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Abstract. Recently, an infinite family of chiral Virasoro vertex operators, whose
exchange algebra is given by the universal β-matrix of SL(2)q, has been
constructed. In the present paper, the case of non-linearly (W-) extended Virasoro
symmetries, related to the algebras AN, N > 1, is considered along the same line.
Contrary to the previous case (A^ the standard ^-matrix of SL(N+ l)q does not
come out, and a different solution of Yang and Baxter's equations is derived. The
associated quantum group structure is displayed.

Quantum groups seem to underlie the very basic structure of conformal field
theories. In particular, for the Virasoro family (2D gravity and minimal models) a
precise connection has just been established [1, 2]. The method is to relate the
monodromy properties of the differential equation satisfied by the chiral vertex
operators to the Λ-matrix of SL(2)q. The first step in this direction was taken by
Babelon [1] who established such a relationship for the simplest J = ί/2
representation. This was fully generalized by one of us (J.-L. G.) [2] who recently
constructed an infinite family of chiral vertex operators whose exchange algebra is
given by the universal ^-matrix of SL(2)q. This Virasoro family is intrinsically
related to the simple algebra Aί9 since it may be generated from Liouville theory
which is the Av Toda field theory [3], and includes the (SU(2)k(g)SU(2)1)/SU(2)k+ί

coset models. There are more general conformal families of the same type [3-5]
with non-linearly (W-) extended Virasoro algebras, which are associated with the
higher simple Lie algebras [3, 5]. In the present paper, we begin the extension of
the construction carried out in [1, 2] to these models, by deriving an exchange
algebra for the simplest set of chiral operators (in the defining representation)
similar to the spin 1/2 case worked out in [1]. It will be shown that contrary to the
Virasoro family, the standard .R-matrix of the associated quantum group does not
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come out and that different solutions of Yang and Baxter's equations are derived.
Thus the quantum group structure associated with W-algebras seems to be new.

As shown by Bilal and Gervais [5], one may associate a W-algebra with any
simple Lie algebra. We shall restrict ourselves to AN for simplicity (the
generalization to other simply-laced algebras seems straightforward). In [5] the
following exchange algebra was derived. There exist N + l fields on the unit circle
which satisfy

V}(σ}Vk(σ')= £ RR*)VίrtVJίσ). (1)

σ is the coordinate variable on the circle z = eiσ. For completeness some details of
[5] are given in the appendix. The only non- vanishing Rl™s are:

SΠ1"
njk_

1 V/fc -

Jk

Γ(wjkh/π)Γ(ί+wjkh/π) ί}

s is equal to the sign ί of σ — σ'. h is a parameter whose relation with the Virasoro
central charge is displayed on Eq. (A. 17, 1 8). Introducing vectors in the space of AN

weights, one may write wjk under the form

, (3)

where λω are the weights of the defining representation. The vector w is introduced
in the appendix. It is a linear combination of zero-modes of free fields. These are
shifted by the Vk fields so that, for any function /, one has 2

Vjf(w)=f(» + W)Vj. (4)

Next, it is convenient to replace the ^fields by other fields denoted by tp which are
of the form ipk = dk(&)Vk. The dk(wys are such that the exchange matrix of the
which we denote by Ŝ  only involves trigonometric functions. One has:

Obviously
J$ = Sg. (6)

Due to the special form of .R the only change of the exchange matrix is for the
matrix elements

There is a one-parameter family of solutions

)= Π (Γ(-wjrh/π)T Π (Γqfrj.-ίWπ))1-; (8)
r Φ j sφj

1 To simplify we only deal with the half circle 0 ̂  σ ̂  π explicitly, so that |σ—σ'| ̂  π, and ε is well
defined
2 No summation over repeated indices is understood unless explicitly indicated
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where α is arbitrary. The new exchange matrix reads

sιn(hwjk)

sm(^+l))eM+1)Jl* sm(hrDjk)

Since they describe the exchange properties of the ψ, the S "̂s automatically satisfy
Yang and Baxter's equations. According to (4), however these relations take the
form:

Σ S&β.σ, -σ3)SJg(β + λW σ2-σ3)S™(π+til\σι -σ2)
Q,τ,μ

= Σ Sft'(w,σ1-σ2)SΠβ+λ0l),σ1-σ3)Sίi(w,σ2-σ3). (10)
ρ,τ,μ

This expression is unusual since the S matrix elements do not commute with the
φ-fϊelds. Following [1, 2], we next look for a change of basis among the φ-fields
such that this IB-dependence of the exchange matrix disappears. In this way we
shall be back to the standard framework of quantum group without the
IB-variable. Introduce

