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Abstract. The problem of determining the physically relevant states acquires a
new dimension in curved spacetime where there is, in general, no natural definition
of a vacuum state. It is argued that there is a unique local quasiequivalence class
of physically relevant states and it is shown how this class can be specified for the
free Klein-Gordon field on a Robertson-Walker spacetime by using the concept
of an adiabatic vacuum state. Any two adiabatic vacuum states of order two are
locally quasiequivalent.

1. Introduction

In quantum field theory on Minkowski space the vacuum state is of primary
importance. It is a state which is invariant under the group of isometries of
Minkowski space time, the Poincare group. Furthermore it is a ground state, i.e.
a state of lowest energy in the corresponding vacuum representation. On an
arbitrary Lorentzian spacetime there are in general no isometries so that there is no
corresponding way of trying to define a "vacuum" state. Much work has been
devoted to the problem of developing other criteria leading to a suitable definition
of a vacuum state. It seems probable that there is no unique natural state for a
quantum field theory on an arbitrary Lorentz spacetime which deserves the epithet
"vacuum state" but at best some class of states which might represent local
equilibrium states.

In view of this situation, it is worth reexamining the reasons which lead one
to ask for such a vacuum state. The original motivation was undoubtedly to be
able to define a suitable notion of particle. The notion of particle even in a
Minkowski quantum field theory is a complex one with several facets which we
do not wish to examine in detail here. For our purposes, it will be enough to adopt
what is for practical purposes by far the most important notion of particle, namely
that which underlies scattering theory. Roughly speaking, a particle is an excitation
of the vacuum which is relatively well localized in space and time and moves on
a straight line path. The importance of the concept of particle is that it allows one
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to analyse scattering experiments. This is best expressed as the postulate of
asymptotic completeness. Every state of relevance to elementary particle physics
admits an asymptotic interpretation for t -> + oo in terms of a finite set of particles
which are well separated from one another and are moving away from each other
on straight line paths. The point we wish to make here is that the concept of
particle is an asymptotic one which reflects the tendency of localized concentrations
of energy to split up asymptotically into a finite number of localized fragments
with a simple asymptotic motion and no interaction in the future. The question
of whether such a concept is useful in a curved space time is therefore primarily
a question of whether we can expect such a similar behaviour in a curved spacetime.
In regions of high curvature one would not expect such behaviour because the
presence of the gravitating matter needed to produce this high curvature means
that the system still has an appreciable interaction. Thus we can only expect to
apply the concepts of scattering theory successfully if the spacetime in question is
asymptotically flat. As is well known under these circumstances we have no difficulty
in defining an asymptotic out vacuum or the associated asymptotic particle states.
Hence the importance of the particle concept in physics in no way suggests that
one should even try to define a vacuum state in curved spacetime different from
the above asymptotic out or in vacuum.

This does not mean that we should conclude that, since we do not need to
specify a vacuum state, all states should be treated as equally relevant to a
description of the physical world. It is well known that systems with an infinite
number of degrees of freedom possess a myriad of states which have not been
classified in any sensible manner and that it would be unwise to regard more than
a small fraction of these as being relevant to physics. Indeed our experience with
quantum field theory in Minkowski space suggests that as far as measurements in
some fixed bounded region Θ go the situation is extremely simple. It is enough to
know one physical state ω of our system, construct the corresponding GNS-
representation π ω on the Hubert space 2tfω and look at the set of expectation values
for observables which can be measured in 0 given by density matrices on J fω.
This set of expectation values is independent of the choice of the physical state ω.

It has been suggested by Haag, Narnhofer and Stein [1] that this should be
true of a quantum field theory in a curved spacetime too and they have called this
the principle of local definiteness1 and have used this principle to derive the value
of the Hawking temperature. If one accepts this principle then it is an important
task to specify the class of physical local states for each bounded open set 0, and
to do so it is enough to specify a single (global) physical state. Alternatively, we
can specify some family of physical states, but we then have the task of verifying
that the family is consistent with the principle of local definiteness.

In this paper, we examine the free Klein-Gordon field on Robertson-Walker
spacetimes and find that we can indeed specify a family of quasifree Fock states
which is consistent with the principle of local definiteness. Our scheme is based
on a precise version of the notion of adiabatic vacuum. We work in the algebraic

1 There has been an unfortunate tendency in the literature to equate the criteria of [1] with the
existence of the massless free field scaling limit used in the derivation of the Hawking temperature.
The principle of local definiteness does not merely have implications for the scaling limit but
restricts the physical states of the full theory
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formulation of quantum field theory [2] and construct following Dimock [3] a
net Θ -* 21(0) of C*-algebras defined on a suitable class Jf* of open sets with compact
closure associated with a free Klein-Gordon field on a Lorentzian spacetime.
Given any state ω on the net 9ί, the GNS-construction gives us a representation
π ω of the net on a Hubert space Jfω. The restriction of this representation to the
algebra 91(0) will be denoted nω\Θ. Two states ω and ω' are said to be locally
quasiequivalent if the representations πω\Θ and πω'\Θ are quasiequivalent for
each Θe Jf. Equivalently ω and ω' are locally quasiequivalent if the density matrices
in 3tfω and 2tfω. define the same set of states of 9I(<9) for each ΘeJf. The principle
of local definiteness holds if any two physical states of 91 are locally quasiequivalent.
Our task is therefore to use geometric data to specify a local quasiequivalence
class of states on 91.

