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Abstract. The representations of a compact Lie group G can be studied via the
construction of an associated "model space." This space has the property that
when geometrically quantized its Hubert space contains every irreducible representa-
tion of G just once. We construct an analogous space for the group DiffS1. It is
naturally a complex manifold with a holomorphic, free action of DifΓS1 preserving
a family of pseudo-Kahler structures. All of the "good" coadjoint orbits are obtained
from our space by Hamiltonian constraint reduction. We briefly discuss the
connection to the work of Alekseev and Shatashvili.

1. Introduction

A geometrical understanding of the representation theory of the group of
diffeomorphisms of the circle remains a desirable, and elusive, goal. Apart from its
intrinsic interest a solution of this problem could shed light on a 2 + 1-dimensional
topological quantum field theory standing in the same relation to Virasoro as
compact Chern-Simons-Witten theory does to Kac-Moody algebras [1]. Given
the success of the method of orbits in understanding the representations of
noncompact groups (see e.g. [2]), it is very natural to look to this method for help
with DiffS1 as well. Considerable progress has been made along these lines [3],
but some problems stand out.

First, there are a variety of different types of orbit. Secondly, while every orbit
has naturally the structure of a Hamiltonian dynamical system, there is in general
no obvious choice of the additional structures needed to quantize these classical
systems. Finally, once a quantization is chosen we find ourselves faced with a
strongly-coupled system unless the central charge c » 1. In the latter case Witten
has shown that indeed the familiar irreducible representations emerge.

Clearly it would be interesting to have an approach to this problem where all
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the representations come from quantizing a single space, with some natural choice
of quantum data (i.e., prequantization and polarization).

In the case of a compact, semisimple, finite-dimensional group G there is a
well-known theorem with a similar flavor (see [4]). Such a group has a natural
complexification Gc. Let N+ be a maximal unipotent subgroup of Gc. For example,
if G = SU(n) then Gc = SL(rc,C) and N+ consists of upper triangular matrices
equal to 1 on the diagonal. Let A = Gc/N + 9 a complex manifold of dimension
j(dim G + rank G). Then the space of holomorphic functions on A, subject to a
certain square-integrability condition, is a representation of G, and moreover it is
the sum of every irreducible representation with multiplicity one. We can thus
refer to A as a model space, a space whose quantum mechanics yields a "model"
for the representations of G.

Let us pause to sketch why this theorem is true. The Cartan torus T c G
commutes with N + , and so acts on A from the right. It also commutes with left
translations. Thus the space 3?λ of eigenstates of the generators of T with
eigenvalues given by some weight λ is a representation of G under left translation.
But 3?λ can also be regarded as the sections of a bundle over (GC/N+)/Tc = G/T;
by the Borel-Weil-Bott theorem it is just the irreducible representation of weight
λ. Letting λ range over the weight lattice we get each irreducible representation once.

We should contrast this result with two similar ones. First, the Peter-Weyl
theorem tells us that the space of all L2 functions on G (not necessarily holomorphic)
also furnishes a representation of G. Now, however, each irreducible representation
occurs with multiplicity equal to its dimension, and so the result is not so useful
even if it remains true in infinite dimensions. Secondly, the generic orbit of G on its
dual algebra g v is a complex manifold of dimension dimc G/T = !(dim G — rank G),
where Γ is a maximal torus of G. The Borel-Weil-Bott theorem tells us that the
sections of a bundle over this orbit give one irreducible representation. Thus roughly
speaking the difference between G/T and the model space A is that we have added
in a complexified maximal torus (complex dimension rankG), and in so doing
enriched the Hubert space of states from one representation to all of them. It
would be nice to have a corresponding result for Diff S1.

The operation of taking all holomorphic functions on a space is reminiscent
of geometric quantization. In the case of a single orbit of G it is well known that
the above construction can be implemented by quantizing a certain classical
dynamical system [2]. This approach seems bound to offer insights into infinite-
dimensional systems, where a regularization is needed.

Recently Alekseev and Shatashvili have proposed to implement the above
program for the group Diff = Diff+ S1 of orientation preserving diffeomorphisms
of the circle, in the hope that a theorem similar to the one above will hold [5].1

They have obtained some encouraging results to the effect that the quantization
of A may contain the irreducible unitary representations of Diff, including the
mysterious discrete series. Things did not quite work out, however. It seems clear
that to make further progress one needs to be quite specific about the "model
space" A and its global geometry. That is what we do here.

