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Abstract. We give an x-space definition of dimensional regularization suited to
the tree expansion method of renormalization. We apply the dimensionally
regularized tree expansion to QED, obtaining sharp bounds on the size of a
renormalized graph. Subtractions are made with the Lagrangian counterterms of
the tree expansion, not by minimal subtraction techniques, and so do not entail
a knowledge of the meromorphic structure of a graph as a function of dimension.
This renormalization procedure respects the Ward identities, and the countérterms
required are gauge invariant.

1. Introduction

In [1] with J. Feldman and T. Hurd, we developed a general scheme for
renormalizing a quantum field theory based on the tree expansion of G. Gallavotti
and F. Nicolo [2], and we applied this scheme to quantum electrodynamics (QED)
to give a complete proof of the renormalizability of QED in perturbation theory.
The basic idea of the tree expansion approach is to slice up each field as a sum
of fields of different scales, to integrate out the fields one scale at a time, and to
renormalize scale by scale. The resulting renormalization procedure is remarkably
simple: one never sees “overlapping divergences” or the usual combinatoric
complexities of BPHZ renormalization, and the required bounds amount to little
more than superficial power counting. We briefly review the tree expansion in
Sect. 2 but shall rely on [1] or [3] for details. See also Hurd [4] for a simple
version of the tree expansion that employs continuous rather than discrete slicing,
as in Polchinski [5].

The main technical difficulty we faced in applying the tree expansion to QED
in [1] is that the slicing breaks gauge invariance and so it was not clear whether
the theory could be renormalized using only gauge invariant counterterms. We
overcame this problem as follows: we introduced an auxiliary regularization on
the fermions that preserved the Ward identities but allowed us to remove the tree
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expansion cutoffs on the fermi lines; upon doing so we recovered the Ward
identities, and were thus able to rule out forbidden gauge variant counterterms.
The auxiliary regularization we used in [1] was “loop regularization.” (We call
such a regularization “auxiliary” to the tree expansion regularizations since it
cannot be used to give the slicing of individual lines that is needed to run the tree
expansion.)

Now loop regularization has its shortcomings. For a non-abelian gauge theory
like Yang—Mills, it will not on its own give finite graphs. But even for QED, where
loop regularization is most conveniently implemented via fictitious spinor fields,
there is an incompatibility between loop regularization and renormalization.
Graphs with fictitious field external legs must be renormalized with “incorrect”
counterterms in order to maintain the algebraic cancellations involved in loop
regularization. It was this complication of loop regularization that gave us the
most trouble when we removed the UV cutoffs in QED [1].

Are there better auxiliary regularizations that preserve the Ward identities?
There are precious few. In this paper we show that dimensional regularization
[6,7] can be used as an auxiliary regularization in the tree expansion; and we
illustrate its use in QED, as a simpler alternative to the methods of [1]. The basic
idea of dimensional regularization (dr) is to regularize a graph in d dimensions by
evaluating it as though it were coming from v < d dimensions (v not necessarily a
positive integer). For sufficiently small v the regularized graphs have no UV
divergences and yet Ward identities are maintained since, intuitively, they hold in
“v dimensions.”

In spirit, our treatment of dr follows that of Breitenlohner and Maison [7].
However, in contrast to these and other authors, we shall work in x- rather than
in p-space. Aside from our beliefs that it is more natural to regularize the dimension
of the underlying coordinate space and that the resulting algebraic structure is
clearer in x- than in p-space, our main reason for this choice is that the tree
expansion is best carried out in x-space; in particular, by regularizing in x-space,
we can easily obtain the bounds on graphs needed to establish renormalizability.
Also, in contrast to most other treatments of dr (see e.g. [8]), our analysis involves
neither an explicit computation of the value of a graph nor an investigation of its
meromorphic structure as a function of v. To renormalize a graph we do not
subtract off poles in v, instead we renormalize directly with Lagrangian
counterterms defined in x-space. It should be possible to prove that these two
subtraction schemes are equivalent, i.e. differ by a finite renormalization. We offer
no such proof here. Rather, the onus is on the minimalists to demonstrate that
their scheme is equivalent to a Lagrangian counterterm scheme and hence respects
unitarity. Such a demonstration can be quite intricate (see, for example, [9]).

We restrict our attention in this paper to the example of QED,. Thus we are
not concerned with the problem of defining objects like y° or € yio [7]. Another
simplification in QED is that one can place UV and IR cutoffs on photon lines
which do not break the Ward identities.

Given a (Euclidean) QFT with fields @ defined on RY free (quadratic)
Lagrangian £, and interaction Lagrangian £, the tree expansion analyzes the
generator of connected, amputated Green’s functions, the “effective potential,”

V(®°)=[log &(""** ) ];. (1.1)

Here & is the Gaussian expectation with respect to @ with density
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exp[— [Lo(P(x))dx]; V(D)= — [ £ (P(x))dx is the interaction potential; @° is
the set of external fields; and the notation [ ---], means “drop terms independent
of @°” For the purposes of perturbative renormalization theory, we interpret
V(®¢) as a formal power series (fps) in the coupling constant(s) and fields @°. As
such, V(@°) can be evaluated in terms of connected Feynman graphs whose external
legs correspond to fields @°.

We now give our definition of x-space dr. Consider a (connected) graph G
contributing to (1.1) for QED,. Its lines #(G) are either bosonic or fermionic,
L =F,u & ;itslegs A(G)are half-lines corresponding to external or uncontracted
fields; each of its vertices ve#"(G) has two attached fermion lines or legs and one
attached boson line or leg and carries a coordinate x and an index u (corresponding
to its photon field A*(x)). Let V =|77(G)| and L =|#(G)|. Each line [e #,, arising
from the contraction of the photon fields A*(x;) and A“(y,), contributes the
propagator (in Feynman gauge) 6*"'C(x,, y;), where

Cxpy) = (= A) " (x ) = | doye™4(x1,y,)
0

doy(4noy) =42 e~ FH 14w (1.2a)

Oty 8

where z; = x; — y,. A line [e #, arising from the contraction of the fermion fields
Y(x,) and ¥(y,), contributes the propagator

m%m=vw+mw%m=@mm+mwkﬂmm

doy(dnoy) =92 f,e M ma (1.2b)

o8

where
fi= =it 20 +m, f= z, ",
the y*’s being Euclidean Dirac matrices with
=yt = - 20"
The value of the graph G is then

G= cfdoc H e""’“'ﬁ‘fé?]‘dxpe“’/4He(xe), (13)
le&ys
where ¢ = (4n)” %2, a = ()., With each «, integrated from 0 to oo, f; =0 °,

Pe= I—.[?ﬁl’x=(xla---,xv)’.“dx=jdx1"'de,
le

p= l"[ fl l_[ 5111\'1 l_[ —yllu (14)

le¥; Ile¥p ve¥”

(repeated indices summed over), b= f,z2, and IT%(x°) is the product of external
4

fields corresponding to the legs of G with x° representing the coordinates of the
external vertices ¥ (i.e. those vertices having an attached leg). We suppress the
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vector and spinor indices on I7° and the spinor indices on the y’s in p, but it is
understood that the fermi fields in I7¢ occur in a specific order and that the y’s in
p occur in ordered products and traces corresponding to the lines and loops of
G. We also break the translation invariance of pe ”* in (1.3) by setting x, =0
(which we assume is an external vertex). Then the (V — 1) x (V' — 1) matrix B defined
by
b=Zﬁ,zfle=OExBx, X=(Xg5ees X, _,)

is non-singular.

In general, the expression (1.3) diverges because of UV singularities at & =0
(as well as IR singularities at o = 0o, which we deal with below). We define the
UV regularized version G, of G by making the following replacements (i)—(v):
i) B2 - pl? where v <d.
For v small enough, this replacement removes any UV divergences but on its own
does not give an expression “coming from v dimensions” and so cannot be expected
to have the appropriate invariance properties.
ii) For each coordinate x in p or b, x > X = (x, X).
Here, % is a formal symbol whose calculus we specify below so as to be consistent
with the calculus when v is an integer > d, in which case XeR*““ and XeR". Note
that the arguments of IT%(x¢) are not affected by ii). Let ¥°, = 7"° denote those
vertices with an attached photon leg, and 7", = ¥\ 7", those without.
ili) For each Dirac matrix in a fermi factor f, or associated with a vertex ve?”,
in (14), y> I = (,9) )
iv) Each Kronecker delta in (1.4), 0% — A" = 6"/ + 6.
The formal symbols %,7 and o satisfy algebraic rules appropriate to “(v—d)
dimensions”:

{)7#1 Auz} - _ 25}41#2, {-ym’-)‘;llz} =0, (1.5
Srnz — Sham Fmimagua _ g 5#1;12)';;12 =fm, (1.6)
Sm—y_d (1.7a)

We require no further algebraic structure for the §’s, such as a representation of

P* as a matrix, a product rule for {’s or a “trace” on products of §’s. By Rule v)
below, the §’s will always occur in pairs §#$* which we can evaluate by (1.5) and
(1.7a):.