To fix our notation we sketch the construction of the net 91 for the
Klein-Gordon field φ in a globally hyperbolic manifold Jί with Lorentzian metric
g. The natural choice of test functions for φ is the set of complex-valued odd
smooth 4-forms with compact support which we denote by 2(Jί). The com-
mutation relations are determined by the Green's function

(1.1)

which is obtained as follows [3]: there are unique operators E±\2(Jf)-^Cco(Jΐ)
with the property that

( • + m2)E± = E±(Ώ + m2) = #, (1.2)

(1.3)

where # denotes the Hodge #-operation and J ± (supp/) denotes the set of points
which can be reached from supp/ by a future or past directed causal curve,
respectively. Setting E:=E+-E~, we have ( • + m 2 ) £ = £ ( • + m2) = 0 and
J# Λ Ef = — J / Λ Eg and G is given by

G(f,g)=-ifΛEg, f,ge9(Jt). (1.4)

We equip <3(Jί) with the antilinear involution Γ given by Γf = / a n d an Hermitian
form y given by γ(f, g) = iG(f, g). The triple {9{Jt\ Γ9 y) is a phase space in the
sense of [4] and there is an associated self-dual CCR-algebra. This algebra
has two drawbacks, its representations are by unbounded operators and the
corresponding fields do not necessarily satisfy the Klein-Gordon equation.
The second problem is cured by replacing Q){Jί) by its quotient space
®M0/(D + m2)9{Jί)\= K and the induced phase space (X, Γ, y) has the additional
merit of being non-degenerate. We denote the element of the self-dual CCR-algebra
SΆ(K,Γ9y) corresponding to fe<2){Jί) by φ(f). The first problem is cured by
passing to the associated Weyl algebra defined over the reaί linear space
ReK:= {keK:Γk = k) equipped with the symplectic form induced on ReK by
— iy. Since the symplectic form is non-degenerate the Weyl algebra is a simple
C*-algebra. If W(f) denotes the Weyl operator corresponding to fe<3(Jί) then
we have the commutation relations

W(f)W{g) = W(f + g)e-(1/2)y(f>9). (1.5)

We get our net 91 of C*-algebras associated with the Klein-Gordon field over M



32 C. Lϋders and J. E. Roberts

by taking 2ϊ(0) to be the C*-subalgebra of our Weyl algebra generated by the
W(f) withsupp/c=0.

There is a good reason to be dissatisfied with taking any net 21 of Weyl algebras
as the observable net of a quantum field theory since there are representations π
for which λt-+π(W(λf)) is not a strongly continuous 1-parameter unitary group
and it is usual to restrict oneselves to representations, known as regular repre-
sentations, where this does not happen. However, once one has determined the
appropriate local quasiequivalence class of states, one can redefine the net to be
the associated net of local von Neumann algebras and λ\-^π(W(λf)) will be strongly
continuous in any locally normal representation.

In the case of free fields in curved spacetime, the quasifree states form a
distinguished and simple class of states so that it is natural to try and specify the
local quasiequivalence class of physical states by singling out a special class of
quasifree states. This special class will be the adiabatic vacuum states introduced
in Sect. 3.

A quasifree state ωs is specified by its 2-point function which is a scalar product
on the test function space 3)(Jί) or, more precisely on X,

S(f,g):=ωs{φ{f)*φ{g)). (1.6)

In terms of the Weyl operators we have

. (1.7)

In the terminology of [4], the 2-point function 5 of a quasifree state ωs is a
polarization of the phase space (X, Γ, y), i.e. a positive Hermitian form on K such
that

S(f,g)-S(Γg9Γf) = γ(f9g). (1.8)

Given S one defines a scalar product ( , ) s on K by

(f,g)s = S(f,g) + S{Γg,Γf) (1.9)

and we have [4]

so that we have an operator S defined on the Hubert space completion Ks of K
determined by ( , ) s and satisfying

§ (1.11)

ω s is a Fock state if and only if S is a projection.
Araki and Yamagami [4] proved the following result:

Theorem 1.1. The GNS-representations of the Weyl algebra over a phase space
(K,Γ,y) induced by quasifree states ωs and ωs. are quasiequivalent if and only if the
following conditions are satisfied:
(Al) ( , ) s and (v)s' induce the same topology on K,

(A2) Sll2-S'1/2e&2(Ks),
where <£2{KS) denotes the set of Hilbert-Schmidt operators on Ks and S' is the
operator on Ks representing the polarization S\

- (1.12)
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Of course, when ω s and ωS' are pure states and hence Fock states, quasi-
equivalence implies unitary equivalence. The above result will be applied in Sect.
4 not only to the adiabatic vacuum states themselves in the case of a Robertson-
Walker spacetime with spherical spatial sections but also in the case of open
Robertson-Walker spacetimes to the restrictions of the adiabatic vacuum states to
the local algebras $1(0), ̂ e Jf which are also quasifree states over a Weyl algebra.

Now if we take a state ω and restrict it to a state ω \ Θ of W(Θ) and then apply
the GNS-construction we obtain a representation πω^ which is a subrepresentation
of πω \ Θ. Hence the above theorem, when applicable, does not automatically lead
to local quasiequivalence. We therefore complete the proof of local quasiequivalence
in Sect. 5 by proving that πω \Θ is factorial and hence quasiequivalent to nω^Θ.

We also prove in Sect. 5 that duality holds in the Fock representation π ω

constructed from an adiabatic vacuum state ω. In Minkowski space duality has
had important consequences for the superselection structure of the theory and it
is gratifying to see that this property holds in curved space time, too.

The conclusions of this paper are that, for Robertson-Walker spacetimes, the
concept of adiabatic vacuum states leads to a class of states compatible with the
principle of local definiteness. We therefore propose, as a necessary condition, that
any physical state of the free Klein-Gordon field on such spacetimes should be
locally quasiequivalent to an adiabatic vacuum state. We comment briefly on the
relation of the adiabatic vacuum states to the Hadamard form. Najmi and Ottewill
[5] show that a Hadamard vacuum state ωs for the Klein-Gordon field over a
Robertson-Walker spacetime with flat spatial section, i.e. a Fock state with
anticommutator function ( , -)s (cf. (1.9)) of the Hadamard form, is, in their
terminology, an adiabatic vacuum state of order two2. Hence, we would get the
same class of states compatible with the principle of local definiteness if we insisted
on the Hadamard form. Bernard [6] considers Hadamard vacuum states over a
Bianchi type I spacetime3 and a computation again shows that the high energy
behaviour of such a state agrees with that of an adiabatic vacuum state of order
two4. Further computations relating the Hadamard form and the adiabatic vacuum
can be found in [7]. Thus we tentatively conclude that the approach using adiabatic
vacuum states and the approach using Hadamard vacuum states are equivalent
and viable methods for fixing the local states as required by the principle of local
definiteness. It should be noted that the problem of renormalizing the energy-
momentum tensor, which motivatives the Hadamard form [5], is well posed once
the local states are determined.