1 Indeed, some results of Chern-Simons-Witten gauge theory (see e.g. [6,7]) can be taken to
support this for the case of loop groups. The recent work of H. Verlinde on the case of Vir is
more subtle [8,1]; we can only hint at the connection to the present work
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Specifically Alekseev and Shatashvili define their model space as a Hamiltonian
dynamical system by writing down local canonical (or "Darboux") coordinates;
they then obtain characters by path integration. To get the Hubert space itself,
however, one needs a precise global construction, and moreover a quantum
structure on A. For individual orbits this has seemed problematical [3], but we
will see that the model space has a very natural quantum structure.

In this paper we will construct a complex manifold s/ which is a suitable
generalization of the model space A of a compact Lie group. Since the group Diff
has no complexiίϊcation, this is not quite straightforward. The appropriate method
has already been used in a different context, however, by Kirillov and Yur'ev [9].
We will find on si a free holomorphic action of Diff and a natural family of
invariant pseudo-Kahler structures which implement the analog of the above
prescription for compact groups. It seems rather remarkable and gratifying that
this can be done at all. One feature of our approach is that all our constructions
are complex-analytic, even for nonzero central charge. In principle j/ can then be
quantized to get representations of Diff, but we will not be able to go this far. We
will also explain the sense in which so decomposes into coadjoint orbits of Diff.
Surprisingly the space j/, which has a very natural global definition, automatically
excludes the pathological "unipotent" orbits Diff/T (see [3]) while including the
interesting ones Diff/S1, Diff/5L(n)(2, R). That is, the latter orbits can be obtained
from j/ by Hamiltonian constraint reduction.

Recently we received another paper [10], where a very different proposal is
made for obtaining Virasoro representations from the diffeomorphism group.

2. Complex Structure

Our strategy will be as follows. While Diff admits no complexification, still we
know that Diff/S1 has a natural complex structure and invariant Kahler metric,
indeed a two-parameter family of these [11,9, 12]. Roughly we know we must take
the maximal torus of Diff, namely the circle group of rigid rotations, complexify,
and enlarge Diff/S1 by that. Thus we take the space defined by Kirillov,

0,/'(0)=l} (2.1)

and enlarge it to
^ = {/:/(0) = 0}. (2.2)

In both cases / is a holomorphic function on the unit diskD = {|z| < 1 }, smooth
and univalent up to the boundary. Kirillov showed that 2F can naturally be
identified with Diff/S1. In stf we have added in the maximal torus (the angle
arg/'(0)), and complexified it (the magnitude |/'(0)|). Thus stf is distinct from the
space ?ΓD appearing in [1], which was smaller than Diff/S1.

Our plan is to identify stf naturally with Diff x R + .2 The latter space has an
obvious free action of Diff; we will show that on stf this action is holomorphic.
In later sections we will show that Diff x R + also has a natural invariant symplectic
structure induced from the cotangent space T v (Diff) (cf. [5]). We will see that on

However tf is not to be regarded as the central extension Diff; see Sect. 7
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Fig. 1. Defining G from /

si this determines a Kahler structure. We will for illustration set the central charge
to zero, then generalize in Sect. 7. Finally the space Diff x R + projects to the dual
algebra Vectv, whereupon the action of Diff reduces to the usual coadjoint action.

To get started we must set up the identification #/ ^ Diff x R +. Begin with fe jtf.
It takes the unit circle {|z| = l} to a smooth non-self-intersecting contour K
surrounding the origin. The exterior of K is thus topologically a disk in the Riemann
sphere containing the point oo. (See Fig. 1.) By the Riemann mapping theorem, we
know that there is another function G(u\ holomorphic and single-valued every-
where outside the unit circle (i.e. for \u\ < 1, where M = Z~ I), whose image is the
exterior of K. Moreover there are many such maps, namely G°M, where M is any
transformation in SL(2, R). We can fix this freedom by imposing the additional
conditions

G(0) = 0, G'(0) is real positive.

We can rephrase these conditions in terms of

(2.3)

then g has a simple pole at oo of real positive residue.
Having determined g we now let

What this means is that since /, g both take the unit circle to the contour K, we
must have g(elθ) = f(eiy(θ}) for some diffeomorphism γ. The second entry just denotes

the square of the real residue mentioned above; prime means —. Clearly sf eR +.

