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Abstract. This is the continuation of a series of articles concerning a class of
quantum spin systems with Hamiltonian operators of the form

xeΛ

where Λ is a graph, A is a small parameter and sx has a gap ^ 1 for all xeΛ\Sf.
In the singular set ίf a Λ, the gap of sx can be arbitrarily small. Part III is devoted
to the proof of a preliminary result, while in Part IV we consider the case in which
Sf is a subset of finite density of A. This completes the first iteration step of the
deterministic part of the proof of localization in the ground state of the random
field quantum XY model.
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Part III. A New Representation with the Ground State of Compact Support

7. Introduction, Notations and Results

In this part, I consider the same model studied in Part II of [1], but we make two
additional hypotheses. The Hamiltonian operator is

xeΛ y0

 c ^

where the operators sx have a gap ^ 1 between the ground state and the first
excited state for all xeA\£f. However, as in Part II, such gap could be smaller for
xeSP. Here, we introduce the following new assumptions:

Additional Hypotheses:
(i) There is a finite gap 2g > 0 among the ground state and the first excited

state of (7.1).

(ii) The size \dSfH\ of the set

d?n = {XEΛ such that (n - 1) ̂  φc, Sf) S n) (7.2)

grows at most exponentially fast in n, i.e. there is a constant c0 such that

\d?.\Z<*0\<?\. (7.3)
for all n = 1,2,....

In Part II, I consider the unitary dressing transformation U0{λ) computed for
the regularized Hamiltonian

'χ+ΣQ- V ) + Σ ttyoU~ίίyo (7-4)
xey yocΛ

with the method indicated in Part I. By applying such transformation to the original
Hamiltonian (7.1), one finds the self adjoint operator

S + V(λ) + W(λ) = U(λy ιHyυ{λ) - £ r

o

e g(4 (7.5)

where £oegU) is the ground state energy of iί^eg. Let Eo be the ground state energy
of the dressed Hamiltonian (7.3). If

« = Σ«yτy |0> (7.6)
y

is an eigenstate of S-f V(λ)+ W(λ) with energy < £ 0 + h &en thanks to Corollary
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4.2, we have

Σ u2yMcoλ)k (7.7)
d k

for all λ < c and k = 1,2,..., where n0 is an integer to be fixed in Sect. 8 and whose
order of magnitude is

l o g c l ^ l
( 7 8 )

Let n be an integer > n0 and let u0 be the ground state of the operator

§(λ) = S + ^ ( λ ) + W>B(A) - £ 0 * W> (7.9)

where EOn(λ) is the ground state energy of S + Ϊ^(A) + W ŵ(λ). Clearly, u 0 has no
excitations outside £fn. The aim of this Part of the" paper is" to construct a unitary
dressing transformation that solves perturbatively the ground state problem for
S + V(λ) + W(λ\ by starting from u0. More precisely, if we set

v(λ) = vdyn(λ) + v^μ) + ^ ( λ ) , (7.10)

our aim is to compute a skew symmetric operator R(λ), analytic for λ^c, such that

e-«iλ)(S(λ) + V(λ))emu0 = £ o μ)ιι o . (7.11)

For fixed λ ^ c, R(λ) is constructed as the value at β = A1/4 of an operator-valued
function expressed by a convergent power expansion

Rλ{β) is such that

e-«λ(β\S(λ) + V(βλ3f4))eRλ(β)u0 = E(β)u0 (7.13)

for all j?e[O,Λ.1/4]. In the following, the subscript λ of Rλ(β) is omitted.
The operators R3 have the form

Λ/= Σ _ 0Λ> (7 1 4 )

where τy is the operator

h^ Π TxMx)T'xaMxo)Thr (7.15)
xe(5(y)\x0)

Here, x 0 is any point of s(γ). TX!X and Txa are operators acting only on the spin
in the site x and are defined as follows:

Tx,a = |α>XJC<0| + |0>JCJC<α|, (7.16)

T'x,a = |α> x x <0| - |0> x x <α|, (7.17)

where \a)x is an excited eigenstate of Sx. TjtV acts on the spins inside Pn and is an
operator of the form

T = | α )<w | + |M )<α I, (7.18)

where the minus sign has to be taken in case s(y) — 0 ; otherwise, the plus sign is
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there. |α/,v> can be either equal to |uo>, or it is a state of L2-norm with excitations
only inside ^ and orthogonal to |MO>.

Let us remark that the operators presently defined are skewsymmetric, so that
eR is a unitary operator. Unlike the τ operators used in Part I, the operators (7.15)
are strongly noncommutative. However, this is not a shortcoming here. In fact,
since the problems is of local character, no cluster expansion is needed and the
convergence of the perturbative expansion can be controlled by means of a global
norm.

The following is the main result of this Part:

Theorem 7.1. Under the hypothesis above, if λ<c and

^ ( \ogc\Se\ \\ogcg\\
n ^ n o + max c- — , c - , 7.19

\ |logcA| |logcλ|/

then there is one and only_one operator R(λ) of the form (7.12) which solves the
conjugacy problem (7.13). R(λ) admits a convergent expansion

(7.20)

with

00

where | |* | | 2 , i is the norm for which

| 0 ^ , » = Σ WΦyh, (7-22)
2,1 s(y)c:~yπ

w/iere φyeJif(&n).

In the rest of this section, the strategy for the proof of Theorem 7.1 is described,
while the details are deferred to the next sections.

Let us introduce the operators Vk(λ) such that

V(βλ3/4)= £ Vk(λ)βk. (7.23)

The operators Rj are uniquely determined by the requirements of having the form
(7.12) and of solving the following recurrence relations that are obtained by
expanding in powers of β both the members of (7.13):

Rj\uΌ>= -/ToS

+ Σ Σ ^[-[Mj-JUJKX (7.24)
1 1 i + + i j l K J

where

and P]UQ> is the orthogonal projection along |t/0>.
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In order to control the expansion generated by the identities (7.24), we use the
numerical sequence

SRn\u0)
2,1

Here

(7.26)

(7.27)

and Π-1/2 (respectively 77 > 1 / 2 ) is the orthogonal projection onto the eigenspace
of S with energy ^ % (respectively ^ j).

In Sect. 10, we derive recurrence inequalities for the sequence (7.26) that permit,
in Sect. 11, to conclude the proof of Theorem 7.1. To find such estimates, one has
to treat separately low energy and high energy excitations, i.e. one has to control
with different arguments the couplings with the states in Π-1/2J^(Λ) and those
with the states in /7> 1 / 2Jf(Λ). In fact, the perturbation V has a relative bound
with respect to <S that is of order A, while in typical applications we have g « λ.
However, since V is able to induce with large amplitude only excitations far away
from 9, it can hardly induce transitions from the ground state to an eigenstate of
low energy. In fact, such states are essentially different from the ground state only
near 9, and they approach it exponentially fast away from 9. Hence, in the
perturbation expansion, small divisors like g " x appear multiplied by factors that
are exponentially small in the distance (n — n0) between δ9n and 9no. On the other
hand, the transitions to states of high energy occur with amplitude of order A, that
is much smaller than the energy gap that for such states is > 1.