Although the adiabatic vacuum states and the Hadamard vacuum states seem
to be equivalent methods of fixing the local states, the approach here using adiabatic
vacuum states has some definite advantages. One needs a definition of the
Hadamard condition which avoids convergence problems but guarantees the
symmetry condition as well as the positivity condition (cf. (1.9)). Fulling et al. [8]
give a definition of the Hadamard condition which meets these requirements. They

2 This corresponds to a single iteration in the terminology of Sect. 3
3 There are no obvious obstacles to extending our analysis to this class of spacetimes
4 It must be pointed out that (2.8) of [6] does not imply unitary equivalence of the Fock
representations (cf. Sect. 4). It is conceivable that it implies local quasiequivalence, cf. the discussion
in Sect. 3
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also show that there is a large class of Hadamard states for an arbitrary globally
hyperbolic manifold. It nevertheless remains difficult to exhibit an explicit example
of a Hadamard vacuum state for a general Robertson-Walker spacetime. Further-
more, even if one just wishes to fix the terms as far as is needed to guarantee local
quasiequivalence, the necessary computations are more easily performed using the
adiabatic states.

2. Homogeneous Isotropic Quasifree States

In this paper, we consider only homogeneous isotropic spacetimes where it is
natural to try and specify the local quasiequivalence class of physical states by
singling out a special class of homogeneous isotropic quasifree states. This section
is devoted to describing the structure of the homogeneous isotropic quasifree states
and showing that their 2-point functions depend only on the magnitude of the
"3-momentum." We also characterize the homogeneous isotropic Fock states and
show that any such state can be obtained in the usual fashion using separated
mode solutions of the Klein-Gordon equation. Although these results are hardly
surprising there does not appear to be any proof given in the literature. Readers
not interested in the proof of these results might turn straight to the final result
to familiarize themselves with the notation and pass on to Sect. 3.

The homogeneous isotropic spacetimes have the form Jί = ]R x £f, where Sf
is a homogeneous Riemannian manifold and with respect to this decomposition the
metric takes on the Robertson-Walker form:

ds^dΐ-aitfh^yWdy^ (2.1)

where h is the metric on Sf, We will assume that a is a strictly positive smooth
function. There are three possibilities for £f corresponding to constant positive,
zero and negative curvature which we denote by Sfε,εe{+,0,—} and it is
convenient to regard ^ ε as being embedded in R 4 :

x°2 + £ x i 2 = l j , (2.2)

x° = 0}, (2.3)

xeR 4 : x ° 2 - £ xI>2= l,x° > θ l . (2.4)

The metric hε is that induced on £fε by the Euclidean metric on 1R4 for ε = + , 0
and the Minkowski metric for ε = —. These spaces are homogeneous spaces for
groups Gε, which are the rotation group SO(4), the Euclidean group £(3) and the
Lorentz group S£\ (4) respectively. The group Gε also acts as a group of isometries
of the manifold # : = R x ^ε,g(t,x) = (t,gx). In what follows we will omit the
symbol ε unless it is necessary to specify one of its values.

Now the mapping E\9(Jί)^C"°(Jί\ defined in Sect. 1, commutes with the
natural action of G being a group of isometries so that G acts as a group of
Bogoliubov transformations of the phase space (X, Γ9 γ) and hence induces a group
of Bogoliubov automorphisms of the self-dual CCR-algebra and of the Weyl
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algebra:

«Mf)) = <P(βn *β(W(f))=W{gf)9 QzG. (2.5)

A state ω is said to be homogeneous and isotropic if ω°otg = ω, geG. Since a
quasifree state ω s is uniquely determined by its 2-point function 5, it will be
homogeneous and isotropic if and only if

S{gf,gf') = S(f,f')9 geG. (2.6)

To be able to analyse this condition effectively some continuity conditions on the
2-point function S are necessary and indeed physically desirable. It would be natural
for example to demand that S be separately continuous in / and / ' relative to the
usual topology on <2)(J(\ We shall impose a stronger, but still rather weak,
continuity condition. To formulate this, we first need to describe our phase space
(K,Γ,y) in terms of Cauchy data on a Cauchy surface ^ t : = ί χ y .

A smooth 3-manifold such as £f has a phase space (L, Γ, γ) corresponding to
the canonical commutation relations. An element of L is a pair F = (/, h\ where
fe2(£f\ the set of complex-valued odd smooth 3-forms with compact support
and heC^(^f\ the set of complex-valued smooth functions with compact support.
Γ corresponds to complex conjugation whilst the Hermitian form γ is given by

y(F,F) = if(/Λft'-ΛΛ/'). (2.7)

We now let }t\£f -*J( denote the (oriented) embedding mapping jt(y) = (t, y), then
we have an isomorphism of phase spaces pt:(K,Γ,y)->(L,Γ,y), defined by

Pt(f)'=U?#dEf9-j*Ef), (2.8)

where d denotes the exterior derivative. This isomorphism describes the passage
from the field φ on J( to its Cauchy data on the Cauchy surface Sft in terms of
test functions. It is clearly compatible with the natural action of G so we may use
(L, Γ, y) to investigate the structure of the homogeneous isotropic quasifree states.

