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Abstract. Monodromy fields on Έ2 are a family of lattice fields in two dimensions
which are a natural generalization of the two dimensional Ising field occurring in
the C*-algebra approach to Statistical Mechanics. A criterion for the critical limit
one point correlation of the monodromy field σa(M) at αeZ 2 ,

lim<σα(M)>,
sn

is deduced for matrices M e GL(p, <C) having non-negative eigenvalues.
Using this criterion non-identity 2x2 matrices are found with finite critical

limit one point correlation. The general set of p x p matrices with finite critical limit
one point correlations is also considered and a conjecture for the critical limit n
point correlations postulated.

1. Introduction

The C*-algebra approach to the Ising model via the transfer matrix is now
wellknown, see [1,4,7-9,10] for example. Monodromy fields on Z 2, introduced in
[14] are a family of lattice fields in two dimensions which are a natural
generalization of the two dimensional Ising field. They were inspired by [21] and in
a sense are lattice analogues of the continuum fields used in [21, IV] and also in the
Federbush and massless Thirring models, see [19, 20, 6]. These lattice fields are
interesting for several reasons. Firstly by controlling the scaling limit mathemati-
cally precise information on the continuum can be found and this approach was
successfully used for the Ising field in [17,18], secondly there are numerous
analogues of continuum structures suggesting a discrete theory on the lattice itself.
For M e GL(p, C) and a e Έ2 it is possible to define the monodromy field σa{M) at a.
This is a generalization of the Ising field in the sense that when M is the scalar — 1
the vacuum expectation of a product σαi(—l)...σαn(—1) gives the square of an
Ising correlation. The motivation for the name "monodromy field" is the fact that
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it is possible to "create" monodromy M located at a e Έ? in the solution to a certain
linear difference equation on the lattice through a formula involving σa(M).

In [14] the one point correlations when M is a scalar were calculated using an
elliptic substitution. Also the asymptotics of the correlations were examined in the
scaling limit, that is the limit that sends the lattice spacing to zero and the
"temperature" to the critical point such that the correlation length remains fixed
(massive scaling regime). In [15] the critical scaling limit was studied, that is the
large scale asymptotics of the correlations at the critical point (massless regime).
However a limitation of the analysis carried out in [15] was the fact that the
monodromy fields had to appear in pairs, σa(M)σb(M)~1, which was referred to as
the twin problem. That is only correlations of the form

<σβl(M1)σ f t ι(M1)"'... σan(Mn)σbn(MnΓ * >,

could be studied. Moreover the Mf had to have non-negative eigenvalues.
In order to find the large scale asymptotics at the critical point the following

limit needs to be investigated:

lim<
S f l

This is non-trivial since the monodromy fields, σa(M), are not defined for 5 = 1. A
conjecture from [15] was that the limit exists and is finite if M1...Mn=l and if
M1 . . .M nΦ/ then the limit is 0 or oo. The second half of this conjecture is now
shown to be false by an analysis of the limiting one point correlation:

A criterion for this limit is found enabling the existence of a non-identity M with
finite critical limit correlation to be shown. However as is the case for the results in
[15] this is only true for M having non-negative eigenvalues. As for the general n
point correlations a product formula, see [15,16], enables these to be written as
the product of the individual one point correlations and a det2 term, see [22] for a
definition. This suggests that the one point correlations are sufficient though a
proof is not available as yet.

The restriction on M to have non-negative eigenvalues is somewhat incon-
venient since the Ising field case is given by the scalar —1 so none of the results are
applicable to this case and the critical asymptotics for the two dimensional Ising
model remain unknown.

The format of the paper is as follows. Section 2 gives the basic structure and
definition of the monodromy field σa(M). Section 3 deduces a criterion for the
critical limit one point correlations based on the result of [14] concerning the
scalar case. Section 4 uses this criterion to find a non-trivial example of a matrix M
with finite critical limit correlation. The structure of the set of such matrices is also
studied. Finally Sect. 5 poses a conjecture for the general n point correlations using
a product formula.

2. Monodromy Fields on ΊL2

2.1 Introduction. This section gives a brief summary of the structure required for
the study of monodromy fields on Έ2. For further details see [14, 15, 16].
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2.2 Notation. Let H = L2(SX,<E2) and p a positive integer with HP=H®...®H
= H®CP. Let T be the multiplication operator on H defined by the 2 x 2 matrix:

Γ/(0)=Γ c2A-cos0
\_s sin 0 4- i(c/s — c cos 0) c2/s — cos 0

where c, s>0 and c2 —s2 = l.
Let β be the multiplication operator on H defined by:

where y(0)>O and α(0) are determined by the following:

Γ 0 ie i α ( 9 ) Ί

(1)
(2) y() / ,
(3) siήhγ(θ)eim = (c/s-c cos0) + issin0.