PEPr=d — . (1.7b)

Note also that a repeated index u on “-objects (as in (1.6) or (1.7)) is not actually
“summed over.”
According to ii)-iv),

p—P=T] F, [T 4*" [T T™™ [ » (1.8)
lefs le ¥y ve¥ 'y ve¥ o
Fi=—ipZy/2+m,
Z,=T+Z0=yizt 4 ¥ ,=¢ +¢1
b—B =Y B2} =Yz + LBz

where
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v) [dx—[dX = [dx [d%, where the computatlonal rule for {d% is Gaussian and
follows formally from (d%- = {d% ---d%, |,

Xy = 0
fdge b = (c, | Bl (1.92)
T o, -4 (e B)* ) T (2B™1),;0*™  seven
fdxrljl Rr g~ b14 = . G 126 ot (19b)

where ¢, = (47c)1 ¥ and G is summed over graphs whose lines join the s £’s in pairs,
with le #(G) joining x4 to X3!

The replacements 1) v) and the calculus (1.5)~(1.7), (1.9) define the regularized
graph

G,=cfda [] e ™“B*?[dX Pe™ #1*IT¢(x®). (1.10)
lefy
We shall be more explicit about the form of G, in Sect. 3 and the reader may wish
at this point to skip to the example after Corollary 3.2, but for now consider the
“leading term” in (1.10), which has the same form as (1.10) but with p in place of
P. According to (1.9a) this leading term differs from the value G of (1.3) by virtue
of the additional factor

B2 B2 = U (o), (1.11)

The factor Ug is a homogeneous polynomial in « of degree L— V + 1 [10] and
provides the needed UV regularization at a =0 for v small enough. Our general
strategy in using the dr expression (1.10) will be to integrate out the X’s when we
want bounds but to leave the £-integrals intact when we want relations such as
Ward identities.

Now (1.10) will still have IR singularities as « — oo (worsened by the factor
(1.11)!). To deal with these we simply insert a cutoff on the photon lines, o, < M =2/,
where M > 1 is fixed and the IR cutoff I > — oco. We are free to do so in QED
because cutoffs and slicing on the photon lines do not disturb the Ward identities.
At the end of Sect. 4 we indicate how to remove the IR cutoff, ] - — oo, after
renormalization.

Consider the dr version of (1.1) which we write as

V(@) =6, ("7 27), (1.12)

where € (F(® + @¢)) denotes the sum (fps) of connected graphs contributing to
[E(F(® + @°))], with each graph dimensionally regularized. As we show in
Corollary 3.2, the graphs contributing to V, are finite when v<2 and I > —
We renormalize V, with the tree expansion counterterms appropriate to d =4
dimensions to obtain the renormalized dr effective potential V.. (@°). This
subtraction scheme does not entail a knowledge of the meromorphlc structure of
V, as a function of v. Although oversubtracted when v <4, Vs finite for v <4
and is consequently an analytic function of v for Rev <4 (see’ Theorem 4.2 and
Remark 3 following it).

What about the Ward identities? Why do they hold for V, or V... 7! Although
the “expectation” €, is not given by a genuine integration over ﬁelds It nonetheless
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satisfies “integration by parts” formulas with respect to ¥ and V¥, such as (see
Lemma 3.5).

(—id. + mE (Y(x)e’ (2 2) = —_é—fgv(e""“” 2. (1.13)
oYe(x)

These identities correspond to what Breitenlohner and Maison call the “Action
Principle” [7].

Choosing v<2 (and I> — o) to ensure finiteness of all graphs and
counterterms (see Corollary 3.2), we use the integration by parts identities to
establish Ward identities for the effective potentials V, and V., , (Corollary 5.4).
But V.., , is an analytic function of v for Rev <4 and so the Ward identities for
it immediately continue to Rev < 4. This guarantees the gauge invariance of the
renormalization procedure. For QED, it is also possible to make a somewhat
more direct version of this statement: with IR and UV cutoffs I > — o and U, < o0
on the photon lines all counterterms are finite when v <4 except for the mass
counterterm to the second order vacuum polarization graph. Consequently, if we
analytically continue this one graph to v <4, we can assert that the other
counterterms required to renormalize QED, (finite for v<4 and — 0 <I 0=
U, < o) are of gauge invariant form (see Sect. 5).

The main conclusion of this paper is that x-space dr provides an elegant
auxiliary regularization that preserves Ward identities and combines clearly with
the tree expansion approach to renormalization. We believe that this regularization
will prove very useful in the application of the tree expansion to non-abelian
gauge theories. Unfortunately, it does not seem possible to implement dr at the
functional integral level, and so we are dubious that it will be a useful tool in
non-perturbative analyses.

Acknowledgement: We thank Robert Adams for the artwork executed on the mg system.

2. Review of the Tree Expansion

We outline here the tree expansion procedure for renormalizing a field theory as
discovered by Gallavotti and Nicold [2] and developed by Feldman, Hurd, Rosen
and Wright [1,3]. For full details and proofs see these references.

Our description will centre on the example of (Euclidean) QED, with fields
@ =(D,, D,, ;) =(A,¥,¥) and Lagrangian & = %, + ¥£,, where (in Feynman
gauge)

Lo=—3A-AA+Y(—ip+my and L, =eyAy.

In contrast to [1] we shall not Wick order the graphs in the effective potential
and so our trees will be slightly different from those of [1].

The unrenormalized effective potential V(®¢) is given by (1.1) as a fps in e
whose coefficients may be expressed in terms of connected Feynman graphs with
external legs corresponding to the external fields @° = (4%, y*, ¥ ¢). Of course, (1.1)
is only formal: the fps coefficients are in general divergent. The central task of
(perturbative) renormalization theory is to introduce regularizations (which we
denote by N < o0) so that the regularized version of (1.1),

Va(@°) = [log&y(e"** )], @1
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has a well-defined (but not necessarily convergent!) fps and to introduce
counterterms
SVy(@) = — [6L(D(x))dx, 2.2)

which cancel the would-be infinities of Vy so that the renormalized effective
potential

V,..(@°) = lim [log&y(e " *oV™(e* 29, 2.3)

N-ow

has a well-defined fps. The counterterms 6V, are to be chosen as a fps in e (with
finite coefficients when N < o0) and are supposed to have the same form as the
terms in the original ¥ (“local Lagrangian counterterms”). In particular, if & is
invariant under a gauge group, the counterterms 6.% are required to respect this
gauge invariance. This gives rise to the main technical complication in renormali-
zing a gauge field theory: most convenient regularizations N break gauge invariance
and so apparently must 6Vy.

The strategy we adopted in [1] to overcome this difficulty was to introduce
regularizations convenient for the tree expansion: N, a UV cutoff on the electron
propagator; U, a UV cutoff on the photon propagator; I, an IR cutoff on the
photon propagator; as well as an auxiliary regularization A, on fermi loops
(implemented by fictitious spinor fields). We ran the tree expansion with all 4
regularizations in place using counterterms 6V, ;, , . that were gauge variant and,
because of the need to maintain the loop regularization, could not be chosen so
as to renormalize graphs with fictitious field legs correctly. We then took N — co.
In the N = oo limit the theory is finite (order by order in perturbation theory) and
the Ward identities are recovered. Consequently, the (finite) counterterms
oV, y o= lim oV, , , . are gauge invariant. We then removed the remaining cutoffs

N— o

but it was crucial to take A — oo first (followed by U - oo and then I - — o0) in
order to control the incorrectly renormalized fictitious field graphs.

In this paper we replace loop regularization A by dimensional regularization
v <4 with a considerable reduction in technical difficulties. We describe the tree
expansion in this section without v but include it in subsequent sections.

The first step in the tree expansion is to decompose the propagators (1.2) into
a-space slices. Fix M > 1 and for h=0, +1,... set

CP(x1,y1) = [ dotyy ™ (o) (dmoty) =42~ 7 14, (2.4)
0
where
x™ = characteristic fn. of [M ~2" M ~24+2], (2.5)

For h=0,1,2,... we set
S®xy, y,) = [ doyy®(oy)(@dmay) =42 e~ 2t l4m—om?, (2.6)
]

where f is given after (1.2), y = y® for h >0, and
19 = characteristic fn. of [1, c0). @7

(For massive particles there is no need to slice up the IR regime o, = 1.) Thus

C= 3 C» and S=3 s, 2.8)

h=—wo h=0
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The fields corresponding to these slice covariances are denoted @™ and the
corresponding Gaussian expectations &®. For example,

SO x, y1) = EDG P ) M ().
Corresponding to the decompositions (2.8) we have

A= ¥ A" y=3 y® and §=3 GO,
h=~c h=0 h=0
The UV- and IR-regularized fields are (we take the UV cutoff to be the same on
the photon and electron fields)

U U

ATV § gt yloU = § B e, 29)

h=1 h=0

and the corresponding cutoff propagators are

CU.UI = i C®™ and SW©UI— i st
h=1 h=0
For the remainder of this section and until the end of Sect. 4 we shall assume that
the IR cutoff is fixed at I =0 and we shall write @~V for the external field @©

k U
and =¥ for Y @®. We also write &Y for the Gaussian expectation [] &®.
h=-1 h=0
The renormalized effective potential with UV cutoff U (and IR cutoff I = 0) is
given by
VY(@°) = [log £¥(e" ®=V)],. 2.10)

The tree expansion for V'V is obtained by successively integrating out the fields
@Y @~V @9 and performing a cumulant expansion

log&™(e")= ) lé”‘T'"(W,...,W) 2.11)
P=1p! p arguments
after each expectation. Here &P denotes the truncated or connected expectation.

