
commun. Math. Phys. 135,141191 (1990) Communications in
Mathematical

Physics
© Springer-Verlag 1990

Homological Representations of the Hecke Algebra*

R. J. Lawrence**

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Received January 30, 1990; in revised form April 17, 1990

Abstract. In this paper a topological construction of representations of the
series of Hecke algebras, associated with 2-row Young diagrams will be given. This
construction gives the representations in terms of the monodromy representation
obtained from a vector bundle on which there is a natural flat connection. The
fibres of the vector bundle are homology spaces of configuration spaces of points in
C, with a suitable twisted local coefficient system. It is also shown that there is a
close correspondence between this construction and the work of Tsuchiya and
Kanie, who constructed Hecke algebra representations from the monodromy of
n-point functions in a conformal field theory on P1. This work has significance in
relation to the one-variable Jones polynomial, which can be expressed in terms of
characters of the Iwahori-Hecke algebras associated with 2-row Young diagrams;
it gives rise to a topological description of the Jones polynomial, which will be
discussed elsewhere [L2].
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1. Introduction

This paper is derived from [LI], which initiated the study of representations of
Hecke algebras using geometric means. We restrict our attention here to only the
most elementary application of the ideas presented. Representations of the
Iwahori-Hecke algebras Hn(q) are obtained by producing representations of the
braid group Bn, and then showing that they factor through the Hecke algebra.

The braid group, Bn, is approached algebraically using the standard generators
and relations; namely σl9 ...,σn-i with relations:

σiσi+ίσi = σi+ίσiσi+1 for i = l,2, ...,n-2j

σp^api for \i-j\>l. J

The Hecke algebra Hn(q) of type A^l x is given as an algebra by the generators
σ1? ...,σπ_! with relations as above, together with the extra relations:

(σt-ί)(σt + q) = 0

for all i = l,2, ...,n — 1. Note that some authors prefer to define Hn{q) to have a
relation in which the generators σf all satisfy a quadratic relation with roots — 1, q9

in addition to the braid group relations, rather than the above relations where the
roots are 1 and — q. This does not affect the essentials of the representation theory
of the algebra Hn(q); it simply introduces some sign changes.

The geometric approach to Bn is as the fundamental group of the configuration
space, Xn9 of n unordered points in the complex plane, C. A representation of Bn

may thus be obtained from any vector bundle E over the base Xn which is equipped
with a flat connection, as the monodromy representation. In [J], it is seen how link
polynomials may be expressed in terms of characters of the Hecke algebra Hn(q). In
particular, the (one-variable) Jones polynomial can be expressed as a linear
combination of generically irreducible representations of Hn(q) associated with
2-row Young diagrams. The group algebra oϊHn(q) reduces to CSn when q = l9 and
as Wenzl demonstrated explicitly in [We], all irreducible representations of Sn (as
specified by Young diagrams with n boxes) can be deformed to give represen-
tations oϊHn(q) as q moves away from 1. When q is not a root of unity, the resultant
representations are irreducible, and when q is a root of unity, they may be
reducible.

The initial motivation for the work was to better understand the significance of
the Jones polynomial for links [FYHLMO]. This led on to an attempt to
understand those representations of Hn(q) associated with Young diagrams Am

with n squares in two rows, the second row consisting of m squares. Such
representations have also arisen in the context of conformal field theory, see [TK],
where they arose as the monodromy representation of Bn, of a class of n-point
functions. These n-point functions were found to satisfy a system of differential
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equations, from which it was deduced that the monodromy representation
obtained factored through Hn(q). The approach of this paper is to construct a fibre
bundle over:

Xn = {(wi,..., wπ) G Cπ I w1?..., wn are distinct}

whose fibre is the configuration space of m points in a punctured plane. Then there
exists a two-parameter local coefficient system on the fibre, and hence a two-
parameter family of homology groups of the fibre over any point in Xn. There is a
natural flat connection on the vector bundle over Xn whose fibre is given by such
homology groups. This gives rise to a two-parameter family of representations of
Bn. Dually, one also has a two-parameter family of representations of Bn on the
associated cohomology spaces. It is found that when the two parameters α, q satisfy
α = g~2, the resulting representation on cohomology contains as a sub-
representation, the representation of Hn(q) associated with the Young diagram Λm.
It is also found that the sub-representation may be constructed on a subspace
which may be deduced naturally from behaviour when α is varied around q ~ 2, and
q is fixed.

When the cohomology is considered in terms of holomorphic functions with
certain twistings, the flatness of a section of the vector bundle can be expressed by a
system of first order partial differential equations. The comparison with the
methods of Tsuchiya and Kanie gives rise to the prediction of the existence of an
isomorphism between the two systems.

This paper is a shortened version of [LI], containing all the main results.

2. Topological Structure

In this section all the basic spaces necessary to enable the main theorems to be
stated, will be defined. Recall that in Sect. 1, Xn, Xn were defined to be:

Xn = {(wl5..., wn) I {wf} distinct in C} (ordered points),

Xn=XJSn = {{wl5..., wn] I {wj distinct in C} (unordered points).

We shall now construct a fibre bundle over Xn, whose fibre has (complex)
dimension m, where meN is arbitrary, but fixed. For any weXπ, let:

Then Y^ m defines a subset of Xm. In fact, the projection map:

Jfm + n

* n

given by taking the first n points only, of a set of m + n points in C, representing a
point in Xm+n9 has fibre Ywm over the point w e Xn, There is an obvious action of Sm

on YWtfn given by permuting z l 5 ...,zm; this action will be important later in this
section. Over each w e l π 5 a branched covering Ϋψ/> m of Ymt m, or equivalently, a local
coefficient system χw m, will be defined as a function of a finite number of complex
parameters. Now, a local coefficient system on YWt1tv modelled on C, is specified by
a map, π ^ ί ^ J - ^ C * . However, π^XJ is the pure braid group on m strings, and
πi(^,m) is ώe generalisation of this to the complex plane with n points removed
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(namely the points wl5...,wπ). An element of π^Y^J is given by [y] where:

is a collection of m curves in C\{wl9...9wn}9 describing the motions of zl9...,zm.
Using the usual braid notation, we obtain a picture of y like that in Fig. 2.1, as an
element of Bn+m with the last n strands straight, corresponding to wl5..., wn being
fixed z z

Z 1 Z 2 *•• Z m

Fig. 2.1 z, z 2 ••• zm w, w2 .. wn

To make matters more precise at this stage, we will introduce some notation for
particular elements of π ^ l ^ J . Consider only w's for which no two imaginary
parts of Wj's coincide. Since YWt m is unchanged when w e Xn is changed to σ(w) for
any σ e Sn, it may be assumed, without loss of generality, that wl5..., wn are ordered
so that their imaginary parts are increasing. Choose a base point in YWtm, say z°,
such that:

Let βλμ denote the element of π ^ l ^ J given by the curve fixing all z{Φλ, with λ
going round a curve in C which has winding number 1 about μ, in a clockwise
direction. Here, μe{zj+1,..., zm9 wί9..., wn} and λ=zβ where 1 ̂ j^m. The curve
followed by λ, is defined by the statement that it does not cross any of the rays from
points in {z1? ...,f>,..., zn, w1? ...,wΠ}\{μ} in the direction R+. This defines βλtμ

uniquely up to homotopy, as in Fig. 2.2.

curve followed
by λ

Fig. 2.2 J

A
Any such element [y] of n^Y^^) defines an element of Bm+n as mentioned

above. It corresponds to a set of m curves in [0,1] x(C\{wl5...,vvΠ}) given by
{(t9yi(t))\t e[0,l]} for ί=l,2, ...,m. If we draw time, ί, in a vertical direction, we
obtain m oriented curves in R3, connecting m points on the plane £=0 to the
corresponding set of m points on the plane t = 1. This picture may be viewed by
projection onto the vertical plane [0,1] x iR, as indicated in Fig. 2.3. The two-
dimensional diagram so obtained gives, as illustrated in Fig. 2.4, the usual braid
picture for βλμ. In this picture time moves upwards, giving a natural orientation
to the curves.
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Fig. 2.3
[0,1]χ|R

Fig. 2.4

The generalised pure braid group π1(ί^ |Γ>m) is generated by {βχμ\λ=Zp
;e{l,2,...,m} and μe{zJ+l9...9zm9 w 1 ?... 5wj}. These generators satisfy gen-
eralised braid group relations, the details of which we shall not go into here. A one-
dimensional representation of n^Y^^) is given by specifying the images of these
generators:

where qλμ are non-zero complex numbers. There are no relations imposed on qλμ,
as can be seen by noting that:

Π ( Π to-*/*1"'- Π fe-w/ ̂
ϊ=l\j=l Z=l

Π
Z = l

defines an analytic function of zl9..., zm with branch points where zt = Zj or zt = wz.
This function multiplies by qϊμ

ι as λ goes around μ along the curve βλμ. Here {kλμ}
is defined so that:

For any given set of non-zero complex numbers {qλμ} we can therefore define a
local coefficient system χw>m(q) on YWtTn, or equivalently, a branched covering }ζ>m.
We have thus shown the following result:

Lemma 2.1. Given any H = {qχμ} with # λ μeC\{0} for any λ, μ of the form λ=zj9

lύjύm and μ e {zj+ u..., zm, w l 5..., wΠ}, there exists a well defined local coefficient
system χw, w(q) which twists by qjμ around the curve represented by lβλμ] e π ^ T ^ J .
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Let Em(q) be the vector bundle over Xw whose fibre over the point w e Xn is the
vector space:

Since homology is homotopy invariant, there is a natural flat connection on this
vector bundle. The monodromy of this connection gives rise to a representation of
π1(Xn) = Pn on the homology. If [y]ε %(£„), then γ defines a curve [0,1] -+Xn

such that y(0), y(l)eXn differ from each other by a permutation. The natural
connection on EJq) then gives a parallel transport along γ from the fibre over
7(0) to that over y(l). However y(0), γ{ί) differ by a permutation, and thus for
suitable q (see below), we have E y ( p ) m (q)^£ y ( 1 ) ) m (q).

As mentioned earlier in this section, there is a natural action of Sm on Y^^ given
by permuting zl9..., zm. This carries over to an action on Ϋwm so long as the local
coefficient system χw>m(q) is preserved by the action of Sm. In particular, this
requires that q must be such that,

qZiZjis independent of i,;e{l,2,...,m}, for i<j; j

q2iWj is independent of ie{l,2,...,m}, for j = l , 2 , ...,n.J

Going back to the action of Bn, if [y] e π^XJ with y(l) = σ(w0), y(0) = w0, then YΨtm

= yff(W9),w. The local coefficient system χff(wo),m(q) on Yσ{ψfo),m is equivalent to a local
coefficient system χwo,m(σ(q)) on l^0,m, where σ(q) is defined by:

-1^) f o r ^^{w!,...,^,,};
for μ e { z i j . . . 5 Z m } χ A .

Hence if q is such that σ(q)=q, then there is a natural isomorphism between:

Hm(Y^0,m,χW0,m(q)) = Eγi0)tm(q) and Hm(i;(Wo),M,χσ(wo),wt(q)) = ̂ ( i ) , m (q).

Together with the parallel transport, we obtain a map:

Eyi0), m(q)->£y(i), m(q)=£y(o), m(q)

which thus gives rise to an action on Eyi0)iΐn(q). Hence we obtain an action of Bn on
the fibre Ey(0)m(q) so long as:

σ(q) = q VσeSΠ. (2.2)

This requires that qz.Wj is independent of/ e {1,2,..., n} for all ί ε {1,2,..., m}. Hence
we have:

Lemma 2.2. 77*e natural connection on Em(q) induces natural actions ofBn and Sm on
the fibres of Em(q% whenever q satisfies conditions (2.2) and (2.1), respectively. Hence
there is an action of Bn x Sm on the fibres of Em(q), whenever q is of the form:

QZiZj = oc9 qZiWk = q, (2.3)

where i,;e{l,2, ...,m}, fce{l,2, ...,n} and q, α e C * .

When q satisfies (2.2), the^action of Bn on the fibres of Em£q) may be expressed
more simply as follows. Let £m(q) be the vector bundle over Xn whose fibre over a
point [w]eZ Π is the vector space Ewm(q). This is well-defined, so long as we
identify the vector spaces corresponding to σ(w) and w as outlined above. Then the
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natural connection on Em(q) induces a natural connection on Em(q). The two vector
bundles Em(q), Em(q) have identical fibres, but their base spaces differ, being Xn and
Xn, respectively. The action of Bn on the fibres of EJq) is now more simply
expressed as the monodromy action of πί(Xn) = Bn on the fibres of EJq). Since the
fibres of Em(q) and EJq) are identical, the action of Sm on Em(q) naturally identifies
with an action on EJq), so long as q also satisfies (2.1), that is, for q's of the form
(2.3).

We are now in a position to give precise versions of the main theorems. The
local coefficient system χw,m(q) (defined in Lemma 2.1) in which q takes the special
values given by:

QziZj = Q > 1ziWk=<l (2.4)

will be denoted by χw,m(g). Here q refers to all the coefficients qλμ, whereas q
indicates the special value of q given by (2.4). This special local coefficient system
satisfies both the conditions in Lemma 2.2 (that is (2.1) and (2.2)). Thus, by
Lemma 2.2, natural actions of Bn and Sm exist on the fibres of EJq), and,
equivalently on the fibres of l?m(q).