To turn such intuitive arguments into a rigorous proof, one has to establish
three sorts of bounds. First, one needs to prove that if n satisfies a bound of the
form (7.19), then the operator S has a gap g, 2g being the gap we assumed S + V + W
to have. Second, one has to bound in L2 and in L 2 1 operator norm the operator
VΠ<1/2 that contains the couplings with low energy excitations. Third, one has
to find a relative boundedness estimate for V with respect to S, that permits to
control high energy excitations. The first two tasks require similar techniques and
they are accomplished in Sect. 8, while Sect. 9 contains the relative boundedness
result that is needed in Sect. 10.

8. Effective Coupling of Low Energy Excitations

This section has three goals. First, I fix the integer n0 in (7.7). Second, I prove that
if S + V + W has gap 2g and n is large enough, then S has a gap ^ g. Finally, two
relative boundedness estimates for Vι with respect to S are proven, one in L2 norm
and one in L2Λ norm.

The methods in Part II apply also to the operator

S(λ)+V(βλ*>*) (8.1)

for jSe[O,/l1/4] and they permit one to conclude that any eigenfunction of (8.1)
with energy less than the ground state energy E(β) plus 1/2 fulfill the decay estimate

l/2

) 1/2)k (8.2)
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for some

logcl^l
( 8 3 )

where none of the constants here depend on /?, as far as βe[0, Λ1/4]. Let us fix n0

as the minimum integer for which (8.2) holds. We have

Lemma 8.1. Under the hypothesis of Theorem 7.1, the following is true:
(i) Ifg(β) is the gap between the ground state and the first excited state of (8.1), then

(8.4)

for all j3e[<U1 / 4]
(ii) We have

for all integers I ̂  1.
(iii) We have

(8.5)

^hSM1^-"* (8.6)

for all integers /^ 1.

Proof (i) Let E0(β) and Ex(β) be the ground state energy and the first excited
level of the operator (8.1), respectively. Let uo(β) and u^β) be the corresponding
eigenstates. E0{β) and Ex{β) are continuous functions and they are analytic in the
interval [0,/l1/4], except for β belonging to a discrete set (see [4]), corresponding
to those values for which there is an intersection of levels. In the points of analyticity,
we have

j-βE0{β) = <uo(/?)| V'(β,λ)\uo(β)\ (8.7)

where

V'(β,λ) = ~V(βλ314) = Σ VAWι (8-8)

The methods used to prove Theorem 1.2 (ii) and Lemma 5.2 lead to the bound

|<u|^(/U)|«>|g<«|S!&,+S.^J«>, (8.9)

valid for all ueJV(Λ). We have
00

\u(β)ys Σ Σ K(/O
fe1

(8.10)

ύ Σ *M Σ K
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Moreover, we have

243

d(x,dSSn)=j

Hence, we have

S Σ (coλ)ill2)in-no+1)\s\^(cλ)ill3){n-no\

dEo(β) ^iΛ

dβ

Since the bound (8.2) holds also for ux(β), we have

dE,{β)

dβ
[n - no)

(8.11)

(8.12)

(8.13)

in all points of analyticity. Since the points of nonanalyticity form at most a discrete
set, (8.4) follows by integration of the differential inequality

dg(β)
(8.14)

dβ

that is true almost everywhere. Q.E.D.

(ii) The range of the projection 77< 1 / 2, is the space generated by the wave-
functions of the form

where |w> is an eigenstate of Sp + V& + Wp with energy <Eon + j . Due to
Theorem 4.1 and our choice of no,"such eigenstates satisfy the bound (8.2). Being
a bound in L2-norm, it must be valid for all wavefunctions in the range of Π<1/2.
Hence, it suffices to prove that

for all states \u)eJf(&n) satisfying (8.2).
Following the same procedure used in the proof of Lemma 6.3, we can

decompose Vι as follows:

Vι — Σ vι(yo)= Σac* vι(yoX (8.17)

where ty(y0) is an operator with support y0 and adι;z(y0) is the operator such that

a d vι(yo) I ? > = ad ϋ/ίyo^y 10 > = [vfyo), τ y] 10 > (8.18)

for all excitations | γ >. Let us also introduce the operators

UVo)= Σ F1advl(y'0)F2 (8.19)

for all γocz^n9 where Fx and F 2 are defined as in (6.25) and (6.26). Due to the
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bounds in Sect. 2, for all xe9?

n we have

Σ ii

Hence, we have

(8.20)

(8.21)

where the last bound can be proven as Theorem 1.2 (iv). Due to (8.11), we have
(8.5). Q.E.D.

(iii) This bound follows from the estimate

KulV^uyi^iulS'^ + S^Ju)

holding for all ueJf{Λ) and from (8.10), (8.11). Q.E.D.

(8.22)

9. A Relative Boundedness Result

This section contains the proof of the following relative boundedness result that
permits to control high energy excitations in the perturbative expansions considered
in this part of the paper:

Lemma 9.1. Under the hypothesis of Theorem 7.1, we have

Proof. It suffices to prove that for all weJ f (Λ) we have

\\VjU\\2ΛS\\Su\\2Λ.

Let us expand u as follows

with φyeJf(^n). We have

In fact

s(y)c=~^ " 2,1

(9.1)

(9.2)

(9.3)

(9.4)

2,1

2,1

s{y)Φ0

(9.5)
2,1
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Moreover, we have

S Σ _ φy®τy\0^n)

Hence

and it suffices to prove that

for all u.
We have

and

>ll2.1^ Σ

^112,1= Σ

245

Iki

(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

Hence, it suffices to show that for all functions φeJf(£fn) and all excitations γ with
support in ~ Pn, we have

(9.11)

Let Aj be the annular region

Aj = {x:d(x,dyj£j-l}. (9.12)

The operator Vj is given by a sum of clusters of operators v{y0) with support
y0 c Aj, i.e.

V,= Σ »y(yo) (9-13)

Since Kj|0> =0, we can express Vj in the following alternative way:

Vj= Σ adt /yo),

where ad Vj(γ0) is the operator acting as follows:

ad^(ro)l/> = adt; j(ro)τ/ |0> ^ [^(yo),

We have

\\Vjφ®τy\0^n}\\2Λ= Σ
γons(γ)Φ 0

The first term in (9.16) is

ί(coλ)\s(y)\\\φ\\2ί(coλ)ε(y)\\φ\\2.

(9.14)

(9.15)

\\advJ(γ0)φ®τy\0^tι)\\2Λ. (9.16)

(9.17)
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The second term can be bounded by using the operators

vj(7o)= Σ Fi^Vj(γo)F2 (9.18)

with y0 c <?n and F1 and F2 defined as in (6.25), (6.26). Due to the estimates in
Sect. 2, we have

sup Σ I I W I L ^ l (9.19)

for λ^c. With this definition of ϋj(γ0) and thanks to (9.17), it suffices to prove that

Σ \\ϋj(yo)Φ\\2£\\(i + ±SyΛ)φ\\2. (9.20)

By proceeding exactly as in the proof of Theorem 1.2 (iii), one can see that

Σ Wϋj(yo)Φ\\2^τ\\SAjΦ\\2' (9.21)

Hence, we are reduced to prove the following bound:

II C1 Λ*. II ^ 11/1 i 1 C \ M. II (C\ Λ Λ \

W^AjΦ II 2 = II U •+• Σδg, )ψ II 2 (y.ZZ)

This bound follows from the positivity of the operator

( l + 2 5 ^ ) 2 - S ^ (9.23)

and the following I prove that the ground state energy for such operator is positive.
Let us remark that it is possible to assume that

(9.24)

where [•] denotes the integer part. In fact, if

6rn\ < i (9.25)

one can simply use a bound in L2)1-operator norm on Vj to control (9.1). Due to
the hypothesis we make that the growth of \dSn\ as nf oo is exponentially bounded,
the condition (9.25) can be expressed in the form

(9.26)

and thus we can assume it to be fulfilled.
Let us suppose that (9.23) holds and let

(9.27)
L L J

Let us decompose S& as follows:

SPn = S^ + SdpΛi + S?m\?m%9 (9.28)

where

S- =S- +V- +W- — 5in- — E (9.29)

? _ — ς ; _ 4 _ ι / _ _ j _ w _ (Q ̂ m
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and

We have

^ ^ J ^ , S^J, (9.32)

where {•,•} denotes the anticommutator.
We have S^ ^ 0 by definition and S| π ^ 0 , Sf^^O by selfadjointness.