A tree t is a tree graph (i.e. no closed loops) with a distinguished end-vertex
at the bottom (the root), the other end-vertices at the top (called endpoints), and
each remaining vertex f (called a fork) having one line down and the other p, = 1
lines going up. We denote the set of endpoints by &(t) and forks by #(r). The
structure of a tree t determines a natural partial ordering on the set &(7)u & (1)
v, <, if v, is below v,. For example the tree

ey €, es e,

(2.12)

has 4 endpoints and 3 forks with f; < f, < f, <e;,f1 <e,, f3<es;, and f;<e,.
Each fe# (t) bears a scale lebel h; such that the scales h = (k) 17 Delong to the set

H@)={h0<h, <h, if f,<f,}. (2.13)
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The root scale of 7 is — 1. Given fe% (1) we let 7, be the subtree of T with lowest
fork f and root n(f), where n(f) is the fork of v immediately below f (if f is the
lowest fork of t then n(f) is the root of 7). If e is an endpoint of T we let 7, be
the trivial tree with single endpoint e and no forks. The root scale of 7, (v a fork
or endpoint) is k.

The value VV(t, h) of a tree is 0 if any h, > U; if every h, < U the value VY(t, h)
is most easily described inductively: if ee&(t) then VY(t,, h) = V(@E"eD), If
vy,...,0, are the forks and endpoints immediately above a fork f, then for p > 1

VV(ag,h) = — L2550 880V e, .., V(o ) o (2.14a)
p!
where k=h,,,Z%"" means that the fields @**V=...= @* "V =0 and now
[---1, means “drop terms independent of @=P”; for p=1
VV(e,, by = [ZE 80V (x, k) ]o — Z*HIV(z, ,h) (2.14b)

so that at least one contraction of a pair of fields @"” occurs.

Iteration of the cumulant expansion (2.11) yields the unrenormalized tree
expansion

vi=% % VYzh). (2.15)
t he H#' (1)

V'Y(z, h) can be expressed as a sum over connected graphs whose vertices correspond
to endpoints of 7, whose lines are propagators at a specific scale h; and whose
legs correspond to external fields @°. For example, a graph contibuting to VY(z, h)
for © given by (2.12) is

G
£ G
2| 21 h3
Xy N Xy
S Y A S (2.16)
X, M Xy
h3

where we write h;=h, . Then h;- and h,-lines correspond to propagators S®»
and S"? and the h;-lines to two C**"s and one S**). The vertex x; of G corresponds
to the endpoint ¢; of 7. The legs attached to the vertices x; and x, correspond to
external fields ¥°(x;) and ¥°(x,).

Let G be the subgraph of G whose vertices correspond to endpoints of ¢, and
whose lines correspond to propagators formed by contractions of fields at forks
2 f. In the example (2.16) the subgraphs G, and G, are boxed in. If n(f') = f
we view G as a generalized vertex for the graph G, and we consider the reduced

graph
gr= Gf/{Gf’In(f/) =f}
formed by contracting each G, to a point. In the example,

95 = Gfs/{sz} =
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The connectivity requirement on the graphs Ge%() associated with t is that each
such g, must be connected.

The value of a graph G is as given in (1.3) except that because each line [ is
sliced as in (2.5)—(2.8) there is an additional factor

@ =TT 2% TT x" o), (2.17)

e&s leZLy
where f(J) is the fork at which the line [ is formed. Thus the value of G is

G'= Y G"= ¥ [KMU(x)IT(x%)dx
he # (1) he #(r)

= Y [day"(0)KY(a, x)IT(x)dx, (2.18a)
he H ()

where KY(x, x) =0 if any o, < M ~2Y and otherwise

KV, x)=c [] e ™=p42pet/* (2.18b)
le¥y

and p and b are given by (1.4). In terms of graphs the unrenormalized tree expansion
(2.15) takes the form
rr=y %y Yy 6" (2.19)
t he # (1) Ge¥%(z)

For details of combinatoric factors etc., see [1]. Note that |£(1)] = |7 (G)| = the
order of perturbation theory, and that (2.19) is interpreted as a fps in e.

Are the coefficients in this perturbation expansion finite, uniformly in U? We
estimate the size of G"V by the “pinned L'-norm” of its kernel:

I K" o = [IK"Y(x)] |xV —odxy--dx, _,. (2.20)

The following bound is completely elementary, and the equality follows by a
summation by parts [1, Lemma 2.1]:

Lemma 2.1.
” Kh‘U ||0 é c n MDd(gf)hf =c n MD“(Gf)(hf_h"(f)), (221)
JeF (1) feF(v)
where D,(G) is the UV degree of divergence of a graph G,
DyG)=(d—-1)L;+(d-2)L,—d(V—-1)=dA—L;—2L, (2.22)

and L, Ly, V and A are the number of fermi lines, bose lines, vertices and independent
loops of G, respectively.

Remark. We shall use the letter ¢ to denote various constants that are independent
of variables such as x, a, h but may depend on G, at worst like cg, where L = | Z(G)|.
If every subgraph G, of G has D;(G,) <0, then the sums over h; > h,, in
(2.18a) converge uniformly in U and the graph G is finite (this is the
Dyson-Weinberg Power Counting Theorem). If D,(G,) = 0 then the subgraph G,
requires renormalization.
Now G, has the general form

GY = [KY(x)I ((x)dx,
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where x = (x,,...,x,) and
I (x) = 01 ®=P(x) - 0% = B(x,), (2.23)

where the x-derivatives 0% arise from renormalization operations we are
about to define and k=h, . If IT; has A} bose fields @, = A, 1/ fermi fields

@, =y and ¢3 =y, and a total of qs derlvatlves then the dzmens:on of I, is

2 d—
E—Z——A" 5 lf+qf and the degree of G, is

: d— -
5((;,).—.d—dme,:d——zzﬂ;-‘f—i-lA;—qf. (2.24)

For simplicity we assume that d=4 in which case e is dimensionless and

0(G;) = D4(G,) — q,. We select one of x,...,x, as the localization vertex x s of G,
and let

x(tf)=(x1(tf),.,x,,(tf))’ X_,(tf)=xf+tf(x]—xf), (225)
for 0= t; < 1. The local parts of IT; and G, are
0 if 6(G,) <0
LI (x)=1 %1 (2.26a)

L 50Kt -o 0620

and
LG, = (K ;(x)LI ;(x)dx. (2.26b)

The renormalization of G is
RG,=(1-L)G,. (2.27)
Suppose p; =8(G;) + 1> 0. By Taylor’s Theorem

1
RG,= —1—' _f deg(1—t, ™ ! ij(x)(A'6)”’Hf(x(tf))dx, (2.28)
Hyeo
where 4:0 =Y (x;— x/)d,, The factor A* together with the Gaussian e ~b/4 in
7

K produces an extra factor M ~*/* in the power counting:
| AP e b4 < cM ~hihrgbI8, (2.29)
This converts the bad (unrenormalized) power counting factor into a good one:

MG =has)) _y pf—(hr=hus))

These renormalization cancellations are introduced into the tree expansion as
follows. The label R attached to a fork f means

th, R = X(hj > hn(f))(l -L M (2.30a)

hn(f ) hn( )]
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In order to implement these subtractions with legitimate counterterms in the
potential we have to include the local parts for all hj, not just h,>h So we
must also include the following “useless counterterms:”

PYLC =—xh;<h,,)L th. (2.30b)
h h

n(f) n(f)

()

A renormalized tree 1 is a tree with a label p, = R or C at each fork f whose value
VY(t,p,h) is defined as in (2.14) but with the modifications (2.30). We let
Fr={feFlp;=R} and F.=F\F . The appropriate set of scales for a
renormalized tree is

H(t,p)={hlh,, <h, il feF 0 h, Sh,, i feFc). (2.31)
The counterterms VY are defined as
W'=Y Y Y Vph), 2.32)

tn.t. p:pr=C heXHc(z,p)

where the sums are over non-trivial trees t, p’s with p = C for the lowest fork F,
and scales 4 in the set (1, p) defined as in (2.31) except that the root scale h,,
is taken to be U instead of —1. Clearly 6VV is a fps in e whose coefficients are
local polynomials in the fields @=V.

As in (2.10) we define the renormalized effective potential

VU (@°) =[log &Y %) ], (2.33)

ren

and as in (2.15) we have:

Theorem 2.2. (Renormalized Tree Expansion).
Vie=Vi+ 2 X Y Vph). (2.34a)

tn.t. pipr=R heH,p)

Asin (2.19), V(z, p, h) can be expanded as a sum of graphs. Each unrenormalized
graph Ge%(t) gives rise to a number of renormalized graphs G, €%(z, p) according
to the choice of i in (2.26a) at a C-fork and to how the derivatives J,, act in (2.26a)
and (2.28). We write

Ve, ph)= Y G (2.34b)

ren ?
Grene%(t,p)

where the value G"Y is similar to that of G"V in (2.18) except that R and —L
operations are applied to each subgraph as stipulated by p and there are resulting
integrals over the interpolating parameters ¢ = (ty) ;. 5, (see (2.28)):

Gren = [dp(O)[dxK 0 (x, ) IT(x°(1)), (239)
where du is a positive measure, IT¢ is a product of external fields and their derivatives
and x°(t) is the set of external coordinates x¢, appropriately interpolated. For a
more detailed description see Appendix B of [1].

The t-interpolated version of (1.11)

Uglo, 1)t =cPo[[dxe™ | _ 721 (2.36)
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satisfies [1, Lemma B.2];
Lemma 2.3.
Uglo, t) ' S c[[ M?*hs, 2.37)
S

where Ay =1, —v,+1=|2L(g,)| =¥ (g,)| + 1 is the number of independent loops
in the reduced graph g,.