Theorem 2.3. The monodromy action of Bn = π^XJ on the S^invariant part of the
vector bundle EJq) contains, as a quotient, the representation of Bn obtained from
πΛm of HJ^q'1). The remaining component of the monodromy representation has
dimension of order ί/n times that ofπΛm.

The proof of this theorem occupies the next section and Sects. 5.1, 5.2. In
Sect. 5, the local coefficient system is restricted to that of the form (2.4). However,
since it is no more complicated to do so, the results of Sect. 3 will be proved for
arbitrary local coefficient systems χw,m(q) satisfying (2.1) and/or (2.2) as appropri-
ate. As it stands, the extent to which πΛm can be naturally picked out of the larger
monodromy representation on EWtJqfm

9 is not clear. However the monodromy
representation consists almost entirely of πΛτn, and in Sect. 5.3, a construction will
be given which enables the sub-representatϊon to be isolated, at least in certain
cases. For any local coefficient system χw>m(q) for which q satisfies (2.2), there is an
proved in general, but from Theorem 5.13, the proof would be complete if it was
verified that the symmetric part of the derived representation contains nothing
other than πΛm, by, for example, a dimension count.
action of Bn onE^Jq), giving a family of representations of Bn, which contains the
special case in which q is given by (2.4). There is an action of Sm only on the two-
dimensional sub-family obtained from those q of the form (2.4). In Sect. 5.3, a
quotient representation of the special braid group representation is constructed
from the family of braid group representations with neighbouring q's. This
quotient representation will be referred to as the derived representation of the
family. As was mentioned above, there is no action of Sm defined on a general
member of the family; however, the derived representation exists at the special
value of q given by (2.4), and at this value of q, an action of Sm exists.

Conjecture 2.4. The symmetric part of the derived representation of the family of
monodromy representations of Bn on the vector bundles EJq), for q satisfying (2.2), at
the value of q given by (2.4), is πΛm.

This Conjecture is proved in Sect. 4.2 in the special case of m = 2. For general m,
it is shown in Sect. 5.3 (see Theorem 5.13) that the derived representation referred
to above contains the representation πΛm oϊHJίq'1). Conjecture 2.4 has not been
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Another point of view on the construction πΛm is given in Sect. 5.4, where it is
shown that the following result holds (see Corollary 5.18).

Theorem 2.5. The monodromy action defined above is equivalent to that obtained
from a system of differential equations of the form:

for a vector valued function f on Xn, where ctj are constant matrices.

In Sect. 5.4, a comparison is made with the constructions of Tsuchiya and
Kanie [TK] and Kohno [Ko], which also give rise to Hecke algebra represen-
tations. One of the main themes of their methods is the reduction to the study of a
system of differential equations whose form is that given in Theorem 2.5.

In the next section we confine our attention to the homology construction
involved in Theorem 2.3. The action of Bn x Sm on homology is determined by
obtaining the full action on a suitable chain complex. The obvious basis for chains,
in terms of iterated loops, is used, and recurrence relations are obtained from
which matrices for all the actions can, in principle, be computed. The homology
space is also identified with the kernel of a certain map on the space of chains, the
matrix for which can also be determined from the recursion relations. The rest of
the proof of Theorem 2.3 is outlined in Sect. 5, all the main steps being carried
out explicitly for the special case of m = 2, in Sect. 4.2.

To prove Theorem 2.3, a concrete basis for a subspace of cohomology is
constructed, in Sect. 5.1, and the actions of Bn and Sm on this subspace are
computed in Sect. 5.2. It is found that it is easier to work in the dual system, in
terms of cohomology, rather than using homology. The action of Bn on
cohomology is dual to that on homology, and Theorem 2.3 is equivalent on
cohomology to stating that a sub-representation of the monodromy represen-
tation of Bn on cohomology, factors through Hn(q) (rather than Hj^q'1) as in
Theorem 2.3). It turns out that, in terms of a concrete basis for the sub-
representation, the action of Bn is given in a particularly simple form, and it is then
easy to deduce Theorem 2.3.

3. Translation into Algebra

3.1. Construction of Chain Complex

In this sub-section we will construct a concrete chain complex on Y^ m with local
coefficient system χw>m(q). On {zu ...,zm, w1?...,wn} define an ordering so that:

iff i<j; wk<wt iff

for i, j e {1,2,..., m}, k, I e {1,2,..., n}. Choose a base-point z°, as in Sect. 2, at which
3(vl)<3(μ) whenever λ, μe{zx, ...,zm, w1?..., wn} and λ<μ.

For λ < μ, let ocλμ denote the motion in YWt m in which all v + λ, μ are fixed and λ, μ
move so that they transpose while following curves which are such that they do not
wi>...., wM}\{/l, μ}. We suppose that λ, μ swap round by going around each other in
a clockwise direction. We thus have the diagrams found in Fig. 3.1 for ocλμ, as a
motion in the complex plane, and in terms of the braid picture.
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Fig. 3.1

In Sect. 2, the curves βλμ were similarly defined by motions in which λ went
once around μ in a clockwise direction. It is now obvious that βχμ = u\μ.

Definition. For any weXn, and re{l ,2, ...,m}, let:

u...9wn} and αf are all distinct}

of respective orders:

—r),

This definition gives rise to sets &ζ, &ζ

(n+m—l)..

For each α e 5 ^ we will now proceed to define an embedding of the r-dimensional
torus Tr in YWffn. This torus will have zs = z° whenever s>>. The map:

yβ:Γ r->YW ) m, (t»...9tr)\^γjίtl9...9tr)

is then defined by giving the i th component of yβ(ί l5 ...,ίΓ) starting at i = r9 and
working back to f = 1. This definition will be such that, for all i, this zth component
is independent of ί±, , ίf_ l β So we start by setting:

For a particular value of ίr, we have defined the value of the position of zr. The loop
defined by z, as ίf increases from 0 to 1, with ti+l9...9 tr fixed is defined so as to be a
deformation of βz.a.. Suppose that z ί + 1 , ...,zr have already been defined as
functions o f ί l + 1 , ...,tΓ. Then we deform βZiOti continuously as zt+15..., zr move from
zf+!,..., z°r due to the variation of (ti+15...) ίr) from (0,..., 0). The deformed curve is
the curve we use to define the motion of z£. Thus for tl9...,tr small, the values of
(7β(ίi,...,ίr))i a r e given by βzm{t^ for l ^ i ^ r . When tl9...9tr are increased, we
define yβ so as to give a continuous embedding in ί^m.

We can now think of γa as a cycle on l ^ m , whenever gce&ζ. When w moves
along a curve in Xw the torus ye can be continuously deformed in a unique way (up
to homotopy). This deformation corresponds at the level of homology to the
natural connection discussed in Sect. 2. For each α e 5 Ĵ, it is now possible to lift the
torus γv which is embedded in YWttn, to ^ m . When this is done, one obtains an
embedding of [0, l ] r in %m with base-point z°. Thus for any such α, yβ defines a
chain on Ϋnm; elements of 5 ^ will often be loosely identified with chains.

The homology Hm(^> T O,χw m(q)) may be computed in terms of the homology
groups evaluated with a trivial local coefficient system, χ0, by using the following
lemma.
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Lemma3.1. The homology HJ^YwmχWtm(q)) can be computed from a finite
dimensional chain complex 3)r given by:

as the kernel of a suitably defined chain map δ\3)m-+2m-v

Proof Throughout this proof, w e l n will be fixed, and we will abbreviate YWtm to Y
and χw,m(q) to χ.

It is also assumed that {3(wt )} are ordered as in Sect. 2. Consider the space:

r |z ίΦw ifor r<i^m and l £ / £ n } .

Then Yo= Y and for all r = l,2, ...,m—1, there is a fϊbration of Yr-ί over Yr, the
fibres being one-dimensional. The fibre over (z r + 1, ...9zm)eYr is the punctured
plane C\{zr+1, ...,zm, wl5..., ww}. A filtration of this fibre is defined by:

υ = U
>

a>zr

where K([~l) is a union of (n + m—r) cuts emanating from z r + 1, ...,zm, w1?..., wM

and R+ denotes the positive real numbers. (For r = m, the above defines a
filtration of 1^_ lβ) This filtration defines a cell decomposition of the fibre, in which
the d-dimensional cells are the components of K§ ~ί)—K{Jll\ so long as no two z/s
(i<r) have identical imaginary parts. Whenever two or more zf's have identical
imaginary parts, we obtain non-distinct cuts, but it is still possible to define a
filtration of the fibre by suitably deforming these cuts, in such a way that they no
longer intersect.

Since there is a tower:

we can define a filtration, φ = K0QK1Q...QK2m=Y of Y9 in which Kr is of
dimension r, and is obtained as the union of spaces of the form:

over all r0, ...,rw_16{0,1,2} with sum r. Here the product is identified in the
natural way, with a subspace of Y, so that the sth term gives the possible values of
zs in this subspace, once the values of zs+15..., zm are fixed. Now K^—K\Ί x is a
disjoint union of Euclidean spaces for i=l ,2 and any r, and thus so also is
Kr—Kr_v Hence {Kr} may be viewed as providing a cellular decomposition of Y,
in which the r-dimensional cells are given by the components of Kr—Kr_v This
is a slightly unconventional use of the term "cellular decomposition," since 7 is a
non-compact space; however, Kr—Kr_ί is still a disjoint union of Euclidean
spaces.

Since K$ = 0 for all i, so Kr=0 whenever r<m. Also, Km consists of a disjoint
union of products of one-dimensional rays. The components of Km are indexed by
(<xl9..., αm), where α, indexes the components of K{[~ υ . That is the components of
Km are indexed by α e £f™. It is also seen that Km+ x is a disjoint union of products of
the form (3.1), with all but one rf being 1, the remaining one being 2. Hence K w + 1

naturally splits into m parts, the kth part having components indexed by
(αl5 ...,αΛ,..., α j , where α e 5 ^ . This part is given by ^ = 1 +<5ίfc.
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The natural fίbration of Yr-.ί over Yr has fibres homotopic to a wedge of
n + m — r circles. Hence if a tower:

Z=Zo->Z1->...->Zm_1->0,

is defined so that the fibres in the fibration of Z r _ ί over Z r are wedges of n + m—r
circles, for all r, then the homology of Y can be computed from that of Z. It is also
easily seen that Ks+m—Ks+m_1 consists of a union of products of K2

r)—X(ί} and
K^ spaces, with s of the former type in each product. (Once again the product
refers to the subspace of Y with the z's as specified by the factors in each term.)
Hence Ks+m—Ks+m-.ί is homotopic to a wedge of s-torii. In particular, the
components of Ks+m—Ks+m_1 are in 1-1 correspondence with those s-torii
embedded in Z, obtained from one of the components of a slice of Z by fixing one
or more of the coordinates. The cohomology of Y can be computed from the chain
complex:

J ί )
where H* denotes cohomology with compact support. In the case of a compact
manifold this would follow from the standard theorem giving cohomology in
terms of a cell decomposition. Although Y is not compact, its cohomology can still
be computed in this way, with the compactly supported cohomology Hf replacing
ordinary cohomology, since the interesting structure of Y comes from those points
z for which zf is near to z f+1 9..., zm or w1?..., wπ, for each ί. As noted above, 3)r = 0
whenever r<m, while <3tm¥(Sf™y and 2m+1 splits naturally as a product of m
spaces. In the dual picture, it is seen that the required homology is given by the
homology of the chain complex <3r = 3)2m~r. Hence the m-dimensional homology
is given by:

Since 3>m- x naturally splits into a product of m vector spaces, this homology space
is the intersection of the kernels of m maps on 3>m^(£f™}.

Finally, when the local coefficient system is trivial, all the boundary maps d
become trivial, and thus ^ r may be identified with the space ffΓ(l^tW,χ0) of the
theorem. •

In Sect. 3.2, the precise form of δ will be investigated. In particular, the
components of δ corresponding to the decomposition oϊ2m+1 noted above, will be
evaluated. The above analysis in terms of cellular decompositions has a more
geometrical formulation in which each cell in K2m-S is represented by an
embedding of a torus in Y, with base-point z°. Thus a cell in K2m-S is given by a
choice of α/s satisfying (3.2) for / e /, where / is some subset of {1,2,..., m} of order s.
The subset / labels those i for which rt = 1 in (3.1), the rest of the rt

9$ being 2. Such a
choice of (Xj's defines an embedding of Ts in Y9 as given by yβ. When this is lifted to %
it defines an embedding of [0, l] s , and the different components of <5, mentioned
above, are obtained from the s pairs of opposite faces in the boundary of such a
hypercube. The tower given by the spaces Yt will play a central role in all the
calculation of the rest of this section.