Note that

where Q± = 1/2(1 ± β) with Q2 = 1, β self adjoint.
Also let z be the multiplication operator on H defined by:

zf(θ)=ewf(θ).

Now extend T, Q, and z to operators on Hp in the obvious manner, namely
tensoring by P, i.e. the operator acts on each copy of H. With a slight abuse of
notation call these operators % Q, and z. Let WP = HP®HP, where H denotes the
Hubert space conjugate to H, and define a conjugation P on Wp by P(xφ^)
= };©x. If Qw is the operator on Wp defined as Q®(—β), then β r̂ anticommutes
with P and β ^ is self adjoint with Q2

v = ί.
Hence Qw defines a β^-Fock state of the Clifford algebra C(WP,P) whose

associated representation lives in the alternating tensor algebra A(Wξ)9 where Wξ.
= QψWp and Qψ = 1/2(1 ± Qw). The generators of this representation are given by:

where α*( ), a{ ) are creation and annihilation operators on A(Wξ).
Now define the restricted general linear group GLQ(HP) as the group of

bounded, invertible linear maps on Hp with bounded inverses whose matrices
[a bl.

I A'in the Hp+®Ht decomposition of Hp derived from β have b, c Hubert

Schmidt and α, d Fredholm of index 0. Also define GL°Q(HP) as the subgroup with d
1 + trace class and GLQ(HP) as the subgroup with & = c = 0.

Results in [16,14,5], also a brief summary in [3], demonstrate the existence of
a dense linear domain, @QA(Wξ)9 together with two group homomorphisms,
ΓQ:GLOQ{HP)->L{@)) and riGL^H^Li®), where Uβ) denotes the invertible
linear maps from 3f to 3t, such that:

ΓQ(g)F(w) = F(gφg* -1 w)ΓQ(g),

Γ(g)F(w) = F(gφg* -

and
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Also if GLQ(HP) x GLQ(H") is the semi-direct product with composition rule

gixh1-g2xh2=g1hιg2hϊ1xh1h2,

then the above gives g x h-*ΓQ(g)Γ(h) is a homomorphism with kernel

K = {gxh:gh = l anddetd(g) = l} .

Define 6LQ{HP)^GLO

Q(HP) X GLfcH^/K, then (g x h)K^gh is awell defined
homomorphism T: GLQ(HP)^GLQ(HP) with kernel C*. Identifying G~L^HP) with
its image in L{β):

gF(w)=F(T(g)φT(g)*-1w)g, gεGlQ(Hp),

i.e. g is the implementer of Γ(g). If ΩQ is the vacuum vector of Λ{Wl) define

<g>β = <Ωθ>gΩe>. geGLQ(Hp),

that is if g=(g'x/ι')K

= <Ωβ)ΓG(g')ΩQ>

=det(d(g'))

For more details of this, together with proofs, see [14, 5].
In other words, if geGLQ(Hp) and has a decomposition as gogx, where

gieGUQ(Hp) for j = 0, 1 then T((goxg1)K) = g, thus the implementer of the
automorphism induced by g on the Clifford algebra is given by /^(go)Γ(gi) at least
on the dense domain 2 and up to scalar multiple - a choice of factorization at the
GLQ(HP) level being equivalent to a choice of normalization at the (JLQ(HP) level.

With the structures defined above it is now possible to define the monodromy
field σ(M), where MeGL(p,<£). Let M act on Hp as /®M and define ε as the
convolution operator on H whose Fourier transform acts on /2(Z1 / 2,C2) as έf(k)
= sgn(fc)/(/c), for fceZ1/2. Let ε± =(1 ±ε)/2 and define

s(M) = ε _ ®Ip + ε + <χ)M.

In [14] it is shown that s(M) e GLQ(HP), then σ(M) is essentially defined such that
T{σ{M)) = s{M). So from comments made above a factorization of s(M) into gog1?

where gieGLi

Q(Hp) is sufficient since σ(M) may be defined as ίρ(go)Agi). This
factorization is constructed in [14] and using that notation s(M) = s(M)D(M) so
that:

This definition can be extended to the points on a Z2 lattice as follows. Let Γ(T)
and Γ(z) be the implementers of T and z then define

and

where α={αί,α2)eZ2. Call σα(M) the monodromy field at α - so σ(M) is the
monodromy field at 0.
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2.3 Remark. The multiplication operator T introduced at the beginning of 2.2
Notation is the same as that for the study of the Ising model in [17,18], where
c = cosh2K*. Hence, using this connection, it is possible to consider the cases s < 1,
5 = 1, and 5>1 to correspond to below the critical temperature, at the critical
temperature and above the critical temperature respectively.

2.4 Remark. One problem, which has been glossed over in the preceding
comments, is the fact that s(M) φ GLQ(HP) when s = 1 (Q depends on T and thus s)
and consequently a limiting argument is required. The objects of study are the n
point correlations:

<σα i(M1)...σα n(Mn)>Q,

and in particular their limit as s | 1, that is, their behaviour as they approach the
critical temperature. From now on it will be assumed that s < 1 and the Q subscript
in the correlation will be dropped.