As in (2.29) the coordinate differences A,(t) introduced by R and L operations
contribute good power counting factors [3, Lemma 7]:

Lemma 2.4.
—(b+ Y «m’)8

[Tlale = <c[[M™™M, (2.38)
i S

where m, is the number of t ;-derivatives applied at f.
Equations (2.37) and (2.38) are the two basic ingredients in the bound on a
renormalized graph:

Theorem 2.5. Let K™Y be the kernel of graph (2.35) contributing to V(z,p,h) in
(2.34b). Then

ren

I KhU “O <c I_[ M"f(h!“hn(f)], (2393)
S

where 0 is given by (2.24) and satisfies

. (2.39b)
0<o,<d ifp,=C.

We can always arrange that in (2.35) the vertex x, is an external vertex chosen
as the localization vertex for the bottom fork F (and hence x, has no ¢t-dependence).
Then we can estimate GV in terms of the norm of its kernel:

|G| < fdu()fdx, - dxy (|KE (0|, —o  sup  [dxy [ IT(x*(2))]

ren Ien

< e KEY o (2.40)

ren

By (2.39) the sum over h in (2.34) converges uniformly in U, i.e. the theory is
UV-renormalizable. At “marginal” C-forks, i.e. a C-fork f with §,=0, the sum
over hy < h, ,, contributes a “logarithmic” factor h, , and these powers of h can
accumulate. This leads to the following bound on a renormalized graph [1,
Theorem 2.6]:

Corollary 2.6. If G,.,€%(z,p),

Y IGhY <k, (2.41)

ren
he # (t,p)

where ¢, is a constant independent of U and G,.,,, L=|%(G,.,)|, and x is the number
of marginal C-forks.
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3. Dimensional Regularization of the Effective Potential

We consider the unrenormalized effective potential V'Y for QED, with TR cutoff
I'=0 and UV cutoff U. Expanding (2.10) as a fps in e we obtain a sum over the
set 4(V;) of nontrivial, connected, non-vacuum (i.e. there are external legs) graphs
with vertices V}:

yU= VI + z GU,
Ge4(Vr)

where the fermi lines in GU are S!°U) and the photon lines are C*Y). We let GV
be the dr version of GY as defined in (1.10) and we write

vi=&Ye"=v,+ Y GY, (3.1)
Ge%(Vr)

where by the symbols on the left we simply mean the fps of graphs on the right.
According to (1.10),

UY = [KY(x)IT*(x°)dx, (3.2a)

where

1 ©
K')=c[] | doy[] | due ™ pU2{dipPe %4

lefy M-2U leXsM-2U

= [daKY(,x), (3.2b)

where KY(o,x) =0 if oy < M2 for any 1.

The tree expansion (2.19) decomposes each graph by the insertion of x"(o)’s
and summation over trees 7 and scales h. Since this decomposition in a-space does
not interfere with the dr procedure in x-space we can apply dr to (2.19) to obtain
the dr tree expansion

Vi=vi+Y Y Y G (3.3a)

n.t. Ge¥(z) he #(1)

where each vertex of a graph in %(z) is V/,

G':,‘U = _"K:’U(x)ﬂe(xe)dx (3.3b)
and
K" = [doy(o)KY(a, x) (3.3¢)

with KY(a, x) defined by (3.2b) and x" by (2.17). The main result of this section is
that K" is bounded as if it came from “v dimensions” (see (2.20)—(2.22)):

Theorem 3.1.
IK g <c [T MPHGnts=han), 34

SeF(v)

The bound (3.4) immediately yields the UV-regularity of G, for sufficiently
small v:
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Corollary 3.2. For v <2
2 16 <o (3.5)
he ¥ (1)
uniformly in the UV cutoff U.
Proof. For any graph G,
D(G)=(v—=2A—(V—-2)—1;/2,

where A =L—V + 1 is the number of independent loops of G, and A, =2(V — L)
is the number of fermi legs. Since try* =0 we must have V = 2; hence D, (G) <0
unless A =0, 4, =0 and V = 2. But this is impossible. Therefore D (G,) <0 in (3.4)
and the sums over h; > h, ,, in (3.5) converge uniformly in U. J

Before proving Theorem 3.1 we consider the example of the 4-photon loop
(without the scale restrictions he#(t)),

for which

4
K (o, x) = c|: I e""za’a,'“/zjlfdﬁPe‘ﬂ"‘,

=1

4
where =Y B,Z%, Z,=X,,,~ X, with X=X, and
=1

4
P=tr H F')’”"__‘[FI’FZ’F?nF&t],
=1

where, as in (1.8),
F,= fl - iﬁl?“f;‘/z‘

We remind the reader that the y’s are Dirac matrices whereas the §’s are formal
symbols satisfying (1.5).
To evaluate [d% we apply the rule (1.9). We write

51d8B2y By} e P = (c | B V25 Fy, (3.6)
where
Fy= %ﬂzﬁt'[Bz?l,rH - Bl_+11,l’ - Bz,_rl+ T B;,_I'IJ
= Cﬁtﬂl'|B|d/2jzl'ztte_b/4dx. (3.7)
Since

(BB |z 2y e 7P < ce P8,
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we have
|Ful < BB (3.8)
Using (1.9) and (3.6) we contract the 2’s in pairs to produce factors F .
fdsPe = (c,| B)™2{[fy, far 3, fal = [f1 f2s 9% 9*1F 34
— LS9 f 0 9T F a9 95 9%, 9 TF o Fag -,

A

Using (1.5) we move the members of a pair §#§* next to each other, e.g.,

Ph=—f9" (3.92)
where f* = —ifi#,/2 + m, and using (1.7) we then eliminate the y’s by
Pph=d—v. (3.9b)

In this way we find that

jdﬁpe—’;m=(C1‘B|)(d_‘,)/2{p+(d— v){[fl’fZ’ la 1]F34+ [fla 19f3~, 1:'F24+ }
+(d_v)2[1, L1, 1]F12F34+ } (3.10)

The leading term in (3.10), the polynomial p in x and f, determines the kernel of
the unregularized graph G,

4
K(a,x)=c [] e ™=a, 9?pe~"* = pk(a, x).
=1

The factor (c, | B|)“~*/? together with [ o{* "2 contributes the factor (¢, Ug)“ ™"/
(see (1.11)). Thus we find that

K,=(c,Ug) 2 {p+@d—V[f1, fo, L1]F 34+ -}k
=(c UG)(d*WZ{P + ZCJ(V)Pj}k- (3.11)

Here the coefficients c;(v) vanish when v = d and the terms p;(a, x) are polynomials
in x that contain a factor f;, f; or Fy,. for each line I. All of the above quantities
can be explicitly computed but, as we do not require explicit formulas, we mention
only that for the 4-loop example Ug =0y + -+ + 04.

The factor UY ™2 provides the desired UV-regularizing factor, rendering K,
integrable at o = 0. The additional terms Y ¢;p;, which maintain the “v-dimensional
nature” of K, as required for the Ward identities (see Sect. 5), make the same
power-counting contribution as the leading term p. For we estimate p by the
elementary bound

Iple™* < c[]B}2e™"", (3.12)
1
each f, in p giving a factor B}/. p; satisfies the same bound, each f, or f,” giving
a factor B}/ and each F),. a factor (8,8,)'/* (by (3.8)).
Lemma 3.3. For the general graph G of (3.2),

1KY ) o <cUG"? [ BiPe ™. (3.13)
ey

Proof. As in the above example, we insert F, = f, — i;7,/2 into the definition (1.8)
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of P and integrate the resulting polynomial in 2
fdzpeb (3.14)

by the rule (1.9). The ’s occur in pairs $#---$* as a result of the contraction of a
pair of £’s as in (3.6) or of the contribution 6" from a photon line’s A*"™.
Eliminating the §’s by (3.9), we express (3.14) as a sum of terms of the form
c@IBI2 T £# T1 Fu [T 8 ] (3.19)
leyg (IePs legp ve¥ 0
where £9c £ with |2 \&9| even, 2, is a partition of & f\,?:{’ into pairs (II')
(corresponding to the contracted pairs %, and 2,), ) < %,, 7%, and the
coefficient c¢(v) =0 when v=4d except in the case of the leading term for which
g(f)=$f,$g=$b,and‘//0=“l/ /
Estimating (3.15) as in (3.12) and (3.8), we find that its contribution to (3.2b)
is bounded by
C(v)'gl(d—v)/z l’l e—-mzmﬁll/zlggpze—b/S.
le¥s
But
le=®® ], =c|B|~2,

and so by (1.11) we obtain (3.13). [J
Proof of Theorem 3.1. By Lemmas 3.3 and 2.3,

IKSY Mo £ clduy(o) [T M¥Ashs Hisshs TT e=mm, (3.16)
S le&s
where A =l —v,+ 1,1, =|ZL(g,)lv,=|7(gy), and [;,=|ZL(g;). Now if
h ;4 >0 then
Jdo o) = b=,
and if h,;, =0 and leZ then

[doyx o (a)e ™ =m=2 = c M~ 2o,
Therefore
[ K2V lg < c[] MOAsHiss= 20kt < o TT MPorhs,
S S

from which (3.4) follows by a summation by parts (Lemma 2.1 of [1]). [
When v <2 we can remove the UV cutoff U on V'Y: as in (3.1) and (3.3)

V,=66"=V,+ Y G,
Ge%(Vr)
=y Yy Y G (3.17)
T Ge¥%(tr) he # ()

where the sum over k is convergent by Corollary 3.2.
We next show that for v < 2 dr expectations satisfy a calculus “appropriate to
v dimensions.” This calculus will be needed in Sect. 5 for the proof of Ward
identities. First we define the action of Oz,i=1,...,V—1, on products
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p(X)e**e~*B%4 where p is a polynomial in % =(%;,...,%,-;) and, formally,
V-1
aX= Y algh

i=1
Okl = 0M¥ 8y, Oye™ = alte™, (3.18)
afé‘e—xBxM - _ _é_(B)eu)ie—xBxM»’

and we extend the action in the obvious way by linearity and the product rule.
The Gaussian integration rule (1.9) can be written

]‘dﬁea-ie—fcﬂim =(CI|B|)(d—v)/2eaB'1a (319)
from which it follows easily that
j’dﬁaﬁ,;(p(ﬁ)e‘”’h‘/"') =0 (3.20)

fori=1,...,V—1.
We write Dy, =(0,,,0;,) and

mxi = F”Dxﬁ‘:' ax( + @f."