Also, the following operator is positive:

(9.33)

In fact, for λ = 0 this operator has a nondegenerate ground state in Jtf(P,\Pn^,
namely \®&n\yn > with eigenvalue 0. The ground state energy is separated from the
fixed excited level by a gap = 3, for λ = 0. For λ > 0, the second and the third term
in (9.31) do not vanish, but | 0 ^ χ ^ > is still an eigenfunction with eigenvalue 0.
Thanks to Theorem 1.2 (iv), we have

k\*J n^J n^n\uy. (9.34)
In a similar way, one can prove that

nJu>. (9.35)

Hence, the ground state energy of (9.31) is 0 and it is separated by a gap equal to
3 — 0 (13/4) from the rest of the spectrum.

Due to Theorem 4.3, we have

infspec(S>J ^ - M ) 1 + ( 1 / 2 ) Π 2 (9-36)

Hence, we have

4{S> ,SP.P }^4infspec(5^ ) ^ - 4 ( c o λ ) 1 + ( 1 / 2 ) Π 2 . (9.37)

For the second anticommutator in (9.30), we have

The second, third and fourth term have a relative bound of order (c0λ)i/2 with
respect to the first term. Moreover, the last term has an L2-operator norm

which is smaller than (c0λ)1/2 for a suitable choice of the constants in (7.19). Hence,
we have

Λ (9.39)
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Finally, to control the last term in (9.30), let us split §& as follows:

^ = ( ^ + v?«. + w^ ~ S*K - £oJ + (s^ + v^o + w&j

+ (S W + V°"K - *&J - 5^ + S^m + S^nΰ, (9.40)
where 1̂  introduce self explanatory notations. Since, up to exponentially small
terms, S& + Sd& and Sd& have disconnected supports, we have

no no Π2
no no

**-"0 + infspecif + S&J

+ i n f s p e c ( S ^ ) ^ -(c 0 λ) a / 2 ) n 2 - n o -(c 0 λY 1 / 2 ) n o + 1 . (9.41)

Moreover, the bound

{S^no,SdyJ^-(c0λ)V2

 (6.42)

can be derived as (9.37).

The bounds (9.35), (9.37), (9.39) and (9.40), and the positivity of the other terms
in (9.30), permit to conclude that

(1 + 2Syf -S2

Aj^l- (cλ)112 ^ 0. (6.43)

This completes the proof of Lemma 9.1. Q.E.D.

10. Recurrence Inequalities

In this section I prove a set of inequalities for the sequence

rf = \\SRj\u0y\\2Λ. (10.1)

Let us recall that the operators Rj have the form (7.14) and that they are uniquely
determined by the following recurrence relations:

R 1 | t t o > = - ^ o S - 1 K 1 | ι ι o > , (10.2)

+ Σ Σ l;l-ίhRiJ-Rij}\uo>
Z = l i i + + ik = j - z K ! J

l } (10.3)
Z = l i i + + ik = j - z K ! J

for all; > 1.

Notations. Let us introduce some notations to be used here and in the following
section. Let

Γ*(J8)~ Σηβ*. (10.4)
7 = 1

Until the convergence of the series (10.4) is established, we have to treat r*(/?) as
a formal power series. If

f(β)~ΣfjβJ (10.5)
7 = 1
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is any formal power series, let us denote with {f(β)}j the coefficient /,. Let F(β)
be the function

F(/0 = e* '- l-4 j8. (10.6)

Lemma 10.1. We have

F^g~HcoΨl2)in~no) (10.7)

and

fj S {(1 + 80- W Γ ' 3 * " " " ^ ! -β)-ir*{β) + g'1(l - β)~xF(r*(β))}j. (10.8)

Proof. Thanks to Lemma 8.1 (ii), we have

F* = WSR^Uo)^ = | | 5 S - 1 K 1 | W o > | | 2 , 1 ^ ^ - 1 ( c o ^ ) ( 1 / 3 ) ( π " Π o ) (10.9)

so that (10.7) is verified.
In order to establish (10.8), it is necessary to consider separately the terms in

(10.3) containing one and more than one commutators. We have

i70Λ j_ ίK ί |M0>t|2,1, (10.10)

uoyh^ (io.li)

l"o>ll2.i ( 1 0 1 2 )

Equation (10.10) is bounded from above by

\\sS'1π0\\2tjπ0R^Λ2,M\^>\\2Λ' ( 1 0 1 3 )
We have

/ |w 0 >| | 2 > 1 =4rjL / , (10.14)
where I used again (9.5). Hence,

(10.10) g4flf-1M) ( 1 / 3 ) ("""0 ) 'Γ*-ι. (10.15)
For the second term, we have

(10.11)^ | |^S r- 1/T^ 1 / 2 | | 2, 1 | |K^°- 1 | l 2,il l^-ι |wo>li2,i ^^T-/ (10.16)

Finally, we have

'Io)>7-*, (10.17)

where I used Lemma (8.1), (ii) and the following estimate deriving from the self
adjointness of £y.

\\Π<X'2VΛ2Λ= sup

= sup | |/7 < 1 / 2 V I | i ι> | | 2 ^ sup
I l« l l2 , i = i I l« l l2 = i

— II ΓT<ιf2V II — \\(ΓT<1/2V \* II — II V ΓT< χ/2 II < ί r
— 11-*-* v ι \ \ 2 — IK-*-* y ι ) Il2 — W ' I 1 1 \\2 = \c

(10.18)
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Finally, let us pass to the terms containing more than one commutator. We have

Σ Γ Γ C D ~~\ D ~~\1 * * * I J3 /*••• I * * * lVf I

Σ Σ
2,1

Σ
ί = l ii ,

(10.19)

We have

\\SRίt^-Rik\u0y\\2Λ

Σ
- ,i(yjt+

Σ
...Myk)

Σ l^+,v1+,l-l' :

ί l<rJ2^ί"1lls\+I|«o>ll2,1 IISτ?J«o>ll2,1

(10.20)

Similarly, we can find

(10.21)

Moreover, we have

Il«ι l l2. i= Σ | r l y ι ι ι τ l f ? ι ι 2 g 2 Σ

= 2 X | r ( y | | | τ , | « 0 > | | 2 i l

(10.22)

Hence, we have

J. Q.E.D. (10.23)
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11. Convergence of the Perturbative Expansion

In this section, I prove that if ff is a series of positive numbers such that the
bounds in Lemma 10.1 hold, i.e.

no) (li.i)

and

η S {(1 + Sg'HcoXf^'^W - β)-χr*(β) + 0~'0 - β)-ιF{r*(β))}j9 (11.2)

and if

then the power series expansion

f*(β) = ΣffβJ (11.4)
7 = 1

converges for

O^β^i (Π.5)

and

f*tf)g(c0/l) ( 1 / 4 ) ( r t-/ ι o ). (11.6)