We note that this construction is independent of the actual centered complex
coordinate z chosen in the disk D. Indeed if z = F(z) with F(0) = 0, then the map

represented by zi—>/(z) becomes z\-^F°f°F~1(z\ and — ( F ° f ° F ~ ί ) ( 0 ) =—/(O).
dz dz

Thus we map /t :<$/-> Diff x R + . Let us examine this map close to the base
point, /0(z) = az, where a is some real number. Thus let

fε(z) = az 4- ε £ φnz
n > 0

(2.5)

gε(z) =
n<2

ι real, (2.6)
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sε = α2 + εΔ, (2.7)

y£(0) = 0 + ε f ; vne
ίnβ, »_„ = »;. (2.8)

— oo

We have incorporated the conditions on /, g into these expansions. Expanding
gε(eiθ)=fε(eiy*(θ)) we easily find

υ0= --
a

vn=-l-φn+ί, n>0, (2.9)

and so our map is invertible at the base point. In fact we can invert it everywhere,
as follows (cf. [9]). Given (y,s)eDiffx R+ we construct a 2-sphere by gluing two
standard disks D± using y. The resulting space, with standard complex structure
on each hemisphere, is isomorphic as a complex manifold to the usual sphere, by
the uniformization theorem. Thus there is an invertible holomorphic function F
from it to the Riemann sphere, or in other words holomorphic functions F± from
the disk to the latter related by y. F is well defined up to the automorphisms SL(2, C)
of the sphere. We use this freedom to set F+(0) = 0, F_(oo) = oo, F'_(oo) = 1. Finally

we let f(z) = ^/sF + (z). This inverts the map Λ.
We now have that the map Λ:jtf ->Diff x R + is a bijection. It gives Diff x R +

the desired complex structure.

3. Action of Diff

Recall [13] that a complex manifold M of dimension n is also a real manifold of
dimension 2n. We complexify the real tangent space to get ΓCM, a vector space of
complex dimension 2n, then split it into TCM ̂  T ( l f0)M® T(0fl)M, two complex
pieces of dimension n. Every curve P(ε) in M has a tangent P(0) in the real tangent
space of M; thus P(0) = V + 7, where KeT ( l t 0 )M and V is its complex conjugate.

Consider the action of U(l) on the complex plane: P-+Θ-P, where zθ.P = eiθzp.
For fixed θ we see that zθ.P depends holomorphically on zp and we say the action
is holomorphic. We can also formulate an infinitesimal criterion as follows. Fixing

now P, the tangent
o

a
ffo P

d_
'dί

As noted above this has to be

real, and it is. What we see is that its (1,0) bit is a holomorphic vector field on M.
This is another criterion for the action of Diff to be holomorphic, and far more
convenient for our purposes.

Fix any generator v for Diff. Thus i eVect, the smooth vector fields on the

circle, and we write v = v(θ)—. Letting v act from the left on any y0eDiff gives us
an action on Diff x R + :

sc = s0. (3.2)

This action is of course globally well defined. Choose a base point /0, not necessarily
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of the special form (2.5). Following [9] we will trivialize the tangent spaces Tfojtf
d

by writing a tangent to /0 as — /., where
dε

(3.3)

where φ is holomorphic on the disk, φ(0) = 0, and similarly

(3.4)

where ψ is holomorphic off the disk. We don't permit any pole for ψ, even with
real residue, because we are imposing (3.2).

We now want to find φy;/0 corresponding to the fixed υ and the chosen /0. If
it varies holomorphically as /0 varies then the (1,0) part of the tangent to (3.3)
will be a holomorphic vector field as desired. As again expanding gε(eίθ) =fε(eiy*(θ})
we find

Ψogόl = Ψ ° f o 1 + iίzf'o(z)v(-i\ogzK°fβi a t w w h e r e |̂ »| = 1. (3.5)

This together with the boundary conditions on φ, ψ determines φ as follows.
Following [9], suppose we have a function F on the circle. Given a parametrized

contour K in the plane we can regard F as a function on K and define its positive-
frequency part as3

= ~
for z a point inside K. Similarly define [F]^(z) by the same formula with z outside
K. We then clearly have that on K, F(z) = [F]£ (z) - [F]^(z) for any contour K
surrounding the origin, and [F]£ is holomorphic inside K with [F]£(0) = 0. More-
over the boundary condition on ψ clearly amounts to saying that [^°0o l^\κ — 0>
since g$ 1 sends the exterior of K holomorphically to the exterior of the disk, and
ψ is in turn holomorphic there. Similarly [φ0/^1]^ = 0. We get

φv ,fo = iL(zfΌ(z)v(-ilogz))of-^>of0. (3.7)

Since v is fixed, everything in this formula depends holomorphically on /0 and we
are done.