ξ«= Σ «i(w)Vi for α = l ,2, . . . ,JV+l. (11)
i=l ..... N+l

The ι4(ta) will be determined so that the ξ-fϊelds satisfy an exchange algebra

)ξδ(σ), (12)

where ρlδ

β does not depend upon w. According to Eq. (4) we have to solve the
equation

Σ ρfχMt4(ιs + λϋ>)= Σ S/»ι4(tφ?(ro + λ<'>) . (13)
γ,d l,m

This shows that ρ and S considered as (N + 1)2 x (N -f I)2 matrices have the same
eigenvalues and therefore that the eigenvalues of S must be independent of e. This
is easily checked. Indeed, one finds that S has only two different eigenvalues
e-iheN/(N+i) and _eihe(N+2)/(N+i) which coincide with Λe eigenvalues of the

standard .R-matrix of SL (N + l)β (see below). Thus the matrix S is related to the
latter by a change of basis. The corresponding matrix cannot be put under the
factorized form uj

y(w)uk

δ(w + λ(j)) which appears in (13), however, as the rest of the
discussion will show. Let

u^(w) (14)

so that (13) reads, forj'Φ/c,

Σ βϊWSW = Sjk

k(w)uίk

β(w) + Sίkj(w)ukjβ(w) . (1 5)
y,<5

Since Sj£ ana SJ

k

k have poles at w = 0, the w$(e)'s must be the matrix elements of a
(AΓ + l)^x(JV + l)2 matrix which is singular at this point. We shall nevertheless
look for a solution for which these matrix elements are regular at ID = 0. Since ρy

Λ

δ

β is
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independent of m, the left member of (1 5) is regular at w = 0. On the right-hand side,
the residues of the poles of Sj% and 8$ must cancel and one obtains the relation:

u$(0)=u$0). (16)

It is easy to check that this implies the vanishing of det(uj

a

k

β(m)) at t3 = 0, as
anticipated. Extrapolating the results obtained for SL(2)φ we shall make the
following ansatz for u\\

. (17)

It follows from (16) that

Ai.λ< f c ) = A* λ<'>; and Bi + Bk = Bk + B^ (18)

which implies that B{ = BΛ -f Cj. An important consequence of the ansatz combined
with (16) is that

uik(π) = ukί(w)Vm. (19)

Equivalently, we shall write:

uί ΞΞ exp(^); Xfo) + Xk(w + λ«>) = Xk(π) + X{(w + λ<*>) . (20)

This zero-curvature condition has the general solution:

(21)

where C{ are arbitrary constants. Going back to (11), and making use of Eq. (4), we
arrive at an equivalent form of the transformation which we shall use from now on:

(22)
i

Consider first the exchange algebra with α = β. One obtains:

(23)

It follows from the explicit expression Eq. (9) that

SkίW + S^ = Sjij = e~ίheNI(N+ΐ) (24)

Thus we find

) &=S$. (25)

Consider next the case α φ β. It is convenient to separate the terms involving
Ya±Yβ by writing

Y°-γ^2~]

x Γe(Y.-γβy/2 /Σ ψjjtfe<*\ e-(Y«-γβ)/2-\ e(Y«+γβ)/2 ^ (26)
L V* / J
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We are going to derive an exchange equation of the form:

r,-(Ya-y,)/2 /Σ ψfr)e<Z\ e(Y«-W2-] W.-YβW /Σ ψk(σ>)ec*} e-<γ -W\
I \J J J L \ f c / J

= Σ Qll [e-^-™» /Σ Vj(σ'}ecJΛ e^~W
y>δ L \j J J
χ Γe(Yγ-Yδ)/2 /y ψk(σ)eC

kΛ e-(Yγ~Yό)/2Ί (27)

L V* / J
which only involves the differences Ύy — Yδ, and thus do not completely specify ρ.
The sums Yy+ Yδ are determined as follows: Looking at Eq. (26) with α and β
replaced by γ and δ respectively, one sees that Eq. (27) will take the form of the
exchange algebra (12) for the fields ξ if the terms which appear in the summation
are such that

YU+YP=Y, + YΛ9 (28)

(up to an irrelevant constant cΛβyδ) so that e±(Ύy + γ<5)/2 are common factors and may
be freely multiplied on the right and on the left.

