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Abstract. Recently it has been shown that the methods of algebraic geometry first
used for finding periodic and almost periodic solutions of KdV, HSh, SG and other
equations [11-13] may be successfully applied to study the solutions of nonlinear
equations with a variable spectral parameter in associated zero-curvature
representation. In this work following [20] this treatment is extended to the case of
the self-duality equation. It seems to be the first example of a four-dimensional
non-linear equation solvable by the method of finite-gap integration. Two broad
classes of finite-gap solutions for each — SU(2) and SU(1,1) gauge groups are
constructed in terms of multidimensional theta-functions. The dynamics of the
solutions is given by the movement of the hyperelliptic curve with moving branch
points and a divisor of the poles in the moduli space of algebraic curves. In the
general case our solutions have no periodicity property. We show how one-
instanton solution and SN-parametric t'Hooft family of instantons may be
obtained by the degeneration of general formulae.

1. Introduction

The problem of obtaining and investigating particle-like (soliton) solutions of the
field equations attracted in the 70’s a great interest of many mathematicians and
physicists. It is impossible to give here even a brief review of the main results in the
field (for history and references see [1-3]); we will mention only results closely
related to the subject of this paper.

Belavin and Zakharov [4] obtained a U-V pair for the self-duality equation
and, therefore, it appeared possible to apply the inverse scattering technique to this
equation. However, one of the most important problems in the field — the
description of all multi-instanton configurations was solved in a remarkable paper
[5] by a different algebraic-geometric AHDM method. Nahm’s modification of
this method allowed to solve another problem — the classification of all
multimonopole configurations. Despite very good results of this method some
important problems remain unsolved — for example, effective description of the
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moduli spaces of multi-instanton solutions with topological charge more than
three.

In comparison with the algebraic-geometric approach of AHDM (or
AHDMN) the results of applying the traditional inverse scattering method (ISM)
based on the Riemann-Hilbert problem [6-10] to this subject appear not so
advanced. For four-dimensional fields this method allowed to obtain only a SN-
parametric 'tHooft instanton family [7, 8] instead of a general 8 N-3-parametric
family; for three-dimensional fields the description of a 4N—1-parametric general
multimonopole configuration by the standard “dressing” technique [6] appears
not very effective too.

Simultaneously since 1974 the theory of finite-gap periodic and almost
periodic solutions for some non-linear differential equations integrable by IST
(Korteweg de Vries (KdV), non-linear Schrodinger (NSh), Sine-Gordon (SG) and
others) has been developed. This theory began with the works of Novikov,
Dubrovin, Matveev, and Its in application to KdV. Further in extending to other
equations this method has been greatly improved. The theory of finite-gap
integration where the main role is played by the matrix function with the special
analytical properties on the algebraic curve known as the Baker-Akhiezer function
has been developed by Krichever (see Reviews [11-13]). Reformulation of this
method in terms of the generalized Riemann-Hilbert problem was proposed in
[14,15]. The dynamics of corresponding solutions is defined by the linear
trajectory on the Jacobi manifold of the fixed algebraic curve. If the curve is
degenerated into a curve of zero genus the periodic and almost periodic solutions
are transformed into localized — multisoliton solutions. This method for obtaining
multisoliton solutions seems more effective in comparison with the “dressing”
technique or Backlund transformation.

Further development of the method of finite-gap integration [16-18] allowed
to construct a new broad class of algebraic-geometric solutions of axisymmetric
stationary Finstein and Einstein-Maxwell systems and some other equations with
“variable spectral parameter” [19]. The main features of these solutions are the
following: in contrast to ordinary finite-gap solutions of KdV, NSh, SG and others
they are not periodic or almost periodic but localized as the degenerated — soliton
solutions; the dynamics is set by the trajectory in the moduli space of algebraic
curves.

This technique was generalized in [20] to construct the solutions in terms of
Riemann theta-functions for SU(2) and SU(1,1) self-duality equations. The
reduction to the stationary axisymmetric vacuum Einstein equation is also
discussed therein.

This work is devoted to obtaining one more class of finite-gap solutions for
each—SU(2) and SU(1,1) case. To illustrate possible applications of our approach
we derive a one-instanton solution and a SN-parametric *tHooft family of
instantons by degeneration of general formulae. It is quite natural to suppose that
some alternative (which may be more effective in comparison with AHDM
construction) description of general 8 N-3-parametric instanton family may be
obtained in this way. Another possible application of our approach may be to
obtain a more convenient formulae for multimonopole solutions. Finally, a very
interesting question is a mathematical and physical interpretation of non-
degenerated solutions.