Let %>r denote the vector space generated by formal C-combinations of ya for

Then cβr can be identified with a subspace of the space of r-chains on Y.
As noted above ^ m ^ # m , and so Hm(Ywm,χw>m(q)) may be identified with a

subspace of # m .
Before determining the actions of Bn and Sm, it is necessary to first set up some

notation. Whenever α e ί ^ and s<r, we denote by αs, that element of ^ given by
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truncating α, i.e. α s=(α 1 ?..., αs). If αe Sfζ, and s>r, then we shall denote the element
(aιl9...,cιJeS% by α α P + ί ... αs. For any αe5^, the r-torus ya has z r + 1,...,zw

fixed, and a section on which zr+ί is constant looks like yβ, or a deformed version of
it. In future sections we shall often write V αr+1 f°r ?«•*.+1> where it is understood
to mean that sections in which zr+ίis constant are deformed versions of yβ and also
that z r + 1 varies around a loop βgr+ιβr+1-

Under the motions of zr+1,...,zm, wl9...,wn specified by xλμ,βλμ(zr+ί^λ
<μ^wM), the elements of 5̂ J will transform to other chains, which are thus
expressible as linear combinations of elements of 5̂ J. We denote by Afy b^ these
transformations; they will be square matrices of order |5*J|. The action of Sm on the
chains is specified in terms of the action of the generator which interchanges zf and
z i + 1 . This action is denoted by jfl± on the chains yα for αe<S^ with r ^ ϊ + 1.

To obtain the homology, it is necessary to compute the boundary map δ: Θm

->@m-1 This map is specified by {πf o δ: i = 1,2,..., m}, where πf is the projection of
3)m-1 onto that part in which zf is fixed. Then πt © <5 gives rise to a matrix with |<9̂ ?Ί
rows; these matrices are denoted by Djm). The corresponding matrices, for
r=i, ί+1, . . . , m, representing the boundary map on ^ r , with z r+19..., zm fixed will
be denoted by Df°.

The above definition of the 4's means that the action of Bn on the chain space
# m is given by:

Thus the aim of this section is to produce formulae from which A!$Wi+l9 b{$Wi+l9

fui! and D(ίm) can be computed. We note that at zeroth order,

for any λ9 μ. Note also that A^μ is only well defined if the chains at w, and at the
vector obtained from w by transposing λ and μ, can be identified. That is, only if the
local twists q are invariant under a transposition of λ and μ. In the future,

will often be referred to simply as Sf™.

3.2. Form of the Boundaries

The homology is the kernel of the boundary map, ε, on # m . When
corresponding to a basis element of #TO, the ith component of <5(yβ) is given by:

Here we know that δfy^ αf) is the boundary of the torus P in which a section with
z l 5..., zf_ i fixed is given by the loop j8?.α. for αf. Its boundary is thus the difference of
two (i—l)-torii corresponding to α 1" 1 and its deformation when z{ has gone
around βZi<Xi. Thus we obtain:

where this denotes an (ϊ-l)-cycle in which zx is constant at zf. Hence a suitable
matrix for δ is given by:

DP=(C,1Λ-il -lCm

1)-il^1

1)-i|.. l^ 1 ) - i ) . 0.3)
This is a partitioned matrix acting on <ί^>> a n d mapping it to <5^ - 1>. The
corresponding matrices Djr) for i^r^m acting on <5^> are given by:

for i<r^m. (3.4)
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In all cases, the matrices are partitioned according to the values of αr 6 {zr+19..., zm,
W1?...,WM}.

We have now shown how the action of the boundary map on the space of
chains (6m can be computed; it is given byD<m). In the rest of this work, Ό\m) will be
referred to simply as D f. It is given by a diagonal matrix with blocks Dj° down the
diagonal, where the separation into blocks is specified by the values of α ί + 1 9 . . . , αm.
Thus we obtain the lemma:

m

Lemma 3.2. The space f] ker(D f)£#m, w/ιereDf are the matrices D| m ) specified by

(3.3) and (3.4), is in 1-1 correspondence with the homology of ϊ ^ m with the twisted
local coefficient system χw>m(q).

The reason for the non-trivial boundary map is that the local coefficient system
is non-trivial. Thus when yβ is lifted to 5ζ>m it gives rise to an embedded m-cube
[0, l]m-> %m, and there are components in the boundary arising from each pair of
opposite faces; that is from each ίe{l,2, ...,m}. See Fig. 3.2.

Faces Zj = constant

associated with the i t h component
Fig. 3.2 of the boundary

From the definitions of Air\ b{r) matrices, it is possible to derive the relations
given in the lemma below. So as to avoid unnecessary indices, Aφμ and b{pμ have
been abbreviated to Aλμ and bλfl9 where it is always understood that they are
transformations on <ί^> for a common value of r.

Lemma 3.3. The following relations hold between A(r) and b(r) matrices, for all
O^r^m and i, j , k, λe{zr+1,...,zm, wu...,wn}:

(i) AjΦij=bikAjk;
(ii) bφikAjk = Ajkbijbik;

(m)
(iv) Afj^

(v) Ajk commutes with biλ whenever λ<j or λ>k;
(vi) b^Ajφij commutes with biλ whenever j<λ<k;

(vii) bjk commutes with biλ whenever λ<j or λ>k;
(viii) by1bjkbij commutes with biλ whenever j<λ<k;

(ix) bjkbijbik = bijbfcbfr = bikbjkbij.
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Proof, (iv) The matrix Ay represents the action on <5^> given by ay e %(YWf J , and
similarly by corresponds to the action of βy. However,

and so, at first sight, it would seem that by should be given by Ay. However it must
be recalled that the natural connection of Sect. 2 gives rise to a map from chains at
{z?+!,..., z°, wl5..., wn} = aj? to those where i and; have been transposed, induced
from αy. There is a correspondence between the chain spaces obtained by using the
natural identification which exists between the spaces Ywm and Yσ{w),m, for any
σeSn. The matrix Ay is defined to be the composition of the map induced by the
connection with this identification map. The square of the map induced by the
connection here is precisely by. However the composition of the identification
maps:

{chains at a?} «-> {chains at (ij) (aj?)}
and

{chains at (*/)(a°)} <-» {chains at a?)}

which occur in the two applications of Aip leaves a residual factor of qij9 coming
from the fact that overall, i and; have gone round each other once in a clockwise
direction. Here (ij) eSm+n acts on a? in the usual way (see Fig. 3.3), and thus (iv) is
obtained.

multiplication j space of chains<^a>j

Fig. 3.3 aj

It is clear that (vii), (viii), and (ix) follow directly from (i), (ii), (v), and (vi). We are
now left with (i), (ii), (ϋi), (v), (vi). However AtJ and by are defined in terms of the
actions of the braid group, as is illustrated in Figs. 3.4 and 3.5.

zr*1

Fig. 3.4

Fig. 3.5 z»i

Thus we can verify all the relations by checking that the corresponding
equations hold on the braid group. (The extra factors of qi} which may appear, due
to the reason outlined above in the proof of (iv), are identical on either side for all of
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the relations considered, so that we need only consider the maps induced by the
connection.) We obtain Figs. 3,6-3.9 for (i), (ii), (iii), and (iv). Finally (vi) states that
for j<λ<k, biλ commutes with b^A^by. This latter transformation is given by
Fig. 3.10, and the commutativity of this with biλ is given by Fig. 3.11. This
equivalence follows by sliding the twist of i around λ down the diagram until it
comes out at the base. Since the relations can be checked at the braid group level,
they can all be derived algebraically from the braid group relations. However it is
nicer to derive them geometrically! •

Fig. 3.6

Fig. 3.7

Fig. 3.8

3.3. Action of the Braid Group

We are now in a position to derive recursion formulae for A(pμ and b^l in terms of
the matrices {A(χ~1}} and {bfc1*}. Such relations connect the transformation
properties of embedded r-torii with z r + 1 5..., zm and wl5..., wn fixed with those of
embedded (r—l)-torii with zr,..., zm, wl9..., wn fixed. One can think of the space 5^
as equivalent to Sφ, where one replaces {zl9..., zm} by {zl9..., zr}, and {wί9..., wn}
by {zr+ί9...,zm, wl5..., wπ}. Passing from S^ to ά^~x is thus given by thinking of
one of the z's (namely zr) as part of the set of parameters on the base (the w's) rather
than as a parameter on the fibre.
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(v ) i j k λ

Ajk

1

Fig. 3.9

A jk

Fig. 3.10

X

A

X
X _

i k ^ I

j x k
« T '

V

j \ k

i j λ k

Fig. 3.11 i j λ k

Theorem 3.4. The actions of Afy and tify on <5^) a r e given in block form by the
following matrices, in which the blocks are separated by the value of αr e {zr+19..., zm,

}
column

A

1

column

'A

column

ϊ

bμA

A ... A(ί-bj) ... A(ί-bμ)
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and:
column

λ

1

bμb ...

column
j

I

column
μ

1

bμb(l-bμ)

b(l-bλ) ... Hi-bMί-bj) ... b(l-bμ+bλbμ)
b

'b\

where all entries vanish except those given above; bλ=&<ΓA

 1), b = b(l~1), A—A%~ υ .

. μ

λ
Fig. 3.12

Proof. To determine the action of A(pμ and b(pμ on an r-torus yα, for α e ί ^ , we
consider separately the four cases of the different relative positions of αr with
respect to λ and μ. In each case we evaluate the actions of Afy and bψμ on the r-torus
yβΎr where β=<xr~ί e£^"1

9 in terms of the action of the braid group on (r-1)-
iίtoriί.

Case (i): Either ocr>λ9 μ or ocr<λ9 μ.

In this case, under transposition of λ and μ, the loop βZrΛr is unchanged, and
thus yβ transforms to y^ that is:

Similarly one obtains

Case (ii): αr=A.

) = b^"1 )(α r_1 αr).

In this case the transformation given by αλ/ί, βλμ will deform the curve βZrλ as in
Fig. 3.12. To obtain the deformed curve in terms of the basis loops, we cut up the
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image loop under βλμ into three parts; see Fig. 3.13. This gives rise to an image of
the r-torus ys which is:

under b(pμ; and AS{~ X)§ μ under A{pμ. In the notation of the theorem,

\

.AJ

Fig. 3.13

However, by Lemma4.3(ix), bλbμb = bμbbλ, and so (l—bμ

 1bλbμ)b = b(ί—bλ).
This gives the α r=A columns of .4$, &<$ as required in the theorem.

Cases (in), (iv): a r = μ , A < a r < μ.

These cases proceed in a similar way to (i) and (ii) above. The deformed versions
of the loop βZrΛr under the motions ocλμ9 βλμ are shown in Figs. 3.14 and 3.15 in these
two cases. Using Lemma 4.3, the expression so obtained may be reduced to those
given in the theorem.

Fig. 3.14

This completes the four cases required to prove the theorem. •
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Pλμ

Fig. 3.15

Theorem 3.4 can be used to recursively compute the matrices Afy
z r + 1 5U^μ^w π starting from the zeroth order matrices A($ = ί and
Using Theorem 3.4, it is easily seen that:

T\(r)Λ(r)_ A(r-l)T\(rUr Λχμ — Siχμ Ur

D (r)U(r)_U(r-ί)τ\(r)
r °λμ — °λμ Ur

where D<r) is given by (3.3). From (3.4), it may be observed that:

for all
— i

— Qλμ

(3.5)

where A{™μ

 υ and &§J υ denote the matrices obtained when ocλμ, βλμ are applied to
the space of chains < ^ O , where we replace {zl9 ...,zm} by {zl5 .../z^,...,zm}.
These latter matrices thus act on a space spanned by α=(α1 ? ...,^, ...,αm) with
α;ε{zj+1, ...,2:m, wt,..., wΛ}. From (3.5) it can be seen that the matrices A{$, tffi}
given by Theorem 3.4 preserve ker(D^m)).

Since by Lemma 3.2, the homology is given by the intersection of ker(Dr) over
r = l,2, ...,m, thus one may obtain the actions of A{$9 bffl on homology by
restricting to the subspace ker(Dr) at the rth stage of calculation. Under such a
procedure, starting with A(0\ b(0) matrices, we use Theorem 3.4 to obtain the A(1\
fc(1) matrices and then restrict to kerφi). These reduced matrices are then used at
the next stage, being substituted into Theorem 3.4 again. At the end of the
procedure, the matrices obtained give only the actions of A(m) and b{m) matrices on
homology (and not on all chains). In Sect. 4 these procedures will be illustrated in
some simple cases.

3A. Action of the Symmetric Group

As seen in Sect. 2, the symmetric group Sm, so long as q is suitably chosen, has a
natural action on the homology space HJYWtW0 χw,w(q)). This action is specified by
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the action of the generators (i i +1) of Sm. Letjjft. x denote the action on <5^> of the
transposition zf<-»zί+15 where z + 1 ^ r ^ m . By this action we mean the following:
suppose that α e ^ ; this defines an r-torus in Ywm which lifts to an embedding of
an r-dimensional cube in l^>m. Under the transposition zf<-»zi+1, it maps to
another r-dimensional cube in YWtm. However the transformed cube has base-point
(z?, ...,zf_l5 z?+1, zf, ...,z°) and this base-point does not have its imaginary parts
ordered in the natural way. To correspond this with a standard r-chain, it is
necessary to move the base-point to (z?,..., zf_ l 5 zf, zf+15..., z°). When this is done,
the (j-hl)-torus given by α ( i + 1 ) transforms to another (j+l)-torus, given by
j l !+ίV l + 1 ) The whole m-torus ya transforms according to j ^ where:

•• ,(r
i + 1

for r = i+2,..., m; where the blocks are separated by the value of αr. The important
part of the matrix fifl x is given by β X [\ The action on < ^ + x > m a Y be given by a
partitioned matrix in terms of actions on (i— l)-torii of the braid group, in a similar
way to the recursion relations in Theorem 3.4. Using similar techniques to those
used to prove Theorem 3.4, the following theorem may be obtained.