We now have a holomorphic action of Diίf on our space #/. In the next section
we will proceed to investigate its symplectic structure. Before doing so, however,
it is appropriate to ask how unique our construction is. The requirement that left
actions of Diff on Diff x R + be holomorphic is a strong condition on our
identification Λ :,£/-» Diff x R + , but suppose we replace (2.4) by

(yf,sf) = (f-logM«>)2)), (3.8)
where ξ is a real function. Then the induced action of Diff on j/, which doesn't
change s at all, is completely unaffected. We will say more about this fredom shortly.

We close this section with an aside. While the group Diff has no complexification,
still there is a complex semigroup, the "Neretin semigroup," which is the best

3 This differs slightly from [9]
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substitute [14,9,15]. This complex semigroup can be shown to act holomorphically
on J2/; the action of Diff found in this section can be deduced from this action.

4. Symplectic Structure

We will begin by writing a symplectic form on «$/ = Diff x R + and showing that it
is indeed nondegenerate and left-invariant under Diff. This form is essentially the
one proposed by Alekseev and Shatashvili; it is induced by a map from Diff x R +
into the cotangent space T v Diff. Finally we show that this 2-form is of type (1,1)
in the complex structure of part two, and hence is the Kahler form of an invariant
(pseudo-)Kahler metric on s/.

Trivialize T v Diff ^ Diff x Vectv by the map

(4.1)

where L y-1 is left translation and b is a cotangent vector to Diff at the origin, i.e.
a quadratic differential b(Θ)(dθ)2 on S1. We include Diff x R + into Γ v Diff by
sending

/ c \

(4.2)

It is traditional to use a complex basis for Vect in which — UQ corresponds to the
middle element of the basis in (2.8). Hence il$ is the middle element of the dual
basis, and ilξ^>(2πΓl(dθ)2.

We need a convenient description of two-forms on Tv Diff. Since these eat
tangent vectors we introduce the natural trivialization T(Ty Diff) ^ Diff x (Vectv

0 Vect 0 Vect v) via

(y, b v,p)->((Lγϊφv,p)\(γ,b)£T(y^(Tv Diff). (4.3)

Note that the tangent to a vector space, like Vectv, is naturally just that vector space.
The natural symplectic form on T v Diff is now quite simple. Define a one-form

α by the formula

(4.4)

the dual pairing of Vect with its dual. We will also let α denote the corresponding
pulled-back one-form on st = Diff x R +. Tangent vectors to &0 are given by
(y,s\v,A\ where now Δ is a real number. Using the embedding (4.2) we get

' ^-Λ""' / / ~~ otΌ> (4.5)
Zπ / (yf(s/2π)(dβ)2),

where v0 is the middle expansion coefficient of v in (2.8).
The symplectic form Ω is now just the exterior derivative of α. For this we

need the Lie bracket. With our trivialization of T(TV Diff) a vector field amounts
to a pair of functions (X(γ,b)9η(γ9b)) from Diff x Vectv to Vect x Vect v. We will
sometimes denote this vector field by Vx^η to denote its dependence on these two
functions. Considering the successive derivatives of a function / by two of these
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vector fields one gets

Here VXtη Y denotes the derivative of the Vect-valued function 7, while [ Jf , 7] is
taken pointwise and does not differentiate the functions X, Y with respect to 7, b.
We thus have da = Ω, where at (7, fo)

β(tχ.,, ̂ .4)= <f, γ> - <£>*> - <b,ιχ, n>, (4.7)
a function on Γ v Diff given two vector fields. Again let Ω denote also the

i S
corresponding pullback to jtf. We then have that at (7, s) recall we set b = —(dθ)2

V 2π

Ω((v,Δ),(ι/9Δ')) = Δv'0 - Δ'v0 + 2is £ my/.,. (4.8)
— oo

Here we have used the same expansion coefficients as in (2.8).
While we know that Ω is invariant as a differential form on T v Diff, still one

may worry that our choice of Diff x R+ c^+ T v Diff will spoil the invariance of Ω
on j2/. After all we did choose a basis, to define /J. We now check this invariance
briefly. For any generator v1 of Diff we get a vector field of the left action, which
in our trivialization is seen to be (Ady- ιu,0) at the point (7,5). Let us compute the
Lie derivative of α along this vector:

(^(Ady-iy,o)«)(^vi) = ^(K(Ady_lt),0)) + Ω(V(Ady_lv^ VXΛ\ (4.9)

The derivative in the first term substitutes s-*s + εΔ,γ-*y°(l + εX) and takes the
derivative of ε. Thus using (4.4), (4.7)