3. A Condition for the Existence of Limiting One Point Correlations

3.1 Introduction. This section aims to classify the critical limit one point
correlations, lim <σα(M)>, for all matrices M e GL(p, <C), p e N with non-negative

m
eigenvalues. The starting point for this classification is a result of [14] concerning
the one dimensional scalar case, that is (p = l).

3.1.1 Proposition. Let k = s2

9 k'2 = l-k2 and

dθ

j/ l+/c ( ' ) 2 s in 2 0

Suppose λ e C\( - oo, 0]. // s(λ) = s{λ)D{λ) and d(λ) = d(s{λ)) = Q _ s(λ) Q _, then d(λ) is
invertible and

where leΈ1/2 and q = exp( — πK'

Note. As d(λ) is invertible the correlation is non-zero.
Now assume M e GL(p, <C) and has no negative eigenvalues. Hence there exists

a matrix SM e GL(p, (C) such that SMMS^ = J M , where JM denotes the Jordan form
of M. Thus

= (l®SΛ f

1)s(JM)(l(χ)SM).

Therefore if s(JM) is factorized as s{JM)D{JM\ s(M) may be factorized as

((1 ®S^)s_{JM) (1 ®SM)) ((1 ® SM ι)D(JM) (1 ®SM)).

Hence
= det d((l®Sΰ1)s(JM)(ί®SM))

as β_ = ζ)_(x)J commutes with
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Appealing to [14], in general the factorizing terms are given by the following:
Suppose P + , P_ are the orthogonal projections onto the subspaces of

L2([—K, K]9 (C) whose elements have fourier expansions in exp(iπlx/K) with no /
negative, positive terms respectively. Then:

where /+ is the identity on Hp+, (P + ®/ p + P_®M)_ acts on HI «L 2 ([-K,K],
C)®<CP and

s(M) = s(M)D(M) ~* with d(s(M)) 1 + trace class.

So suppose the eigenvalues of M are λί...λp then the Jordan form

where A,eC\(—oo,0] for i=ί,...,p and ^ = 0 or 1 for; = l, ...,p—1 and

d(s(Ju))=

Therefore detd(s(JM))= f\ detd(λ,), that is:
ί = l

4(λp)

Also note that for α = (α1,α2)eZ2,

So we have shown the following lemma:

3.1.2 Lemma. If MeGL(p,<C) has no negative eigenvalues then

3.2 Convergence Argument. The previous subsection showed that if M e GL(p, C)
has no negative eigenvalues then
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where λl9...,λp are the eigenvalues of M, which of course can be rewritten as

Π

Now a straightforward calculation, see also [14], shows that

{ l o g < σ f l μ ) > } ( 2 A ) Σ
aλ ι>o

and hence if Cλ denotes a contour which joins 1 to λ without crossing the negative
axis or passing through 0 then

log<<7a(A)>= J (μ-μ-1) Σ

3.2.1 Remark. Hence in this more general case taking logarithms as above leads to
the following equation.

log<σβ(M)> = log

P

P

= .Σ
P

P

log

c Λ i

•Σ
00

= Σ ί (Mi-μΓ1) Σ

where Cλ. denotes a contour joining 1 to λt without crossing the negative axis or
passing through 0.

3.2.2 Remark. Using the definition of q and the Taylor series expansion for
(1 — x)~i/2 it is a simple calculation to show that <?e(0,1) and as s | 1, q]l with
K-+CO and K'-+π/2. Now if the sum present in the above is replaced by the
corresponding integral then the limit as q\\ can be calculated as will be shown
later. Consequently the difference between the sum and integral is the item of
interest and it is this which will now be considered.

3.23 Proposition. Suppose Zqμ:[0,oo)-»C is defined as

where qe{0,l) and μeCλ with Λe(C\(-oo,0]. Then

lim(^ £ (ZqJn) + ZqJn + ί))- ]zqjx)dx)=θ.

The proof of this proposition follows using a series of lemmas.
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3.2.4 Lemma. Extend, in the obvious way, the function Zqμ defined above to a
function on (C. Then if \μ\ φ 1,

2 Σ (Z,Jn) + ZqJn + ί))- j ZtJx)dx

_ 1 » Z^-iyJ-Z,,^) "

j -1 sgn[Re{/(μ)}]

sgn[Re{/(μ)}]

2πi
P= ̂ « , 2μlogήf e"

sgn[Re{/(^)}] 2πi

2πi

/(μ) = log( — μ) and log denotes the principal value.

Proof The proof owes much to the Plana summation formula, see [24], of which it
is essentially a variant.