It should be noted also that some aspects of the application of the finite-gap
technique to the self-duality equation were considered in [21, 22], but the explicit
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formulae for solutions were not obtained therein. Application of the finite-gap
method to Nahm’s equations is considered in detail in the recent work [23].

The paper is organized as follows: Sect. 2 includes some general facts and the
formulation of the Riemann-Hilbert problem for the matrix Baker-Ahieser-type
function. Section 3 includes the explicit construction in terms of Riemann theta-
functions of two broad classes of solutions for SU(2) case and two classes for the
SU(1,1) case. The corresponding classes of SU(2) and SU(1,1) solutions seem to be
connected by Backlund transformation by Corrigan et al. [24]. In Sect. 4 we show
how to derive from general formulae one-instanton solution and *tHooft family of
instantons by the degeneration of the associated algebraic curve.

2. Generalized Riemann-Hilbert Problem
for the Matrix Baker-Akhiezer-Type Function

The self-duality equations for Yang-Mills field may be written in the form

Fuv(x) = *Fuv(x) (21)

where *F,, =1 /ZsmﬁF Euvap completely antisymmetric tensor and &;,5,=1, ,
ﬂ K, V— 4 X = (xb X4)GIR

Fuv(x) = auAv(x) - avAu(-x) + [Au(x)a Av(x)] B

A,eSU(Q2) or SU(1,1).
Let us introduce complex coordinates y =x, +ix,, z=Xx5 +ixy, J, Z. Then (2.1)
may be written in the form

F,.=F;,=0, (2.2a)
F,,=F,,=0. (2.2b)

To satisfy (2 2a)it is necessary to suppose that4,= —oD, D" 'o,A;=D"'* D,
A,=—0D,D"'6,A,=D" "D, wherein SU(2) case =1 (umt matnx) in SU(1, 1)
case =05 (0, 1—1 2,3 — Pauli matrices); detD=1. Then (2.2b) takes the form:

(JJ Y+, =0, (2.3)

where J = DgD *-hermitian matrix with determinant 1 in the SU(2) case and —1in
the SU(1,1) case.
Equation (2.3) is an integrability condition of the following linear system:

(A0,+0,) ¥ =B,¥
(—Ad,+0,) P =B,¥,

where B,=J,J !, B,=J,J~!; Ae C-spectral parameter; ¥ (4, ), y, z, Z)-matrix 2 x 2
function. System (2.4) may be obtained by a simple gauge transformation [8] from
U-V pair of Belavin and Zakharov [4].

We shall define the Baker-Akhiezer-type 2 x 2 matrix function corresponding
to the linear system (2.4) first axiomatically, by imposing on ¥ the following
conditions A-F:

A. Y(4,),3,2,2): €C x R*->Mat(2 x 2) is holomorphic and invertible on € (for the
fixed values of (y, z) except the points described in the conditions B-E given below.

(2.4)
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B. Y(4)has regular singularities at the points a,(y, , z, 2), ..., a,(y, J, 2, 2), a,€ C i.e.
¥(4) has the following behaviour at the points a;:

Y() 20 PA)(A—a)TiC;,  i=1,...,n,
where C; — constant, T; — diagonal constant matrices; ¥(4) is holomorphic and
invertible in the neigbourhood of a;;
(T Ti)kl =T

(t=A—alocal parameter at g;). All functions a(y,,z,z) have to solve the
following “pole system”:

"“’*“FO} 5

—aa,+a,=0

(a=ay, ..., a,). If the elements of matrix T; are non-integer then g, is the end of the
cut on € (see condition C).

C. Let {K;},K;CC,j=1,...,1 be some system of oriented paths with the following
property: boundary values of the function ¥(4) are related along the paths K ; by
the equations:

Y_(Dlg; = Y.l GA), j=1,...1,

where the conjugation matrices G; are independent upon y, y, z, Z; the ends of the

paths K; solve pole system (2.5).
D. The behaviour of ¥(1) at A= oo is following:

V559 5, 509 i 254 (1+0(7) ).

where f; , — sufficiently smooth matrix functions (Normalization condition).
E. The behaviour of ¥(4) at A=0 is following:

¥Y(4,,3,2,2) ;>0 I, 3,2, Dh(A, Ay —Z, Az +y) (1 + O(4),

where J-invertible matrix; h plays the same role as function f, in the previous
point.

Conditions B-E may be summarized as follows: ¥(4) has only such particular
points (poles, branch points, branch cuts and so on) that the logarithmic
derivatives (A¥,+ ¥,)¥ ' and (— A¥;+ ¥,) ¥~ ! are holomorphic at these points.