We now describe the continuity condition imposed on the 2-point function S.
By virtue of the Riemannian metric on £f we have a scalar product on L,

( F , F ) : = J ( / Λ # / ' + 5 Λ # n (2.9)

We let the Laplacian A act componentwise and give L the topology defined by
the norms || | |v, where

\\F\\2

v:=(F,(-Δ + m2)2*Fl VGN 0 , (2.10)

and require S:L x L-> C to be jointly continuous with respect to this topology.
Thus there is an integer v and a constant C > 0 such that

|S(F,F ' ) | ^C | |F | | V | |F ' | | V . (2.11)

But this means by the Riesz Representation Theorem that there is a bounded
operator S on the Hubert space Hv obtained by completing L in the norm || | |v

such that

S(F9F') = (F,SF')V. (2.12)

The natural action of G on L is isometric for each of the norms || | |v and thus
extends to a unitary representation in each Hγ so that S is invariant under G if
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and only if S is in the commutant of this representation. There is a unitary mapping
V from Hv to L2{^)®L2{^) defined by

V(F) = #(-Δ + m2Yf®(-Δ + m2γk FeL, (2.13)

since ( — Δ + m2)v is essentially self-adjoint on C™(6f) and strictly positive, v e N 0

[9]. Here L 2 (^) is, of course, defined using the invariant measure derived from
the Riemannian metric on ίf. V intertwines the representation of G on Hv with
the unitary representation U® U on L2{^)®L2(^) given by

U(g)(h) = hog-\ /ze<<ί0θn (2.14)

Hence we shall be able to analyse the G-invariance of the 2-point functions by
computing the commutant of U.

The representation theory of G is treated in [10,11] and the relevant facts are
summarized in an appendix. The representation U, known as the quasiregular
representation, is decomposed into irreducible representations by what amounts
to a Fourier transformation. The simplest case is that of G + = SO(4\ where the
eigenspaces of the Laplace operator Δ give a decomposition into a direct sum of
inequivalent irreducible representations. If k = (fe, /, m), where /ceN0, / = 0,1,.. ., k,
m= — /, — 1+ 1,...,/, then there is a conventional orthonormal basis ^ of
eigenvectors of Δ in L2(^ + ),

Δ<Wτ= -k(k + 2)<8fτ9 (2.15)

and the Fourier transformation

h(k):=(^h) (2.16)

gives a unitary transformation of I}(£f + ) onto L?(ά^ + ), where P+ denotes the
momentum space associated with £f+, i.e. the range of values of H equipped with
the counting measure. A bounded operator on L 2 ( ^ + ) commuting with U
corresponds to multiplication by a bounded function of k on L2(^ + ).

The case G° = £(3) is very familiar since the representation U is decomposed
into a direct integral of irreducible representations using the usual Fourier
transform. The Laplace operator now has no eigenvectors in L 2(y°) but we use
the generalized eigenvectors

9Ήx):=(2π) 3 / V**, Δ^τ=-k2(&τ, (2.17)

which we treat as generalized functions on «5̂ °. The Fourier transform

h(k):=(^h\ heC${Sr°)9 (2.18)

extends to a unitary operator from L2(^°) to L2(&°). A bounded operator on
L2(^°) commuting with the translation subgroup of G° corresponds to multi-
plication by an essentially bounded measurable function of X in L 2(^°). Hence a
bounded operator commuting with U will correspond to multiplication by an
essentially bounded measurable function of k = |X|.

The case G" = JS? + (4) is similar since the representation U is decomposed into
a direct integral of irreducible representations using a suitable modification of the
Fourier transform. We again use the generalized eigenvectors of the Laplace
operator

^ = - ( f c 2

(2.19)
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Here £f~ is regarded as being embedded in R 4 , ξ = (1, £)eR 4 and x ξ refers to
the Minkowski scalar product. Regarding ®Jj as a generalized function we have
an analogue of the Fourier transform defined by

<?-\ (2.20)

and extending to a unitary operator from L2(£f~) to L2(&~):= L2(R3). A bounded
operator commuting with the representation U again corresponds to multiplication
with an essentially bounded measurable function of k = | k |. Our proof of this result
is relatively technical since it relies on [12; Proposition 8.6.4] and we have relegated
it to the appendix.

To have a uniform notation for the eigenvalues of the Laplacian we write

(2.21)

in each of the above three cases.
From the above computation of the commutant of U and the fact that the

Fourier transform of the Laplace operator is just multiplication by a function of
k, we see that the 2-point function S of a homogeneous isotropic quasifree state
satisfying the continuity condition (2.11) has the following form:

F,FeL9 (2.22)

where

(F(k),S(k)F(k)} = Σ FMStjiQF'jik), (2.23)

is measurable and polynomially bounded and if F = (f,h)eL then

FoW = #f(k) and 1^(1) = £(!). (2.24)

Of course, when ε = + then \dk is just a summation over k and Stj is automatically
measurable.

Now to be the 2-point function of a quasifree state S must be a polarization
of the phase space (L, Γ, y). It is thus a positive Hermitian form satisfying the
analogue of (1.8). Using the unitarity of the Fourier transform and Eq. (A.7) we have

y(F,F) = \dk(F(k),yF(k)X (2.25)

S(ΓF, ΓF) = \dk(F(k), SWF'ϊk)}, (2.26)

where S\k) is the transposed matrix and y:= I I. Thus we get conditions
on the entries of S(k). ^~ι ° '

Lemma 2.1. The Hermitian form 5( , •) defined by (2.22) is a polarization if and only
if the following conditions on the entries S^k) of the matrix S(k) hold almost everywhere
(a.e.) in k:

a) S01(k)-Sί0(k) = i; (2.27)

b) Soι(k) = Sιo(k); S00(k) ^ 0; S0 0(*)Sii(*:)" lSoi(*)l2 ^ 0. (2.28)

Proof. For technical reasons it is advantageous to write 5( , ) in the form

S(F9 F) = (VF, TVF% F, FeL, (2.29)

where V:HV-+L2(P)®L2(&) denotes the unitary operator arising from the
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composition of V of (2.13) with the Fourier transformation. Te8(L\&)@ !}
corresponds to multiplication by a matrix T(k) whose entries T^k) are measurable,
essentially bounded and uniquely determined up to a set of measure zero. The
7^ (fc) are related to the entries of S{k) by

Sij(k) = (m2 + E(k)nj(k\ a.e.. (2.30)

It is now clear that (1.8) is equivalent to (2.27). Since S( , ) is positive, T must be
a positive operator and hence the square of its positive square root. Thus, bearing
(2.30) in mind, we see that the positivity of S( , ) is equivalent to (2.28)._

The next lemma characterizes the Fock states where the operator S of (1.11)
is a projection.