Consider integrating the functions

around the indented (semi-circles of radius r round the integers, r->0) rectangles
with corners 0, R, R + Ri and +Kz respectively, see picture below, and letting
#-•00.

R+Ri

Fig.1

R-Ri

Now, both 7+(z) and Y (z) have as poles the integers, together with

±
p

i
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Thus if |μ| > 1 then Re {log (μ)} >0, hence the poles z~ have real part greater than
zero provided q is large enough. Also it is easy to see that,

>0, f o r p ^ l ,

<0, f o r p ^ - 1 ,

with sgn [Im {ZQ }] = sgn [Im {Z(μ)}].
Similarly if |μ| < 1 then the poles z+ have real part greater than zero and

<0, f o r p ^ l ,

> 0 , f o r p ^ - 1 ,

with sgn [Im {ZQ }] = sgn [ — Im {/(μ)}].
Thus choose R large enough such that some poles are contained in the

rectangles but none lie on the lines joining ±Ri to R±Ri and R±Rί to R. Note
that Im{/(μ)} 4=0 since μe(C\( — oo,0], hence no zp lies on the positive real axis.

Note also that the semi-circles, with radius r, round the integers contribute a
net residue of,

Z , » / 2 , l ^ n ^ R - 1 ,

for each rectangle as r->0.
Hence the following equation is obtained using the residue theorem,

ZqJz) ZqJz)

I Zq,μyZ) 7-sgn[Re{/(μ)}]
I β-sgn[Im{ί(μ)}]sgn[Re{Z(/ί)}]2πiz__j > Δ0

Pψ ReQ I _ j5 i i iM_ 7-sgn[Re{J(μ)}] '
L K e S I o-2τtiz 7 ' Zsgn[Re{/(/i)Γ

p = i \e - 1

-1 / z (z) \
i V P p q f <l>lλ}

 7-sgn[Re{i(μ)}] \
1 ^ K e S \ ^niz_4 > Zsgn[Re{/(μ)}]p I

p = p'(R) \c 1 /
Now it is easy to show that the left-hand side of this equation equals

J e

2 π ) l - l

« ZqJx-iR)

and as R^oo this becomes

zgx + iR)

the last two integrals tending to zero by taking a factor of e~2πR, bounding the
resultant integrand and using lim Re " 2πR = 0. The parts involving Zq μ(R ± iy) in
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the other integral also tend to zero by a similar process, taking a factor of q(2R+υ

and using lim Rqi2R+1) = 0 for all «6(0,1).
JR->oo

The right-hand side of the equation is fairly straightforward. The residue of the
pole at zί- is given by

sgn[Re{/(μ)}] - 1

where the choice of sign depends on which rectangle the pole is contained in. As
R->oo, both p(R)->oo and p'(R)-+ — oo, so the right-hand side becomes,

\ Σ
2πi

sgn[Re{/(μ)}]

sgn[Re{/(μ)}]

2μ logq eπilHμ) + 2PπiyioM +

2πi

2πί
esgnllm{l(μ)}]πil(μ)/logq _^_ j *

This gives the required result.

3.2.5 Remark. The case |μ| = 1 is somewhat simpler. Due to the presence of the
—1/2, in the formula for z^ the poles z * all lie in the left half of the complex plane,
in this case, so do not contribute any residue to the integration thus leaving only
the integral as in the Plane summation formula. If sgn(0) is defined to be zero then
Lemma 3.2.4 gives this result and the restriction |μ| + 1 can be lifted.

3.2.6 Lemma. For μe<C\(-oo,0] then,

m i;™ V [ W } ]

(3)

μ g z
sgn[Re{Z(μ)}]

lim
sgn[Re{iQi)}]

2μlog^

2 π i

2πί

2 π ί

=0,

=0,

= 0 .

Proo/ 1):

using

sgn[Re{/(μ)}]

^ Σ

2μlog<2 (

sgn[Re{i(μ)}]

2μlogg

— π
|/x|log4 pt

o

Σ -^

2πi

2πi

π|μ|
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using Im{/(μ)} + 2pπ>0 for all p ^ 1 and e*-ί>x2/2 for x>0,

331

using Im{/(μ)} + 2pπ> 2(p - l)π for p ̂  2 and Im{/(μ)} + 2π ̂ > π.

Now it is easy to see that

lim

sgn[Re{/(μ)}] 2πi

hence

as required.
2): Follows in the same manner as 1) using the transformation pi—>—p and

noting the following:

(1) 2pπ-Im{/(μ)}>0forallp^l5

(2) 2pπ-Im{/(μ)}>2(p-l)πforp^2,
(3) 2 π - { }

3): sgn[Re{/(μ)}] 2πi
esgn[lm{l(μ)}]πίl(μ)/logq _|_ j

|μ|lθg<?

π|μ| ' (\Im{l(μW

Note Im{ί(μ)}φO as μeC\(-oo,0]. Now

-21ogg 1

hence the required result is obtained.