This concludes the proof of Theorem 7.1.
It is easy to argue that the series (11.4) converges for some β > 0. In fact, let

a(β) be the function implicitly defined as the solution to the following equation:

a(β) = g~ W

(11.7)

Due to the implicit function theorem, a(β) is analytic in a neighborhood of β = 0.
Moreover, the coefficients of the power series expansion

for α(j8) are all positive and such that

fjύaj. (11.9)

Hence, also the series (11.4) converges for β small.
Let β0 be the maximum positive number such that the series (11.4) converges and

r*(β) £ minQ, ^gΛco

Our aim is to show that

βo^i (11.11)

Let us remark that, if 0 g x ̂  ^, we have

F(x) = e*x-4x-l^ 20x2. (11.12)
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Hence, if j?e[0,min(/?o, 1/4)], we have

r*(β) ^ g-1(coλyi'3*--''o)β + (1 + 8#- 1(co^)(1/3>(''"' lo))i5(l - β)~ιf*{β)

+ i ( l - βΓιf*(β) Ϊ £ i g ~ H c o λ ) { i m n - n o ) + (i + 8 < Γ ' ( c o λ y i w - ^ i β )

(11.13)
that gives the bound

f*(β) g ig- '(co/i

Since this bound is 1/2 of the bound in (11.10) used to define β0, we see that βQ

must be larger than 1/4 because, otherwise, it could not be maximal. Q.E.D.

Part IV. The Ground State Problem in the Presence of a Finite Density
of Singular Sites

12. Introduction, Notations and Results

Let A be a large connected graph and let us consider a quantum spin system on
A with Hamiltonian operator

Σ Σ \o
where the notations are as in Part I. The operators sx are assumed to have a
gap ^ 1 for xeA\£f. In this Part, the set S^czA on which the gap of sx can be
< 1, is assumed to consist of the union of a finite density of small clusters separated
by a large distance. Each one of these clusters has the property that the Hamiltonian
operator obtained by restricting (12.1) to a large neighborhood of it, has a gap
^ g, g being a constant ^ 1 independent of the cluster. I consider the problem of
constructing perturbatively the ground state of Hλ by starting from the ground
state of the operator obtained from Hλ by removing the couplings among large
and non-intersecting neighbourhoods of the clusters of £f. This is a problem of
many-body perturbation theory involving a perturbation whose relative bound
with respect to the main part of the Hamiltonian is proportional to the number
of clusters. Since 9* is a set of finite density, in the infinite volume limit such relative
bound diverges and it is necessary to use a dressing transformation. The main goal
of this part is to construct such a transformation. As applications, the stability of
the gap and the exponential decay of truncated correlations are established.

In this section, I introduce some notations and state the main results. Section 13
contains the preliminary constructions that are needed to reduce the problem to
a conjugacy problem similar to the one considered in Part I. We define a
representation in which the operator (12.1) has the form

{S{λ)+VΓ{λ))+WΓ{λ\ (12.2)

WΓ(λ) being the perturbation. S{λ) is unitarily equivalent to the operator (12.1)
with the couplings among the different clusters of £f removed and VΓ(λ) is an
operator relatively bounded with respect to S(λ). Here, two additional difficulties
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are met that are not present in Part I. First, one has to prove that (S(λ) + VΓ(λ))
has a gap l^\g,g being the gap of S(λ). Second, a decay estimate on a
pole-subtracted Green's function of (S(λ) + VΓ{λ)) is needed because this operator
is not diagonal in the basis of local excitations we use. Sections 14 and 15 are
dedicated to these two problems, respectively. In Sect. 16, there are recurrence
inequalities for a numerical sequence that permit us in Sect. 17 to establish the
convergence of our perturbation scheme. Section 17 contains also the proof of two
corollaries concerning the existence of a gap ^ J# for the operators (12.1) and
(12.2) and the exponential decay of truncated correlations.

Let us formulate some hypothesis and introduce a few notations. Let us suppose
that the graph A enjoys the following geometric property:

Condition b. There is a constant c0 > 0 such that

y) = n}^cn

0 (12.3)

for all integers n>0.

Let N be the number

(12.4)

(12.5)

x e Λ

and let us suppose that N is a constant independent of A.
The set if is supposed to be of the form

where «/ is a set of indices and {Ca}aeJ is a family of subsets of A. Let 2LX be the
minimum distance among two components of if, i.e.

Lt=iίxύnd(Ca9Cβ). (12.6)
<x,βeS
aφβ

Let M be the maximum volume of the components

Aί = max ICJ. (12.7)
aeJ

Let {Ba}aej be a partition of A into connected components such that Cα cz Ba and

</(Cα,/l\Bα)^Li (12.8)

for all α e / . If A is a subset of A, let Hλ(A) denote the operator

Hλ(A)=Σs*+ Σ ^ o l '~%o (12.9)

and let EOtλ(A) be its ground state energy. Let ga denote the energy gap between
the ground state and the first excited state of Hλ(Ba) and let

g = inϊga. (12.10)
αe./

The kind of statements that are relevant in this part hold under conditions of
the form

(12.11)
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where the constant c and the function F(g,M) do not depend on A.
If A a A is a subset, let HX£%{A) be the operator

Hτeg(A)= Y s-b y (A — P ) + Y /llvo'c~1ί , (12.12)
xeA\<f xeAny y0 C X

and let £oe,λ(^) be its ground state energy. Let Uλ(A) denote the unitary dressing
transformation for H™g(A) constructed as in Part I. Let Lo be a constant to be
fixed later so that L0«Lί and let

a = {xeA\d(x,Ca)^L0} (12.13)

and

<xef

Thanks to Condition b above, we have

M = max |CJ ̂  Mc%°. (12.14)

a

Let \0yaeJf(Ca) be the ground state of the operator

υ ^cx^H^c^υ λ{ca\ (12.15)

Finally, let

(12.16)

The state | u0 > will be taken as the starting point in the construction of the ground
state of the^ operator (12.1). More precisely, a unitary operator U is constructed
such that V\uQy is the ground state of (12.1).

0 enjoys some clustering properties that are important to establish its existence
and that are useful in applications. To describe them, it is convenient to consider
the graph A whose vertices form the set ( Λ \ y ) u / . Let us denote with symbols
like x, y the vertices of A Two vertices x, ye A are joined by a line in the following
cases

(i) x,yeA\& and x,y are joined by a line in A;
(ii) xeA\£f, yeJ and x is joined by a linejn A to some sites of Cr

One can define a quantum spin system on A that is equivalent to our quantum
spin system originally defined on A. To this end, let us associated to each site xeA
the Hubert space f̂x- = <ENx+ x if x = xeA\^, and the space Jfk = Jf(Cx) if xeJ.
We have

xeΛ xςΛ

Let us fix a basis

|0>,,...,|iV,>, (12.18)

of Jίfx for all xeA. If x = xeA\£f, then (12.18) is the same basis (1.3) in which ŝ
is diagonal. If xe</, the vectors (12.18) are the eigenstates of the operator

Uλ(CxΓ
ιHλ(Cx)Uλ(Cx) (12.19)
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arranged in order of increasing energy. Let us remark that

l«o> = (g)|0>x-. (12.20)
xeΛ

Let || || 2,1 denote the norm such that, if a state u is written in the form

then

I M k i = Σ WΦyh (12.22)