Lemma 2.2. A homogeneous, isotropic, quasifree state ωs is a Fock state if and only if

Soo(fc)Su(/c)-|S01(/c)|2 = 0, a.e.. (2.31)

Proof. It follows from (1.9), (2.26) and (2.30) that

(F,F% = (VF,(T+Γ)VF), F,F'eL, (2.32)

where T* is defined by multiplication with the transpose of the matrix T(k). Let
W be the unique positive square root of T + V. WΛs defined by the matrix
W(k) = [T(fc) + T'(fc)]1/2 whose entries Wi5(k) are essentially bounded, measurable,
real functions and W = W\ Let

Δ(k):= det W(k) = [det(T(fc)

then, since by (2.27), (2.28) and (2.30) Im T01{k) = \(m2 + £(fc))~2v a.e,

Δ(k) = 2[T00(/c)Γ1 t{k) - (Re TOί(k))2^2 = 2 [det Γ(/c) + (Im Γ0 1(/c))2]1 / 2 > 0 a.e..

(2.33)

Thus W has an inverse W'1 given by the matrix

whose entries are measurable and essentially polynomially bounded. If we write

T(k) = i(T(fe) + Γ(k)) + Im T01(k)

then a computation shows that W'^TW'1 is given by multiplication with the
matrix

1/1 0\ ImΓ0 1(/c)/ 0 i

2\0 \) Δ(k) \-i 0

and, since by (2.33)

ImΓ01(/c)

Δ(k) ^ a e ' ( 2 3 4 )

W~1TW~1 extends to a bounded operator which is a projection if and only if
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equality holds in (2.34), i.e. by (2.33) if and only if

T00(k)Tli(k)-\T01(k)\2 = 0 a.e..

Since, by (2.30), this is equivalent to (2.31) we may complete the proof by showing
that the bounded operator extending W~1TW~1 is unitarily equivalent to S. To
this end, we note that there is a unique isometry V :LS-+ L2(S^)@ L2(S?) defined by

UF=WVF, FEL.

Further UL is dense in L2ψ)® L2ψ) since (G, UF) = 0, FeL, implies (WG, VF) = 0,
FeL, and hence G=W~lWG = 0. Thus U is unitary and

completing the proof.
With the help of Lemmas 2.1 and 2.2, we may summarize our results in the

following theorem.

Theorem 2.3. The homogeneous, isotropic Fock states for the free Klein-Gordon
field in a Robertson-Walker spacetime satisfying the continuity condition (2.11) are
given by 2-point functions of the form (2.22). The entries of the matrix S(k) can be
expressed in the form

S01(k) = q(k)p(k\ (2.35)

where p and q are essentially polynomially bounded measurable functions satisfying

q(k)p(k)-q(k)p(k) = L (2.36)

Conversely, every pair of essentially polynomially bounded measurable functions
satisfying (2.36) yields via (2.35) and (2.22) the 2-point function of a homogeneous,
isotropic Fock state satisfying the continuity condition (2.11).

Proof Using the notation of Lemmas 2.1 and 2.2, we see that Toι(k) =£0 a.e. and
we define a bounded measurable function φ by setting

φ(k)=l9 if Γol(fc) = 0 and φ(k) = [rr

Ό1 , otherwise.
I ̂  oiWI

We now set, for example,

β(*):= (T00(/c))1/2, P(fc) - (Γn(ik))1/2φ(Jk),

then Q and P are measurable and essentially bounded and we get from (2.31)

Q(k)P(k) = T01(k)—^— —- = T01(/c) a.e.

so that

- Q(k)P(k) = 2iIm T01(k) = i(m2 + E(k))~2\

Thus, by (2.30), if we set q(k):=(m2 + E(k))vQ(k) and p(k):=(m2 + E(k))vP(k), we
obtain functions with the desired properties. Conversely, given p and q as in the
statement of the theorem, then for v sufficiently large the matrix T(k) given by
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(2.35) and (2.30) defines a bounded operator and we see from (2.22) that the 2-point
function S(v) satisfies the required continuity condition (2.11).

Remark. If we replace q(k) and p(k) by eiφik)q(k) and emk)p(k\ where, φ(k) is a real
measurable function, we obtain the same 2-point function and hence the same
quasifree state.

With the help of p and q, we may realize the quasifree Fock state with 2-point
function S( , ) on a Bosonic Fock space with 1-particle space L2(&) and annihilation
and creation operators a and α*,

[_a{h\ a*(h'U = (K h\ K h'eL2(n (2.37)

In terms of a field 3 on the Cauchy surface $ft and its canonical conjugate
momentum π, we take

Uf) = a{q#J) + a*{q#fl πs(h) = a(p%) + a*(ph); F = (f,h)eL. (2.38)

From this, we get, as in [3], the corresponding representation of the field φ by
setting

Ψsif) = $sUr#dEf) - πs{j*Ef\ fe@{Jί). (2.39)

In order to express this representation of the field in the more usual fashion in
terms of mode solutions of the Klein-Gordon equation, we give an explicit
expression for the operator E in terms of such modes. An expression of the form
Tk(x°)^(3c) will be a solution of the Klein-Gordon equation if Tk satisfies the
differential equation

fk + 3-atk + ω2

kTk = 0; ω2

k:= ̂  + m2. (2.40)

We demand in addition that Tk satisfy, at time ί, the equation

Since Tk satisfies (2.40), (2.41) is then satisfied at all times.
We now define a generalized function by

(2.41)

G(x,y):= Jd/cG k (x° ,/)^(x)^(y), (2.42)

Gk(x°,y°):= i(Tk(x°)Tk(y°) - Tk(x°)Tk(y0)), (2.43)

and use it to define an operator E'\@(Jί)-*C™(Jί)\

(E'f)(x):= - G(x, / ) := Jdy° jdk®-k(x)Gk(x°,y«)f{y\ fc), (2.44)

/(r,X):=α3(ί)(^,Λ*#/). (2.45)

Remark. Gk(-,y°) satisfies, for each fixed y°, the differential equation (2.40) with
initial conditions Gk(y°,y°) = 0, Gk(y°,y°) = -a~3(y°). Gk is therefore independent
of the particular solution Tk chosen.