In the form (22), our solution will follow from the ansatz:

7α = (w)2Aa + w Dα, => Aΐ = 2AΛti
j\ Bl = A«(λ(»)2 + λ^ - Dα + C{ , (29)

where AΛ and Dα are independent of w and to be determined. Condition (28)
leads to

if ρgφO. (30)

Introduce

φjk Ξ £} _|_ £k _|_ i/j) — D ) (λ(J) — λ(fc)) (31)

Condition (16) is equivalent to

φSβ=<$β> (32)
whose general solution takes the form

C] + |Dα λ(i) = cj + ca, (33)

where cj, CΛ are arbitrary constants. Introduce

V=^^. (34)

Substituting (29) into (27) shows that we are trying to verify an equation of the form

£ [exp (φίί-

+ Σ
j*ft

= Σ C£ Σ

Σ Qlβ Σ Γexp (φ% 4- ih -̂ r - ihvyδwjk] φ/σ')φk(σ)l . (35)
y,δ j*k L V N + l ) J
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Fourier analysis shows that vyδ is an integer. No vyδ may vanish, since otherwise
the determinant of u{ would be zero for any w. Thus all ^4α's must be different. We
shall consider the case ε = l for definiteness3. In order to pursue we need to
distinguish two cases:

1. vxβ Negative Integer. In this case, it follows from Eq. (9) that

' fc j 1

(36)
Vy ei(2r + v<xβ)hτJjhίe3ih/2_e-ih/2\_^eίv0ίβhwjke3ihl2 \

L r = l J

After some calculations, one verifies that Eq. (35) holds with

for

vyδ=-2r-vaβ, with r = l, ..., -vα/J-l,vα/^ -2; (37a)
and

βΛ = e-ih(N-l)l2(N+l)e2ih(vaβ)l(N+l)e^ih/2 (37^

One finds an additional factor e

c«+cβ~cy-^9 when one performs the calculations. It
may be eliminated if one multiples ξa by e~c" and we leave it out. Equation (37a)
has been simplified using Eq. (30) which gives vay + vβδ = 0. Moreover, one easily
sees, using again this relation that the possible values of vδΛ and vβy are:

vfc = v,y = l,...,v,e. (38)

All integer values of values 0 ̂  vαy, vaδ ̂  vaβ appear.

2. vα/? Positive Integer. The discussion is similar:

Γ^-1

y ei(2r-v<xβ

for

vyd=-2r + v^; with r = 0, ...,vα/?-l,vα/?;>2, (40a)
and

The possible values of vαy and vδβ are:

Vαy = ̂  = 0,...,V α j 8 . (41)

All integer values of values 0 ̂  vαr vΛδ ̂  vaβ appear.
Denote AJih by vα, so that vaβ = vα — vβ. The differences vy — vδ are integers, and

we have seen that for any given α and β all integer values of |vy<5| between 0 and \vΛβ\

3 The case ε = — 1 may be treated in exactly the same way. We know that the S-matrix satisfies the
inverse relation S(ε=l) 5(ε =—!) = !. This is also true for the matrix ρ since ρ(ε=—1) and
S(ε= — 1) are related by the same matrix ujj
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appear. Thus the v/s, which are spaced by one, span an interval [v + 1, v + N + 1],
with arbitrarily fixed v. By a constant transformation V/ of the <f s we can relabel
the indices, so that vy = y + v. The parameter v is irrelevant, since it may be
absorbed by the transformation ξ^e'^^ξ^e1^2 which preserves the matrix ρ.
Hence we drop it. This terminates the determination of the exchange matrix ρ.

After a rescaling of the tp-fields which leaves the S-matrix invariant, the u£ s
take the simple form

= (μ(j^. (42)

The determinant of such a matrix is well known: Up to a numerical factor,

det(w)oc [] (μ(j)~μ(k}) Π /*(l) (43)
j<k I

Using the constraints Σλ(j} = 0 which gives γ\μ(l) = l, one obtains

(44)
2

In a group theoretic language, we introduce ket vectors \δ> in the defining
representation. Tbe ρ matrix we may be written as:

Qlδ

β = eih/(N+1)(<κ\®<β\)ρ(\δ>®\y>), (45)

where

0-α-l
__ -ih\ y Y -2ihr/(N+l)

* ) L L e

.̂ ,® .̂..,, (46)
V ;

where we have let in general

eytό = \7><δ\. (47)