(4.10)

and α is invariant, and hence Ω as well.4

It is clear from (4.8) that Ω is nondegenerate and hence an invariant symplectic
form on Diff x R + . In other words we have a Hamiltonian action of Diff on this
space. In fact this action is strictly Hamiltonian, i.e. there is a globally defined
moment map μ:es/->Vectv. One finds that, since Ω is exact, we have that

(4.11)

generates the action (3.1)-(3.2). We also have a close relation to the usual
Hamiltonian action of Diff on its coadjoint orbits. Since clearly μ(7ι"M) =
Ad*-ιμ(y,s), we see that one flow covers the other [16]. Furthermore, the map μ
restricted to the inverse image of a generic coadjoint orbit is holomorphic. This is a
meaningful statement, since such orbits are isomorphic to Diff/S1, which has an
invariant complex structure [11,9].

We note that the single form (4.8) corresponds to a family of forms on Diff/S1

parametrized by s. Generalizing to arbitrary central charge gives the two-parameter
family of Bowick and Rajeev, as we will see in Sect. 7.

The space Diff x R + has an important property: it is multiplicity-free in the sense

4 Compare the discussion of [5], where a residual global right invariance remains after
"gauge-fixing"
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of Guillemin and Sternberg [17]. In general a symplectic G-manifold is called
multiplicity-free when every G-invariant function on it commutes with every other
one. In our case the only Diff-invariant functions are clearly of the form F(s), so
this condition is satisfied. When this is so, the corresponding quantum state space
will contain every representation at most once, essentially by Schur's lemma. This
was shown in [17] for the case of real polarizations.

Finally we wish to stress that all our constructions so far are very natural.
They do not depend on any choice of basis such as (2.5)-(2.8), as one sees from
the main definitions (2.2), (2.4), (3.1)-(3.2), (4.4). Thus when it transpires that the
pathological orbits Diff/Γ are absent from j/, it will be clear that we have not
simply taken them out by hand.

5. Pseudo-Kahler Structure

We have only to combine Sects. 3 and 4. That is, an invariant closed nondegenerate
two-form will be Kahler if it is of type (1,1) in the complex structure we found
and the associated Hermitian structure is positive-definite. Since both the form Ω
and the complex structure are Diff-invariant, we have only to check this assertion
at f(z) = az for a real constant α. We then have coordinates for the tangent space
to s4 given by (2.9).

What we must now do is pass to the complexified tangent space. Thus we allow
an,bn,Δ to be complex, or equivalently take φn independent of φn in (2.9), or v_n

independent of vn in (4.8). We then extend Ω in (4.8) by linearity, obtaining

Ω= -i(φ1φ'1-φ1φ
f

1) + 2i^n(φn + 1φ
t

n + l-φn+1φ'n + 1 ) . (5.1)

As claimed this has no (2,0) or (0,2) terms, i.e. none with φnφ'm or φnφ'm. The
corresponding Hermitian form [13] is indefinite:

H= -φίφ\+2^nφn+ίφn + 1. (5.2)
>o

Hence we have a pseudo-Kahler structure.
We can now return to the question of how to fix the arbitrary real function ξ

in (3.8). It is easy to see that regardless of ξ, Ω will always be a closed form of type

(1,1):

Ω= -iξ\a2)(φ1φ\-φlφ\) + 2i-^Yjn(φn+ίφ
f

n+i-φn+iφ
f

n + i).
a >o

As long as ξ takes R+ to R + , moreover, we will get a nondegenerate pseudo-
Kahler form. In fact this freedom is completely expected. Consider the space
A = GJN + analogous to our s/9 where G is a compact Lie group (see Sect. 1).
Clearly there is no natural choice of how to embed N+ in Gc; any choice can be
conjugated into an equivalent, different, choice by any element of Gc. Alternately
if we fix a choice of N+ we cannot expect to find any natural Kahler structure,
by the same argument. In our case as we mentioned the nearest substitute for Gc

is the Neretin semigroup. As a simple example of how it acts consider the
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transformation Ξ'.stf' -*stf, Ξ(f)(z) = kf(z) for a real constant k. One easily shows
that if we define Ωξ on si by the embedding (3.8), then an equally good choice is
Ξ*Ωξ = Ωξ>, where ξ'(x) = k2ξ(x). More complicated Ξ induce more complicated
transformations of ξ. Thus the choice (2.4) is just one of many equivalent choices.
It gives (5.1) a very simple form.