3.2.7 Lemma. For μ e Cλ, λ e <C\( - oo, 0]

Substituting the formula for Zq μ and simplifying gives

ZqJ-iy)-ZqJiy)7
x I e 2 π y - l

y

where
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Making the substitution x = 2πyK'/K this becomes
00 sinx

where

and

Note that the function C'(μ, q) has limit 2(μ2 — 1) as q 11, hence the integral must
have limit zero for the lemma to be true. To show this, split the infinite integral at
the point lCλ which is defined as follows:

(1) l-cos/ C λ =Γmin{l, |μ + l |

(2) n/3>ICA>Q.

Note this is well defined as μe(C\( — oo,0] so cannot be —1.
Now

sinx

as \μ + q±1e±ix\^\\μ\-q±1\^ί-q, for ^ large enough, for all μeC\(-oo,0],
oo 5J

This last expression has limit zero as g t l s o

* sinx

Let f(x) = ύnx/(eKx/κ— 1) then it is straightforward to show,

(1) f(0) = K'/K,
(2) / is decreasing, Vx e [0, / C J ,
(3)/(x)>0,Vxe[0,J cJ.

Let g:[0,7CJ xCx[0,1]->C be defined as
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then 3β 6(0,1) such that,

|g(x, μ, 0)| > e(Cλ) > 0, Vx e [0, / C J , Vμ e Cλ, V<? e [β, 1].

This can be seen as follows:

= [(μ2 + l) + 2μcosx]2,

hence g(x, μ, 1) = 0 when

μ = μo(x) = — cosx ± ij/l— cos2x .

But

so μo(x) φ Cλ. Consequently |g(x, μ, 1)| > ε{Cλ) > 0 for μ e Cλ since |g(x, μ, 1 )| + 0 for
μeCλ and [0,/CJ x C λ x l is closed. Continuity of g then gives the result.

With the properties of / and g given above,

I T Jfr

I (eW-\)g(x,μ,q)dX
ε(Cλ)

provided q large enough. But, as above, the last expression has limit zero as q ΐ 1 so

,t. j . * γ s i n x
*~ '

Formulae (|) and (|) give the required result.

Proof of Proposition 3.2.3. With the information accumulated in the previous
Lemmas 3.2.5, 3.2.6, and 3.2.7 it is clear that Proposition 3.2.3 is true.

3.3 Convergence Theorem. The results of Subsect. 3.2 can now be used to examine
the behaviour of one point correlations as the critical temperature is approached.

3.3.1 Theorem. Suppose Me GL(p,(C) with its eigenvalues denoted by λ x , . . . , λ p and
/lfG(C\(-oo,0] for i = l, ...,p. Now let

i= Σ Oogμ,)}2,

then the following holds:

(1) 7/Re/>0 then lim <σα(M)> = + oo .

(2) J / R e J < 0 then ίim <σα(M)> = 0.

(3) If 1 = 0 then ίim <σα(M)> = 1.

(4) // Re/ = 0, Im/ + 0 then lim <σfl(M)> does not exist.

3.3.2 Remark. The imaginary part of / determines the direction of rotation of the
outward or inward spiral occurring in cases (1) and (2) and the direction of rotation
in case (4). This will be explained further in the proof.
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Proof. From Remark 3.2.1

log<σq(M)>= £ J (μt-μr1) £ (/*i + 42"+1Γ1(μ ί + <Γ 2 ' I - 1 Γ 1 ^ i ,
ί = l Cλi « = 0

p oo
= Σ ί Σ Zq,μt(n)dμi, in the notation of Proposition 3.2.3

t = l Cλi n = 0

Σ (Z 4 , » + Z β ,> + 1))- ΐ Zί>
^ 0 0 JJ

ΐ
0

However from Lemma 3.2.3 and the bounds contained in Lemmas 3.2.6 and 3.2.7
dominated convergence applies to the last term above giving,

lim f [ i £ (Z,.Λ(n)+Z,>/H(fi + l ) ) - f Zβ i W(x)dχ]<ίμ f=0,

for all f = l, ...,p. Hence

limlog<<τβ(M)>= Σ lim \ f - ^ + f Z,,μi(x)rfx dμΛ.

The behaviour of the two terms inside the sum as q] 1 will now be considered
separately. Firstly,

Therefore

j J % J = lim j J -Jb=μl-dμ

by dominated convergence,

Secondly,

I J
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using

zr
- 1

z(z-z^){(i+zr-1) (1+z-V-1)]'

cM

logA; (logA,)2 _ _ 1

cλ. 2μt

log

log

1+M

and

lim f
1

, 2μ, logg

1

= log(l+A f)-log2.

Combining the information contained above

- Σ

= lim

But / is some complex number Re/ + i Im/. So if / Φ 0 the logg term will dominate
and the behaviour is as follows:

(1) Re/>0; Im/>0: "limlog<σΛ(M)> = oo + ooΓ. That is <σα(M)> spirals out-
« t i

wards in an anticlockwise direction as s | l .