For comparison we note that, with our conventions, the standard exchange matrix
of SL(N + l)q reads:

β = *~aΣ*.,«®*«,.+ Σ e^®eβ^(e-ih-eih) Σ e..,®*,..-

The main difference between our ρ-matrix and the standard one ρ is that the
latter connects α/? to aβ and βa only, whereas the new exchange matrix connects ocβ
to all pairs yδ with α + β = y + <5 (or more generally vα + vβ = vγ + vδ). On the other
hand, as we already noted they have the same eigenvalues and hence are related by
a constant matrix:

e#= Σ (M-^'&μfft'. (49)

Thus we have to see whether ρ would not provide an alternate solution of (13). An
obvious arbitrariness of the above discussion is a constant redefinition of the <fs: ζ'Λ
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= £ V/ξβ. The corresponding ρ and ρ' matrices are related as in (49) but by a
β

factorized matrix of the form VJVβ. Thus we would conclude that the standard
exchange matrix is a solution only if the matrix M of (49) could be put under such a
form. More generally, if we assume that we have two solutions ρ and ρ' of (13) with
matrices UJ

Λ(W) and (u')J

Λ(w) respectively, we can relate ρ and ρ' by Σ(w')$(e)

(u'^Kw) which does not a priori correspond to a constant matrix as in (49). In
order to settle the question, we directly show that the standard exchange matrix
cannot be a solution of Eq. (13). From this last equation withj = fc we get arrive at
the relation

G _«&«)_ g# (5Q}
*- " (50)

The factorization properties of u^Λ9 displayed on Eq. (14) imply that GaβGβy = GΛy

for any α/?y. This condition is impossible to satisfy since the explicit expression (48)
gives Gaβ = e~lh independent of α and β. The standard exchange matrix is thus
ruled out. We can even make a stronger statement. Relax the precise identification
with the standard exchange matrix, but still impose that ρ links ocβ to ocβ and βa
only. Then we can find a solution of (13). However detw vanishes and it does not
solve our problem, since the ^-fields so defined are not linearly independent.

In the same way as the standard K-matrix ofSL(N + 1)? our final result takes a
quasi triangular form if one multiplies it by the matrix P$ =δaίβ'δa^β that
interchanges the indices. For N = 49 one obtains, for instance:

11 12 21 13 31 22 14 41 23 32 15 51 24 42 33

11
 Q

21'

12

31

13

22

41

14

32

23

51

15

42

24

33

• Q Q

• Q

• Q β Q

• Q Q

6

Q Q Q §

β Q Q

Q β

e
Q β Q', Q Q

• β β § Q

Q β Q

Q S

Q
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where dots indicate the vanishing matrix elements. The underlined entries are the
ones which vanish for the standard R-matrix.

Let us finally discuss the quantum group structure associated with the
exchange matrix ρ. A standard method [6] is to introduce the matrix algebra:

Σ TΛ'T^nyδ — V nΊ'δ'TyTδ (^\1a lβ Qa'β' — L Qtzβ V V ^41
α',/Γ y',δ'

The matrix ρ is highly degenerate since it has only two different eigenvalues. Hence
there are many solutions of the equations

Σ //θί'β'γδ _ Y γ'δ' j/yδ /r<rv
^Λβ Qx'β' — L Qaβ Mγ'δ' (?J)

<x',β' y',δ'

with Jt an ordinary c-number matrix. It is easy to check, nevertheless that there is
no way to write Jt*$ in the factorized form Tα

α'Γ/' if the matrix elements Tα

α' are
assumed to be ordinary commuting numbers. Thus Eq. (52) has solutions only if
the matrix elements T£ have non-trivial commutation relations. The consistency
of these commutation relations is of course ensured by the fact that ρ satisfies Yang
and Baxter's equations by construction. The properties of the matrix ρ are such
that Eq. (52) just describes the noncommutativity of the matrix elements and
nothing more. This is a consequence of the fact that the two eigenvalues ρ0

 and Qi
have degeneracies (N + ί)(N + 2)/2 and N(N + 1)/2 respectively. Therefore Eq. (52)
only gives

independent equations. There are just enough independent relations to reexpress
the products T/Γα