The following lemma allows us to prove that E' agrees with the operator E of
(2.39).

Lemma 2.4. Let feQ)(M) then E'f satisfies the Klein-Gordon equation. If u is a
solution of the Klein-Gordon equation whose initial data u0, ux are C00 with compact
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support,

uo=j*u, Uί=j*#du9 (2.46)

then

ί u A f = f (u0 Λ Λ * ( # ^ 7 ) - wi Λ/•£'/). (2.47)

Proo/. Differentiating under the integral sign in (2.44) using (2.21) and the fact
that the Tk satisfy (2.40), leads to ( • + m2)E f = 0. The justification for this step
involves properties of the solutions of (2.40) and of the Fourier transform and will
be relegated to Appendix C. Using (2.44), (2.45) and (A.7) we conclude that

\{u0AJ*{#dE'f)-u,AJ*E'f)

0 ^ ( t , y°) - JK (k)Gk(u y°)

= -Jdy°dμ(y)a\y°)(#f)(y)u(y) = f / Λ U.

Here μ(~y) denotes the measure derived from the Riemannian metric on Sf and

u(y) = -

is the (unique) solution of the Klein-Gordon equation with (2.46) as initial
conditions. This can be seen by differentiating the integral sign and will be justified
in Appendix C.

Now E also satisfies (2.47) (cf. [3; Lemma A.I]) so

j*#d(E-E')f = 0, ;*(£-£')/ = 0, fe9{Jί).

But the solutions of the Klein-Gordon equation are uniquely determined by their
initial data and we conclude that E = E'.

In order to express the representation φs of (2.39) in terms of mode solutions
of the Klein-Gordon equation, we take initial conditions for Tk at time t given by

Tk(t) = q(k); tk(t) = a-*(t)p(k). (2.48)

We can now compute the test functions appearing in the expansion of φs in terms
of annihilation and creation operators using (2.38) and (2.39). Using (2.44) and the
Fourier inversion formula (A.8) we find that the Fourier transform oi#jf#dEf is
a3(t)$dy°Gk(t,y°)f(y0, k) and of;•£/ is $dy°Gk(t,y0)f(y°9 k). Now

Jdyo{q(k)a3(t)Gk(t,y°) - p{k)Gk{Uy°)}hy\k) = - $dy°Uyo)f{yo, k)

Thus φs(f) = J <Psix) Λ /(*)> where

φs(x) = J d~k{ Tk(x°)^τ(x)a(k) + Γk(x°)^x(x) α(fc)*} (2.49)

is the desired expression for the field in terms of mode solutions of the
Klein-Gordon equation.

Conversely, starting from (2.49) we may define a representation of the field 3
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on a Cauchy surface and its canonical conjugate momenta π by setting

^ ( / ) = U > S A / ; πs(h) = $j*#dφsΛh; F = (f,h)eL. (2.50)

We may summarize the contents of this section by saying that a homogeneous,
isotropic Fock state satisfying the continuity condition (2.11) yields a representation
of the Klein-Gordon field of the form (2.49). The representation can be character-
ised either by the choice of the solutions Tk of the differential equation (2.40)
satisfying the normalization condition (2.41) or in terms of the functions q(k\ p(k)
which fix the initial conditions according to (2.48). In the next section we study a
special class of homogeneous isotropic Fock states, the adiabatic vacuum states.

3. Adiabatic Vacuum States

The concept of adiabatic vacuum state was first introduced by Parker [13]. It was
designed to provide an optimal definition of "physical particle" in an expanding
universe, optimal in the sense that the rate of production of these particles caused
by the expansion was to be minimal. Furthermore, in the limit where the rate of
expansion tends to zero, the notion of particle should reduce to the usual notion
in the corresponding static universe. We do not adopt this point of view and the
concept of "physical particle" plays no role here. Instead we extract from the
concept of an adiabatic vacuum a procedure for fixing the behaviour of our
parameters q(k) and p(k) in Theorem 2.3 for large values of k in such a way that
the corresponding family of Fock states is consistent with the principle of local
definiteness.

The starting point, which can be traced back to the work of Parker, is to make
an Ansatz of the WKB-type for the time-dependent part of the mode solutions
determining our Fock states. Thus we write

Tk(x°) = α- 3/ 2(x 0)(2β k(x°))- 1 / 2exp('if Ωk(t)dt\ (3.1)

where the positive functions Ωk have still to be determined. The Tk automatically
satisfy (2.41) and if they are to satisfy the differential equation (2.40) we must have

One could try to solve this equation iteratively:

ψ (3.4)
Now, as a is a completely arbitrary strictly positive smooth function, we can

never rule out the possibility that there will be values of k and x° where (3.3) yields
a negative value for (Ω(n + 1))2. The iteration procedure then breaks down so there
is certainly no hope, in general, of obtaining a solution Tk of (2.40), and hence a
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state by iteration. However, we only need a class of states and we will use (3.1),
after a finite number of iterations, merely to determine suitable initial values for
the solution of (2.40). Moreover, provided we limit ourselves to a finite interval
/ c 1R in time and k is chosen sufficiently large, there are no difficulties with the
iteration procedure. As will become clear shortly, the following result can be proved
by induction on n.