(2) Re/>0; Im/<0: "limlog<σα(M)> = oo-ooΓ. That is <σα(M)> spirals out-

wards in a clockwise direction as s | l .

(3) Re/<0; Im/>0: "limlog<σα(M)> =-oo-f ooΓ. That is <σα(M)> spirals

inwards to zero in an anticlockwise direction as sjl.

(4) Re/<0; Im/<0: "limlog<σα(M)>=-oo-ooΓ. That is <σα(M)> spirals

inwards to zero in a clockwise direction as s | l .



336 N. A. Watling

(5) Im/=O so / = ReJ and "limlog<σα(M)> = sgn(J)oo". That is if 7>0 then

lim <σα(M)> = oo and if J < 0 then lim <σα(M)> = 0.
sU sίl

(6) Re/ = 0 so I = lmli and "limlog<σfl(M)> = sgn(Im/)ooΓ. That is if Im/>0

then <σα(M)> rotates anticlockwise around the unit circle and if Im/<0 then
<σα(M)> rotates clockwise around the unit circle, so in either case the limit does not
exist.

Hence the interesting case occurs when 7=0 and it is a consequence of the
above that,

limlog<<7fl(M)>=0.
sίl

Therefore lim <σα(M)> = 1.

Theorem 3.3.1 gives a classification of the critical limit of one point correla-
tions, which will be investigated more thoroughly in the next section. But first

some remarks on the negative eigenvalue situation.

3.3.3 Remark. Firstly the special case when the eigenvalue is —1. From
Proposition 3.1.1,

This is the square of the spontaneous magnetization for the Ising model, thus its
critical temperature behaviour is already known, see [12, 13, 26, and 11,
Chapter X] together with [2, 23, 25] for example, namely

Consequently, in some cases, the value — 1 could be added as a permissible value
for an eigenvalue with its treatment being separate from the others. That is,
suppose the eigenvalues of M are λl9..., λp-1 and — 1 with the reduced matrix M
having eigenvalues λu ...,λp-v If M' satisfies Theorem 3.3.1 cases (2) or (3) then

lim<σα(M)> = 0.
sίl

If however M' satisfies case (1) then the limit is not clear. This is due to the fact that
Lemmas 3.2.6 and 3.2.7 fail if λ— — 1. Consequently Proposition 3.2.3 fails and this
plays a crucial role in the convergence argument.

However, having said this, the function I(z) = (logz)2, where z e (C\( — oo, 0] can
be continuously extended to include the point z= — 1 by defining I( — 1)= — π2.
This suggests that the value — 1 could be added as a permissable value using a
continuity argument on the eigenvalues. That is, something like,

limlog<σα(M[λ1, ...,λp, -1])>= lim lim log<σβ(M[λ1, . . . , ^
sίl sίl λ-^-1

λe<C\(-oo,0]

-\ί
= lim lim —

λi
ΛeC\(-oo,0]

: OogA, ) 2 - π :

i
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Unfortunately, going from step (2) to step (3) in the above is not clear.
For λ negative with λΦ — 1, defining the sequence

Γsgn(l
ρ i = = e x p Γ 2 J

or equivalently

[^^(-λ)], forneN,

ίB e (0,1) for all n, lim qn = 1 but for each qn<.σa(λ)}Q(qn) = 0. This suggests that for
n —• o o

matrices with such eigenvalues the limit as s j l is zero if any such limit actually
exists.

4. An Example of a Non-Trivial Limiting One Point Correlation

4.1 Introduction. The previous section gave a condition for a matrix with non-
negative eigenvalues to have a monodromy field which has non-degenerate, not
zero or infinity, critical limit correlation. However, as yet, the existence of any non-
trivial matrix which actually satisfies this condition has not been shown. It is this
matter which is considered in this section.

4.1.1 Notation. Let <C£ denote the permissible values of λl9 ...9λp9 that is,

CS = {(A1,...,λp)ee:λ46C\(-oo,0],Vi=l,...,p},

and define the map /:C£-*C by

I(λl9...9λp)=Σχ<\ogλd2.

Then the object of interest is the set of points in C£ with I(λ x,..., λp) = 0 which will
be denoted by <gp.

4.2 Investigation of Wp /or p = 1,2.

4.2.1 Proposition.

Proof. (1): J(l,...,l) = 0 is obvious. This is equivalent to M being the identity
matrix and is the "trivial" situation referred to above.