6 Quantum Mechanics

The quantization of an infinite-dimensional system like (5.1) is delicate and will
no doubt require methods from the corresponding quantum field theory (see e.g.
[5,8,7,18]). At the very least we will have to replace wavefunctions by cohomology
classes [19]. Some geometrical remarks are in order first, however.

Suppose we have a dynamical system A on which a group G acts by symmetries.
In general we cannot represent the Lie algebra g using Hamiltonian generating
functions; the best we can do is to represent a central extension g in such a way
that the central generator is represented by a constant function [2]. It may seem
surprising that a central extension can show up in classical mechanics, but it is
already well known [20] that in the Virasoro geometrical action c enters as a
classical parameter; see also Sect. 7. In any case we have seen that in the present
situation the moment map (4.11) affords a true representation of the algebra Vect
in Poisson brackets.

Now suppose a G-invariant line bundle and connection (B, V) have been given
with curvature of V equal to Ω. Geometric quantization then tells us how to lift
the action of g (respectively g) from A to B. Namely if μa is the moment of some
generator and Xμa its Hamiltonian vector field, then

A,= -' V^ + μβ (6.1)

is the corresponding quantum operator on sections of B, and one shows that the
μa obey the same algebra under commutation as do the μa under Poisson bracket,
namely g (respectively g). Finally if a G-invariant polarization is given then (6.1)
acts on polarized sections of B.

In our case Diff acts on jtf, (J3,V) are defined in the usual way from the
Kahler potential K of Ω, and the polarization is defined by the Diff-invariant
complex structure on jtf. Thus B is a^holomorphicline bundle and V = d- iSK its
Hermitian connection; since Ω = iddK this is a suitable choice. We finally get an
action on wavesections defined by (6.1).

The point we wish to make is that (6.1) does not at first resemble the prescription
we were trying to imitate. Recall from Sect. 1 that in the compact case we wanted
holomorphic/wncΠ'ons on A (not sections of some bundle) with an action of G by
left translations, i.e.

μa=-iXμa, (6.2)

where Xμa is the ordinary directional derivative.
To recover this prescription from geometric quantization, we must therefore

verify two global properties. First, we must find that the bundle B is holomorphically
trivial. This amounts to finding a single global Kahler potential. Second, to reduce
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(6.1) to (6.2) we need to show that K can be chosen such that everywhere

μa = -i(dK,Xμay = -iX(^K. (6.3)

Furthermore (6.3) amounts to requiring that the connection -idK be itself
G-invariant [21]. A little manipulation reduces this condition to

X^μb + X^μa = 0, (6.4)

where X(^0} is the holomorphic part of Xμa. The real part of (6.4) merely says
{μα>μ&} = -{μ*»μα}> but the imaginary part is new. We now briefly sketch why
these two facts (triviality of B and (6.4)) are true for the case of G = Diff, A = jtf.

First we notice that our manifold s/ has very little topology - it retracts to a
circle epitomized by the phase of the first Taylor coefficient of /. So to study the
triviality of B we can restrict attention to the submanifold tf0 = {fu,ueCx}f

fu(z) = uz. Here our formulas reduce to Ω= —idu Λ dΰ. We can therefore take
K= — |w| 2, which is clearly global and invariant under the remnant symmetry
(7(1) c Diff acting on jtfQ One easily shows that if we generalize to one of the other

{u{2dx
prescriptions (3.8), then K(u)= — J — ξ(x) is again global and invariant.

Next we want to verify the condition (6.4). It is enough to do so at the
submanifold ja/0. Hence we need the moments μn of the Diff generators /„ to first
order near J/Q. Letting u = eioca we find that at/u the Hamiltonian vector field of /„ is

Λ Ln

 Ut: ~^ ' l = U

= 0 n < 0,

while the corresponding moments are

Ln= 2ianein*φn + l π > 0

= -2ianeiUΛφ-n+1 n<0

Before verifying (6.4), we note that it was derived for the action of G, i.e. for real
generators of Diff. Taking the linear combinations Ln + L_π, i(Ln — L_J, we easily
verify it at jtfQ. Again one can show that this works for any choice of ξ.

Away from j&0 we extend the (l,0)-form - idK to an invariant (l,0)-form K
by the action of Diff, for which j/0 is a slice. We can then integrate dK = lκ to
find K because &4 retracts onto jtf0.