F. Matrix J(y, y, z, z) from E is hermitian and detJ =1 (in SU(2) case) ordetJ = — 1
(in SU(1,1) case).

It is easy to prove the following important statement:

Theorem. Let ¥(4,y,7,z,2) be some 2 X 2 matrix function satisfying the conditions
A-F. Then the matrix function J(y, y, z, z) solves Eq. (2.4).

The proof may be obtained by applying the Liouville theorem to logarithmic
derivatrives of ¥ which are holomorthic on €, in full analogy with the proof of the
similar statement in the case of a stationary axisymmetric Einstein equation [16].
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Now to obtain the solution of (2.3) it is sufficient to construct effectively some
function ¥ corresponding to generalized Riemann data A4:

A={a, T, Cypi=1,...,n,GA),Ae K, k=1,...,1; f; 5, h}.

We shall obtain finite-gap or algebraic-geometric solutions of self-duality
equations, expressed in terms of multidimensional Riemann theta-functions
corresponding to some special Riemann data.

3. Explicit Construction and multidimensional Theta-Functions

Let us consider a hyperelliptic algebraic curve £ of genus 2g—1 defined by the

equation 261

o= [l (1-E)2—F),

where all branch points E(y, y,z,2), F(y,7,2,2), i=0,...,2g—1 are solutions of
(2.5). To satisfy condition D it is necessary to assume that € is invariant under the
anti-involution t: 14— — (1) ~! on every sheet of € (system (2.5) is invariant under
the substitution a— —(a) ™). Therefore let us suppose that tE;=E;, , tF,=F;, ;
branch cuts [E;, F;] lie inside and branch cuts [E;, ,, F;,,] — outside of the circle
[Al=1,i=0,...,g—1 (see Fig. 1).

Denote by * the involution on £ interchanging the sheets: *: (w, A)—(—w, 1).
To define the matrix function ¥(P) (P =(w, 1)) on the first sheet of £ we shall use the

ansatz
o(P) ¢*(P)
w(P) y*(P)

wm=T(

>5Tmm, (3.6)
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widely used in the theory of finite-gap integration, where P lies on the first sheet of
2, ¢ and y — two scalar functions on £, ¢*, p*(P)= ¢, w(P*); multiplication on
A-independent matrix function T is necessary to satisfy condition D; the notation
@(P) is introduced for convenience.

Now let’s introduce the standard objects of finite-gap construction. Canonical
basis of cycles a;, b;, i=1,...,2g—1 is chosen as shown in Fig. 1. Let dU/(P),
i=1,...,2g—1 be the dual basis of holomorthic abelian differentials on £ with the

normalization § dU,=J;. The matrix of é-periods B;, and Abel mapping U(P) are

defined by the ?ormulae: ,
IBlk=§dUk(P); Ul(P): I dUi, i,k=1,...,2g—1.
b PU

The Riemann theta-function is defined as follows:

3(x|B)= 2 exp{ni{Bm,m) +2ni{x,m)},
meZ?8 - 1
3.2
xeC® L x,my=xm+... 4+ x50 my, . (3.2)
Since in this paper we will consider only possible applications to instanton-
type (after degeneration) solutions, it is sufficient here to choose functions f; , and
h in the following form:

fi,2)=C;  folh Ay—Z,Az+))=diag(2*, 177,
h(A, Ay—z, Az + y)=diag(A*% A%,

where a e R-arbitrary constant, C-constant matrix.

If we would like to consider in our approach (after degeneration) the
monopole-type solutions; then it would be necessary to take f; , and h in the
exponential form; however, for the explicit construction to be more transparent,
we do not consider here this generalization of the present method because it
doesn’t include any new ideas.

Now we shall consider explicit constructions of different classes of our
solutions:

a. SU(2)1-Solutions. We can directly construct two classes of SU(2) solutions. The
first class corresponds to the case when the analytical properties of functions ¢ and
y from (3.1) on £ are invariant under anti-involution t, and the second class —
under anti-involution 7+ Therefore we will call the solutions of the first class
“z-solutions” and the solutions of the second class “zx-solutions.”

In the present case let us define functions ¢(P) and y(P) by the formulae:

(3.3)