By (3.20), if ¢, is applied to the vertex x; of a dr graph G, we may replace it by
Dy,i=1,...,V — 1. This replacement is possible for i = V' as well, provided that
V-1

we understand that J;, means — Y 0,
i=1
Let b be a scalar boson line of a graph G with mass m,, endpoints x; and x,,
say, and no UV or IR cutoffs; i.e. b contributes the factor
(@ma,) " 42e %o~ (1~ XM 4% = k(y, x| — X,) (3.21)

to the kernel K(a,x) of G={ dajde(oc, x)IT¢(x¢). (There may be cutoffs on the

other lines of G to ensure convergence.) Let G = G/b be the graph G with the line
b collapsed to a point so that G has vertices x,, ..., Xy, and lines £(G) = Z(G)\{b}
(with x, replaced by x, when it is the endpoint of a line). If

G = [da[dx R (& %) [T°(%°)

then since
%lirg+ k(oy, X3 — x5) = 8(x; — x3) (3.22a)

we obtain
Jim fdxK(a, x)IT4(x%) = [d% K (& %) IT(z°). (3.22b)

We claim that this same result holds for dr graphs:

Lemma 3.4. (0-function_Rule) Let b be a scalar boson line (with no cutoffs) of
a graph G and let G=G/b. If the corresponding dr graphs are given by
G, = [da|dxK (a,x)[T°(x°) and G,= [da[d%K (& %)II°(%°), then

lim [dxK (o x)IT¢(x%) = [dZ K (@ %) [T(%°). (3.23)

ap—0+
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Proof. We assume that G has V > 2 vertices (otherwise (3.23) is trivial) and we
choose x, to be different from the endpoints x; and x, of b. Referring to the
definition (1.10) we see that (3.23) amounts to

lim (4noy) "2 [dx[d%Pe~ P ITe(x*) = [di[dZPe~ T (%),  (3.24)
ap—0+

where P=P and #= Y, Bz} . If we expand P =) c,(®)P,,, where
each P, is a :(ri;t{(z)mial ]_[x:‘l ﬁ x%, t)l(lleznxzcm(a) is independent (’)nf ay (since b is a
boson line) and ﬁ:Zc:,ﬁm, swhere ﬁm=Pm|xl: x,- Given (3.22), the identity
(3.24) thus follows from

lim (dnoy)?™ "2 [d2 p(R)e % = [dR (R e P, (3.25)

ap—~0

where p(%) = [ [ /. Now by (3.19)

(47[%)(:1— V)/zjd)%p()%)e";/“ — (51 “b|B|)(d_ v)/2 1‘1 aaé‘:eaB- la , (3.26&)
r a=0
where ¢, = (4n)*~ V= (@4n)?"V, and
[dZpR)e>* = (&, | B2 [0z 3], (3.26b)
ro 7 i=0
where @ =(d,,...,dy 1), B is the (V —2) x (V — 2) matrix defined by
~  ifi#l
XBX =xBxX| -,,» and 1= ! ]_f * .
2 ifi=1
From (3.26) it is evident that the equality (3.25) follows from
lim o] B| = | B| (3.27)
and N
}31110 B =85l (3.28)
To prove (3.27), we write
d (ablB‘)—d/Z — (47I)(l —V)d/Zal;-d/Z!‘e—xl‘bc/4dx1 . 'dxy—1
an
|§| —-dj2 _ (47[)(2 —V)d/Zj'e—J?Bi/-‘ldiz .. _de_ L
Thus (3.22a) implies (3.27). As for (3.28) we have
26M B = (4no) ™2 [xtxje™ 4 dx, - dxy
ij (47.“1’,)—11/2j’e—xlbc/zl-dx1 "'dxy_1
gigie~*BHAGG . 4%,
_,f j 2 v-1 (by (3.22a))

fe—fﬂi/4di2 "‘diy__ 1

=20"B:'. O
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We next establish integration by parts identities for dr expectations
G, (F(x)e? 2+ 29), (3.29a)

where — o0 <1 <0, v<2, F(x)=(x) or §(x) or J(x)y“¥(x), which we apply for
W of the form

W(®D) =Wy + Wy + W3)(@) = [Y(y)a,(—id) + a, + as AW (y)dy.  (3.29b)

As usual, by (3.29a) we mean the sum over connected dr graphs G, with vertices
F(x), W,, W, and W,. Although €, does not arise directly from an integration over
fields, it nevertheless enjoys:

Lemma 3.5. (Integration by Parts) Let v<2 and — o0 <1Z0.
o

i 13 W(+de)) __ _ € W(O+d’e)’ 3.30

a)  (—id, +mE,x)e )= e e ) (3.30)

b) %v(e'”*"*"”nﬁ(x))(i?ﬁm)=<6v(e’”‘”“”e’)%’ 330
(T o ( Gy S w0 )

o) 0, 6T (x)e )—%(w(x) i~ ) 62

Remarks. 1. The above identities hold if in addition there is a UV cutoff on the
photon (but not the electron) lines. Because of the IR cutoff I, €, does not satisfy
a simple integration by parts identity with respect to A.

—

1
2. The left Grassmannian derivative 5—¢7: in (3.30) or the right derivative 5—¢e
in (3.31) may be taken inside the expectation and evaluated; e.g.,
_Lew“’*"“’:_ie
oY(x) oy(x)
=[a,(=id) + a, + a3(A + A)()IW + ¥©)(x)e” 2+ 2.

3. An identity like (3.30) can be rewritten as

W(d+ @e)

% (x)e") = [dyS(x, y)%( = eW)- (3.33)
oYe(y)

One might think that (3.33) could be iterated and dr graphs (without photon lines)

could be evaluated completely in terms of unregularized propagators S, ie. dr

would have no effect! In fact this is true only for graphs without loops.

4. When the d.’s are taken inside the expectations they may, by (3.20), be
written as Dy’s. Likewise the #’s in the W, vertices may be written as P’s. In this
way we are able to establish the a-space dr version (3.36) of the identity
(—i@ + m)S = 6, upon which the lemma depends.

5. Moreover, by (3.36), if a graph G has —i¢ applied to a fermi line [ then G,
is given by the sum of the graph with — i@ replaced by —m plus the collapsed
graph G, = G,/I. Hence the power counting contribution of a W, vertex amounts
to that of a W, vertex and so the graphs involved in the lemma are finite
forv<2.
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Proof. a) Let G, be a graph contributing to %,(/(y)e"). G, has the form (1.10):
G, = j'dacj'an’}?Kv(a, X, Y)IT4(x°),

where Y =(y, §) and X includes the other vertices of G. We let [, be the fermi line
joining y to another vertex x,, say, Z; =Y — X, and B, =B, =a; !. We apply
—if,+mas —il, + mto the factors depending on Z,, namely F; = —if, Z,/2+m
and e B = ¢~ F12i/4.

(—iDy+m)F ™ =[ = THT42 4 (iB121/2 + m)(— iy Z1/2 + m)Je ™
=(Bv2~P2Z2 /4 + m*)e B, (3.39)

Ir‘*re=—v and 2,Z,=-22 (3.39)

Including the other factors associated with I; we thus obtain the basic identity

(—iDy + m)e™ ™ B2 F ™ 1214 = — aie'“'”zﬁilze‘”'lf/‘. (3.36a)
%1

since

Integration over a, then gives evaluation at o, = 0. By the §-function Rule (3.23)
we obtain

(—ig,+mG,=G,,

where G is the graph obtained from G by collapsing the line /; to a point and

. ~ . . 0 . .
setting x; = y. G is the graph in €, 50 )eW with the same vertices, legs and
y

lines (save /,) as G. Since %ew = i_ew this yields (3.30).

b) The proof is identical to that of a). Suppose ¥(y) contracts with ¥(x,)
producing a fermi line factor

Fo=—iByZ,2+m, Z,=X,-Y.
Then, as in (3.36a), we have
2 - =y a 2 —
e MBI, e B i, + m) = —?e—“zm By2e B, (3.36b)
%2

c) Suppose that y/(y) contracts with J(x,) and y(y) with y(x,) producing fermi
line factors F and F, as in a) and b). As in (3.34) we have

—iDyF,T'F e Bi~B
=[(=B2v/2—iF B, 22/2)F, + Fo(B,v/2+iB, Z,F,/2)]e 1~
=[(=B2v/2 — F3(iB2Z2/2 + m))Fy + Fy(B1v/2 + (if,Z,/2 + m)F,)]e B1~ B
== B2v2+ B3Z35/A—m*)F\ + Fy(Byv/2~ B3 Z} /4 + m*)]e B P2,
Therefore, as in (3.36a) and (3.36b),
~iDye @ +az)m2(ﬂlﬁ2)v/2F2rF1e-Bl ~ B,

0 0
=(F,——F, — (a1 +az)m? v/2 ,—B1—B,
( ' dar, Zaal)e (B:f2)"e ’ (3.36c)
and (3.32) follows. []
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Finally we observe that dr respects Euclidean covariance. If R = eTeS0(4), where
T is a real, antisymmetric 4 x 4 matrix, let S(R) = e’ T%*/4 Then

S(R)™'*S(R) =R 7" (3.37)

Let G, = fda|dx K (¢, x)IT%(x*) = [daG,(«) be a graph contributing to ,(e”?*??)
with Wasin (3.29) and IT*(x*) = [] @} (x;,), where we write @° = (&%, 95, @5, @) =
k=1

(Ae, ¥e, §re, 0ye), the dye fields cofning from the W;-vertices. For acR*, define

ik

GR4(a) = [dxK (@) [ (@%)Cx;, - a),
k=1
where _
(@°)*(x;) = (RA®, S(R)W*, YeS(R) ™, RS(R)OY*)(R ™' x;).
(In the last component the R acts on d and S(R) on °.) Then:
Lemma 3.6. (Euclidean Covariance) G®*(0)) = G (o).