(2):

4.2.2 Remark. This proposition may appear a bit discouraging as it says, for the
scalar case (p = l), there exist no non-identity complex numbers λe<C\(— oo,0]
which have a critical limit correlation lim
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However the reason for this is the "lack of freedom" in the scalar case which will
now be explained. From the proof of Proposition 4.2.1 to get I(λ) zero the
imaginary part of λ must be zero, thus I(λ) is now only determined by the real part
of λ and this one variable dependence is not sufficient to get a non-trivial solution.
That is one variable does not provide sufficient "freedom" for a non-trivial solution
to exist. However for the larger dimensional cases (p^2) there are more variables
present and hence more "freedom", so a non-trivial solution is possible. It is this
that will now be shown by considering the simplest case p = 2.

4.2.3 Proposition.

<g2 = {(ea+w,e±{0-ia)): where α,0e(-π,π)}.

Proof. By definition, for (λuλ2)e(V2

9

So

\ogλί = ±ilogλ2.

That is, if λί = ea+iθ, where α e R and 0e(-π,π) then

logλ 2 =+(0-iα),

and hence,

However, since log is the principal value the imaginary part only takes values in
the interval (— π, π). Hence α also has to be restricted to this interval for such a λ2 to
exist. The result now follows from the above.

4.2.4 Remark. Proposition 4.2.3 demonstrates the existence of non-trivial 2x2
matrices M which possess a critical limit one point correlation.

4.2.5 Corollary. // M is a 2x2 matrix with eigenvalues λ1 and λ2, where for i = 1
and!, ^e<C\(-oo,0], and

lim<σα(M)> = l ,
β ί i

then

Proof Follows from definition of (€1.

4.2.6 Remark. With reference to the comments in Remark 3.3.3, the value — 1
taken as the eigenvalue λx would correspond to α = 0, 0 = 0', where 0'-* + π.
Consequently there would be a corresponding λ2 = eθ', where 0'->±π, such that
(λl9λ2)e^2. This suggests that the points (-l,e ± π ) and (e±π

f -1) could be added
to the set ^ 2 given in Proposition 4.2.3.

Note that the plus or minus option in the exponential both here and in the
description of ^ 2 is not surprising as <σα(M)> is invariant under the transfor-
mation λi-tλ'1, where λ is one of the eigenvalues of M.
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4.3 Investigation of ^p

4.3.1 Remark. The condition / can be simplified somewhat as follows. Suppose
λj=Xj + iyj for j = 1, ...,p where x^elR and y^{ — π,π). Then / becomes

J=l j = l j = l

So 1 = 0 if and only if,

(1) Σ(*?-)#=o,

(2) . 1 ( ^ = 0.

Now introduce the points x = (x l5..., xp) and 3; = {yu ..., yp) of Rp. Then / = 0 if
and only if,

(a) llίlLHhΊU*
(b) x*y = 0, where denotes the scalar or "dot" product.

This last set of conditions has a nice geometrical interpretation. If you choose a
vector y in R p then the vector x needs to be of the same magnitude lying in the
(p — l)-dimensional subspace which is the hyperplane perpendicular to y.

Since yt = Im{log/Lj, yt e (— π, π) and consequently the vector y is contained in
the open subset of R p given by,

Bp = {(rl9 . . . ,r J 7 ):-π<r i <πfor i = l,...,p}.

This imposes a restriction on the magnitude of the vector x and hence on the
magnitude of the eigenvalues of M as will be shown next.

4.3.2 Lemma. Suppose x e R p and yeBp and they satisfy the conditions (a) and (b)
given above with p ̂  2. T/zen

\Xi\<π]/p — l, for all i = l, ...,p.

Proof. Assume, without loss of generality, that ypή=0 then condition (b) gives,
p - l

- Σ Wi
i l

Substituting this in (a) and writing as a quadratic in xx gives,

yP

i = 2 ί=ί

Thus

,\/{ή+vl) ( f "ϊ ?)χιyt±y,\/{ή+vl) ( Σ yf- ϊ *?) - [Σ
^ \i=l ί = 2 / \i =
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But xί is real, so

(yl+yl)(fΣ yf- %) [ J
Now, without loss of generality, consider x2. This is a maximum in the above
inequality when x3 = . . . = xp_i =0 in which case, after rearrangement

(yi+y2

P) Σ yfyP) Σ

Σ yf

That is |x2| <κ]/p — l The symmetry present implies that the inequality holds for
all xt.

4.3.3 Remark. Note that the result above is the best possible inequality of its type.
Taking, for example, x1=(π—ε)]/p — 1, x2

 = ... = xp = 0 and y!=0, j ; 2 = . . . = ) ; p

= π — ε demonstrates that the xt and y{ may be chosen so that the magnitude of the
x£ can be arbitrarily close to πγp—1.

4.3A Corollary. Suppose M is a pxp matrix with eigenvalues λ ί 9 . . . 9 λ p 9 where
^ ( C \ ( — oo,0] for i = l, ...,p, ίften ι/ ίfier^ exists α A, SMC/I ί/iαί

lim<σα(M)> + l .
β ί i

Froo/. Suppose lim <σα(M)> = l then, by the main result of Sect. 3, 7 = 0.