We suppose that

L0 = | logar 1 (clogcM + c|log^|), (12.23)

and LO<%LU so that by virtue of Theorem 7.1 there exists a unitary operator
exp(£α) in Jt(Ba)9 for all oceJ, such that |0>α is the ground state of

e-^Ό λ{Bay'Hλ{BΛ)υ λ{Ba)e\ (12.24)

Let us remark that if λ g c, we have

Lo g (logCoΓMlogcM + llogcβfl), (12.25)

where c0 is the constant in (12.14). Hence, since g g 1, we have

M^cg~ιM2. (12.26)

The operator U we construct has the form

U = UxiΛMJl eR* I lim eR ...,* . (12.27)

If

K*= Σ.Hfo) (12.28)

is the expansion of the operator R" into a sum of operators f(y0) with support
y0, let us introduce the following quantity:

r*(Z) = sup X £ z"olcl7oUkAt;(?o)|wo>ll2,i; (12-29)
xe/l

r*(Z) measures the size of the local deviations of the ground state of (12.1) from
the unperturbed ground state of the partially decoupled problem which is given by

) (12.30)
<κeJ J

We have

Theorem 12.1. If λ<c,

L,-LQ^ \\ogcλ\'ι{c + |log0| + log {MN")\ (12.31)
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where M is defined in (12.14) and satisfies (12.26), and

* = ^ == CΛ , ylZ.DΔ)

then there exists a unitary operator U of the form (12.27) such that U\u0} is the
ground state of the operator (12.1) and

r*(Z)g(a) ( 1 / 2 4 ) ( L l ~ L o ) . (12.33)

The ground state energy is separated by a gap ^ jg from the rest of the spectrum.
Moreover, if Θ^ and 0y-2 are two operators of L2>^operator norm 1 and with
support γ1 and γ2, respectively, then we have

I<Uu01ΘhΘh\Uuoy-{ϋu010h|Uu0><Uu01Θ-21Uu0>I S(cλf/l6)d^\ (12.34)

13. Preliminary Constructions

In this section, I perform some preliminary constructions that reduce the ground
state problem to a conjugacy problem for a unitary operator. This problem is
solved by a unitary dressing transformation with good clustering properties that
is formally defined in this section and whose existence is proven in Sects. 15,16
and 17.

Thanks to Theorem 7.1, if

_ _ logcM

Ίlogcλl
and LQ<\LX, for all α e ^ we can construct a skew-symmetric operator Ra(λ)
acting on 3f(Ba) such that

is the ground state of Hλ(Ba). Here, |0>α is the ground state of f/λ(Cα). Moreover,
we have

, (13.3)

Let ϋλ be the unitary operator

ΰλ=Y[eR*m. (13.4)

It is convenient to study our problem in the representation in which the
Hamiltonian is the following selfadjoint operator:

Ό:' UM)~ xHκυλ(Λ)Vλ - Σ E'JttBJ. (13.5)

The operator (13.5) has to be split into the sum of a main part having |wo> as
ground state, plus a "small" perturbation. The relative bound of the perturbation
with respect to the main part is proportional to the number of clusters Cα contained
in £f. Hence, the relative bound of the perturbation with respect to the main part
diverges in the infinite volume limit. However, it is possible to organize the terms
of the Hamiltonian so that the perturbation is an operator given by a cluster
expansion such that the sum of all the clusters containing one site xeΛ is
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exponentially small in the parameter L t in (12.8), uniformly in xeλ. This suffices
to set up a convergent perturbative expansion for the ground state.

Let us introduce the operators Sα, VΛ(λ) and Wa(λ) so that

Uλ(BaΓ Ήλ(Ba)Uλ(Ba) - Eft{Ba) = Sa + Va(λ) + WJ,λ\ (13.6)

where

S α = Σ sx, (13.7)

Vx(λ) = 17,(1?.)-ιH?*(Bx)Uλ(Bx) - EfflB.)- £ sx - £ (1 - P |0>jr)
xεflα\Cα xeCΛ

and WKα(2) is the remainder. Let Wa(λ) be the operator such that

e-R*λ)(SΛ + Kα(A) + »;(λ))ΛU ) = Sα + Va{λ) + »;(λ), (13.9)

and let us introduce the following notations:

SΛ(λ) ΞΞ Sa + Va(λ) + Wa{λ) (13.10)

and

S(λ)= Σ Sβ(λ). (13.11)

We have

Sαμ)|0>α = 0. (13.12)

Let V^g,{X) be the operator

and let

Let us define the boundary operator VΓ(λ) as follows:

Σ Vvc.W (13.15)

The first basic property of VΓ(λ) is that it is equal to the boundary K-operator on
the full space

ΣvBa(
λ) ( 1 3 1 6 )

aeJ

up to corrections exponentially small in (Lι -Lo). The second property is that,
unlike the operator (13.16), VΓ(λ) is zero on all states with support in £f. In
particular, we have

= 0. (13.18)

The operator (13.5) is equal to the following operator for β = 1:

(S(λ) + VΓ(Xf) + Σ βlnoKLι " L l ) ] WΓtΛO{λ) (13.19)
no — Li —LQ
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where the operators WΓno(λ) are such that

Σ wr,noW = ΰ~A w(λ) - x wa(λ{\ ΰλ

+ V~λ * Γ V(λ) - Σ Va(λ)\ Uλ - VΓ(λ). (13.20)
L « J

The definition of WΓ no(λ) can be given as follows. The operator on the right hand

side of (13.20) can be expressed as the sum of commutators of the form

• LL * sx> κiλ J Λ ikj, κh j , . Kjj (lό.zi)

a n d of t h e f o r m

r r r Γt / ? ~ ] / ? ~ I J ? ~ I » « / ? ~ I n^ yj}

WΓ%no(λ) is the sum of all the terms given by commutators of the form (13.21) with

h + - + h +h + ••• +Λ = *o> ( 1 3 2 3 )

or by commutators of the form (13.22) with

l?olc + h + ••• + ik +jx + ••• + ; z = n0. (13.24)

The sum starts from (Lx - Lo) because this is the lowest possibly nonvanishing
order in the expansion of the second term of the right-hand side of (13.20). The
first term gives contribution only to terms of order ΠQ^.^.

Let us expand the operator WΓnQ{λ) as follows

yocλ

where wΓ π o(yo) is an operator with support yoc:Λ. If n o < | y o | c , we have
wΓno(y0) = 0. Moreover, thanks to the estimates in Parts I and III, we have

sup Σ \\wrjyo)\\2.i£(cλpί4»>. (13.26)
xeΛ γo:xeγo

Hence, the j8-dependent part of (13.19) is a perturbation locally small with
respect to g~x and MNM that, as discussed in the following, are the two large
factors to be killed. To construct the ground state of (13.19), one can start from
|MO> that, as proven in Sect. 14, is the ground state of (S(λ)+ VΓ(λ)). Since the
relative bound of the perturbation in (13.19) with respect to (S(λ) + VΓ(λ)) is
proportional to the volume |Λ|, a technique based on dressing transformations is
necessary.