Proof. From the fact that K (o, x) is a function of differences of the x;’s, and from
the relations (3.37), S(R)™!$*S(R) = 7*, and

S(R)™ ' fu(z)S(R) = fi(R™"z),
where fi(z;) = —iZ,/20, + m, it is easy to see that

GRe(0) = [dxK (0, R"'x) [] @L(R"'x,) = G,(0). [
k=1

4. Renormalization of the Effective Potential

For I =0 and v <2 we let 6V, be the counterterms appropriate for 4 dimensions.
(Henceforth we take d =4.) As in (2.32)

5VV = Z Z Z Z G:'en,v’ (41)
tn.t p:pF =C Gren€¥(t,p) he X c(t,p)
where
Hclt,p)={hlh,,<hsif p=R0Zh <h,,ifp,=Cand f>F},

and the value of G?,_ , is determined from that of G" by applying the — L and R
operations of (2.30), where L is given by (2.26) with 6(G,) =4 — A, — 34, — q (see
(2.24)). In the application of L and R to a dr graph the variables X,,..., X, are

interpolated just as x,,..., X, are in the unregularized graph.

For example, for the graph G = QL—O—‘L%— associated with the tree

o3
Xy Xz X3

e, e, e3

SR

I\
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the regularized graph is (we omit the integral over « and the factors
h —m2(ay +a2) Qv/2
cx'(@)e B% )

G, = [dX{(x )" F T Fyy" A" (x3 )i (xs)e” #14,

where Fi= —B2,/2+mZ, =X, —X,,Z,=X,— X5, and B=(B, +B3)Z>+
B,Z3. Taking x, as the localization vertex for both G, and G, =G so that
X,(t,)=X, +1,(X,—X,), and noting that 8(G,)=1 and 06(G,)=0, the
renormalized graph corresponding to G, is given by

1 —
- j dtlatz,jdX‘//(xl)r"'F1Fnze(tl))’“Am(xl)‘//(xl)e_gmw, 4.2)
0

where
Fy(ty))= —B,2Z,(t)2+m, Z,(t) =X, — X,(ty),

and B(t,) = (B, + B3)Z3; + B, Z,(t,)*.

The t,-derivatives in (4.2) produce % as well as x factors via 0, Z,(t,) =2, =
z, +£,. But, just as in the case of the unrenormalized bounds of Theorem 3.1, the
X factors make the same power counting contributions as the x factors (see
Lemma 2.3). In any case, for v <2 the counterterms §V, are finite (to each order),
coming as they do from finite graphs.

For v < 2, we define the renormalized dr effective potential as in (3.1) by

14 — %v(eV’ +6Vv)

=V,+6V,+ Y G, 4.3)
Ge%(V1,6V.)
where %(V,,6V,) is the set of non-trivial connected graphs with vertices
corresponding to monomials in ¥, or 6V, and with 2 or more external legs. Applying
dr to the renormalized tree expansion (2.34), we obtain:

Theorem 4.1. (Renormalized Tree Expansion) For =0 and v <2

Vren,v = VI + Z Z Z Z G:len,v' (44)

tn.t. p:pF =R Grene%(1,p) he #(1,p)
As in the unrenormalized case (3.11),

Glen,y = Jdafdp(®)fdxK e, (o t, x)IT*(x*(2)),
where t = (t;) .. 5, is the set of interpolating parameters, dyu(t) is a positive measure
(see [1. (B.10)]), IT¢(x®) is the product of external fields of G,.,, and the kernel
K" has the form

ren,v

Kzn,v=Ug‘-v’ﬂ[xa.,Jrzc,-(v)K;], @3
Jj

where Ug(a, 1) is given by (2.36), K’ is the kernel of G" _ without dr, the kernels
K:? arise from the contractions of 2’s in pairs, and the coefficients c;(v) = 0 when
v=4. The factor U; does not involve the renormalization factors A, (see (2.28)
and (2.29)) and, except for the dependence on ¢, depends only on the unrenormalized

graph G which produced G,,,.
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The kernels K;‘ obey the same power counting bounds as K" . More precisely,
the bound on K" (or K;‘) contains an unrenormalized factor U ;? (see the proof

ren

of Lemma 3.3) and renormalization factors ﬂ M ~™hs (see Lemma 2.4). The factors

eIy sr=y 2 4.6)

are bounded by Lemma 2.3, and we obtain

" K:‘en VHO = CI:I + Zlcj(v)‘]nM(\'lr—m;)hf
/ )

= CI:I + Zlcj(v)[:IHM"""""_""”” (4.7a)
j !
by summation by parts, where (see (2.22) and (2.24))
8,,=D|G))—q,=0,+(—4A,. (4.7b)

Here A; =L, — V,+ 1 is the number of independent loops of G,.

When v<4 and A,;>0 then 6, <45, and we have “over-subtracted for v
dimensions.” If fe% . the sum of the f factor in (4.7a) over 0 h  <h, =k will
contribute a large exponentlal factor M % to n(f) when é,,<0. If n(f)eF
so that k is summed to oo, it is possible that such exponential factors might upset
the convergence at k = co. However, the over-subtraction at n( f) compensates for
any such factors and we have much the same bounds as in the case v =d. More

precisely, let 7, be the subtree of © with lowest fork f and root scale k =h_ ), let
H , be the set f (z,p) of (2.31) restricted to the scales {h.|f’ = f}, and let
Bf Jk) = Z l‘[ MO lhy = hasy)
' WKy S
As in [1, Sect. 2] it is easy to prove by induction on f down the tree that
By (k) 2% &y (K)M 4~V 2K, (4.8)
where
af=|{f/6yc|f/gf,5f'>0}l,
bf= '{f/e‘g'-clflgfaéf’ =0}|a
and

§k+1+z -,

If we estimate )’ G* _  in (4.4) by the bounds (2.40), (4.7) and (4.8) with f = F

ren,v

we obtain: h
Theorem 4.2. For Rev<4
> lGi‘env|<03[1 +Zlc,-(v)l]x!, (4.9)
he # (t,p) j

where ¢, is independent of G,., and k is the number of marginal C-forks.

Remarks. 1. The constant 1+Zlcj| may be quite large (~(L!)" where a>0),
j
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corresponding to the number of ways of contracting the 2’s of dr. However, since
¢;(4) = 0, this large number is irrevelant at the physical value v = 4, where we have
the bound on G* = G"

ren ~ “ren,4*

YIG | < chxl. (4.10)
h

ren

2. The factor «! in (4.9) and (4.10) is the expected “renormalon” contribution to
Gren [11].

3. The tree representation (4.4) for V, together with the bound (4.9) display
V..o, as an analytic function of v for Rev <4. For each G, | is obviously an
entire function of v, its v-dependence being contained in the factors
Ugl(a, ©)* ™2, B%2 and the polynomial in v generated by the contraction of £’s.

The convergence of Y uniformly in v for Rev <4 then implies that the fps V,_ ,
h

is analytic for Re v < 4. Notice that this conclusion did not entail an analysis of
the meromorphic structure of ¥, as a function of v, but only the knowledge that
the renormalization cancellations in V,_ , remove the divergences in V, for all
Rev<4.