Theorem 3.5. The matrix forβl}} as a partitioned matrix with blocks defined by the
values of αf and α j + 1 is given by:

f,'-i_l ί,'-i(i_ί,'λ)+ί,'A ( f t '- i_i)( i_ί ,y o
0 0 0 ft'"1

0 0 1 0

where A', V, bλ, ft', denote A^~.{\, ftl'.Γ1' ftl'I1* α»<ί &z Ίίl> respectively. Here the
entries correspond to zi+1λ, λλ, μλ and λμ, where λ>μ.

4. Examples

In this section we will discuss the two special cases m=1 and m = 2 in detail. These
correspond to homology in one and two dimensions, respectively. The case m=1
gives rise to the simplest non-trivial braid group representation, namely the Burau
representation. The case m = 2 is the first case in which the action of the symmetric
group is present. At the end of the section, the case in which the local coefficient
system, χw,m(q) is trivial, is also discussed. The examples of this section are
generalised in the next section, where we deal in detail with the case of general m.
All the main points which arise in connection with the general case are illustrated
by the examples discussed here.

4.i. m = l and the Alexander Polynomial

When m=1, we have precisely one zi? so that £f$ is given by {(λ)\λ = wl9...9wπ}.
The chains thus form an w-dimensional space on which the braid group acts. We
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can now apply Theorem 3.4 with r = 1, starting with Af^ — bf^ = 1 and ̂ [\
for all λ9 μe{w l 5 ...,wπ}. This gives rise to the following matrix for Aϋ£}Wi+ι:

= q 1

0

1

1

(4.1)

where the non-trivial 2 x 2 block occurs in the ίth and / + 1 t h rows and columns. By
(3.3), the matrix for D(

1

1) is the 1 x n matrix (q~ί — 1,..., q~* — 1). Lemma 3.2 now
gives the homology H^Y^ l 5 χw> t(q)) as the subset of (€1 given by kerDx. Thus the
homology space can be identified with the subset:

(4.2)

of # i = <ί?
?

w

1>^C11. This subset is clearly preserved by the matrix A$Wi+1 above,
and thus the action of the A{1 ^matrices on homology gives rise to a representation
of Bn on an («—l)-dimensional space. The eigenvalues of the action ofA§}Wi+1 on
%>! are — q'1 and 1 (with multiplicity n—2) and hence the action of Bn on
homology factors through the Hecke algebra Hj^q'1). Its action is known as the
Burau representation, πΛl, and is important in knot theory in the context of the
Alexander polynomial

Suppose that L is a link. By Alexander's Theorem [A12], L can be expressed as
the closure f of some braid γ e Bn, for suitably large n. In this context, the closure of
a braid refers to the link obtained by joining the two sets of n points to each other,
as illustrated in Fig.4.1.

Fig. 4.1

The Alexander polynomial, ΔL, of the link L, can now be defined as a
polynomial in the one variable q by:

L (4.3)
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(see for example [J]). The original definition of ΔL, however, was given in terms of
covering spaces (see [All], [R]), Consider the complement of the link S3\L. There
is a natural map:

[Γ]J—Kthe linking number of Γ and L)

Fig. 4.2

t = 0

where Γ is any closed curve in S3, notjntersecting the link L; and hence there is
defined an infinite cyclic covering S3\L of S3\L. The natural action, T, on S3\L
given by a translation in which each branch of the cover is translated into the next,
induces an action on the first homology, HX(S3\L). This homology is finite
dimensional, and the characteristic polynomial of the induced action, 7 ,̂ is the
Alexander polynomial. This definition of ΔL makes it obvious that ΔL is invariant
under continuous deformations of L, through non-self-intersecting curves.

The braid approach to Δu as given by (4.3), can be considered as corresponding
to an embedding of L in S1 x S2, as opposed to an embedding in S3. The latter
approach (requiring the use of Markov's Theorem [M]) is that used in the above
topological interpretation of ΔL. For, a braid yeBn is represented by a map,
γ: S1 -+Xn, where y(t) e Xn is given by n points {w^ί),..., ww(£)}5 say. The subset of
S1xS2 specified by { fow^l ίeS 1 , ί^i^n}, now gives the link L=f, as
embedded in S1 x S2. Suppose next that Γ is a closed curve in the complement of L,
with base-point (0,z°)eS2. Using the correspondence between Cu{oo} and
the Riemann sphere S2, Γ may be defined by a map:

with Γ(0) = Γ(l)=(0,z°). Such a curve Γ is homotopic, in (S^S2)^ to a
combination of the curves Γ^O^ί^ή) defined up to homotopy by:

(i) for each i=1,2,..., n, 7](ί) Q {0} x S2 for all ί, with the winding number of Γb

considered as embedded in S2^Cu{oo}, around w/0) being <5fj ;
(ii) Γ0(t) = (t9z°).
Thus π^S1 x S2)\L) is generated by the (n + 1) elements associated with Γo,

Γl9...,ΓH. Under the surgery S1 xS2-~>S3, the situation transforms so that Γo

disappears as a non-trivial generator, and πt(S3\L) is generated by n elements, of
similar form to Γl9 ...,Γn. Hence, it is not surprising to find that the characteristic
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polynomial det(T—q x) is related to the local coefficient system on
C\{wi(0),..., wπ(0)} with twistings of q'1 around each wf. This local coefficient
system can now be identified with χw> 1(ήf), as defined by Lemma 2.1 (see Fig. 4.2.).

The action of Bn on ffi(l^f i,χw i(q)) is πΛ9 as noted above, and the precise
relation between the S1 x S2 and S* pictures is given by:

S1 x S2 picture «-• S3 picture

fli(l^,i, Xw,i(q)) involved <-* HX(S3\L) involved
twist χwl(<?)<-> parameter q'1.

The interplay between S1 x S2 and S3 also plays a major role in the dicussion of
both the one-variable and generalised Jones polynomials, in Witten's theory (see
[Wi] and [A]). However, this lies beyond the scope of this paper.

4.2. The Case m = 2 and Symmetrization

When m = 2, the space of chains # 2 has a basis given by {yJaeSf2} where:

&ϊ = {(αi> α2) I «i e {z2, wί9..., wj, α2 e {wl9..., wn}}.

We shall use the following local coefficient system χw>2(q) specified by the three
parameters, qί9 q2, α:

for i e {1,2}, e {1,2,..., n}. It is necessary that gZfWj. is independent of;, for there to
be an action of the braid group Bn on # 2 For arbitrary non-zero values of the
parameters, the definitions of Sect. 2 give rise to a representation of Bn. This is
computed by using Theorem 3.4 and Lemma 3.2. An action of Sm is only present if
^i = ̂ 25 but we shall avoid making this specialisation until later, in order to
illustrate some points that will become relevant in Sect. 5.

Starting from the following matrices for i = 1,2 and wx^λ, λ^wn:

andTheorem 3.4 may be used to obtain the matrices below for

column column

0
1

column
λ + l

q - i

i-W1

1
1
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column

*ffi»a

column
wμ,μ<λ

β ί 1

column

By Lemma 3.2, the homology # 2 ( ^ , 2? Xw, 2(1)) c a n ^e constructed as the subspace
ker(D1)nker(D2) of the space <5^?> of chains. The action of Bn on this subspace can
be obtained by considering the matrix for A%lWλ+ί obtained from Theorem 3.4
using matrices A{1\ b(1) restricted to kerίD^1^. By (3.3), D\ υ is given by the
1 x(n + l) matrix:

(α-^l^Γ1-! βΓ1-!). (4.4)

where the first element corresponds to z2. The actions of 4{J[WA+1, fe^wΛ

 o n ^ e

subspace kerίD^1^ can now be specified by n x n matrices defining the induced
action on the space, {(0,xl9 ...,;<;„)}£<£^> under the projection:

π\: (x09 xl9..., xJ->(0, ̂ i, •., xn)

This projection defines an isomorphism on kerfD^). The matrices obtained for

4£i H l

column

1 ..
1

column

0
1

column
wx+ι

column

I
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All the non-zero elements in b£Wλ occur in either the main diagonal or the λth row.
These matrices may now be substituted into Theorem 3.4, to obtain the matrix

for A^lWΛ+ί. The result obtained is shown in Fig. 4.3 below, in which h denotes
— qϊ ίq2

 1ot~ί. We can now restrict the action to the subspace ker(D2) in order to
obtain the action on homology. The matrix elements given are the only non-zero
elements except for entries of 1 on the main diagonal, corresponding to basis
elements (wλwμ) e Sf2, where λ, μ e {1,2,..., n}\{i, i +1}. Here , k denote elements
of {l,...,ί —1}, {i + 2, ...,n}, respectively. The projection πf naturally gives a
projection <<9̂ >, and, when this causes no confusion, the same notation, π\, will be
used to refer to both.

From (3.3) the matrix for Όψ is specified by: Όψ = (&£>Wl ~ 11 W&n -1), while
its λih row is given by:

Σ (bίX-ί)ro*,Wλ'Wμ= Σ
μ=ί Φ

j> λ

+ Σλ ( ί ί ' α ' Hi Γx -1) (w wj). (4.5)

The subspace ker(D(

2

2)) of φvλwμ) \ 1 ̂  A, μ ̂  n> has codimerision n, and is given by
n relations, one corresponding to each of the rows of D(

2

2) given above. The
projection:

given by mapping (wλwμ) to 0, will be an isomorphism on the restriction ker(D(

2

2))
whenever /z + O. In this case, we can obtain a n n ( n - l ) x φ - l ) matrix for the
action of A$Wi+1? from the induced action on ((wλwμ) \ί^λ,μ^n,λφμ) under the
above projection. The matrix obtained for the action of the generator σt of the
braid group Bn is that given in Fig. 4.4 below, where we have omitted diagonal
entries corresponding to (wλwμ) with Λ,μe{l,2,...,n}\{ΐ,i + l}, λ+μ, which are
all l's.

The eigenvalues of this matrix are 1, —qϊ1, —qϊ1, ±<h1(fo 1 α~ 1 / 2 We can
only proceed further by specialising the values of ql9 q29 α. There is an S2 action on
the homology (and also on the space <<5̂ > of chains) so long as q1 = q2 = q> say and
in this case, the matrix for j 1 2 as obtained from Sect. 3.4 (see Theorem 3.5) is given
by the matrix of Fig. 4.5, as an action on the chain space.

The natural orthogonal projection:

is an isomorphism on kerίD^nker^) for αΦg" 2 , and so there is an n{n — 1)
x n(n — 1) matrix giving the action of j ί 2 on homology, namely (wλwμ)ι->α(wμwλ)

and (wAiwA)h^(wλw/ί) whenever λ>μ. This matrix has eigenvalues ± α 1 / 2 , with
corresponding eigenvectors ocί/2(μλ)±(λμ) for λ>μ. Let us denote by fλμ the
element of homology given by α1/2(μΛ) + (Λμ), for each λ>μ. Then the symmetric
part of homology, under the action of S2 given by;1 2, is spanned by {fλμ\λ>μ}.
From the matrix in Fig. 4.4, for the action of σf on homology, we obtain:
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Theorem 4.1. The action of Bn on the symmetric part of the homology H2(YW,2>
Xw, 2(0)) is given by the matrix of Fig. 4.6 for the action of σt. This holds for all values
of α and q with α + g~2. Here i,j,k are arbitrary with l^j<ί<k^n.

fi+li

fij

fi+lj

fki

Fig. 4.6 fki+i

fi+li fij

< Γ 2 α ~ 1 / 2

0

1

fi+lj

1-q-1

1

fki fki+1

q-\q-ι-ϊ)

0 q~'

i-q-1

On the other hand, for any α, the symmetric part of the space of chains ίf2 is
found to be spanned by:

(4.6)

The subspace <$λμΛχϊ of the span of chains intersects ker(D1)nker(D2) in a space
which is isomorphic to the symmetric part of the homology. However, the map:

is an isomorphism on ker(D1)nker(D2) when q 2Φα. In this case,
(π\°π\)~ί{wλwt) defines the element of <5^) given by some complicated
expression, namely:

for λ>μ

(λμ)+ 1 ~ 5 1

for

(4.7)

In fact it can be seen that the inverse image of <xll2(μλ)+(λμ) under this map is
precisely:

(4 8)

So, in the case αΦ^f"2, when we refer to /AAt = α1/2(μ>;l) + (>lμ) in the homology
H2(Yw,2a^2(Φ\ as identified with ((λμ)\λ, μe{wl9...,wn}9 λ + μ}, we are really
referring to the element given by (4.8).

In the case a = q~2, all of this breaks down, since n\ is no longer an
isomorphism on ker(D(

2

2)). However, inside ker(D1)nker(D2), there is a subspace of
dimension n(n—1)/2 given by712 = α1/2. Unlike the case of aή=q~2 above, there is
no natural basis in terms of which the actions of Bn and S2 on homology can be
given.