_ YU(P)-UD)—UDy)+U(Q,)+B+b—K)
$(U(P)—-U(D)—K)

o(P) exp{ Wo,,po(P)+W(P)+ w(P)},
(3.4a)
HUP)— UD)—UDy)+UQ,)+ B+b—K)

vip)= 5(0(P)— U(D)— K)

exp{ Wy, p,(P)+W(P)+w(P)},
(3.4b)

where Dy+D=Dy+ D, +...4 D,,_, is a non-special divisor invariant under anti-
involution 7:(Dy+D)'=Dy+ D; all functions Dyy,j,zz), i=0,...,2g—1 are
solutions of (2.5); K is a vector of Riemann constants; Q, and Q,, are arbitrary
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points on £; W5 (P) and W, _p, (P) are normalized (all a-periods are zero) abelian
integrals of the third kind with the residue +1 at 0, (respectively Q ) and —1 at
Dy; 27mi(U(Q,)— U(D,)) and 2mi(U(Q,)— U(D,)) are their b-period vectors. A
normalized abelian integral W(P)is a third kind integral with poles at 00!, 002, 0*,
0? and residue o, —a, o, —o respectively; 2miB=a(U(c0')— U(c0?)+ U(0OY)
—U(0?%) - its vector of b-periods. The integral w(P) is an arbitrary linear
combination with the constant coefficients of normalized third kind abelian
integrals whose poles all satisfy (2.5); w(P) must be real, i.e. w(P*)=w(P); 2nibis a
vector of b-periods of w(P).

The function ¥(4) defined by (3.1) on the first sheet of € satisfies conditions A-E
with some Riemann-Hilbert problem data which may be easily written in full
analogy with [16-18].

Consider condition F. Due to the invariance of all poles of ¢ and yp under anti-
involution 7 if we assume Q,= (7, then

@(P)/p(P)=const=c(y, J,z,2). (3.5

Note that the variation of the poles @, and Q,, is equivalent to the variation of
the basis in two-dimensional linear space S(¢, ) of linear combinations a¢ + by
(a,be ).

The matrix function @(P) defined by (3.1) and (3.4) has the following local
behaviour near points O! and co0':

B(4), 251 Poly: ¥, 2, 2) (t ;L) (1+0(2),

_ (A0 _
¢(l)l-w1<?w(y,y,z,2)< 0 ,1“> a+0(™),
where o o o "
Py P2 ?r @3
®,= s, D=, T 3.6
° (w‘f wg) (% %) 9

Now we choose matrix C from (3.3) equal to a,; then from (3.1), (3.3), (3.4) one
obtains:
Y()=0,D_10(}). 3.7

The corresponding function J takes the form
J(ys .)7’ z, Z)=02¢o_01¢0 .

Note the following simple fact: if J is a solution of (2.3) but detJ + 41 then the
“physical” solution J ,, =(+detJ)"/?J satisfies (2.3) too and detJ,, =1. In our case
Jph=(detX°o/deth)1/20'2X;1X0. (3.8)
From (3.5) we see that
Pr2=cyl 2, (39)
and det® = —(c/¢)det®,. After simple calculations one can verify that J, is
hermitian and, therefore, gives a solution of the SU(2) self-duality equation.

To obtain from (3.8) explicit formulae for gauge potentials 4, one needs to
represent J, as DD™ where D e SL(2,€). From (3.8) and (3.9) we find

1/2 0 0o _0
(0.0 0,.00—1/2 (€ P11 Q2
D=(p1y2—p291) ( 0 c_1/2> (1/)(1) wg>. (3.10)
If we choose ¢(P)=1y(P") then c=1.
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Now let us the rewrite formula for J in an alternative form by choosing another
basis in S(¢, y): let functions ¢ and 1 be defined by (3.4), where @, =0, Q5= 02,
Then it is easy to see that the function ¥(P) defined by (3.7) may be represented in

the form » - - I
_ [ —ioP)(9F)" —ip(P*)($3)
'P(P)— 2 ~00)— 1 im(P*) (172) "1
ip(P) (PT ip(P*) (P7)
and
~0( ~ o0\~ 1 ~0( ~00\— 1
- [ —31($7) —02(®7)
JW,y,2,2)=i O oo — oo —
0-3.2.2) ( PP PP
Formulae (3.4) and (3.6), (3.8), (3.10) or (3.11) give the finite-gap solution of self-
duality equation.
Then we consider the solutions of the second-t*-class.

>, Jo=(det) 127, (3.11)

b. SU(2) tx-Solutions. Now we define functions ¢ and y by slightly more complex

formulae:
(P)= 3(UP)—-UD)—-UDy)+ UQ,)+ B+ B, +b—K)
= S(UP)— UD)-K)
x exp{ Wo,p(P)+ W(P)+ Wo(P)+w(P)}, (3.12a)
»(P)= HUP)—UWD)—UD,)+UQ,)+ B+ B,+b—K)