We conclude this section with an outline of how to remove the IR cutoff I.
For full details see [1, Sect. 6]. As in (2.9), the photon lines are decomposed into
slices with scales h, > I; we refer to the region h, <0 as the “IR region.” We
decompose the localization operator as L = L° + L*, where L° produces “marginal
counterterms” with 6, =0 and L* produces counterterms with 6, > 0. Since we
do not wish to introduce marginal counterterms into 6V in the IR region, we
generalize the definition (2.30) of the R and C operations as follows: at f > F

R=y(hy>h,,)(1-L) (4.11a)

and

C=~— X(hf = hn(f))[L+ + X(h/ 2 0))L°] + Xhay < hf <0)L°
=C_+C,, (4.11b)
whereas at F (the root scale is h,p=1—1)

R = y(hg > b)) [1 — LY — y(hp 2 0)L°] 4.11¢)

and
C=cC._. 4.11d)

Each fe#(t) now bears a label p, =R, C_ or C, and the scales attached to
7, p Tun over the set
H(t,p) = {hlhygy<hsif py=Ror Co;h;<hy,ifp,=C_}. 4.12)

The value V(z, p, h) of a labelled tree is defined as before and may be expressed
in terms of renormalized graphs

Vi,p, )= Y GM

ren,v’
Gren€%(z,p)

4.13)

where G*! =0if h <1 for any f. We define the counterterms as in (4.1):

wi=y ¥ Y Y. G, (4.14)

tn.t. p:p;=C- Gren€%(z,p) he #c(z,p)
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where J# is defined as in (4.12) except that the root scale is h, ), = 00. For v<2
and — oo <I<0, the effective potential V] , defined as in (4.3), is given by the

following generalization of the tree expansion (4.4):

Vien=Vi+ LY Y Yy GHLL (4.15)

tn.t. p Grene¥(z,p) he H#(1,p)

Now for I > — oo fixed, we know from our UV analysis that the sum over h
in (4.15) converges for Rev < 4. The issue is whether the convergence is uniform
in 1. Our strategy for bounding G"! when I =0 turns out to be inadequate for

ren,v

two reasons: 1) In the IR region, a bound like (2.40) involving || Kf;fm llo is too
crude in the sense that it permits too many integrations of x;’s over all of R*. 2)
The renormalization operation (2.28) can be harmful if h,<0: a coordinate
difference A produces a bad factor M "/ which will not be compensated for by a
factor M") if the associated 0 acts on IT°.

The improved IR strategy of [1, pp. 99-101] was to rewrite the tree expansion
by pulling apart the operation R = 1 — L at certain forks f € # () to yield a “1-fork”
and an “L-fork”. This separation is performed, starting at the bottom of t, for
each feF (1) such that h; <0 and such that there are some external endpoints
above f and only 1-forks below f. Let &#,,,(t) be the set of 1-forks produced by
this separation procedure. By construction, if fe#,,, and f’ < f then f'e#,,,. At
a fork fe#,,, one then takes advantage of the fact that g, has v >0 external
vertices which need not be integrated over all of R*. This produces an improvement
factor

[T M*stsv (4.16)
SeF enu
over the bound using the L' norm |-{|,.

Can this strategy be combined with the estimation techniques of this paper
which rely critically on the cancellation (4.6) between the dr factor U ™? and
the factor U ? arising from the bound on || K" lo? Yes, but we do not wish to
repeat the entire analysis of [1] here; we shall demonstrate only how the factor
(4.16) is extracted in a way consistent with the cancellation (4.6).

We can always arrange that given fe#,,, there are v external vertices x5 in
g, which are independent of ¢; e.g., choose these vertices as localization vertices
of the graphs G, f’ > f. Then they are independent of ., f* > f, and, since f € Z,,,,
they do not acquire any dependence on t,,f' < f. Let X = {x|feF,.}. By
construction, x, €X. Instead of the bound (2.40) we use

|GRL 1< du(t)[dx, -+~ dxy - o™ KL (6,0)] Loy =0
sup  [dxy ¥4 IT*(x*(0))

<csup fdx;---dxy_ e FHKE | o 4.17)
t

Equation (4.17) holds since each x;eX occurs as an argument of J7° without any
t-dependence.
We estimate the norm of the kernel in (4.17) by the same procedure as before.
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In addition to the usual factors from fermi lines and renormalization operations,
and the dr factor U ~"/2, we obtain the modified factor

Uz®=cp?[dxe  CO+54| o (4.18)

where G is the graph G augmented by additional lines (of strength o, = 1) pinning
the vertices of X to 0. Instead of (4.6) we have

U¢ryzt < U:”/Z. 4.19)

g obeys a better IR bound than U, ’. The proof of the bound (2.37) on
U; is based on dropping hnes from b(¢) to leave a tree T connecting G; each [eT
then contributes a factor a? = M ~#"® to the integral in (2.36) — a bad factor in
the IR region. By dropping lines from T and replacing them by the additional

pinning lines of G to form a tree connecting G, we obtain the improved bound

Ugv/z <c ) 1;[ MPhsws=1) fl—;, M Ashs, (4.20)
€Fenu €

In this way we can extract the improvement factor (4.16) without disturbing
the bounds needed for the UV analysis. Now to carry out the IR analysis of [1]
we need the full improvement factor, i.e. with v = 4. Accordingly, we first take v— 4
(with UV convergence guaranteed by Theorem 4.2), and then we take I —» — oo
(with IR convergence guaranteed by Theorems 6.5-6.7 of [1]).

5. Ward Identities

For fixed v < 2 and IR cutoff I < 0 we investigate here the form of the renormalized
effective potential Vmn , of (4.3) and the counterterms 6V of (4.1). (We shall omit
the superscript I if there is no confusion.) By Corollary 3.2 we know that the order
e" contribution 6V, , to 6V, is finite, and, by Lemma 3.6, that it is Euclidean
invariant. A priori we do not know that ¢V, respects gauge invariance. Thus 6V, ,
consists of finite, local, Euclidean invariant terms of dimension <4;i.e., it has the
form

OV, o(P) = — j[tﬁ( —a,id + b, + c, AW + d,F*]dx + W,(A), (5.1a)
where

F2=F"1F”l, F‘M=3”A;.—61Au,
and

W, (A) = — [[e,(0-A) + f,A* + g,A*]dx. (5.1b)
Wesay thatéV, ., = Z oV, . has gauge invariant formif W, = Ofor k <nandif

C2=O, Ck=eak_1 fOI' k=3,...,n. (5.2)
Equation (5.2) is the “Z,=2Z,” condition.

Weleta,, = Z a, ete, o, =1+ag,, and 8, =a,/a,_,. Note that
k=2

=1+a,+0(@"*). (5.3)
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Let L, be the part of the localization operator (2.26) which produces n'® order
terms, L the part of L, which produces marginal terms, etc. We introduce the
effective potential at scale —1,

V_ L= (g[vo,oo)(e(l'x + oV ) (PO, %) + d)e))’ (54)

obtained by regularizing the graphs contributing to £1%*; the effective potential
renormalized up to order n,

V, =@, ("1 nsn), (5.52)

and the effective potential at scale — 1, renormalized up to order n,
V_ig=@L00) "1V sn), (5.5b)
V_, has a tree expansion like (4.15) where the root scale is h, = — 1. If we

apply L° to this expansion, the graphs with p = C_ drop out because [°C_ =0
(see (4.11b)), and we obtain

LV_ =LV, = —e[y°Acycdx. (5.6a)
Applying L* to (4.15) we obtain
L+ Vren,v=0' (56b)

The relations (5.6) are the renormalization conditions of the tree expansion:
dimensionless parameters are fixed at scale — 1 (corresponding roughly to external
momentum of order 1) and parameters with nonzero dimension (such as mass)
are fixed at scale I — 1 (corresponding to zero external momentum in the limit
I— — ).

If we apply L}, , (with n> 0) to (4.3) (with general I) we obtain

L:+1Vren,v=L:+15Vv+L:+1 Z Gv’ (573)

Ge¥4(V 1,0V, <n)

since vertices in 6V, ., cannot contribute to order n+ 1. Similarly if we apply

L?,, to V_, we obtain
L, V_, =10 6V, + L0, V_,,. (5.7b)

n+1

A comparison of (5.6) and (5.7) yields:

Lemma 5.1. Forv<2, —o0<IZ£0,and n>0

5Vv,n+l= _L:+1Vn—L3+1V—1,m (58)
L*V,=—L;, 0V, +0(e""?), (5.92)
LOV_, = —e[§eA%yedx — L°, 5V, +0(e"*?). (5.9b)

The following Ward identity is a first order version of Lemma 4.2 of [17]:

Theorem 5.2. Suppose v<2 and —oo <I<0. If 6V, ., has gauge invariant form
then V, and V_, , each satisfy the identity

. oV, P _B__ —1,e _(Jeq -1 ~_5_
8,05 5Ae(x)+ze§dy[Vn 5 lPe(y)S(y,X)(S Yo x) — (°S T )x)S(x, y) 57°0) Vn]

= — e, Y () Y°(x), (5.10)
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where Y¢S ~1 =i +m) = id- Yy + my°.
Before proving the theorem we note that it implies:

Corollary 5.3. Suppose v<2 and — o0 <I=0. If 6V, -, has gauge invariant form

then so does 8V, , .. Consequently, 8V, has gauge invariant form.
Proof. Consider the quadratic term
0,= fQuluz(x1 —x3)A,,(x1)A,,(x;)dx dx,
in V,. By (5.9a) and (5.1b)
L*Q,=[dx[dyQ,, ., (A, () A,(x) = f,. JA%dx. (5.11)
Setting /¢ = ¢ =0 in (5.10), we obtain
_6V,,(Ae,0,0)___o
T SAx) '
which implies
§0,0(y — )0, 4, (y)dy = 0. (5.12)

Choosing 4,,(y) = y,, we conclude from (5.11) and (5.12) that f,,, =0.
Similarly by considering the quadratic term in V_, ,(4,0,0), applying L° and

choosing A,,(y) = y,,v,y: we conclude from (5.12) that e, =0. Applying L° to

the quartic termin V_, (4,0, 0) yields the conclusion g, ; = 0. Hence W, , ; = 0.
We next consider the bilinear term

B,= W;(xl)B(xl = X ) (xz)dx, dx,
and trilinear term
T,= jl/;(x1)Tu(x1 — X, X3 — xa)‘/’(xz)Aﬂ(xs)dxldxz dx,
in V_,,. By (5.9b) and (5.1a)
L°B, = [y(x)B(—y)y Y (x)dxdy = —a, ., [Yidydx + O(e"*?)  (5.13)