If we now switch to the dual picture, then the cohomology is given by
/ < ( f ) , Im(D2)>, where Ή2 is a vector space dual to the space ^ 2 °f chains.
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However, in this dual picture, π\ gives rise to an identification of
with:

Hence, there is a representation of Bn on ^2/<Im(D[)> which preserves Im(Dj)
and depends on the parameters ql9 q2, and α. To simplify the notation, let:

where

ι = ( ί ί ' - I ) Σ (wίwλ) + ̂ 2-
1(^Γ1-l) Σ

AΦt k>i

+ « ί 1 α " 1 ( ί Γ 1 - l ) Σ

Then
W=<(α)|α

is clearly transverse to Vh whenever

Let A(ft) denote the action ofA^~+\9 where AwiU+i ^ a s ^ e m a t r i χ form given in
Fig. 4.3. Then V/Vh can be identified with W whenever ft+0, and so the induced
action, B(ft) of A(ft) on WJ gives the action of σt on the cohomology at oΓ 1

= #i# 2(l —ft); it is given by the inverse of the transpose of the matrix of Fig. 4.4.
Clearly, B(ft) depends smoothly on ft near 0, and we may denote its limit, as ft->0, by
Bo. It may be deduced that B o preserves the subspace Vo of W, while the action of B o

on W/Vo is identical to the restriction of A(0) (i.e. the action of σt on the
cohomology for u = qϊ1q21) to W/Vo Q V/Vo. We call this action the derived action
of the family {A(ft)} at ft = 0; see Sect. 5 for more details. This gives an action of σt

on a space of dimension n(n—1), since dim W=n2, dim Vo = n. The action of Bn now
has two parameters, namely q1 and q2.

There is an action of S 2 on # 2 or H2, only when q^ — q2- In this case,

Vo=( Σ (wίwΛ) + ̂ " 1 Σ M + ί Σ
\λΦi k>i j<ί

lies within the symmetric part of c€2, since the symmetric part of ^ 2 is spanned by:

Wd = fij f o r

Σ K 1 ^ " 1 - ! ) Σ (WfcW Hf* for all i.
Thus J<i k>i

Σ
j<ί

Under the action of qjί2, Ή2 splits into two halves of dimension n(n + ί)/2; and
similarly H2^V/Vh^W splits into two equally sized spaces of dimension
l/2n(n — l). However, Vo is contained in the half with qj\2 = l, and thus the
dimension of the symmetric part of W/Vo is:

It is spanned by {fί7 | i> j} considered as elements of W/Vo, with the n relations:
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The action of σt on this subspace of cohomology is equivalent to an action on a
quotient of homology. Alternatively, this dual action may be expressed as the
action on a subspace of a space dual to {fo | i<j}. This gives the matrix of Fig. 4.6
specialised to oc=q~2, while the subspace concerned is given by the kernel of the
map:

/ y ^ O , . . , ? " 1 1 0).
/ /

It is easily seen that the matrix of Fig. 4.6 preserves this subspace, and hence there
is an induced action of Bn on this subspace. The action of σ{ is given by a matrix of
the same form as Fig. 4.6, except that the first row is replaced by a 1 on the diagonal
and zeroes elsewhere. It is clear that this action on homology factors through
HJiq'1) since the eigenvalues of the matrix representation of the action of σ{ are all
1, ~cf\

We have indicated above how this action may be obtained on either a quotient
space oϊ(H2)

S2 at α = g~2, or as a subspace of the limiting space {H2)
S2 for α->g~2.

The space obtained by either procedure has dimension \n(n— 1)—n=jn(n—3),
and the action obtained factors through HJiq"1). In terms of cohomology, this
implies that a quotient action of that on the limiting space (H2)S2 for a^q~2

factors through Hn{q). Indeed, this quotient action is given by the dual (inverse
transpose) of the matrix above, in which the relations imposed are:

The work of Wenzl [We] showed how, for any Young diagram Λ with n
squares, one could construct an irreducible representation πΛ of Hn(q). These
representations are deformations of the standard irreducible representations of Sn,
as q->ί. Consider the two-row Young diagram, A29 with n — 2 and 2 squares in its
rows, as shown in Fig. 4.7; in each square, the integer indicates the hook length
l(ij) as defined in [J]. By the hook length formula the dimension of the
corresponding irreducible representation of Sn (and thus also that for Hn(q)) is:

n!
=±φ-3).

n-1

2

n-2

1

n-4 1

Fig. 4.7

The representation of Hn(q 1) on the quotient space of the symmetric part of
the cohomology discussed above can now be identified by considering the limiting
action as #->l. This gives a representation of Sn9 and indeed the matrix for the
action of σf on <ffj > is precisely that of the representation of Sn given by
symmetrising the rows of A2; that is, nΛ2®πΛl@πΛo. There are n relations imposed
on the f's, and they transform amongst themselves (in the case q = 1) according to
the natural representation of Sn given by permuting the factors, namely nΛι@πΛo.
Hence the reduced action of Bn on the quotient space is given by πΛr
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Theorem 4.2. There is an action of Bn on the symmetric part of the homology
H2{Yw, 2> Xw,2(9)) for any l°cal coefficient system q specified by two non-zero complex
parameters q and α. When ac = q~2, this action preserves an n-dimensional subspace
of this^n(n—ί)-dimensional space, and the quotient action induced is the irreducible
representation, πΛ2, of the Hecke algebra Hn(q ~ *) associated with the two-row Young
diagram wit n—2 and 2 squares in its rows.

In the dual picture, in terms of cohomology, we also have:

Theorem 4.3. Consider the family of representations of Bn on the quotient of the
chain space Ή2 obtained by dividing out by the boundaries Im(Df), and using the local
coefficient system, χ, specified by q, α, as given in Lemma 2.1 and (23). Then the
derived representation of this family at oc = q~2, is a representation of Bn on a
subspace of the cohomology H2(Y^m,γ). Moreover, the part of the derived
representation invariant under the action of S2 factors through Hn(q), and is the
irreducible representation πΛl.

4.3. Symmetric Group Representations for q = ί

In this section we will discuss the case when q = 1. In this case, the local coefficient
system is trivial. Thus the Af* and b($ matrices are all just 1. Theorem 3.4 allows
one to compute the matrices Aft, bft for arbitrary λ, μ, and r, and it is found that:

while the action of Aft on <5^> has Aft{a)=§ for α, βe&Z, where:

ί α, if <*i*λ,μ

μ if 0Ci = λ

λ if Oίi = μ.

The representation of Bn on homology thus factors through Sn, the action of σ e Sn

on St? being given by:

where βt is obtained from αf by the induced action of σ on {zi+ι,..., zm, w l 5..., wn}.
The character of the representation is thus given by:

where σr is the number of cycles of order r in the disjoint cycle decomposition of σ.
The formulae given in Sect. 3.2 for the matrices D| r ) also simplify greatly. Thus,

from (3.3), it is seen that Dj° = 0 for all i. Hence D[ r ) =0, by (3.4), and so Lemma 3.2
reduces to the trivial statement that the homology HJ^Ywm,χwm(q}) can be
identified with # m . The action of Sm on the space of chains is specified in
Theorem 3.5 in terms of the matrices:

MM J> (4.9)
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where A' = A$~^x and the blocks of the above matrix are associated with the values
zi+ίλ, λλ, μλ, λμ(λ>μ) of the pair α fα ί + 1. The matrix gives the action on <^+ 1>>
and it is extended to give the action on ^TO, by putting blocks of βX J} down the
diagonal.

However, the representation with which we are concerned here, is that on

that is, the subspace of <5^> on which; i ί + 1=id Vz = l,2,...,m—1. By (4.9), the
subspace given by jii+1=id is spanned by:

o

\A'a\
a

for arbitrary a e ά^~1. The action of i4*'~ *\ = A' on 5^~ ι is the natural one, under

which Zj and zi+1 are interchanged. Hence V consists of elements £ (Aa α) of

<5^> such that:
(a) AΛ = Aβ whenever α, β are both vectors of distinct elements, which can be
obtained from each other by exchanging z{ and zi+1 while, at the same time,
interchanging the ith and Ϊ + 1th elements, for some i with l^i<m;
(b) all the A^ are given by well defined linear combinations (which we will not give
here) of those Aa for which α1? ...,αm are all distinct.

This implies that all the AΛ are determined by {Aa \ gc e "Γ}, where ^ is a suitable
subset of Sφ of order (n + m -1).. .(n + ί)n/m!

Example 1. Consider the case of m = 2. Then it is clear that:

will do. The action of Sn here is the natural action, and splits into a direct sum of
representations:
(i) the induced representation coming from the identity on S2xSw_2<SM (of

dimension \n(n — 1))
(ϋ) the representation of Sn induced by the identity action of St x Sn _ 1 < Sn (that is,
the natural n-dimensional representation of Sπ).

Both of these parts split into irreducible components, namely as nΛ2@πΛι φπΛo

and πAί®πΛo. Hence the total representation is τtΛ2φ2πΛίφ2πΛo. Although it still
contains πΛl, it is by no means irreducible! The representation of Sn (or Bn) on the
symmetric part of the homology has character χ(σ)=^σ\σ1 + l)Λ-σ2 for σ'eSn.
This should be compared with χyl2(σ)=^σ1(σ1 —3) + σ2.

Example 2. When m = 3, a suitable set if consists of all α=(α l 5 α2, α3) in Sf*9 of one
of the following forms:

This set has order ^ ( n - l ) ( n - 2 ) + 2 ^n(n-l) + n=|n(n+l)(n + 2)5 and the
representation of Sn so obtained is πΛ3@3πΛ2(B4πΛί®4πΛo. It is possible to prove,
in the general case, the following theorem.
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Theorem 4.4. The monodromy representation of Bn obtained in Theorem 2.3 when
q = l, factors through Sn, and as such, has the direct sum decomposition:

m

ΘoA ^ k ,

m

where Ak= £ ffl}) for k>0 and AO = AV

Note that only two-row Young diagrams enter here. This would not be true if
we expressed the representation of Bn on the whole homology space
#m(̂ ,m>Xw,m(#)) with q = ί (without restricting to the Sm-invariant part), in the
form of a direct sum decomposition.

When q differs from 1, but is nearby, the dimension of the homology is less than
that at q = 1, since the boundaries are non-trivial in such a case. There is thus a
discontinuity in the dimension of the representation obtained at q = ί. Similar
discontinuities exist at other roots of unity, but only a finite number of roots of
unity are affected for a given m. In all cases, however, πΛm occurs with multiplic-
ity 1, and is the major part of the representation.

5. The General Case

In this section we will discuss the theory for general m. In Sects. 5.1,5.2, the proof of
Theorem 2.3 will be completed using methods similar to those used in Sect. 4.2 in
the case of m = 2. We start by constructing the subspace of cohomology in terms of
the dual basis for chains described in Sect. 3.1. The actions of Bn and Sm on this
space are computed using Theorems 3.4, 3.5, in Sect. 5.2. The subspace of co-
homology was defined in terms of a limiting procedure in Sect. 4.2, for the special
case of m = 2, and the result that was used in that case is explained in a general form
in Sect. 5.3. Finally, in Sect. 5.4, there are some remarks on the comparison with
Tsuchiya and Kanie's approach to Hecke algebra representations.

5.1. Construction of a Subspace of Cohomology

The picture we have obtained up until now is that Bn x Sm acts on <̂ m, a space of
chains. This action preserves the subspace ker(D)£#m, where D denotes the
matrix:

For, ker(D)= f] ker(D|m)), and by Lemma 3.2, there is an isomorphism between

this space and the homology, Hm(Yw m, χw,m(q)) (which we shall in future abbreviate
to Hm since the context is clear).

The duality between homology and cohomology which exists via the natural

(α,ω)h-»ω

induces natural actions of Bn and Sm on cohomology. In the dual picture, we have
an action of Bn x Sm on the space %lm dual to the space of chains ^TO, which preserves
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the subspace Im(D')£#m, where D' corresponds to the differential map d, just as D
corresponds to the boundary map δ. The cohomology space Hm is now isomorphic
to #m/Im(D'). To an element, /, of # m one may associate a vector:

The boundary map δ: (€m-^(€m- x gives rise to the differential map d: #m * ->^m,
which is specified by the transpose of the matrix for δ; that is D' = DT.

We wish to define a quotient HJW of homology or equivalently a subspace of
cohomology. This is done by defining a subspace W of # m , the dual to the space of
chains. The situation which we now obtain is embodied in Fig. 5.1. The subspace
W Q # m gives a natural embedding s'. The map r' induced by s' on W'llm{Ό') gives
the required subspace of #m/Im(D')^Hm, as its image. This subspace may be
reached, alternatively, as the image of;, giving W'/Imφ'J where:

is the restriction of D ' : ^ " 1 - ^ 1 " to D ' ^
In the dual picture, W is dual to a quotient ΉJW of the space of chains # m ,

giving a quotient map s. Restricted to ker(D), this gives the map r, whose image is
ker(Ό)/W, the required quotient of homology. Alternatively, one can obtain this
result as a subspace of ^JW, using j ; namely ker(D*) where:

is a quotient of D: * „ - • * „ _ ! .

ker(D)/W ^ — ker(D)

Fig. 5.1 r

\ W>

Now, to define W'Q ̂ m, we use the natural pairing between # m and ̂ m, and put:

W'= [fe^m\ ί / = 0 for all a

where ^J 1 = {(αl5..., αm) | αf e {wl5..., wn} for all /, and αf are all distinct elements}.
From this definition it is clear that ^J1, and thus also W, is trivial when m > n. It
will be seen later in this section that PF/Im(D') is also trivial when m > n/2. Dual to
the basis for # m , indexed by Sφ, there is a basis {(α)|αe«97} for ^ m ; and Wr is
spanned by those (α) associated with α e ̂ i^1.