3(U(P)— U(D)—K)
x exp{ Wo,po(P)+ W(P)+ Wy(P)+w(P)}, (3.12b)

where all objects except integral W,(P) with vector of b-periods B, are the same as
in (3.1) satisfying, however, to another reality condition: now (D, + D)**=D,+ D;
Ww(P™) =w(P); an integral of the third kind W (P) has poles at points c0!, 02, 0*, 0?
with the residue o, —a, —a, « respectively. A normalized abelian integral of the
third kind Wy(P) is essentially a new object. It has poles at points E,, E; , , with the
residue r;= +1/2 and F;, F;, , with the residue —r;,i=0,...,g—1. For W(P) to be
completely defined, one also chooses the cuts between points E; and F,
i=0,...,2g—1 as shown in Fig. 1; such a choice provides the following behaviour
of W,(P) under the anti-involution t*:

Wo(A2) = WoA)=mi/2,  Wo(A™)— We(A%)= —mi/2, (3.13)

where A%, i=1,2 — point on the i'* sheet of & with projection A on C.
It is not difficult to verify that the vector of b-periods of W,(P) has the following

components:
P Boy=ro=+1/2; Boy=(1/2)(re+ro);
Bow+g=(1/2)(—1+10), k=1,..,6—1.

Using the periodicity properties of the theta-function we see that the sign at
+1/2 is not essential and without loss of generality we can choose By, =1/2; By,
Boi+g=00r 1/2, Boy+ By g =1/2, k=1,...,g—1.

If we assume now Q,= Q" then

P(AN=cp(A*); @AY= —chp(A1). (3.14)

Sign minus appears here due to the presence of the cuts I,
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Now matrix ®(4) has the following local behaviour at A=0"* and A= o0!:

0

D) ;21 Po ( 0 l—a) (1+0(), (3.152)

A7 0 i
(), 2, 8o g ja) EFOGTY), (3.15b)

where as before
@7 <p2’°°>
Dy = ° ol
* (w?’ »3

We choose matrix C from (3.3) equal to I. Then in full analogy with (3.7) and
(3.8)
Y(N)=2,'0(%),
J=0,',,
Jon=(detd /et D) 2D ' D, . (3.16)

Using (3.14) we can easily verify that J, is hermitian and
0 () ol
D=w%ﬂ—¢W%””( )(‘ :
1¥2 2¥1 0 Cl /2 w(lj wg
In analogy with t-solutions, another representation for J may be obtained if we

consider functions ¢ and ¢ defined by (3.12) where Q,=c0? Q,=00'; @, —
another basis in S(@,y); in terms of ¢ and { formula for J may be rewritten as

A" PG
PG PIHE)
Now we consider 7- and t=-solutions for the SU(1,1) group.

¢. SU(1,1) t- and 1+-Solutions. The Backlund transformation of Corrigan at al
[24] establishes a bijective mapping between the manifolds of SU(2) and SU(1,1)
self-dual fields: if

1

J(y,i,z,z)=< ) Jap=(et)"12J.  (3.17)

2= =
J=p! (“’ _“LQ"" f’) (peR, detJ =1) (3.18)
is a SU(2) solution of (2.3) then it is possible to construct a hermitian matrix
7=< . .:(pw_l>,det.7=—1,
—0d  POD—@
where o
-0 o=V,

- _ 3.19
P=(@.~3), =0, G19
which satisfies (2.3) too and gives SU(1,1) solution of self-duality equation.

This transformation was also derived by Tafel [10] by means of a traditional
“dressing” procedure of ISM.

Hence it is natural to suppose that some formulae similar to the formulae for
SU(2) solutions from p. a and b may be written for the SU(1,1) case also. Such
formulae exist indeed. For example we will write down the explicit expressions for
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SU(1,1) t«-solutions. In full analogy with SU(2) tx-solutions
Jon=03(det P /det Do) 201D,

where functions @, and @, are determined by (3.15) (functions ¢ and v are, of
course, new). Formula for J in analogy with (3.17) may be rewritten as

~0( ~ 00— 1 ~0( ~ 00— 1
1(P7 (P71 ) ~-1/2
J= O/ oon — Cormoon1 |» Jon=(—detJ)"12J, (3.20)
<—w‘1’(w2) -t
where functions ¢ and ¢ are following:
HUP)— UD)— U(Dy)+ U(v?) + B+ b—K)

#(p)= e T exp (Woan(P)+ W(P) + (P)}
(321a)
— — 1 _
()= 2 e e Tt 2= exp (Wi P)+ W (P) + (P,
(3.21b)

i.e. these expressions coincide with the expressions for SU(2) t-solutions but here
the divisor D+ D, and integrals W(P) and w(P) are invariant upon the involution
7%, i.e. coincide with those in (3.12) — formulae for SU(2) t*-solutions. The
analytical properties of functions @ and  in this case are distinguished from those
in the case of SU(2) t+-solutions only by omitting the integral W(P), i.e. omitting
the poles and the zeros of the degree 1/2 at branch points.