We now know that our quantum mechanical system implements the analog of
the theorem in Sect. 1 for any choice of the real positive function ξ. We should
however be careful to choose ξ so that the quantum mechanical operators satisfy
LI = £_„. Truncating to j/0 we see that our choice ξ(x) = x meets this condition,
since then the metric e~κ makes our truncated system the same as the harmonic
oscillator in an inverted potential, with L0 the Hamiltonian. This system can be
quantized using 1-form wavefunctions.
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7 Central Extension

We now generalize the previous construction to find a family of invariant Kahler
metrics on the space j/, parametrized by a real number ί. That is, the space itself,
its complex structure, and holomorphic action of Diff will always be the ones found
in Sects. 2 and 3. Our strategy is to invent a larger space s# with just one
symplectic structure β, then find a Hamiltonian constraint reducing Ω to a family
of symplectic manifolds all isomorphic to si. In Sect. 8 we will then introduce further
constraints to reduce jtf to individual coadjoint orbits. ̂ ^

We construct j/ by applying the previous recipe to Diff, the central extension
of Diff defined by the Lie algebra extension of Vect = Vect © R:

Here and below prime means — . Following [20] we have omitted the conventional

factor of i to emphasize the Diff is a real manifold. In the usual way this extension
defines a multiplication law

(see [22]), but we will not^need the^explicit form of the cocycle c(γl9γ2).
We will write (γ, c)eDiff, (t>, v)e Vect, (b, t)e Vect v . Thus a point in the cotangent

is specified now by (y,c;fe,ί), and a vector by K(ϋtV^λ)|(y5C;&>t)eΓ(y>c;M)(Γv Diff).
Formulas like (4.6)^(4.7) now have somewhaM edious generalizations. Analogous
to (4.2) we include Diff x R + x R into Γ v Diff by

(y,c;s,f)h *(y,c;s/JJ,f).

Then the natural symplectic form pulled back to Diff x R + x R is

= ^1(^2)0 + V2 - Δ2(vΐ)0 - λ2v1 - s[ι;l5 ϋ2]0 - — §ί/ϊυ2 (7.1)

at (7, c\ 5, ί), where now Δt are real numbers. As before this is closed.
^e thus have a symplectic manifold j/ = Din x R + x R with an action

of Diff by left translations. As before this action preserves the symplectic structure,
arid as before j/ is multiplicity-free. Eventually we want an action of Diff, not
Diff. For now, however, the Hamiltonian vector field corresponding to (t;, v)e Vecl is

^(i7,v)l(y,c;s,f) = K(Ad y-i(t;,v);0,0)l(y,c;s,f)' I ' ^)

One checks that again the corresponding moment map is

/l(y,c;s,ί) = Ad*-ι(s/S,ί). (7.3)

Note that since Ad(y- ι>c) (t>, v) is independent of c we abbreviate to Ady- 1 (v, v), and
similarly Ad*. Note also that μ is therefore independent of c.

From (7.2) we see that the coordinate ί is strictly first-class, i.e. it commutes
with μ under Poisson bracket since U(VtV}t = Q. We may thus reduce j/ by a
constraint setting ί — ί0 = 0 for any constant ί0. Furthermore the flow generated
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by t is just — , from (7.1). Hence for any ί0 we get a constraint reduction to
^~\
Diffx R+ x {ί0}/~> where ~ identifies different v^Jues of c. But this space is just
our j0 =* Diff x R + . Moreover the left action of Diff on stf is seen to descend to
the usual left action of Diff on s#. However, while the functions (7.3) descend to
«c/, they do not generate the Lie algebra of Vect - instead a central term remains,
as desired.

We therefore get on s/ a family of symplectic forms

Ωto(VΌίtΔl9 V V 2 ί Δ 2 ) = Δ1 (v2)0 - Δ2 (vJo - $!>!, ι>2]0 -

Henceforth we regard ί0 as a parameter. We know that Ωto is invariant since the
constraint was first class. Using the same complex structure as in Sect. 2, invariant
under the same action of Diff as in Sect. 3, we now see that every Ωto is
pseudo-Kahler by a calculation similar to (5.1):

>0

This is the imaginary part of a Hermitian metric on stf given by

Hto(φ,φ')= -

We have arranged for H, and hence also the Kahler potential, to be positive as
ί0-> oo. Unlike the case the case of zero central charge, Ωto and Hto are singular
whenever 24α2/ί0 = — n2 for integer n. (Recall that ϊ>0 = α2/2π). Hence we should
really define j/to as a singular symplectic variety. Note that this problem was
already pj^ent at the classical level (see (7.1)); it reflects our failure to find a slice
in T(TV Diff) suitable for "gauge-fixing" in the language of [5].5 Far from being
a pathology we expect the singularity of Ω to be the key to its correct quantization.
For, as we cross the singularities the signature of H changes. For H of indefinite
sign we know we should consider wavesections as Dolbeault cohomology classes
[19], or equivalently introduce fermions. As noted by Alekseev and Shatashvili,
such fermions are precisely what is needed to correct the signs in the character
formula in [5]. (In that paper this phenomenon was not visible, however, because
the complex structure was not available and hence Ω could not be converted into
H.) We do not yet know how to make this conjecture precise.