The action of J5Π on Hm9 given by the matrices A^Wi+ί for the action of the
generator σi9 corresponds in the dual picture to the action of Bn on Hm, given by a
matrix i42$<+1, where:

for all v e Hm, w 6 Hm, where < | > denotes the natural pairing between Hm and Hm.
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Thus the matrix A!^i+ is the transpose of the inverse of A$Wi+l9 giving rise to a
representation of Bn which is the dual of the representation obtained on Hm. Thus
the statement of Theorem 2.3, namely that the action of Bn on HJW is an
irreducible representation of Hn(q~ι) is equivalent to the statement below in terms
of the action on cohomology.

Theorem 5.1. There is a natural action of Bn x Sm on the subspace (W'/lm(D')) of the
cohomology iίm(T^ m,χw ttn(q))and the action of Bn on that part of the space that is
totally symmetric under the action of Sm, factors through the Hecke algebra Hn(q).
Moreover this action is irreducible and corresponds to the Young diagram with two
rows of lengths n—m and m, for m ̂  n/2. When m > n/2, the subspace defined by W is
trivial.

5.2. Actions of Bn and Sm

Theorems 3.4 and 3.5 may be used to compute the actions Bn and Sm on W. Recall
the definitions of 5^, ^ and % in Sect. 3.1. There is an obvious action of the
symmetric group Sm on £Γ™, given by:

σ(α) = (ασ(i)ασ(2) ασ(m)).

Under this action ̂ ~™/Sm ̂  <%C. In this notation, the subspace. W Q %>m of Sect. 5.1 is
given by:

From Theorem 3.4, the following lemma can be deduced.

Lemma 5.2. The actions on bff and A^ on (α) are given by multiplication byql^
and 1 respectively, whenever ae&Z with α^{z l 5 ...,zr,λ,μ} for all i. Here r is an
integer, ί^r^m.

Definition. For any σeSm, define ε(σ)eNu{0} by:

Φ ) = ΣH(σ(ϊ)-σ(j))>

where the sum runs over all pairs (i,j) in {1,2, ...,m} with i<j; and H(x) is the
Heaviside function: ίΛ Γ . Λ

HM-f1 f θ Γ X = 0;

H{X)-\O for x < 0 .

Then ε(σ) denotes the number of pairs of elements of {1,2, ...,m} whose
numerical order is reversed under the action of σ.

Definition. For each α e %, define ft = £ qε{σ) (σ(α)) e W.
σeSr

Lemma 5.3. For all α e ύU£, f™ is preserved by the action of Sm, defined in Sect. 3.1,
on<#m.

Proof. It follows at once from Lemma 5.2 together with Theorem 3.5, that the
action of σ feSm on (α)e^m is given by:

(qjT. ) f o ) = {β" 1 (αi θ|-Λ+iαι α J f o r αι<«ι+i;
" + 1 " I«(α 1...α i_ 1α ί + 1α ί...αj for α f > α ί + 1 ,



176 R. J. Lawrence

where α e ί ^ 1 while αί? α ί + 1 are distinct elements of {w1?..., wn} and a^zuzi+^lj.
The lemma now follows from the definition of f™ when it is noted that ε(σ) satisfies
the following two relations:

ε(σ o (i i +1)) = ε(σ) + sgn(σ(* +1) - σ(ί)); Vσ e Sm? 1 ̂  i ̂  m. Π

Lemma 5.4. 77ιe dimension of the symmetric part of W'QΉ™ is

— r φ - l ) . . . ( n -

Proo/ When # is moved away from 1, dim W cannot increase locally, since the
symmetrised part can be thought of as an intersection of subspaces of # m :

mf] {ve%m\qjii+1v = v}.
i=ι / \

However by Lemma 5.3, {f™\<xe<W™} defines a set of ( ) linearly independent
\mj

elements of the symmetric part. The lemma follows from a dimension count for
q = ί; in this case, the action of Sm on W reduces to the natural action on
given by permuting α/s, so that the symmetrised part has dimension (1/m!)

=(:)•
D

Corollary 5.5. The symmetric part of W'Q%>m under the natural action of Sm given
by Sect: 2 is precisely </J" | α e

In Theorem 5.1, the space on which Bn acts is the symmetric part of the
subspace W'/lm(Όf) of the cohomology space ^m/Im(Dr) = iίm. By the above
Corollary, this space is given by:

where, for ve# m , i'(\) denotes the corresponding element of Hm. To calculate the
monodromy action of Bn on this subspace, we start by evaluating the action of Bn

on the corresponding chains ^m, where α e °IQ, and then determine the relations
which exist between these chains when they are mapped, under ΐ, into the
cohomology space. The first part is given by the following theorem.

Theorem 5.6. The generator σ{ of the braid group Bn acts on <//* | α e ̂ C> £ # m by
the natural monodromy representation, according to:

if
if
otherwise,

where α, denotes α with any entry w{ changed to wi+15 and any entry wi+1 changed to

Recall that the action of Bn on ̂ m is the dual action to that on # m . The action of
the generator σi e Bn on ̂ m is given by A^w.+19 and the dual action is thus given by
(i4^. + 1 )~ l T . Hence the theorem is equivalent to showing that the action of
(A^Wt+y on the subspace of # m spanned by {^ m |α6^} is given by:

i f {^w<+1}n{α1,...,αm} = {wj;
) / * ' i f Kw ι.+ I}n{α1,...,αw} = {wι.+1}; (5.1

otherwise.
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The matrices {A^Wi+x) for i = 1,2,..., n — 1, are given by the recursion formulae of
Theorem 4.4 (Sect. 4.5), and the proof of Theorem 5.6 proceeds by applying
induction on m to prove many intermediate results. To avoid the necessity for
using extra brackets, we shall in future use α to refer to the corresponding element
(α) of # m , as well as an elements Sf™, so long as the context is clear.

Lemma 5.7. Whenever α e %,,

α = l

where α(α) e%/~
1is obtained by removing the ath element from α, to give (α l 5..., αα_ l 5

αα+i, ...,α,).

This lemma may be deduced from the definitions of fl and ε(σ).

Lemma 5.8. Suppose that α l 5 α2 e^ζ are such that <x1 and α2 differ only in the kth

component where they are wi9 wf+1 respectively, some i, k with l^fc^r, ί^i^n—1.
Then b{£ίW.+Jb^ίWi preserves the element (α2) - ^(αj e W.

Proof. For r = 0, the result is trivial. Assume the statement of the lemma holds for
r—1. When k<r, the result follows immediately from the inductive hypothesis
using Theorem 3.4 and Lemma 5.2, since (αj,., (<x2)r φ {vvf, wi+ί, zu..., zr}. The only
case remaining is that when k = r, αx = α wt and α2 = α w f + ί for some α e <^~x. By
Theorem 3.4, since α contains neither wf nor wi+u

Δr+1

Σ
1 < A <

where bx = b^~K

l\ b'x=b';b
{l~l\. By Lemma 5.2 this can be reduced to:

(q 2 -l)α z r + 1 + ( ί - 1 - l - ^ α w1.+g-1α w ί + 1 + ( ί

2 - l ) £ ( l - J )

When &£?+lWi+1 is applied to this vector, using Theorem 3.4 once more, together
with Lemma 5.2, one obtains:

jh-wλ
J

1 < λ <

which reduces to QC'Wi+ί-qgc-wi = ot2-q<xί. This completes the proof of the
lemma. •

We now return to the proof of Theorem 5.6. As remarked above, this is
complete, once (5.1) is verified for all κe%. For r = 1, this follows directly from
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Theorem 3.4 applied at first order. Assume that the above action of A($iWi+ι on
<//1 α 6 % } holds for r - 1 . Suppose §e%.By Lemma 5.7,

Σ
α = 1

(5.2)

Consider the action of A^i+ί on the terms in (5.2) separately. When § does not
contain both wf and w i+1, the required transformation properties of f^ at level r
follow, term by term in (5.2) from Theorem 3.4, Lemma 5.2 and the inductive
assumption. The only case we are left with is that for which β contains both w, and
wi+v Those terms in (5.2) with βa Φ wί5 wi+ί are preserved. Thus, to show that β is
preserved, it is only necessary to show that the sum of the two terms in (5.2)
corresponding to α's such that βa-wi9 w ί+1, is preserved by A^t+1. Since §e%
then βs=wi+1 and βs+ί = wf for some s. Thus, it is only necessary to show that
A%i+ί preserves:

where α1? α2 satisfy the conditions of Lemma 5.8. Since {βu..., /?s_l5 jβs+2, ...,j8r}
does not contain either wt or w ί + 1, we deduce from Theorem 3.4, that:

?r1) ^+i}+
by the inductive hypothesis. (In the above we have used the simplified notation in
which A=A%^lι9 bλ = b{^1\) Applying Lemma 5.2, we can reduce this to the
form:

Lemma5.8

the last step again being a consequence of the inductive hypothesis. •

The relations existing between the images of </J" | αe^J") in Hm are given by
combinations of the f™ which lie in Im(D'). However, Im(Df) can be factored out of
the space of chains # m by setting the component of (α) to zero for all α e S^ with αf

=zi+ί. This is possible for Ϊ = 1,2, ...,m — 1, so that:

* ^ + i for ι = l,2,...,m-l>.

Hence the only part of Im(Dr) which imposes relations on {/(^m) | αeΐζ"}
from Im(D^). It can be deduced from Theorem 3.4, using Lemma 5.7, 5.2, that the
following lemma holds.

Lemma 5.9. Suppose gce%. Then in W we have

iΦαk 's

where st is such that αs. _ x > i > ocs. and st e {1,2,..., r}.

This shows, together with Lemma 5.2, that:
1)= Σ (q-1-i)U?-1 *d+ Σ Σ UZ».lt *>.Xί-J(q-1-i)

ίΦαj J = l ί + αk's
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Using Lemma 5.7, it is seen that the relations on the subset f{W) = {j\f™) | α 6
of Hm are given by:

Σ (5.3)

for all α e ̂  ί, using the usual notation for st. As was shown in Theorem 5.6, if we
d e f m e Γ g,= Σ i^e«- (5.4)

\ then under σ^B^ {gβ} transforms according to:for

ft i f {^^+ 1}n{ a i,..,am} = {wi+1};

otherwise,

since each term in (5.4) transforms in this way.

Definition. Vm = ({j'{f™)\aeqC}>QHm.

The action of σt on Vm, as defined in Sect. 2, is the quotient of an action which
factors through the Hecke algebra Hn(q), as is given in Theorem 5.6. Relations (5.3)
shows that this quotient is by another Hecke algebra representation, in which m is
replaced by m —1. The dimension of Vm is:

n

m-ίj9

since there are |^Γ x | relations satisfied by the spanning set {f{f™) \ α 6 ̂ } of Vm

(see (5.3)). The hook length formula [J] gives the dimension of the Hecke algebra
representation πΛm, where Λm is the two-row Young diagram with rows of length
n—m and m, as:

n - m + 1

m

(n-m + 1)..
1

m!
1n\

= {mJ-
= dimFιr

.(n-2m + :

-l)...(n-ι

•U.)

n - 2 m + 2

1

>)(n-2m)...l. m!

M + 2 ( n - 2 m + l )

n - 2m 1

Fig. 5.2

The Hecke algebra representation given in Theorem 5.6 corresponds to that
obtained by symmetrising along the rows in Λm, but not anti-symmetrising down
the columns. As in the case of the symmetric group Sπ, such a representation of the
Hecke algebra has character:
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where χΛ. is the character of the irreducible representation oϊHn(q) corresponding
to the Young diagram Λt. However Vm is the quotient of (J(J?)\cte<%™y by
( g j α e ^ " 1 ) , and the action of Bn on <gα> also factors through Hn(q), with
character χΛm_ί + . . . + XA0- The character of the action of Bn on Vm is thus:

\XΛm + + XΛ0) ~\XΛm- i + + XΛ0)
 = XΛm

Going back to WenzΓs definition of the representation πΛm, it is easy to see that
the action on Vm oϊBn is precisely that of πΛm, and the basis that ^Q supplies at the
level of chains, is a natural basis for this action. Hence Theorem 5.1 is
proved. •

5.3. Selection of Subspace by Limiting Procedure

In this section we shall discuss a procedure by which a subrepresentation may be
obtained from a suitable family of quotient represenations. The subrepresen-
tation obtained will be called the derived representation of the family. This
technique was used in Sect. 4.2 to pick out the representation πΛ2 oϊHn(q) from the
family of actions of Bn on cohomology with parameters q and α, where q is fixed
and α is varied around q~2.

