + n(F)my(E),

where ; denotes the action of s1, on the i factor in V. The representation obtained
from (5.14) is found to factor through H,(g), where q=exp(2ri/x). It may be
verified that the dimension of V is:

(=) ~(ap i)
n2—t) \n2—t—1)

which is therefore identical with that of V™. There are thus two similar systems of
differential equations, both giving rise to the same representation of B,, namely,
that representation, n, , which factors through H,(g) and is associated with the
Young diagram 4,,. Such a system of differential equations is equivalent to the
condition of flatness of a section of a vector bundle over X, on which there is a flat
connection specified by the 1-form:

N
Vie)=— Zl 0,,®e,. (5.15)
=
Here N=dimV and (e,) is a basis for V; @=(w,,) is the matrix valued 1-form

defined by:
o= Z .Q,-Jdln(zi—zj), (5.16)
i<j
the sum being over all i, je{1,2, ...,n} with i <j, while £,; are constant matrices.
Kohno [Ko] has shown the following lemma.
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Lemma 5.19. The monodromy representation 0g of B, associated with the connec-
tion given by (5.15) and (5.16), with the S; matrices small, depends on {€;;}
injectively. That is, if Oq and Oq. are identical then Q=L so long as Q;;, Q;; are
small, in the sense that the maximum entries in Q;; and L;; are all sufficiently close to
zero.

Theorem 5.20. There exists an isomorphism o.: Vo—(W’)* such that:

"7_1“°(ﬂij_%l)=cij°“,

where c;; are the matrices of Corollary 5.18, where m=n/2—t, g=€*"/¢*?),
Proof. The differential equations (5.14) and (5.12) (or at least, the reduced system
(5.13), given by Corollary 5.18) both give rise to representations of B, which factor
through H,(qg). They both correspond to two-row Young diagrams, with n squares
in total, namely 4,, _, and 4, respectively. Thus when m=n/2 —t, the two braid
group representations are isomorphic.

When - o0, k™ '€2;;—0 in the Tsuchiya-Kanie side of the story. On the other
hand, this is associated with g—1 and in this limit the local coefficient system is
trivial. Thus in the proof of Theorem 5.16,

% ¥ dan8s
ow;  i=1z;—w;

J J

The only terms that occur here are thus of the form:

(z4 "“1)—1---(2;'—1 "“i—i)—l(zi_“i)_z(zin %y 1)~1"'(Zm_am)—1 >

0

and such terms are equivalent to 0 under “~” of (5.10). Thus g% ~0Oforallge £
J

and je{1,2,...,n}. Hence C;; =01in (5.12), and so ¢, =0in Corollary 5.18. Since ¢,
are rational functions of g, thus, for sufficiently small g, k= 'Q;, and c;, will both be
small and give rise to the same monodromy representations of B,. By Lemma 5.19,
the matrices k'€ and c;, must therefore be equivalent. []

We conclude this section with a dictionary of the correspondence between
Tsuchiya-Kanie theory and the homology theory defined in Sect. 2, as derived in
Theorem 5.20.

Tsuchiya-Kanie theory Homology theory

t n2—m

Vo (YZym=(W' [Im(D)*m V™
Q;/x Cij

Kk=I1+2 27if(Ing)

Construction of [TK] Theorem 5.1

Equation (5.14) Theorem 5.16

Kohno connection Natural connection on cohomology
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6. Further Remarks

Throughout the last few sections, it has been assumed that g is not a root of unity,
or equivalently, that [ is not an integer. When [ is integral, Tsuchiya and Kanie
showed how introducing an extra system of algebraic relations, in addition to
(5.17), gives rise to irreducible Hecke algebra representations, once again. This
suggests that a similar such construction should exist in terms of the homology
picture. In Sect. 4.3, it was observed that in the special case g=1, the represen-
tation of S, constructed on (W’)5= is larger than the irreducible representation
74, At other roots of unity a similar degeneracy can occur, when the homology
is computed; that is, D’ may not have maximal rank. This is to be compared with
the situation discussed above, at roots of unity, in the theory of Tsuchiya and
Kanie. .

In both approaches to the construction of n, , the Hecke algebra represen-
tation required appears as a sub-representation of a much larger braid group
representation. In Tsuchiya and Kanie’s approach, the natural action of B, on Vl%”
gives the larger space. In the homology approach, the larger representation
appears on the symmetric part of the cohomology (with the dual representation on
the symmetric part of the homology). The dimension of the reduced representation

()=l

and those of the larger representations are 2" and —1—'(n +m—2)...n(n—1),
respectively. m

In Sects. 4.2, 5.3 it was shown how, in certain special cases, a reduced
representation of B, could be constructed from the family of representations with
parameter «, by looking near to « =g~ 2. The representation of B, associated with
generic values of « and g, is irreducible. When a = g~ 2, it is reducible, one part being
the required Hecke algebra representation. There is a similarity here with the
behaviour of the Hecke algebra representations as g varies. Generically 7, is
irreducible. However, when g is a root of unity, this representation may be
reducible, and when it is, the representation constructed by Tsuchiya and Kanie is
a large irreducible piece of it. This leads one to speculate on how such an
irreducible piece may be isolated. Tsuchiya and Kanie do this by adding an extra
system of equations. If the analogy is valid, one would expect that it may be
possible to select the sub-representation out by using a limiting lemma, along the
lines of Theorem 5.11.

As far as the Jones polynomial of links is concerned, ¥, can be expressed as a
combination of the characters y, , evaluated on a braid whose closure is the link
concerned; see [J]. When ¢ is not a root of unity, these characters correspond to
irreducible representations; but when g is a root of unity, it is still these characters,
and not their decompositions into irreducible parts, which play the central role.
Thus although it should be possible to construct, in a natural topological manner,
the irreducible parts of y, , for q a root of unity, this would have no significance as
far as a topological interpretation of ¥, is concerned. However, the generalisations
of the Jones polynomial given in Witten’s theory [Wi] (see also [S1, S2 and S3]) are
in terms of the (smaller) irreducible representations. In the case of the Jones
polynomial, the extra parts of the representations cancel out, and so, we can
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equally well use the larger representation, 7m, , as its irreducible sub-
representation. A topological construction of the Jones polynomial V;, using a
functional description along the lines of Turaev [Tu], but replacing R-matrices
and quantum groups by abelian coefficient systems, will be presented in a another
paper [L2].

The procedure outlined in this paper for constructing n 4, , should be thought of
as an abelianisation of the methods of [TK], in which the Kohno connection has
been replaced by an abelian non-trivial local coefficient system. This should be
compared with the abelianisation procedure employed to investigate Witten’s
description (see [Wi]) of the Jones polynomial using topological quantum field
theory, in the work of Hitchin [H1, H2].
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Note added in proof: Subsequent to [L1], Schechtman and Varchenko [SV] carried out an
analysis of equations of Knizhnik-Zamolodchikov type for general Lie algebras g. In particular,
(5.14) with € replaced by a polarisation of the Casimir operator for g (instead of sl,), was
shown to have solutions which could be expressed by an integral representation, using suitably
twisted functions generalising those of (5.9) in Sect. 5.4. The significance of the special twisting
%(q) given by a=g~2 in Theorem 5.1 (see (2.4)) is then seen to fit into a much more general
picture involving the Cartan matrix of the Lie algebra concerned. The algebraical relations of
Tsuchiya and Kanie referred to in Sect. 6, when translated into the language of twisted functions
are given in [FSV] for the case of general Lie algebras.
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