The constraint formalism guarantees that each Ωto will be closed. It does not
follow, however, that Ωto = dαto for some invariant one-form αίo, even though Ω=d&
for an invariant ά. In the language of Sect. 6 this failure is responsible for the
appearance of a central extension in the Poi§sρn brackets of generators; upon
quantization it gives us representations of Diff as desired. Moreover the Din-
invariance condition for the geometric action is equivalent to the Virasoro Ward

5 The problem is indeed reminiscent of a similar singularity in Chern-Simons-Witten theory
[23]. There the solution was to excise the bad subvariety by restricting attention to stable vector
bundles on a fixed Riemann surface. This is not helpful in the present case, where the bad
subvariety is in the interior of <stf
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identity [24], and the appropriate αίo is just the Virasoro geometric action with
the base point s regarded as a dynamical variable as assumed in [5].

8. Reduction to Orbits

Consider again the case with no central extension. Since the action of Diff in
(3.1)-(3.2) does not affect s, we see that s is strictly first-class and may be set to
any value s0. Moreover the corresponding flow generated by the constraint s — s0

is the right action of the rigid rotation group S1 c: Diff. This follows because
Ω(V(V, ΔΓ K<*o,o)) = Δ + s['o> f]o = 4 while the derivative V(ΰtΔ)s = 4; from (4.3) K(/o 0)

generates the right action of S1 on Diff.
Thus at ί0 = 0 si admits a Hamiltonian constraint reduction to a set of copies

of Diff/S1; under the moment map (4.11) these map to the usual coadjoint orbits
as desired.

In the case of Sect. 7, generically we have the same situation. At the special values
of s, however, Ωto becomes singular and we must reduce further to get a good
dynamical system. We expect a new function \fι to become first-class at these special
values. Since we are already constraining s, this means that the Poisson brackets
satisfy

The form of the centralizer in [3] suggests that we try

Thus the derivative K(,0>0)^ = 0 and so [φ,s] = 0. When s= — -~n2 we also find

the derivative V(Ad^lVtQ}φ = 0 for all v, and so {ψ,μ} = 0 as desired. One can show
that ψ generates right motions of a generator of SL(2, R). (If such a generator
exists then it must commute with s, since [/1? /0]0 = 0, and also with μ, since right
and left motions commute.)

9. Conclusion

Even though the diffeomorphism group has no complexification, we have found
a space si which has all the attributes, save one, of the space GC/N+ for a compact
group. The space si has a free action of Diff by holomorphic maps, and so the
holomorphic functions on it furnish a large, reducible representation of Diff. si
also carries a family of holomorphic line bundles with actions of Diff, giving
representations for various values of the central charge.

All this is nice, but we have seen much more. Since si is infinite-dimensional,
the precise class of functions to allow is a delicate question. If si has the structure
of a quantum-mechanical system, however, then we can imagine bringing to bear
methods of 2d quantum field theory for its quantization. Remarkably we have seen
that this is so. The holomorphic functions (or sections of a bundle), with the action
of Diff (or an extension) above, actually arise from the quantization of a dynamical
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system. We constructed the classical and quantum data of this system. It turned
out to be quite simple. For example the prequantum line bundle is just trivial -
certainly not the case for the Borel-Weil-Bott theorem. Also we found that of the
rather complicated catalog of Virasoro coadjoint orbits, only the interesting ones
Diίf/S1 and DifΓ/SL(/l)(2, R) are present. The only missing attribute of the compact
case is positivity of the Kahler metric on stf\ we have suggested that this failure is
not a pathology of our construction but instead a crucial feature for getting the
representation theory right.

Quantization of the space «$/ remains a somewhat daunting prospect, however.
Even with some appropriate regularization replacing the condition of square-
integrability, the fact that for t < 0 the pseudo-Kahler form degenerates will cause
trouble. Similar difficulties appear in other approaches to quantizing SL(2, R)
gauge theory [25]. We think, however, that the present approach shows the issues
in a particularly clear form.
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