LT, = [Y(x) T,(y, ¥ (x) 4 (x)dxdydz
=(—e+c,y ) [P AYdx + 0" 2). (5.14)

As for the positive dimension part L* B, of B,, we cannot invoke (5.9a) which is
a normalization condition at scale I — 1, but at least we can say by Euclidean
invariance (Lemma 3.6) that for some constant b

L* B, = [Y(x)B(y)¥(x)dydx = b [y (x)y(x)dx. (5.15)

We pick out the bilinear terms in (5.10) for V_,, and set ¥°=1 and
Y¥(x;) = (x; — x),. The term on the right gives — ey°. The first term on the left gives

8,00, T, (x1 — x5, X, — x)(xy — X),dx; dx, = §,[ T,(y,z)dydz
=0, (—e+cy )y +0("?)
by integration by parts and (5.14). The second term on the left gives
iefdy[{dx, Blx, — »)S(,x)(~ iy") — m[dx, 805, By — x)(x = ), 1. (5.16)

and
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Using (see (5.15) and (5.13))
j‘dxlB(xl) =b, jdsz( —X2)(X3)e = — A+ 117,
fdyS(y,x)=[dyS(x,y)=m~*, [dyS(x,y)(y —x),= —im™?y°,

we compute that

(5.16) = ie[ —bm™'iy" + a,,, iy’ + im ™~ 1y7b]
- ean+1?o= 0(9"+2).

Hence we conclude from (5.10) that

du(—e+c, 7+ 0@ ?) = —ey’,

and from (5.3) we deduce that c,,, =ea,. Thus §V,,,, has gauge invariant
form. OO

Remark. The above proof corrects an oversight in the proof of Theorem 7.2 of
[1], namely a failure to control the positive dimension part L*V_, .

Proof of Theorem 5.2. We discuss only the case of V, since the proof of (5.10) for

V_ 1. is identical. Like V,, V_, , has its fermi fields integrated out at all scales and

so we may “integrate by parts” with respect to Y, . This is the key step in the proof.
Since 6V, <, has gauge invariant form

I(D)=(V;+ 0V, < D)
= — [[Y(ag,(—if) + b, +ea, | AW +d,F*1dx. (5.17)

We generate formulas for functional derivatives of V,(®@°) =&, (e'"(®*®%) from
the corresponding formulas for functional derivatives of the effective potential
[log &Y(e"")], in which the graphs are not dr (although I, as given by (5.17) is still
v-dependent) and a UV cutoff U is imposed for finiteness. (This cutoff is then
removed in the formulas for V,.) In terms of the notation

(F(x)), =6, (F(x)e™®* %)

we have, for example,

oV, < 0 I,,(d>+d>e)>

SA(x) \3A%(x) ,
= — et (¥ + Y)Y + ¥°)(x)
+4d (00, (A + A%)(x) ~ 02(A, + A2)(X))),, (5-18)

where, according to (3.20), the derivatives on the fields A may be taken as , or
Dy. When we apply the derivative 0d,, to (5.18), the second term on the right is
eliminated. Thus

SV,

5"6'5# = — €0, 0~ (F + YN + ¥, (5.19)
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Next we compute that

_—
&//el// -y &peV..

= —iag, VP + o)+ (F + P Pve]
+ b (Y — ) + ea,  [VE(A + AW — F(A + AW<TD,
. 7o 7 . -
—wg&«¢+¢nw+¢)x+<@ﬁa L%¢¢>- (5.20)
From (5.19) and (5.20)
v,

] .
5"6'574‘;‘“61/"5[//‘# — e — 5*1/8 V,

o /-8 5
=—ed {(Y+ ¥ )W +y¥ )>v+le<¢’6’$1n—l'l£l/’>v' :

Applying Lemma 3.5a)—c) to the first term on the right to “integrate the Y and ¥
by parts,” we obtain

v, I
0 s M%W” wmw”

= —ely {\P W)+ § d){ Ye(x)yS(x, y)

—

S(y, x)vwe(x)]}

(5.21)

0 V. +V, 0
suey) " " ovE(y)

Equation (5.10) follows from (5.21) and the identities

&XS(X, y) = - imS(x, y) + 15(x - y)
and _
S(x, )0, =imS(y,x) —id(x —y). O

The coefficient 6, # I occurs in the Ward identity (5.10) because the effective
potential V, has been renormalized up to order n only. Clearly the fully
renormahzed effective potent1a1 ren,v Satisfies, for v <2,

5Vrenv € 0
0 — 5A° +lel: ren,v '//eS(—‘la‘l’m)w (// (lﬁ+m)S w renv—J

= —ed- Yy’ (5.22)

But by Remark 3 following Theorem 4.2, V,., , is an analytic function of v for
Rev < 4. Hence (5.22) analytically continues from v <2 to Rev <4 (the identity
(5.10) does not continue since , and V, are not defined for Rev > 2):

Corollary 5.4(Ward Identity). ForRev<4and — oo <1<0,V,,, ,satisfies(5.22).

It is amusing to examine the Ward identity for some simple graphs contributing
t0 Veq,, in order to see the role of the “extra terms” in a dr graph. The vacuum
polarization graph
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had dr kernel
Ky2(o,x) = cpiBie ™™ AR Ly oy + (4 — vy F p]e T,

1
where A=Ug =0, +a,, f1=—if2/2+m, [, =iB,22+m z=x,—x{, Fi,=—

21
and b= (B, + B,)z*. Evaluating the traces, we compute that
Kﬂ:lﬂz(a, x) — Cﬁf ge—mzliz _"/2[,31/32(22‘“2“2 _ 5um222) — 4m2orim2
+2(4 — v)A~ Lorrr2]e b4, (5.23)

Using
fe *dz=c(B, +B,)"% and [z2e *dz=c(B, +B,) "3,

it is easy to see that all terms in (5.23) have norm |- ||, bounded by cA~1~"2¢~™*
and so are integrable with respect to « when v < 2.
The “extra term” 2(4 — v)A~1§#1#2 in (5.23) is required for the Ward identity

[ doty | dotyd,., K520, x) = 0. (5.24)
0 0
To see this we compute that

2 —_—
0, Kt4 = g2 “52132{413 B (ﬂ1+ﬂz)[ﬁlizz —m2+4u”]}e~b/4
= —c2"(0,, By + 0, B1)e” " AN TR BLe 4 (5.25)

Equation (5.25) is a sum of perfect a-derivatives and integrates to 0, verifying (5.24).
As a consequence of (5.24) the corresponding mass counterterm

L*Gyp,=[dafdxK"*2A, (x,)A,,(x,) =0 (5.26)

for v<2.

The validity of the Ward identity (5.22) at v=4 and I = — o0 is our guarantee
that the renormalization has been carried out in a gauge invariant way. Note that
for the Ward identity to hold, the free photon measure need not be gauge invariant,
but 6V (@ + @°) must not contain the gauge variant terms (5.1b). Strictly speaking,
for this assertion to make sense, we must keep v<2 and I > — oo so that the
terms in 0V, as defined in (4.1), are all finite.

For QED, it is possible to make such an assertion for v <4 provided we keep
an UV cutoff U, < co on the photon lines (but not on the electron lines) as well
as an IR cutoff I > — 0. To analyze the situation we apply the power counting
of Theorem 3.1 to the terms in (3.17) except that we bound the Bs of the photon
lines by B, < M?U». The degree of divergence D (G) of a graph then contains no
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contributions from photon lines (compare with (2.22)):

EV(G)=(V—1)L,—v(V—1)=v—v—%—1/1f. (5.27)

As in Theorem 3.1 we have the bound on the kernel of Gﬁ‘”",

I K57l < e(U,) [ MPCnhs b, (5.28)
S

where the constant ¢(U,) depends on U,
_ For v<4, D (G)<0 except for the vacuum polarization graph for which
D,(Gyp) =v—2. It follows from (5.28) that for v < 4,

T 1GMUr| < oo (5.29)
he A (1)

(with a bound depending on { and U ) unless G contains the subgraph G, = Gy .
Accordingly, we (partially) renormalize G, replacing it by

RGyp =1~ L*)Gyp, = [dofdx K" " (o, X)(A,,(x,) — A, () A,,(x,).  (5.30)

Forv<?2, IiGy,,‘v = Gyp,, by (5.26), but the advantage of the representation (5.30)
is that it extends (as an analytic function of v) from v<2 to 2<v < 4.
We similarly extend (4.1) and (4.3): 6V is defined as in (4.1) except that in
the sum over G, we exclude the VP mass graph (5.26); Vf’;;w is defined as in (4.3),
Vi =V, +6V% 4+ Y RGYr, (5.31)

ren,v .
Ge4(V1.6V Up)

where R renormalizes every 2™ order VP subgraph of G as in (5.30), and only
those subgraphs. By (5.26),

OVUr=5yUr (5.32a)
and _
Vie =V, (5.32b)

for v<2, but, by the power counting (5.27)-(5.29), dVY» and VVr  extend

analytically to v <4. Now we know that the fully renormalized treere?:;pansion
representation for V'  extends to v <4. Hence the equality (5.32b) extends to
v<4.

We conclude that for v<4, —o0 <I<0,and 0SU,< o VY is given by

ren,v

(5.31) where the (finite) counterterms 6?5’" are of gauge invariant form by virtue
of the Ward identity argument of Corollary 5.3.
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