Lemma 3.1. Let I aJR.be a closed interval, then, for each n e N 0 there is a κn(I) ^ 0
so that, setting

Rn(I)' ={(Kx0):x°eI,k^κn(I)},

Ω{n) is strictly positive on Rn(I) and Ω{n) and all its derivatives with respect to time
are continuous on Rn(I). Furthermore, there are constants A, B > 0 such that

A{\ + k) g Ω^(x°) g fl(l + k), (K x°)eRn(I).

The Ω{n) obtained by iteration in Lemma 3.1 can be continued to strictly positive
functions on {(fc,x°):fc ^ 0 , x°el} so as to be continuous together with all their
derivatives with respect to time.

We now define for to,tel,

( \
t)y1/2 exp i J Ω^\tr)dtf (3.5)

\ to /

and call an adiabatic vacuum state a Fock state obtained from the solution of
(2.40) with initial conditions at time t given by

Tk(t) = W["\t), fk(t) = Wΐ\t). (3.6)

The adiabatic vacuum states therefore depends on

a) the initial time t in (3.6),
b) the order of iteration n,
c) the extrapolation of Ω{n) to small values of k.
Changing the limit of integration t0 in (3.5) merely changes the initial conditions
(3.6) by a common phase and leaves the adiabatic vacuum state unchanged.

To be able to give conditions under which two adiabatic vacuum states lead
to locally quasiequivalent representations, we need information on the asymptotic
behaviour of Ω{n) and εn as k goes to infinity, where

Ω(n)2 = Ω(n-1)2(l+εn). (3.7)

A little manipulation leads to the following formulae

1 έn

2 1 + ε π ' ( '

Λ έn 1 έ1 ^ _
n + 1 Ω«»2 (I + ) ( l + )\4Ω«» 1 + + 81 + l +

8 , , _ 1 l + e , 161+6, 41 + ε

To describe the asymptotic behaviour we work over a fixed but arbitrary closed



44 C. Lϋders and J. E. Roberts

interval of time / = [ί 0, ί x ] and, given a function /(fc, t) defined for k^kf and ίe/,
we write feln(l) to mean that there exist constants cm > 0, m = 0,1,2,... and b > 0
such that

In other words, fe£n(I) if/ and each of its derivatives with respect to t are O(kn)
for k-+ oo uniformly in tel.

Lemma 3.2. JT<? /zm e Ω^el^I) and εne£_2n(I).

Proof. To simplify notation, we suppress the dependence on the interval /. Note
that feln and f'e£n. implies ff'e£n+n,. Now Ω(O)2e£2 and ί2 ( O r 2 e j2_ 2 giving

It now follows taking n = 0 in (3.3) that Ω^^ε^^o and hence ε ^ J ^ . We now
claim inductively that ε π 6J_ 2 π . This implies (1 + εn)~1e£0 and from (3.9) we get
εn+ie£-2n-2 completing the induction step. It follows at once that Ω{n)e^1 as
required.

The assertions of Lemma 3.1 follow simply from Lemma 3.2 and (3.7). Now
any two adiabatic vacuum states ω and ω' differ by a Bogoliubov transformation
and if we parametrize these states using functions q{k\ p(k) and qf(k\ p'(k)
respectively, (cf. (2.48)), then we have the relations

q\k) = oc(k)q(k) + β(k)q(k), p'(k) = φ)p(k) + β(k)p(k), (3.10)

where the Bogoliubov coefficients α and β satisfy

\a(k)\2-\β(k)\2 = l. (3.11)

Using (2.36), we may solve for β and get

= i(p'(k)q(k)-q'(k)p(k)). (3.12)

It follows from Lemma 3.2 that for all adiabatic vacuum states q(k) = O(k~112)
and p(k) = O(k112) as /c->oo. For this reason, we obtain sufficient conditions for
global unitary equivalence or local quasiequivalence that can be expressed solely
in terms of the behaviour of β (k) as k -• oo. In the case of a closed Robertson-Walker
spacetime, ε = -f, where k takes on discrete values, we show in Sect. 4 that we
have global unitary equivalence if β(k) = 0{k~(3/2)~δ) for some δ > 0. In the case
of an open Robertson-Walker spacetime, ε = 0, —, where k is continuous we show
that we have local quasiequivalence if β(k) = O(k~3~δ) for some δ > 0. The power
k~3 instead of the k~3/2 one might expect may well prove to be an artefact of our
method of proof.

We now consider the various factors affecting the adiabatic vacuum states.
Extrapolating Ω(n) differently to small values of k corresponds to a Bogoliubov
transformation, where β(k) vanishes for sufficiently large k and poses no problems.
To assess the effects of the order of iteration we write Ω:= Ω{n) and Ω:= Ω(n+1)

and compute β from (3.12) and find

(^^yΩe^ , (3.13)



Local Quasiequivalence and Adiabatic Vacuum States 45

where, to be concise, we have omitted the variables. Introducing εn+1 and using
Lemma 3.2 we see that β{k) = O(k~2n~2). Thus for closed Robertson-Walker
spacetime the global unitary equivalence class is independent of the order of
iteration, for open Robertson-Walker spacetimes the local quasiequivalence class
becomes independent of the order of iteration after a single iteration. This leaves
open the question of the dependence on the intitial time t in (3.6).