Let us consider the following conjugacy problem:

l/ΛjSΓ1 \(S(λ)+VΓ(λ))+Σ Σ /!jWr,.oW k(/!)l«o>

= EOΛ(β)\uo>> (13.27)

where the unknown operator Uλ(β) has to be unitary for β real and analytic for
\β\ ̂  1. It is convenient to study this problem on the lattice Λ introduced in Sect. 12.
One can obtain a unique solution by imposing some restrictions on the form of
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Uλ(β). Let us choose to look for an operator of the form

Uλ(β)^lime^{β)'"e^iβ\ (13.28)
υ-*oo

where the operators Rv

λ(β\ v = 1,2,..., are skew-adjoint for β real and analytic
for |/?| S l They can be expanded in power series in β

&M= Σ %WF> ( 1 3 2 9 )
n= 1

where

K= Σ WV (1330)
|s(y)| = t>

Here and in the following, all sums over γ run over all excitations in Λ. The
operators τ. for excitations y in Λ are defined exactly as the operators τy for
excitations γ in /I are defined in Sect. 2.

The coefficients fny-(λ) are uniquely determined by the condition

£ (13.31)

if n = 1, and by the following recurrence relations if n ̂  2:

+ Σ ^[-[HVWλ^Wl ΛSWjjlO). (13.32)

The operator K(λ) in (13.31) and (13.32) is the pole-subtracted Green's function
defined as the analytic continuation to z = 0 of the operator

(SW+VΓW-ZΓ'P^. (13.33)

In Sect. 14, it is proven that |wo> is the ground state of (S(λ) + V(λ)). Its energy
iŝ  zero and it is separated by a gap ̂  \g from the rest of the spectrum of
(S (λ) -f V(λ)). In particular, the operator K(λ) exists and its L2-operator norm is
^2g~ι. Section 15 is dedicated to the study of thejkernel of the operator K(λ). It
is shown that, in the basis of the excitations γ on Λ, the following decay estimate
in L2'1 norm holds:

sup
y

Σ \y'Xy'\SK\γy (13.34)
2,1

where k is any integer ^ 0 and S is the operator such that

S|y> = |s(y)||y>. (13.35)

Let us introduce also the operator Sc such that

> (13.36)
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for all excitations |y> in Λ, and the operator

e = Π Q . (1 3 3 7)
aeJ

where Qa is such that

β j y > = max( l ,N M (a) ( 1 / 1 6 ) ^ s ί y ) ) ) (13.38)

for all excitations y in A. N is defined in (12.4) and the constant c appearing in
(13.32) is fixed as in Corollary 15.2. Since we are going to assume that (Lx - Lo) ^
cM log N9 we have

s(Qa)^Ba. (13.39)

In order to control the expansion (13.26), it is convenient to use the following
sequence:

f*(Z) = sup | |P,QZ^SR n\u 0}\\ 2 Λ . (13.40)
xeΛ

In Sect. 16, recurrence inequalities for this sequence are proved that allow us in
Sect. 17 to conclude the proof of Theorem 12.1.

14. TheGapofS(A)+rrμ>

The ground state |« 0> of S(λ) has support in $P and, thus, it is annihilated by
VΓ(λ). In this section, we show that |u o> is also the ground state of S(λ) + VΓ(λ).
Namely, we have

Lemma 14.1. |wo> is the nondegenerate ground state of S{λ) + VΓ{λ) and it is
separated by a gap *z \g from the rest of the spectrum.

Remark. The proof of this lemma is a little delicate because the relative bound of
VΓ(λ) with respect to S(λ) is of order λ, but we are not supposing that λ«g.
The situation here is similar to the one met in Part III. The boundary perturbation
VΓ(λ) is able to induce transitions with large probability amplitude, only among
states with excitations for away from Sf. But the energy of such states is of the
order of the number of the excitations. Hence, these couplings can be controlled
with a relative boundedness estimate and are not associated to small divisors. On
the other hand, states with low energy give rise to small divisors, but, in the dressed
representation, they are exponentially close to the unperturbed vacuum far from
S. Hence, they are almost annihilated by VΓ(λ) and the small divisors are
out weighted by factors of order (cλ)L\

Proof of Lemma 14.1. The paper [2] contains an idea that is useful also in the
present situation. Namely, let # be the circle

*={z6C|N=iflf} (14.1)

and let us consider the spectral projection

^ δ V Γ ( λ ) y 1 (14.2)
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for (5e[0,1]. It suffices to prove that

d i m R a n P δ = l (14.3)

for all <5e[0,1]. In fact, |MO> is an eigenstate with eigenvalue zero of S(λ) + δVΓ(λ)
for all δ. In turn, (14.3) follows from the following estimate in L2-oρerator norm:

\\Ps-Po\\2<l (14.4)

holding for all <5e[0,1].
Let 7 7 < 1 / 2 be^the orthogonal projection onto the space spanned by the

eigenfunctions of S(λ) with energy <^ and let 77- 1 / 2 = 1 — Π< 1 / 2. We have

. (14.5)

Hence, to prove (14.4) it suffices to bound separately the two terms in (14.5).
Let us expand (Pδ — Po) in geometric series

(Pδ - pQ) = £ δj§—:(z - SWy^VriXftz - S(λ))~x2j' (14.6)

We have

^sup|||(z-sμ)Γ1 |lillMλ)Λ r < 1 / 2ll2

L/2 VΓ(λ)(z - S(λ)y1121| 2 - \ (14.7)

where Lemma 8.1 is used, and

^ Σ supU(z -ΪS(λ)Γll2VΓ(λ)(z - S(λ)Γ112 Hi, (14.8)

where (12.10) is used. Hence, it suffices to verify that the relative form bound of
VΓ(λ) with respect to §{λ) is Scλ Since

S ||S(λ) ι'2(z - S(λ)Γι'2 III IIS(λΓ

^ h , (14.9)
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we are reduced to prove the following bound:

\<u\VΓ(λ)\uy\Mcλ)<u\S(λ)\u>. (14.10)

This result can be established by means of the techniques developed in Sect. 6 and
the details are omitted.

15. Decay of the Pole-Subtracted Green's Function K

This section in dedicated to the study of the decay of the kernel of the pole-
subtracted Green's function.

(15.1)

Hence

Πo = l-Pluo> (15.2)

and P,Uo> is the orthogonal projection along |u o>, the ground state of S(λ) + VΓ(λ).
Since in Sect. 14 it is shown that |wo> is a nondegenerate eigenstate, K(λ) is well
defined by (15.1). Moreover, from Lemma 14.1 follows that the ίΛoperator norm
of K(λ) is ^2gf~1. This section contains two bounds on the exponential decay of
the kernel of K(λ) with respect to the L2 1-norm.

Lemma 15.1. For all integers fc ̂  0, we have

sup sup (15.3)
2,1

Corollary 15.2. If the constant c in the definition (13.38) is chosen to be equal to the
constant c in (15.3), then for all |Z ̂  1 and all integers k ̂  0, we have

sup sup
γo^Λ u€Jf(γ0)

NI2,i = l

2,1

(15.4)

Notation. In the following, the dependency of operators on λ is not explicitly
denoted.