The class of SU(2) t+-solutions may be obtained analogously; in this case the
reverse is true — the poles and zeros of a degree 1/2 at branch points must be
introduced.

Taking into consideration similar analytical properties of SU(1,1) and SU(2)
Ts-solutions it is natural to suppose that they are connected by Backlund
transformation (3.19). This hypothesis is true at least for one-instanton solution
and the 5N-parametric ‘tHooft family (see Sect. 4). The same seems to be true for
the connection between classes of SU(2) and SU(1,1) t-solutions.

Let us discuss some general properties of our solutions. They are similar to
those of finite-gap solutions of Einstein’s equations [ 16—18]. The dependence upon
the dynamical variables in our solutions is given by the movement of our algebraic
curve with branch points and the points of the divisor moving in a prescribed way
inthemodulispaceofalgebraiccurves with marked points. Thereforeany periodicity
or almost periodicity is absent (in general case) in contrast to traditional finite-gap
solutions of KdV, NSh, SG and others. The class of our solutions is very broad:
except arbitrary sufficiently smooth functions h(u,v,t) which determine the
solutions of “pole” system (2.5) by equations

h(A, Ay—7Z, Az + 5)=0 (3.23)

(functions h may be different for different poles or branch points) we have
functional parameters connected with integral w(P): it may have any number of
poles with any constant residue.

The integral w(P) corresponds to U(1) (Abelian) background of our finite-gap
solution: if g=0 then

Joo (exp Re(w(o0)— w(0)) 0 )
Abel = 0 exp Re(w(0) —w(c0)))’
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for such a form of J (2.3) reduces to
A(InJ ppe) =0, (3.23)

where A-laplasian in R*.

Abelian background here is a full analog of a static background in the case of
Einstein’s equation. The linear structure on the manifold of solutions of (3.23) may
be mapped on the manifold of finite-gap solutions with identical branch points and
divisors of the poles — as a linear structure on the manifold of integrals w(P) and
their b-periods.

4. Degeneration of Genus 1 Solutions

Traditionally one way to obtain the multisoliton solutions of non-linear equations
solvable by ISM was the degeneration of finite-gap solutions, then the correspond-
ing Riemann surface is transferred into the surface of zero genus. For example, in
[16,18] by the degeneration of algebraic-geometric solutions of stationary
axisymmetric Einstein’s equations (which are reductions of solutions from Sect. 3
to the stationary axisymmetric case) the formulae describing the interaction of N
Kerr-NUT objects were obtained. This method of the construction of multisoliton
solutions seems to be one of the most effective. Hence it is natural to suppose that
by the degeneration of our finite-gap solutions we can obtain new representations
for multi-instanton and multimonopole (i.e. “multisoliton”) solutions. Here we
will do one necessary step in this direction: the derivation of one-instanton
solution both from SU(2) and SU(1,1) t*-solutions. The one-monopole solution
may be obtained in a similar way, but, as it was mentioned above, it requires some
complication of general formulae — the introduction of essential singularities at
002 and 0''2; we omit it here for simplicity.

Let g=1. Consider a limit E,, Fy—A1,, E;, F; >4, =(4,) ! (Fig. 2). Points A,,
A1, Do, Dy are solutions of the algebraic equation (3.22), where the function h may
be different for different points; the choice of these functions is very important. For
one-instanton solution points 4, and 4, have to satisfy the equation

Ay—2)(Aiz—y)—xd;=0,keR,k>0,i=0,1 4.1)

.@1
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and points D, and D, — the equation
Dy—2)(Dz+79)=0, i=0,1. 4.2)

Note that such forms of pole trajectories were used in [9] to obtain the one-
instanton solution by the “dressing” method.

The behaviour of standard finite-gap objects in the limit E;, F;—4,, i=0,1 is
following [16, 17]:

dU(P)=(2mi)~* b=k

(A—2o)(A—4y)
dU(P*)= —dU(P).

For the matrix of b-periods of £ we have:

dJ  if P lie on the first sheet;

Re(iB)g, p,~2,~ %IHIFO—Fd +0(1), ie. Re(iB)—»—o0.