Suppose M is a smooth manifold and V is a vector space. Let Grass(n, V)
denote the set of all subspaces of V of dimension n. The family of quotient actions is
given by a map A: M->End(F) together with a family of subspaces of V preserved
by A, specified by / : M-»Grass(w, V). This family is parametrised by points on M,
and we wish to construct an action on a subspace of V/f(x0), where x0 e M is a
chosen point.

Definition. A map / : M->Grass(n, V) will be said to be non-degenerate at a point
xeM, if the derivative dfx: 7^M-»7}(x)Grass(n, V), when considered as a map:

Dfx:TxM®f(x)^V/f(x)
has maximal rank.

The simplest case of a limiting lemma occurs with a one-parameter family of
quotient actions A(h) on V preserving VhQ V. Suppose that Wis chosen so that for
all sufficiently small δ:
(i) W, Vh are transverse in V for 0 < \h\ < δ, and W is a maximal space satisfying this

condition;
(ii) V0QWQV.

Then we have the following lemma.

Lemma 5.10. Assume that A(h), Vh,W,V are defined as described above; while {Vh} is
non-degenerate at h = 0. Let B(h) be the induced action of A(h) on W= V/Vh, for
0<\h\<δ and assume that the limit B o = limB(/z) exists. Then:

Λ->0

(a) B o preserves Vo;
(b) A(0) preserves W;
(c) the quotient action of B o on W/Vo, and the subaction of A(0) on W/Vo Q V/Vo are
identical.

We will refer to the action of B o on W/Vo as the derived action of the family
{A(/ί)} at h = 0. By part (c) of the above lemma, it is identical to the sub-action of
A(0) on W/V0QV/V0. As was observed during the proof of Lemma 5.10, the
existence of the limit B o is equivalent to (b) in that lemma. This result may be
generalised to multi-parameter families of linear transformations.
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Theorem 5.11. Suppose that A:M-»End(F) is a smooth family of linear transfor-
mations on V, and that

/:M->Grass(w,F)

defines a corresponding smooth family of subspaces of V which are preserved by A.
That is, A(x)f(x)Qf(x). Assume that f is non-degenerate at xoeM, and WQV is a
subspace such that:

(i) f(xo)QW9A(xo) preserves W;
(ii) W/f(x0) is transverse to lm(DfXo);

(iii) W is maximal satisfying (ii).
Then the family of actions A(y) (for yeM\{x0}) on the quotients V/f(y) defines
a derived action B o on W/f(x0). Furthermore, this action can be obtained in either of
the following ways:
(a) the restriction of the quotient action of A(x0) on V/f(x0) to W/f(x0);
(b) the quotient of a limiting action on W.

Proof The main idea of the proof is to break the family up so as to consider only a
one-dimensional variation at any one time; Lemma 5.10 may then be applied
repeatedly. Suppose xl9...9xk are local coordinates on M near x0. Define a
sequence of spaces Wt Q V for i = 0,1,..., k as follows. For each i, Wt depends on the
parameters xi+1,...,xk, and satisfies the conditions:,
(α) W^^, ...,xk)/f(0,...,09xi,...9xk)^Wi(xi+u...,xk) for XjφO sufficiently
small;
(β) /(0, ...50,0, xi+ί,...,xk)QW£xi+ί,...9xk).
We start with the initial space W0=V, and then Wk=W without loss of generality.

At each stage, we suppose that {A(x)} has induced an action:

B(ί_ ^(x,,..., xk) 6 End(P^_ &„ ..., xk))

preserving the subspace /(0,...,0, xb...,xk\ where for i = ί, B ( 0 ) = A. By Lem-
ma 5.10, this induces an action B ( i )(x i + 1, ...,xfc) on Wi{xi+ί,...,xk\ where
xi+l9...9xk are considered fixed and xt replaces the parameter h. This action
corresponds to that of B o on W in Lemma 5.10. By Lemma 5.10(a), the limiting
action B ( ί )(x i + 1, ...,xfe) preserves the subspace:

/(0,..., 0, *„ ..., xk) Q WiXi+19..., xk).

To sum up, we have here applied Lemma 5.10, with:

The spaces Wt can be chosen to be independent of xi+ί,...,xk for sufficiently
small |x |Φ0, and thus, at the feth stage, we observe that B(k)eΈnd(Wk) preserves
/(0,..., 0) Q Wk. Thus in the notation of the theorem, W=Wk and B o is the quotient
action of B(fc) on W/f(x0). By applying part (c) of Lemnja 5.10 at each stage, it may
be seen that B o can also be obtained as the reduced action of A(x0) on the subspace
W/f(xo)Q V/f(x0). This completes the proof of the theorem. Π
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This theorem should be thought of as involving the transposition of the
operations of dividing out invariant spaces, and taking a limit. Thus B(fc) should
be considered as being obtained by first dividing out the invariant space f(x)
from the action of A(x) on V, and then taking the limit x^x0. If instead we take
the limit x-+x0 first, we obtain an action of A(x0) on V fixing f(x0), and dividing
by this invariant space gives an action on V/f(x0). The theorem states that one
obtains identical actions on the reduced space W/f(x0), namely the derived
action, if one takes either
(i) a quotient of the action obtained by first dividing out invariant spaces and
then taking the limit; or
(ii) a restriction of the action obtained by taking the limit first.
The space W/f(x0) is isomorphic to F/<Im(D/Xo), /(xo)>> a n d s o should be thought
of as being constructed from V by removing the subspace spanned by the first
order variation of vectors in the subspaces f(x) with x close to x0. That is, if

x:(—ε,ε)-»M and v:(—ε,ε)-*F

while γ(t)ef(x(ή) Vί and x(0)=xo, then d\/dt\t=0 lies in (Im(DfXo),f(xo)). Indeed,
the span of all such vectors v'(0) is precisely the subspace (lm(DfXQ\ /(xo)> of V.

The monodromy representation of Bn defined in Sect. 2 is well defined for any
local coefficient system χw,m(q), where q satisfies (2.1). That is, for any non-zero
complex numbers q^a^ {ii^ij^m, i<j), a monodromy representation of Bn

comes from q defined by:
qZiZj = Kij, 4ziWk = <li f o r /c = l , 2 , . . . , n .

There is an action of Sm, on the corresponding cohomology space, whenever (2.2) is
also satisfied; that is when αfj , q{ are independent of i, j . Theorem 5.11 can now be
applied to the situation where:

In the above xeM refers to (αίm)eCm~* with qt{i = 1,2,...,m) and αo{l ^i<
fixed. Here, the family A(x) used is given by the induced action of σ { eβ B on the
quotient V of (βm\ that is, A{^~+\, where all the boundaries except those given in
Im(D^) have been divided out. The point xoeM is given by <Xij=qΓ1<lj'1>

Theorem 5.11 now gives a derived action of Bn on the space W/f{xo)QHm,
depending on the m parameters ql9..., qm. There is an action of Sm on ̂ m (and thus
also on Hm) only when q^φli. In this case, the action:

f
defines a symmetriser:

R:Hm^H

j σ(y).

Thus lm(R) consists of that part of the cohomology Hm invariant under the action
of the symmetric group, Sm. The best way to construct the symmetric part of the
reduced space W/f(x0), is as a subset of Im(JR), transverse to Im(JR °DfXo). Here, we
are using the following maps:
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DfXo:

RoDfX0:TXoM®f(x0)^Hm.

Of course in order to apply Theorem 5.11, it is necessary to check all the conditions
of that theorem. For generic q, DfXo has maximal rank, as can be verified by using
the recursion relations of Sect. 3, together with q close to 1, but not equal to 1. To
do this, it is necessary to identify V with a suitable subspace of # m , and then to
investigate the action of D^ on this space. Although W needs to be introduced in
Theorem 5.11, and this gives rise to an arbitrary element in the construction, the
resultant derived braid group action obtained, is natural, since it can be expressed
in terms of the action on the quotient F/</(x0), DfXo}. We now make the following
conjecture:

Conjecture 5.12. Consider the family of representations of Bn on the cohomology
with local coefficient system given by:

(for 1 ̂ Ϊ , 7^m, 1 ̂ k^n), and parametrised by {αo }. The symmetric part of the
derived representation of this family at ocij=q~2 factors through the Hecke algebra
Hn(q\ giving the representation πΛm.

In the case m = 2, this conjecture has been proved in Sect. 4.2. In the general
case, it is easily seen that Vm is a subspace of the cohomology Hm such that:
(a) Sm preserves Fm; i.e. Vm is contained in Im(.R);
(b) Vm is invariant under the action of Bn;
(c) for generic q, Im(DfXo) is transverse to Vm.
The last result is obtained by considering q close to 1, and using the basis for the
space of chains, defined in Sect. 3. Since all the matrices involved depend on q in an
analytic way (indeed, they are polynomials in q and q~x\ it is possible to infer
results for generic q from those which hold for all gφ 1, sufficiently close to 1. A
comparison of (a), (b), and (c) with the conditions of Theorem 5.11 shows that the
derived action can be obtained on a space containing Vm; that is, W can be chosen
so that W/f{x0) 2 Vm, while W satisfies the conditions (iHiϋ) of the theorem. By the
remark above, the derived action is independent of W, and thus contains the action
on Vm. Since Vm is also preserved under the action of Sm, thus the action referred to
in Conjecture 5.12 contains that of Bn on Vm. By Theorem 5.1, we now obtain the
following result.

Theorem 5.13. The symmetric part of the derived action of Conjecture 5.12 contains
πΛm for all m and generic q

All that is necessary to obtain a proof of Conjecture 5.12 is to show that there is
no other part to the totally symmetric piece of the derived representation. A
dimension count would suffice for this; however, dim Im(# o DfXQ) is not simple to
compute!

5.4. Comparison with Tsuchiya-Kanie Theory

In Sect. 2, natural actions of Bn and Sm on the homology space Hm(Ywm, χw,m(q))
were defined. As mentioned in Sect. 5, there is naturally defined a dual action of
Bn x Sm on the cohomology space #m(Ywm, χw,m(q)). To obtain useful information
from this point of view, it is necessary to express this cohomology space in terms of
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functions. Since Ywm is the complement of a complex algebraic hypersurface in Cm,
it is a Stein manifold, and thus the cohomology can be calculated as the
cohomology of the complex of holomorphic differentials. This result also holds
when an abelian local coefficient system is introduced. Thus i f w (l^ m , χw>m(q))
(abbreviated to Hm) can be computed in terms of the space:

& = {f: Yv,m-*C\f is holomorphic and twists according to χw,m(q)}

of holomorphic functions / for which /(y(l))=(χwm(q))(y) /(y(O)) for all
M e π ^ J . Hence:

(5.5)

By a theorem of Grothendieck (see [ABG, G]), this cohomology can be
computed as the cohomology of algebraic differential forms. Let g(λ, μ) denote the
function of z l 5 ...,zm given by:

tn n \ / HI \

II (zi — Wj) J l l 1 1 \ z i — z k ) 1> V0)
i=l j=l / \i,fc= 1 /

where λ=(λik) and μ = (μij ). Any function feΘ can always be written as:

f=g'g°, (5.7)

where g° is the function g(λ,μ) with λik = a and μίJ =fc for all i, j , k; and g is a
holomorphic function Ywm-+C. Here b, a are such that e2πib = q, β2πία = α, so that
a=—2bin the situation considered in Theorem 2.3. The space 0lQΘ,oί algebraic
differential forms, in the case in which the local coefficient system is non-trivial, is
given by:

{gg° I g is a finite linear combination of g(λ, μ), where {λik}

and {μi3) are all integers}. (5.8)

Any element α of ¥™ defines:
/ m \

(5.9)

Lemma 5.14. Suppose that f is a function of the form g(—a, — b ) e ^ , where {aik}
and {bij} differ from a and b by integers only. For α e &*™, define f^ by an equation
similar to (5.9) in which g° is replaced by f Then, up to the equivalence of (5.10),
Λ( zχ~λ)~ 1 can be expressed as a combination of f^s, where w l5..., wn are thought
of as fixed and λe{zx+l9...,zm, w l5 ...,wΠ}. Furthermore, the coefficients of fg in
fj[zx—wj)"x can be expressed as constant linear combinations of (wj—wt)"1 over Γs
not equal to j . Here ί^x^m.

This lemma may be proved by inductive techniques. Just as for each α 6 Sf™,
the chain yβ was defined in Sect. 3.1, with {yjαe^™} providing a spanning set
for # m , and ultimately for the homology Hm, similarly we have the following
result for cohomology.

Lemma 5.15. The subset {g£ | α e Sfζ} of 0t, when projected onto the cohomology H">,
provides a spanning set.
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Proof By Grothendieck's Theorem, Hm is the cohomology of the complex of
differential forms based on the subset 01 of Θ defined in (5.8). It is thus given by a
similar expression to (5.5), in which Θ has been replaced by M. To verify the lemma
it is thus sufficient to show that the function defined by (5.7), with g=g(λ, μ) (where
{λik \l^i^k^n}, {μij | 1 ̂  i: ̂  m, 1 ̂ j ^ ή] are subsets of the integers) is equivalent
to a combination of yβ's with αe^" 1 , up to the equivalence " ~ " in which:

J-~0 whenever feΛ. (5.10)

This result is obtained by repeated application of Lemma 5.14. At each stage, {aik}
and {bij} differ from a and b, by integer values, and the lemma is used to reduce gg°
[where g is defined in (5.7)] to a combination of similar functions,

hg°
ί = l

where h is given by g(λ, μ) with each of λik, μυ replaced by smaller integers (at
least, integers no larger than λik, μj, respectively).