Proof of Lemma 15.1. Let us split the operator S+VΓ as follows:

where

and

(15.5)

(15.6)

- WC)Vλ.
(15.7)
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By construction, we have

( n c α + ^ α ) | 0 α > = 0, (15.8)

where |0α> is the ground state of S^ + SB V(~.
Let us expand VδC in sum of operators" υd€ (y0) with support y0 c (£ α \C α )u

{a}<=λ:

V,c. = Σ^U (15.9)

and let us define ad υdς (y0) as the operator acting as follows on the basis of
excitations |y>:

id ^ (y«)|y> - j C r ^ _ ^ | 0 - > * " ^ (15.10)

Analogously one can define wjyo) and ad wα(
<y0). Thanks to (15.8), we have

veca + ^ α = Σ ^ d vdφ0) + ^dΰΓ(70). (15.11)

Let us remark that the operators ad vd£ (y0) and ad ΰ£(y0) have nonvanishing
matrix elements only among excitations \yS>\y'} w ^ h

dc(s(yls(f))^\y0\c. (15.12)

Let Tik) be the operator

^ Σ ίd»ac.(yo) + Sdw«(yoλ (15.13)

where k ^ 2 is an integer.

Lemma 15.3. We have

\\P%\\2ΛS(cλ)W4)'kUS + S^)u\\2Λ (15.14)

for all integers k^O and all states ueJ4?(Λ) orthogonal to u0. Here k = max()fc, 1).

Proof of Lemma 15.3. Let us expand ueJ^(Λ) as follows:

u=Σ*h\y> ( 1 5 i5)
v

Since we have
, (15.16)

it is enough to prove (15.14) in case u is an excitation |y>.
Let Πχ1/2 be the orthogonal projection onto the space spanned by the

eigenstates of S^ + S ^ Q with energy < 1/2 and let 7 7 | 1 / 2 = 1 - Π<1/2. Thanks
to Lemma 8.1 we have

(15.17)
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for all states ueJ^(Ba) with w_L|Oα>. Moreover, by virtue of Lemma 9.1, we have

ti SBmvm)Πϊ1ι2uh.i. (15.18)

Hence, we have

Σ Σ

+ S^) |y> | | 2 ) 1 (15.19)

for all excitations |y>.
Due to Theorem 7.1, we have

α + SB^e)u \\2Λ. (15.20)

For all ue3t(BJ with «±|0 α >. Hence

Σ Σ llad'»i«(yo)ly>ll2.i^M)<1/4)*ll(^ + ^)ly>ll2.i ( ί 5 2 1 )
<xes(y)\yo\c=k

To bound the first term in the expression (15.13) for Tik\ one can use Theorem 1.2
and complete the proof of Lemma 15.13. Q.E.D.

The operator T(fc) defined in (15.13) has non-vanishing matrix elements only
among excitations γ9 f with dc(s{y\ s(f)) ^ k. Moreover, we have

S + VΓ= Sp + S^ + £ T{k\ (15.22)
fc=l

Thanks to Lemma 15.3, the geometric series expansion for K

= y (S« + S &)-1 y Tik) (S* + S ^ Γ 1 77O (15.23)

is convergent in L2?1-operator norm. By using (15.14), we find

sup sup Σ \γf}(γ'\SK(u(g)\0~γoy
y'dc(γ0,S(y')) =

^ Σ Σ US^ + s^r'Πoh.! Π
r = l fci + +fcr^fc ί = l

2,1

(15.24)

00

If F(β)= Σ fkβ
k is a power series, let us denote with {F(β)}k the coefficient fk.

k = 0

The right-hand side of (5.24) can be written as follows:
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if;
0 0 / 0 0

id/4);

I9 r=l\j^l / )k

= g~i{cλβ(l+(I-cλβ)~i)ll-cλβ(l+(I-cλβΓ')yi}k

for 2 ̂  c. This completes the proof of Lemma 15.1. Q.E.D.

Proof of Corollary 15.2. Let y9γ' be two excitations in Λ with dc(s(y),s(y')) = k.
Then, we have

and

<v'|0|f> 1MΛW

\Λ IV£I/ / ^ / i\-(l/l6)fc /I c Λ7\
/-ι Λ I —\ = v"^) > ^i /.A»/y

where c is the constant in the definition (13.32). If this constant is fixed to be equal
to the constant c in (15.3), then (15.4) follows from (15.3), (15.26) and (15.27). Q.E.D.

16. Recurrence Inequalities

This section contains the derivation of a set of inequalities for the sequence /**(Z)
defined in (13.40) and used in the following section to control the convergence of
our perturbative expansion. We have

xeλ

= sup Σ Q{s{y))Zmk\s(γ)\ i y , (16.1)
xeΛ γ:xes(y)

where, if y0 a Λ, we define

Q(γ0) = Π m a x (1, NM(cλfϊ»V). (16.2)
<xeJ

We have

Lemma 16.1. If λ<c,

(Lx - L0)^cM log ΛΓ (16.3)

and

l^Z^cλ-1116, (16.4)

we have

*{Z)\λri'2^-L* (16.5)
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oo 0 + 1 ) ( I Ί - I Ό ) - 1

Σ Σ+
0 ) ( Ί Ό )

Σ Σ Σ s
Proo/. We have

II . _ 2<£,-.Lo)-l

f*(Z) = s\ip\\PiQZs<SK (16.7)
2,1

Let us decompose K as follows:

where Xm has matrix elements
0

ottherwise,

By virtue of Corollary 15.2, we have

Hence,

oo

£ sup

(16.9)

^ Σ ^ - 1 Z m ( c A ) ( 1 / 1 6 ) m ( M I m / ( L l - t o ) 1 c m ) s u p
m = 0 xeΛ

zScQZt>
2(Li

x ί

~ ι w λ

-Lo)

>md-L WΓi'

ι|«o>

,ol"0>

2,1

5

2,1

(16.10)

where the estimate

SI
xeΛ

such that d(x,y) = m} ^ M [ m / ( L l " L o ) ] c m (16.11)

is used. Thus, if λ ^ c and Z ^ cA~1/16, we have

» 2(L 1 ΓL 0)

Due to Lemma 13.1, we have

(16.12)
2,1

xeΛ xeΛ yo

:xeVθ

| w r , n o ( y - o ) | | 2 > 1

< Z" o Λί [ ( " o / ( L l ~ t o ) ) 1 Λ ί (cA) ( 1 / 4 ) ' 1 0

(16.13)
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This bound implies (16.5).
To prove (16.6), one can find the following bound with arguments similar to

the ones above:

Λ* X* , 7~77 L"*" LI + Γh ii_l> > ikJ
xeλ

+ Σ Σ Σ Σ
j=l no=j(Lι-Lo) i i + + i f c + j = n y i ^ 5

*β~X Σ Σ Λp

1 ^ o ^ ^ Λ . (16.14)

Let k be a n i n t e g e r g ; 1 a n d let us fix the integers vl9...9vk9iu...9ik so t h a t

lgi^-gUfc (16.15)

and

ίi,... Λ^l (16.16)

Let tι(γ2) be the operator with support γ2 c= Λ such that

η(72)= Σ ^fΓ (16.17)
y:*(y)=?2

For all integers j such that 0 ^ j ' ^ /c, let us define inductively the operators &~s(γ0),
with y0 c Λ, such that <T°(y0) = wΓ>no(yo) and, if j ^ 1,

^ J(7o)= Σ [ ^ " ' ( y i λ ^ ) ] . (16.18)

Let us remark that ^J(y0) contains at most n0 -f j centers of noncommutativity.
Moreover ^j(γ0) = 0 if

|yol>Wo + »i + - + »y. (16.19)

I f ^ c / , / being the set of indices α for the clusters Cα, let us introduce the
following family of pseudonorms for operators Θfo with support y0 c Λ:

I2.1- sup I i e z ^ o ( ^ ® | 0 ^ » | | 2 j l (16.20)

and

Wtl (16.21)
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If γ 2 c Λ, we have

Moreover, thanks to the bounds in the proof of (16.5), we have

sup Σ \\^0(y0)\\iι^(cλrιl2)n°. (16.23)
xeΛ yo:xeγo

We have

Lemma 16.2. Ifj^l, then

H^ίiWIIli^2 X i(yi,y2)ll^"Hri)ll5alie^(y2)|iio>ll2.i, (16.24)

vv/tere g(j>i,y2)= 1 if Ίi contains one of the centers of noncommutativity of γί9 and

otherwise.