α", (α'>α") and Γ/Γ/' (α>j?) in terms of T/'Γ/, T/'T/, and
T/'T/' (/>/, y>δ). This exactly defines the commutation relations of the T/'s.
The quantum group property is clear from this construction since, given two
matrices T and f, with commuting matrix elements (T/f/ = t/T/) which satisfy
Eq. (52), the product £ T/ f j is also solution of the same equation. Thus the

commutation relation specified by Eq. (52) define a quantum matrix algebra.
One thus sees that our exchange matrix defines a quantum deformation of AN

that differs from the standard one if N > 1 . We have indeed worked out the simplest
new cases without encountering problems. We shall not give the general result here
since there are many commutation relations and the formulae become lengthy.
Some details are displayed in Appendix B. For orientation let us here quote the
formulae for SX(2); where the present method gives the standard R-matrix [1],
that is,

ρll = 0; ρΓ2 = ρX = eίh'2; Ql\=e-^-e^. (54a)

Equation (52) leads to:

ab = eίhba, cd = elhdc, cb = be, ac = elhca ,

for T= J, (54b)
c d

in agreement with the standard expressions.
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It is also possible to define a "quantum plane" with non-commuting
coordinates xα. We look for non-commutativity relations of the form

*α*0= Σ βlβXyXδ* (55)
y,δ

which are preserved under the transformation

* -+y = Σ T f x β , (56)
β

provided that

. (57)

This requirement is satisfied if we choose ρ proportional to ρ, as one easily verifies
from Eq. (52). In order to ensure that (55) describes the non-commutativity of the
x's without additional constraints, we must normalize ρ such that the eigenvalue ρ0

with multiplicity (ΛΓ+1) (N + 2)/2 becomes equal to 1. This then allows us to
reexpress xaxβ (α > β) in terms of xδxγ and xyxy (γ > δ). Using the expression of ρy

Λ

δ

β

we get after normalization
β-i

γ γ _ V (ffih 0-ih\02ih(
xaxβ — L \e ~e )e

V (pih_p-ih\ff2ih(a.-y)l(N+\)
L (e e )e

= β+ί

XΛ tf α>j5 (58)

On the right-hand sides of these expressions we next separate the terms xyxδ with
γ < δ and γ > δ. One immediately sees that the equations for α < β and α > β are the
same up to a numerical factor, and the "table of multiplication" is easily worked
out. One finds:

0, if r is odd;

_
. + + r , i f r i seven. (59)

Let us give the simplest new example (SL(3)). Our result reads:

(60)

This should be compared with the quantum plane associated with the standard
exchange matrix:

(61)
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Appendix A

For completeness we recall some basic points in the derivation of the exchange
algebra equation (2) carried out in [5] by solving the AN Toda field theory4.
Consider first the classical (c-number limit). The solution of the Toda field
equation leads to the basic chiral differential equation:

The fields T(k} have conformal weights k up to central terms. They are the
generators of the FΓ-algebra. This comes out as follows. There exist fields pk(σ),
fc = l, ...,Λf + 1 with classical Poisson bracket structure:

{Λkfo), Pi(°2)} = 4π Jίrklδ
f(σ, - σ2) , (A.2)

αk, k = 1, . . ., N are a set of simple roots 5. Jfkί = αk αz is the Cartan matrix of AN. A
standard construction of the simple roots of AN is to take N + l orthonormal
vectors er and to let αr = er — er+1? r= 1, ..., ΛΓ. 7J2)(σ) is the stress-energy tensor. In
terms of the p-fields it is given by:

N+l _ Λ7J-1 N+l

In view of (A.2) the Virasoro generators

/Vf/V4-1U/V4-?. ϊ
».o (A.4)

satisfy ""~8π?

+Π- — (A.5)

with C = N(N +1) (N+2)/2y. γ is a free parameter that plays the role of a coupling
constant. It is convenient to introduce

N

Λ(σ)= V λz/?ι(σ), (A.6)
1=1

with λj αk = δjfk. The λ, are a set of fundamental weights of AN. Equation (A.3) may
be rewritten as

N + 1

T(2)(σ) = yΛ A4- J/y X λj A'. (A.7)
ϊ = l

The expression of the other T(k} fields is derived by reexpressing (A.I) in the form:

(A.8)
\aσ / \aσ / \aσ /

so that

J V + l

^> = (-l)*+1 Σ (emι A)(em 2.A)...(em k.A)+.... (A.9)
mi > ... >mjc= 1

4 We presently use a slightly different notation which is simpler
5 Arrows denote vectors in the weight space of AN
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One may verify from this expression and making use of (A.2), that the 7Jk)'s satisfy a
Poisson bracket realization of a P^-algebra.