For vector K we have a well-known formula K=(B+1)/2.
Consider the expression U(P)— U(Q). If points P and Q lie on the first sheet of £
then

1. (P—49(Q—4)
up)-UQ) — 3 In m. (4.32)

If P and Q lie on the second sheet of { then
~ 1 (P=1)(Q— 1)
UP)=UQ) 2, 50 P (P @ =1y (4.30)

If P and Q lie on the different sheets of £ then U(P)— U(Q) depends upon the
choice of the path between P and Q: if P lies on the first sheet, Q on the second sheet
and path is passed through A, then

B
U(P)—-U(Q) s 3 +0(1). (4.4a)
If the path is passed through A, then
B
U(P)— U(Q) Boron D +0(1). (4.4b)

It remains to consider the behaviour of theta-function in our limit (see for
details [16, 17]):

1

B
z—K|B)= Y exp {nimle+2m’m <z~— —— —)} —  1—exp(2miz),
meZ 2 2 Re(iB)— — (4 5)

i.e. all our solutions in the degenerated case may be expressed in elementary
functions of branch points and points of a divisor. Note that if Im(z) tends to + co
then 3(z— K|IB) tends to 1 or oo respectively. Let’s discuss also the behaviour of
Abelian integrals of the third kind W;, in our limit.

If P and Q lie on one sheet then on this sheet

(=P
(1-9)

Wpg(A)~In (4.62)
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and on other sheet
Wpo(4)—0. (4.6b)
Let P and Q lie on different sheets of £ (P — on the first sheet and Q — on the

second) and the cut between P and Q is passed through the branch cut [E, F].
Then in our limit we have on the first sheet

(A1—P)

Wpo(H)—1In % =) (4.7a)
and on the second sheet (A= 1)
0

Weold)~In ;=% (4.7)

i.e. one obtains additional poles at degenerated branch cuts.
For the beginning consider SU(1,1) t#-solution. Put w(P)=0, «=0 and use
(3.20), (3.21). Introducing new notations

$(P) Z (P)(H(00") ' =(P)($7) ",

B(P) 2 H(P)(B(00Y) "' = =pP) (B3,

one obtains

o(P)= (UP)—U(Do)— U(D )+ U(0?)— K) §(U(0*) — U(D,) — K)
S(U(P)—U(D,)— K)$(U(0")— U(Do)— U(D 1) + U(0?) — K)

X eXP{ Wa2p,lt1} » (4.8a)
8(U(P)— U(Dy)— U(D )+ U(o ') — K)3(U(0*) — U(D,) — K)
$(U(P)— U(D,)— K)8(U(c0*)— U(Do)— U(D) + U(0 ') — K)

X exp{Wo1p, |52} (4.8b)

P(P)=

Now using (4.5), (4.6), and (4.8) we can directly compute ¢(0') and P(0?)
because all arguments of degenerated theta-functions are finite:

(1 _ lo(ll—Dl)(/lo~Do)> (1 A —Dl))
$(01)= 41(Ao—D4) (4, — Do) (2o—Dy)
<1 _ (ﬂl—Dl)(lo—Do)) (1 AolA1— 1))
(20—D1) (41— Do) A1(do—Dy)
_ Aohi+ DD —Dy(Ag+44)
- Dy(Dy—Dy) ’

<1 _ Allo=Do) 0 —D1)> <1 B (zo~Do)>
W,Z):( Jolhs =D Uo=Dy)) \" ~ (3,=Dy)
1

_ (M“Dl)(lo—l)o)> (1 _ 11()»0~Do)>
(do—D1) (A1 —Dy) Ao(A1— Do)

_ AgAy+DoDy —Dy(Ao+4,)

- Do(Dy—Dy) .

To compute ¢(0?) and P(0?) it is necessary to derive the behaviour of U(0?)
—U(D,) and U(0*)— U(D,). Due to the invariance of ¢ and 1 upon the change of
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the basic cycles we can choose the path between 02 and D, passed through 4, and
the path betwéen O' and D, — through 1,; then we see from (4.5) that
corresponding theta-functions tend to unit.

Using (4.3), (4.5), and (4.7) one obtains:

010 (1-2220)
5(0%)=10H(01) =
$(0%)=$(0") D (1_(11—01)(10—%))
0 (AO—DI)(AI—DO)
=(/‘|'0_D0)(,11—D0)
DoDo—Dy)

Calculating detJ = — @(0M)P(0?)+ (0 P(0?) it is easy to obtain that it is
equal tO ‘—().0).1)/(D0D1) and

(DD \M2
J*’“‘(M) /-

Now let’s substitute in the expressions for J_, functions 4, , and D, , satisfying
the pole Egs. (4.1) and (4.2) respectively. As a result one obtains

b+1 9
W= 4l)

where ¢(y, 3,2,2)= —k/(yj + z2).
. 1 -1
After transformation J,,—»QJ_,Q*, where Q= (0 1) we have

0 1
Ton= (1 —1+¢>'

This SU(1,1) solution after Backlund transformation [7, 24] gives SU(2) instanton
with center in 0 and radius x*/2,

Then we consider the degeneration of genus 1 SU(2) 7*-solutions. One-
instanton solution is obtained from (3.12), (3.17), where o =1/2 and w(P)=0, i.e. in
comparison with the one-instanton solution in SU(1,1) framework here function
!I’(ll)zmust include poles and zeros of the degree 1/2 at branch points, 0*:? and
ool:2,