From the last two lemmas, it is apparent that the action of the braid group Bn

on cohomology can be computed from its action on {gl\ae£f™}. Just as the
homology can be embedded in <{yβ | aeSφ}}', similarly, in the cohomology Hm,
{g° I α e Sf™} is not a linearly independent set, although it does span Hm. Since Hm

and Hm are dual, dimίίm = dimiίm and thus the number of relations that exist
between {[g£]} is identical to the dimension of the image of the boundary map
δ:Vm-+Vm-1 (whose kernel is Hm).

We now proceed to obtain a system of differential equations whose mono-
dromy action is identical to that defined in Sect. 2. As w follows a path in Xn, the
flat connection defined in Sect. 2 enables elements of the fibres over different points
w to be identified, using parallel transport. In Sect. 2, it was seen how such an
identification could lead to a representation of Bn (and not just Pπ = π1(Xπ)). This
was accomplished using the natural identification of 7 w m and Y^>m which exists
when w' lies in the orbit of w under the action of Sn.

The functions g£ of (5.9) are defined for all α e £f™9 and give rise, over each
w e l n ) to elements of the fibre Hm(Y^ m,χwm(q)) of £m(q). These functions vary
holomorphically with w. By Lemma 5.15, any element of the cohomology can be
represented as [/], where: f= Y Ag° (511)

for some coefficients Av In this relation, w e l n is fixed.

Theorem 5.16. For suitable constant matrices Cjk, defined for each distinct pair of
elements j , k of 1,2, ...,n, the system of differential equations:

for vector valued functions A on Xw with \£f™\ components, has, as a solution,
A = (Λa) only if the function f defined by (5.11), is such that the associated elements
[/] of i f m (^ m , χw,m(q)) define a flat section of the cohomology, with respect to the
flat connection induced by that of Sect. 2 on homology.
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Proof. The second half of Lemma 5.14 states that there exists constants C$(β, α)
such that:

where the first sum is over all § e £φ. From the definition of g£ in (5.9), -r-^- may be
j

expressed as a linear combination of the expressions on the left-hand side above.

The theorem follows immediately when this is combined with the fact that (5.11)

defines a flat section if, and only if, - — ~ 0 with respect to the equivalence relation

" - " o f (5.10). Π

Theorem 5.16 shows that for any solution A of (5.12), the corresponding
element of cohomology defines a flat section of the vector bundle Em(q). The
dimension of W7Im(D') is less than the size of the vectors A in Theorem 5.16. Thus,
the monodromy representation of Bn given in the above theorem, is defined on a
vector space, X, of dimension \S^\9 and is much larger than the representation of
Theorem 5.1.

Choose a fixed point w°eXn. Then (5.12) has \Sφ\ linearly independent
solutions. Let Z denote the subspace of X consisting of those A for which the
corresponding element, [/] of cohomology vanishes, where / is given by (5.11).
Then the solutions of (5.12) associated with A(w°)eZ are all such that:

A(w)eZ

for all w e l n in the orbit of w°, under the action of Sn on Xn. The monodromy
action obtained from (5.12) thus preserves Z, and the induced action of Bn on X/Z
is identical to the monodromy representation obtained on cohomology.

Let Y denote the subspace of X consisting of those AeX for which:

where / is the associated element of # m defined by (5.11); y lies in the image of
Im(D')£#m under the map g^ίί g\ and z is a vector whose components

associated with α e £f™\2Γ™ vanish. In this definition, y and z are vectors with \£f™\
components. This rather elaborate definition is analogous to that of W'Q%lm in
Sect. 5.1. Indeed, [/] e W'βm{Df) is equivalent to Λe Y

There is a natural action of Sm on X induced by the action on homology in
Sect. 2, and this preserves the subspaces Z and Y The space (Y)Sm/(Z)Sm^(Y/Z)Sm

has the same dimension as that on which the monodromy action of Theorem 5.1
acts, namely, W'fim(Όf). From the above definitions of Z and Y, it follows that the
monodromy action of Theorem 5.1 is obtained from that given by Theorem 5.16,
by inducing the action of Bn on X, onto (Y/Z)Sm at w = w0. Since (5.12) ensures that,
for any solution, the associated function / has f / constant in w, for all α e £φ (see

Theorem 5.16), it is clear that the induced monodromy action preserves both Z
and Y

Lemma 5.17. The subspaces Z and Y of X are independent of w.
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Note also that the action of Sm on X is independent of w; in fact, the matrices
giving the action of σeSm on X, in terms of the standard basis, have all their
elements 1, — 1, or 0. Thus {Y/Z)Sm is a constant quotient of a subspace of X. Since
this space is invariant under the flow defined by (5.12), then the induced
monodromy action of Bn on (Y/Z)Sm is given by the total monodromy action of a
similar system of differential equations to (5.12). In particular Cjk gives a well
defined action on (Y/Z)Sm. We thus deduce:

Corollary 5.18. The representation of Theorem 5.1 obtained by restricting the
monodromy action on cohomology to (Wf/Im(Ό'))SmQHm, can also be obtained as the
monodromy representation associated with the system of equations:

0 , (5.13)
Wj—wkj

where A is a vector-valued function on Xn, with constant matrices cjk.

This may be compared with the construction of the representation πΛm by
Tsuchiya and Kanie; see [TK]. They obtained this representation from the
monodromy representation of Bn on a space of n-point functions. This is found to
be given by the system of linear differential equations:

| r - Σ -%W...,zπ) = 0, (5.14)
fcΦi

where f is a holomorphic vector valued function Xn-+V and ΩiΛ denote
polarisations of a Casimir operator. Let Vj denote a space on which the spin j
representation of sl2 acts. Then we let V denote the sI2-invariant part of V®%® Vt,
while £ = w/2—m. Let if, E, F denote the standard generators of sl2, and:

Slik=\πiH)πk{H) + πf(E)πΛ(F) + πfflπffl,

where nt denotes the action of ύ2 on the fth factor in V. The representation obtained
from (5.14) is found to factor through Hn(q), where g = exp(2πϊ/κ;). It may be
verified that the dimension of V is:

n )-( n

n/2-tJ \nβ-t-ίj'
which is therefore identical with that of Fm. There are thus two similar systems of
differential equations, both giving rise to the same representation of Bm namely,
that representation, πΛm, which factors through Hn(q) and is associated with the
Young diagram Λm. Such a system of differential equations is equivalent to the
condition of flatness of a section of a vector bundle over Xn, on which there is a flat
connection specified by the 1-form:

V ( e J = - Σ <V<g)v (5.15)

Here N = dimF and (eλ) is a basis for V; ω = (ωλμ) is the matrix valued 1-form
defined by:

ω= Σ ΩijdMzi-Zj), (5.16)

the sum being over all i, j e {1,2,..., ή] with i <j, while Ωf j are constant matrices.
Kohno [Ko] has shown the following lemma.
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Lemma 5.19. The monodromy representation Θa of Bn associated with the connec-
tion given by (5.15) and (5.16), with the Ω^ matrices small, depends on {Ωι7}
injectively. That is, if θa and θa, are identical then Ω = Ω', so long as Ω i 7 , Ω y are
small, in the sense that the maximum entries in Ω f j and Ω^ are all sufficiently close to
zero.

Theorem 5.20. There exists an isomorphism α: V0->{Wfm such that:

where c y are the matrices of Corollary 5.18, where m=n/2—t, q = e2πι/il+2).

Proof The differential equations (5.14) and (5.12) (or at least, the reduced system
(5.13), given by Corollary 5.18) both give rise to representations of Bn which factor
through Hn(q). They both correspond to two-row Young diagrams, with n squares
in total, namely Λnj2-t and Λm, respectively. Thus when m = n/2 — t, the two braid
group representations are isomorphic.

When /->αo, κ~ίΩij-^>0 in the Tsuchiya-Kanie side of the story. On the other
hand, this is associated with q-*l and in this limit the local coefficient system is
trivial. Thus in the proof of Theorem 5.16,

The only terms that occur here are thus of the form:

and such terms are equivalent to 0 under " ~ " of (5.10). Thus -^- ~ 0 for all α e £φ

and; e {1,2,..., n}. Hence Cjk = 0 in (5.12), and so cjk = 0 in Corollary 5.18. Since cj]c

are rational functions of q, thus, for sufficiently small q, κ~ 1Ω J fc and cjk will both be
small and give rise to the same monodromy representations of Bn. By Lemma 5.19,
the matrices κ~xSljk and cjk must therefore be equivalent. •

We conclude this section with a dictionary of the correspondence between
Tsuchiya-Kanie theory and the homology theory defined in Sect. 2, as derived in
Theorem 5.20.

Tsuchiya-Kanie theory Homology theory

t n/2-m

2πi/(lnq)
Construction of [TK] Theorem 5.1
Equation (5.14) Theorem 5.16
Kohno connection Natural connection on cohomology
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6. Further Remarks

Throughout the last few sections, it has been assumed that q is not a root of unity,
or equivalently, that / is not an integer. When / is integral, Tsuchiya and Kanie
showed how introducing an extra system of algebraic relations, in addition to
(5.17), gives rise to irreducible Hecke algebra representations, once again. This
suggests that a similar such construction should exist in terms of the homology
picture. In Sect. 4.3, it was observed that in the special case q = ί, the represen-
tation of Sn constructed on (W')Sm is larger than the irreducible representation
πΛm. At other roots of unity a similar degeneracy can occur, when the homology
is computed; that is, D' may not have maximal rank. This is to be compared with
the situation discussed above, at roots of unity, in the theory of Tsuchiya and
Kanie.

In both approaches to the construction of πΛm, the Hecke algebra represen-
tation required appears as a sub-representation of a much larger braid group
representation. In Tsuchiya and Kanie's approach, the natural action of Bn on V®ζ
gives the larger space. In the homology approach, the larger representation
appears on the symmetric part of the cohomology (with the dual representation on
the symmetric part of the homology). The dimension of the reduced representation
is:

[rnj \m—1,

and those of the larger representations are 2n and — (n + m—2)...n(n — 1),
respectively. m *

In Sects. 4.2, 5.3 it was shown how, in certain special cases, a reduced
representation of Bn could be constructed from the family of representations with
parameter α, by looking near to a = q~2. The representation of Bn associated with
generic values of α and q, is irreducible. When α = q ~ 2, it is reducible, one part being
the required Hecke algebra representation. There is a similarity here with the
behaviour of the Hecke algebra representations as q varies. Generically πAm is
irreducible. However, when q is a root of unity, this representation may be
reducible, and when it is, the representation constructed by Tsuchiya and Kanie is
a large irreducible piece of it. This leads one to speculate on how such an
irreducible piece may be isolated. Tsuchiya and Kanie do this by adding an extra
system of equations. If the analogy is valid, one would expect that it may be
possible to select the sub-representation out by using a limiting lemma, along the
lines of Theorem 5.11.

As far as the Jones polynomial of links is concerned, VL can be expressed as a
combination of the characters χΛm, evaluated on a braid whose closure is the link
concerned; see [J]. When q is not a root of unity, these characters correspond to
irreducible representations; but when # is a root of unity, it is still these characters,
and not their decompositions into irreducible parts, which play the central role.
Thus although it should be possible to construct, in a natural topological manner,
the irreducible parts of χΛm9 for q a root of unity, this would have no significance as
far as a topological interpretation of VL is concerned. However, the generalisations
of the Jones polynomial given in Witten's theory [Wi] (see also [SI, S2 and S3]) are
in terms of the (smaller) irreducible representations. In the case of the Jones
polynomial, the extra parts of the representations cancel out, and so, we can
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equally well use the larger representation, πΛm, as its irreducible sub-
representation. A topological construction of the Jones polynomial VL, using a
functional description along the lines of Turaev [Tu], but replacing .R-matrices
and quantum groups by abelian coefficient systems, will be presented in a another
paper [L2].

The procedure outlined in this paper for constructing πΛmi should be thought of
as an abelianisation of the methods of [TK], in which the Kohno connection has
been replaced by an abelian non-trivial local coefficient system. This should be
compared with the abelianisation procedure employed to investigate Witten's
description (see [Wi]) of the Jones polynomial using topological quantum field
theory, in the work of Hitchin [HI, H2].
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Note added in proof: Subsequent to [LI], Schechtman and Varchenko [SV] carried out an
analysis of equations of Knizhnik-Zamolodchikov type for general Lie algebras g. In particular,
(5.14) with Ωik replaced by a polarisation of the Casimir operator for g (instead of sl2), was
shown to have solutions which could be expressed by an integral representation, using suitably
twisted functions generalising those of (5.9) in Sect. 5.4. The significance of the special twisting
χ{q) given by cc = q~2 in Theorem 5.1 (see (2.4)) is then seen to fit into a much more general
picture involving the Cartan matrix of the Lie algebra concerned. The algebraical relations of
Tsuchiya and Kanie referred to in Sect. 6, when translated into the language of twisted functions
are given in [FSV] for the case of general Lie algebras.
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