Proof of Lemma 16.2. Let us fix a set A c ^ and a state

l«> = l « ^ > ® | 0 ^ > (16.26)

with \uΔ}eJ*ί?(Δ). Let yx and y2 be two subsets of A with yγ u y 2 = y0. We have

^ 9(71,72)6(70)2' "'• {II ̂ J " J (7i) II if1"* II ' Ό ^ ) II2, i

+ II^-x(7"i)IIix II » |,(7"2)\\ifιnJ)} (16-27)

We have

K / i u ί ^ π ^ n ^ ) ! + \y2nΔ\ = 14nyol + ITΊ πy2nJ\. (16.28)

Hence, by using (16.6) and the definition (16.15), we find

^ > b . i ( 1 6 2 9 )

Since | f o lc< l7ilc + I ^ L and

6(7o)6(7i)" X 6(72)" ' S N-»K"W, (16.30)

we have

(l62T)£2q(h9h)NmΔn™\\rJ-^ (16.31)

This proves Lemma 16.2. Q.E.D.

By iterating (16.24) and using (16.23), we find

Σ ^ l
xeΛ Vi^'^vk \V)l

Σ 7^
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•sup Σ HβzH,(yo)l«o>ll2.i]
xeΛ 7Q.xey0 J

lyol=tv

pΓsup Σ \\QZS'Sfh(γ0)\u0}\\2Λ]
J - 1 L xeΛ y~q.xey0 J

Π>1*(Z) (16.32)

To complete the proof of (16.14), we still have to bound the first term. Let us
expand S+VΓ into a sum of operators S(y0) -f vΓ(y0) with support y0, i.e.

s + vΓ= Σβyo) + vΓ(yo). (iβ.33)

Let

S n o + K Γ , Π o = X %-0) + rΓ(y 0). (16.34)
yo:|yolc=«o

For all n 0 ̂  1, we have

sup £
xeΛ yo

: x eV

^ sup
xe/l

xe/1 γo:xey

^ Z Π 0 AΓ ( 1 + I w o / L l " L o ] ) M (cλ)noM

^MNM(cλ)a/l2)no. (16.36)

Fixed a / c ^ 2 and two fc-tuples i ! , . . . , ϊ k , t ; l 5 . . . , u k of integers ^ 1 such that
Vι g •• ̂  ffc, one can define the operators ^ J ( y 0 ) s o ^ a t

^°(7o) = S(yo) + Myo) (16.37)

and (16.18) holds for all j ^ 1. By using Lemma 16.2 that is still valid and by
replacing the bound (16.23) with the bound (16.36), we find

Σ SUP Σ A\\P,QZs'ί-ίsnΰ + vΓ,no,R^l-R^uoy\\2Λ
π o = l xeΛ υι^' '^Όk[V)\

^ f MNMSk(c0λ){in2)nol\ff.(Z)
w o = l J = l '

^MNM8kΣΐ*(Z) (16.38)

Due to (16.14), this implies (16.6). Q.E.D.
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17. Convergence of the Perturbative Expansion

In this section, the proof of Theorem 12.1 is completed.
To prove the convergence of the cluster expansions giving the operators Rv

λ(β)
in (13.22), one can show that if λ < c and

L^-L^ \\ogcλ\~\c + \ogg + log(MN% (17.1)

then the series

**(AZ)s tniZψ (17.2)

converges for βe[0,1] and Z such that

l g Z ^ c λ - 1 ' 1 6 . (17.3)

Moreover, we have to show that

l, Z) g (cA)(1/24)(t l - t 0 ) . (17.4)

One can rewrite the inequalities (16.5) and (16.6) in the form

{?*(j?,Z)}ng {g'1(cλYlll2)iLί'Lo)β + 64g''1MNfif*(β9Z)2(l - 1

Let us consider the function a(β) defined as the function analytic near β = 0
that solves the equation

a(β) = g~\cλ){lll2){U~Lo)β + 64#~iMNf*a(β)2{l - 8α(β))~1

If

a(β)= £ aJ
n (17.7)

is the power series expansion for a(β), we have

r*(Z)^aπ (17.8)

for all n ̂  1. Hence, it suffices to show that, under the conditions above, the function
a(β) is analytic for \β\ ̂  1 and

α(l) ̂  A = ( a ) ( 1 / 2 4 ) ( L l "L o ). (17.9)

Let [0,/?0] be the largest interval such that the function a(β) is analytic for
βe[0, j?0] and fulfills (17.9). For all J?G[O, j?o]n[0,1], we have

where λ is assumed to be so small that (cλ)(1/12){Lί ~Lo) ^ \ and A ̂  \. Hence, under
a condition of the form (17.1), we have

n(R\ <JL/>n(l/24)(Li -Lo) i Ur)\(l/24)(Lί-Lo) ̂  A (M \\\

This implies that β0 > 1. The proof of convergence is thus completed.
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To prove the stability of the gap, let us introduce the operator V such that

U-'iiS-^ VΓ)+WΓ)ϋ = {§+ VΓ)+V. (17.12)

Since U solves the conjugacy problem (13.27) for β= 1, we have

V\uo} = 0. (17.13)

The stability of the gap is a consequence of the following relative boundedness result:

Lemma 17.1. We have

|<w|K|w>|^(c/l)<1/24)(Ll-Lo)<w|5+KΓ |w>. (17.14)

Proof of Lemma 17.1. Let us expand u as follows:

w = Σ_ Σ ^.yo®(τrl°~*» ( 1 7 1 5 )
yo^Λ y:s(y)=γo\J

where φyfosJf(yon/). Thanks to (17.13) and to the decay estimates in L 2 1 -
operator norm for R, we have

\<u\V\u)\

Σ (Σ , Σ, <^®(^lo^
γ) = yo\J \γ'oc:Λ y s{y')=yΌ\^

Σ lyolM) ( 1 / 1 2 ) ( t ι-L o >H</»M- 0 l l 2. (17.16)

On the other hand, we have

^ Σ Σ τβ\Vo\Uy.1oh, (17-17)
y'o y:«(y)=yo\ /

where the first inequality follows from a positivity argument similar to the one
used in Sect. 6. Equations (17.16) and (17.17) imply (17.14), under a condition of
the form (17.1). Q.E.D.

Finally, we have to prove the following decay estimate for the truncated expectation
value in the ground state of the product of two operators 0y-o,0yo, of L2'1-operator
norm 1 and with supports γθ9 y'o a A, respectively:

ί? (1Λ6)^θ'^>. (17.18)

This follows from the unitarity of U and the fact that the cluster expansions for
the functions

ί (17.19)



272 C. Albanese

and

< W o | ί / - 1 ^ o ( / | W o > < W o | ί / - 1 ^ ί / K > (17.20)

differ only by terms involving commutators of operators whose supports connect
7o t 0 y'o Due t 0 the decay estimates in Sect. 2, Sect. 11 and in this section, (17.18)
follows. Q.E.D.
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