But from Lemma 4.3.2 if 7 = 0 then

Now λi = e*i+iyi

9 so 1̂ 1 = ̂ , consequently if 7 = 0,

e-*VP=\<\χjί<e*Vp=i9 Vi = l p.

This gives the result.

4.3.5 Remark. By considering Corollary 4.3.4 the following can be seen. Suppose
any λt is outside the shaded annulus in the diagram below.

4.3.6 Remark. The structure of %!p is not clear for p>2, however the following
properties can be seen fairly easily:

(1) { I J Ξ
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NOT TO SCALE

is the map which takes

Fig. 2

where the inclusion

This is equivalent to embedding the kxk matrix corresponding to the element
of ^k in a (fc+1) x (fc +1) matrix by adding a 1 on the diagonal.

Hence <gp ζ {(1,..., 1)} for all p ̂  2, that is, for p ̂  2 there exist non-trivial pxp
matrices Mp whose monodromy one point correlation <σα(Mp)> has a critical
limit. In fact the geometrical interpretation given earlier indicates that the
inclusion given above is strict.

(2) rxrc^" + m ,

where the inclusion %>n x cβm-^c€nJtm is the map which takes

The map at this level is equivalent to placing the nxn mateix and the mxm
matrix down the diagonal to form an (n + m) x (n + m) matrix. Note that the map
given in (1) is a special case of this map when n = k and m = 1.

(3) If

and

then ^ 0 ( 7 ^ / 0 = {(1, ...,1)}.

(4) Ifforj = l,...,p withp^2

Ij={(λl9...9λp)eC&:λ{eC^nR, iΦj

t h e n ^ p n (J 7̂  = 0.

A simple analysis of the function / allows the last two comments to be
generalized slightly, as follows:
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(5) By considering the imaginary part of/ the following can be seen. Suppose λb is
contained in either of the shaded regions in the diagram below for all i = l, ...,p.
Then the imaginary part of / is a sum of all positive or all negative terms and
consequently cannot be zero.

Fig. 3

(6) By considering the real part of/ the following can be seen. Suppose λt is either
contained in, or outside of, the shaded region in the diagram below for all
i = 1,..., p. Then the real part of / is a sum of all positive or all negative terms and
consequently cannot be zero.

NOT TO SCALE.

Fig. 4
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Section 5. TV Point Correlations

5.1 Introduction. The two previous sections dealt with one point correlations and
their critical limits. This section will consider higher order correlations. Unfortu-
nately, as yet, there are no concrete results concerning critical limits only a
conjecture. The starting point for this analysis is the "product formula," see
[16,15], which is stated below for reference.

5.1.1 Theorem. Suppose that gkeGLQ(H) for k = l,...,N with

T{gk) = Gk=\ak bk]eGLQ(H).
Lck akJ

Suppose also that dk is invertible for each fe=l,...,iV. Then

= Π <g k >det 2 ( l+LK),
k ι

provided <gi.. gjv) + O, where:
L denotes the NxN block matrix with entries for i<k,

for i>k,

and for i = k

and R = R1φR2φ...φRN, where

dϊxck 0 J
5.2 Conjecture for Limiting N Point Correlations. The "product formula" given in
Theorem 5.1.1 gives rise to the following two Corollaries when applied to the
specific case of monodromy fields.

5.2.1 Corollary. Suppose M ;eGL(p,(C) and has no negative eigenvalues for
j = l,...,n. Then

<σ β ι (M0.. . σαn(Mw)> = J J <*(Mfc)> det 2(l + LR),

where L and R have the structure defined above with

-fc S
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Proof. By definition T(σa(M)) = sa(M). The condition on the eigenvalues of Mj
implies that dj is invertible for all jf = 1,..., n. Hence Theorem 5.1.1 gives the above
as

<σ(M)> = <σΛ(M)>, VαeZ2.

522 Notation. Let the expression (1+LR) present in Corollary 5.2.1 be denoted
by

X(Mu...,Mn:aί,...,an),

and let

X(Mι,...,Mn) = X(Mu...,Mn:a,...,a).

5.2.3 Corollary. Suppose M^eGL(p,(ϋ) and has no negative eigenvalues for
j = l,...,n. Then

<σβl(M J. . . σαn(MJ> = (σ(Mί... M J )
det2X(M1 ?...,MJ

Proo/ Apply the product formula to

This together with Corollary 5.2.1 gives the result.

5.2.4 Conjecture.

If lim <σ(M1...AίII)> exists then lim <σβl(M1)...σβn(Mll)> exists.

52.5 Remark. To prove this conjecture the existence of a limit for the determinant
expression is required. This appears intractable at the present since sa(M)
φ GLQc(Hp\ where Qc denotes the critical temperature Q, that is Qc= lim Q. Note

the conjecture is trivially true when ai =... = an as expressions are equal.
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