The p-fϊelds are periodic:

P*(<r)=ΣP(? *-'"", (A.10)
and it is useful to introduce "

1=1

A convenient set of independent solutions of (A.I) is of the form

F1(σ)=exp Λ/7 Σ pi" %^/σfi, (A.12a)

φ'}{σ)=P]{σ), (A.12b)

. (A.12c)

&*r+ι(σ) are classical screening operators such that

Vr(σ + 2π) = exp(2πΛ0 - λ(r)) F,(σ) . (A.I 3)

The ̂  are thus chosen to be eigenvectors of the monodromy matrix. The vectors

1

are the weights of the defining representation, qtf and p(

0

fc) are conjugate dynamical
variables:

The form of the solution (A. 12) is not symmetric between the weights λ(r). This is
only due to a particular choice of the p-fields. One may define equivalent p-fields
with Vr<^>Vs, s = r-hαmodJV+l. The symmetry between the J '̂s is actually the
origin of the quantum group structure, as already shown in [2].

In the quantum case, Eq. (A.2) and (A.12a) become respectively

), Pifo)] = 47iiJfki(5'K - <τ2) ,

where there are two choices for the number h:

π
± ~4y

π
2JV(ΛΓ + l)(JV + 2)

and Cί=N(2N + 3)2. The second expression of h follows from the fact that the
central charge is given by

N(N + l)(N + 2) ^ ^18j
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Equations (A. 17) are such that an operator equation similar to (A.I) holds. The
study of its monodromy properties leads to Eqs. (1) and (2) where

Appendix B

In this appendix, we shall explicitly solve the matrix algebra equation

Σ Ί?Tf'$r= Σ 6tfΊ?.Ί$. (B.I)
<*',β' y',δ'

Up to an overall common factor, this relation is identical to Eq. (52). Our goal is to
reexpress the products Tα

α'Γα

α", (α'xx") and Γα

α'T/' (α>/0 in terms of the others,
that is, T/"Γ/', T/'T/, and Γ/Γ/ (/>/', γ>δ).

Let us first consider the case α = β. Equation (B.I) reads (ρ is such that $£* = 1)

TJT*= Σ 77'Wί' (B.2)
•t v

Introduce f j = e2ih(^ΛWN+1)TJ. We isolate the terms with y'>δ' and γ'^δ',
obtaining, for γ > 1,

1?T/-#7?=(l-β2U) "Σ (Tj'TJ+ό-T-fj+d->'TJ'). (B.3)
y'=sup(l,}> + <5-Λf- l )

(For y = 1 we get T^1 TJ = TJT^.) The general solution of these relations is simply:

TΛ

δTJ = fjT*. (B.4)

The situation is unfortunately more complicated for α φ β. We must distinguish
the three cases γ<δ, y = δ, and y>δ, and treat the cases y or δ = \ separately.
Choose β > α once for all. After simple algebraic manipulations, we arrive at the
following recursive relations. Define

inf(y,<5)-l

Xll= Σ (f/T/'-f/T/). (B.5)
y = sup(l,y + <5-Λr-l

γ'+δ' = γ + δ

[It follows from Eq. (B.4) that X^ = 0.] The recursion is given by:

L y = δ.

yy YW \
α/3 "~ Aα-f 1,/J- V ->

with the limiting case /? = α + l,

2.

e2ΛΊjT*-Ίj-ιΊ*+l = Ί*TJ-Ί*+l^

+ (e2ih-\)(Xlδ

β-Xlδ

+^β-,), (E.I)

with the limiting case /? = α + 1,

e2ί"fΛ 1 7? = 7?77+ ! + (β

2ίΛ- l)X»+ 1 (B.7)
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3. γ>δ.

,/,-!), (B.8)

with the limiting case /?=«+ 1,

Starting from the relations (B.I) for oc> β we get the same results as expected.
These relations may be easily used to express fj+rT* in terms of fj+sT"+r

δJs

y',

with s< - . This establishes the table of multiplication.

For comparison, we note that the same calculation applied to the standard
exchange matrix of SL(N)q Eq. (48) gives, for jS>α,

1J1*=1*Ίy δ>y,

TJTJ = e-ίhTJT/ δ = y ,

T*T/ = (e-ίh-eίh)TJTβ

δ δ<y. (B.9)

Moreover, if /? = α and δ>y, one has:
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