We will not discuss here all details and write down only the final expressions for
J which appears in this case equal to J,y:

AA1(D1— Do)

J = s
Vatdts= 5 DD, + oAy — Dol + 21
—— (Do —20)(Do—4y)
J =(J = s 49
( ph)12 ( ph)2l 0(D0D1+Aoﬂ.l D0(10+ll) ( )
Aot+4q AoA1(D1—Dy)

J )22 = - '
(Jon)22 D, Do(DoDy + oA, —Do(Ao+44)

Using the same pole and branch points trajectories as in SU(1,1) case we find
that J , may be represented in the form (3.18) where ¢ =1 + /X and ¢ =i(yx)/(2X);
X=yy+2zz i.e. J corresponds to one-instanton solution.
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Note that formulae (4.9) set some solution of self-duality equation if 4; and D,
are any solutions of the pole system; however, whether this subclass of solutions
includes some solutions having a physical sense (except a one-instanton solution)
or not is difficult to say.

Now we shall say a few words about the degeneration of multi-gap solutions
with the genus more than one. It seems quite probable that in analogy with other
integrable systems all multisoliton (i.e. N-instanton) solutions may be obtained by
the degeneration of finite-gap solutions of genus 2N — 1. The main problem here is
to derive correct poles and branch points trajectories.

For example the SN-parametric *tHooft family is obtained from general
formulae for 7«-solutions; then D; are different roots of factorizable polynomial of
degree 2N:

N-1

[1 (Dyy—2Z—Dyy;+2z)(Dyz+y—Dyz;—3)=0, k=0,...,2N—1,
i=0

and 4; are different roots of more complex expression:
Nil Kilk _
150 (Ay—Z—AYyi+Z2)(hz+y—Ahzi—J)

where k;€R, k;>0, y;, ;€ C, i=0, ..., N— 1 — 5N real constants y;, z; play the role
of the center of i® instanton; x'/ — of its radius.

To obtain in this way a general multi-instantion solution one must derive from
a non-singularity requirement some more or less effective condition on two
polynomials h(4, Ay — Z, Az + y) upon three variables of degree 2N. (The fact that all
degenerated branch cuts must be all roots of some polynomial of degree 2N is
trivial: in the opposite case the solution will not be one-sheet on IR*; the same is
true for 2N points of a divisor.)

It seems that t-solutions in the degenerated case give only quite trivial limits;
therefore it would be desirable to investigate them in the non-degenerated situa-
tion.

1—- 0,

Conclusions

In this paper, following [20], we apply to SU(2) and SU(1,1) self-duality equations
the method of finite-gap integration developed for the majority of the equations
solvable by inverse scattering method. This seems to be the first example of a four-
dimensional equation admitting the finite-gap construction of the solutions.
Finite-gap solutions of the stationary axisymmetric vacuum FEinstein’s equation
are reductions of the present solutions to the stationary axisymmetric case.
Therefore most general properties of our solutions are the same as in the case of
Einstein’s equation: the dynamics is set by the deformation of the Riemann surface
with the prescribed dependence of branch points and points of a non-special
divisor in the moduli space of algebraic curves; our solutions have no periodicity
properties. The asymptotic properties of finite-gap solutions in this case seem
similar to those of the degenerated-multisoliton solutions.

In addition to classes of t+-solutions for SU(2) and SU(1,1) groups [20] one
obtains here classes of t-solutions for these groups. The corresponding classes of
SU(2)and SU(1,1) solutions seem connected by a simple “dressing” procedure [10]
initially derived by Corrigan et al. [24]. This connection is verified in Sect. 4 for
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one-instanton solutions. We also described how to obtain in our framework the
SN-parametric "tHooft family of instantons. It seems that our solutions in the
degenerated case include all 8 N-3-parametric family of instantons, but to describe
this family it is necessary to derive some non-singularity condition for our
solutions in terms of the trajectories of the poles and branch points.

After a simple generalization the class of our tx-solutions includes all
multimonopole configurations. The derivation of non-singularity conditions in
this case seems to be simpler than for instantons because all trajectories of the poles
and branch points are set by the polynomials upon two variables (instead of the
polynomials upon three variables in the case of instantons).

Note that not only monopole- and instanton-type solutions may be interesting
from the physical point of view. For example, it’s possible that there is some
physical sense of “torons” — solutions with half topological charge [25], string-type
solutions and so on. Therefore it would be interesting to analyse the properties of
the simplest genus 1 non-degenerated solutions at least. We intend to carry out
such analysis in further publications.
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