Suppose we have a solution T of our differential equation (2.40) with initial
conditions

where we have suppressed the dependence on k and, cf. (3.5),

/ t \

= a~3/2(t)(2Ω(ή)'1/2Qxp[ i\Ω{t')dtf .
\ to ]

Then at time t this solution has initial conditions T(ή and f(t) differing, in general,
from W(t) and W(t) and derived from W(t) and W(t) by a Bogoliubov transformation
with coefficients given by

~ t{t)W{t)\ β(t) = ia\t){f{t)W{t) - T(t)W(ή). (3.14)

Now, as was shown by Parker [13; Eq. (26)], α and β satisfy the following coupled
integral equations:

α(ί) = 1 - i \ S(t')la(t') + β(t')exp( - 2ί ) Ω(t")dt"Y\dt\ (3.15)

β(t) = i } S(f)ϊβ(f) + α(ί')exp Ui j ί2(ί")rftΛ"L', (3.16)

where the kernel 5 is defined by

In particular, if we take Ω=Ω(n) then we find from (3.3) and (3.7) that the
corresponding kernel S{n) is given by

(3.18)

It now follows from Lemma 3.2 that Sin)el-2n_1(I).
Standard arguments from the theory of integral equations of Volterra type

sketched in an appendix then show that β(k) = Oik'2""1) uniformly for tel and
that α and β are continuous as functions of k uniformly in tel. From this result
we may, for example, conclude directly that, in a Robertson-Walker spacetime
with flat spatial sections, the initial time t in (3.6) does not. affect the local
quasiequivalence class for an iteration order ^ 2 . Since, however, the local
quasiequivalence class is anyway already known to be independent of the iteration
order after a single iteration, we conclude indirectly that the local quasiequivalence
class is independent of the initial time for an iteration order ^ 1. Similar remarks
hold in the other two cases. Hence our discussion may be summed up in the
following result.
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Theorem 3.3. The following statements hold for the free Klein-Gordon field.
a) In a Robertson-Walker spacetime with spherical spatial sections any two adiabatic
vacuum states are unitarily equivalent.
b) In an open Robertson-Walker spacetime any two adiabatic vacuum states of
iteration order ^ 1 are locally quasiequivalent.

A result in this direction is foreshadowed in Footnote 26 of a paper by Parker
and Fulling [14]. There are no obvious obstacles to extending this analysis to
cover the case of a Klein-Gordon field coupled to the scalar curvature, i.e. to an
equation of the form

4. Quasiequivalence of Quasifree States

In this section we derive conditions on the Bogoliubov coefficients β of (3.12) which,
together with the factoriality of πω \ Θ (for certain Θ\ proved in Sect. 5, guarantee
that two homogeneous, isotropic Fock states ω and ω', characterized by functions
p, q and p\ q' respectively, are locally quasiequivalent. If πω \ Θ and πω- \ Θ are
quasiequivalent then so are their restrictions to some Gί a Θ. It therefore suffices
to verify the local quasiequivalence for a cofinal set of bounded open sets Θ. For
this reason we can choose G to have simple geometric properties which make it
easier to check the criterion of Araki and Yamagami (cf. Theorem 1.1) and to
demonstrate the factoriality of πω\G.

In the case of a closed universe (ε = -f), where the Cauchy surfaces Sft are
compact, we can even choose Θ = Jί and then give a necessary and sufficient
condition on β for the global unitary equivalence of the Fock states. For this
reason this case is much simpler than the case of an open universe where global
unitary equivalence is only possible when β = 0. We therefore begin by treating a
closed universe and we want to apply Theorem 1.1 to the Weyl algebra
corresponding to the phase space K = ^(-#)/(Π + m2)Q)(Jί). It is equivalent and
technically more convenient to work, as in Sect. 2, with the isomorphic phase space
of initial data L.

We begin with Condition (Al) of Theorem 1.1 and, with an eye to applications
in Sect. 5, give conditions for a scalar product ( , ) s defined by (1.9), (2.22), (2.23)
and (2.35) to be equivalent to the scalar product ( , -)M given by

(F,G)M = $dk<F(klM(k)G(k)}9 where M(fc):=2^ ( J ) | 2 ° Λ (4.1)

Lemma 4.1. Given functions q and p satisfying (2.36) with q(k) = O(k~1/2) and
p(k) = O(k1/2\ the scalar products ( , ) s and ( , )M define the same topology on L, i.e.
there are positive constants A, B with

Proof. The second inequality is satisfied if BM(k) — (S(k) -f- S\k)) is a positive matrix
and using (2.36) this is easily seen to be the case when B ^ 2. Similarly, the first
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inequality is satisfied when

0 < A < 1 - J\ - 1/c, where c = max \ 1, sup 4\q(k)\2\p(k)\2 '

Remark. Lemma 4.1 is also valid when ε = 0, — provided one requires q and p to
be, for example, continuous in k.

It is now clear that if we have a second Fock state ωs. corresponding to functions
qf and p' given by (3.10), where the Bogoliubov coefficient β is bounded, then ( , )s
and ( , ) s , define the same topology.

We now turn to Condition (A2) and let U:LS-+ L2(<?)® L2{P) be the unitary
operator such that

A computation shows that

(l °\ (4.3)

where S here denotes multiplication with the matrix S(k) of (2.22). We would get
the same result if we were to compute ΛΓ'^S'ΛΓ" 1, where

Thus

l 2

(A2) is then equivalent to zl:= (ί/S'C/*)1/2 - (USU*)1/2 being Hilbert-Schmidt. The
square roots can be easily computed since the second term is a projection whilst
the first term is just a multiple of a projection. Using | α | 2 — \β\2 = 1, we obtain

Δ = \β\A, where A=(

Provided β is bounded, A is a bounded operator with bounded inverse and Δ is
Hilbert-Schmidt if and only if

k = 0 1 = 0 m=-l

Thus for the closed universe we get global unitary equivalence, and hence also
local quasiequivalence if

\β(k)\SC(l+ky(3/2)-δ, δ>0. (4.5)

The case of an open universe, ε = 0, —, is more complicated. The multiplication
operator β has a continuous spectrum for β Φ 0 and is not a Hilbert-Schmidt
operator. Hence the corresponding Fock states are not unitarily equivalent. We
shall therefore need to apply Theorem 1.1 to the Weyl algebra over the phase space
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(K(Θ),Γ,γ), where K(Θ) denotes the image of 2(0) mK = 2(J()/(Π + m2)2(Jΐ).
To be able to identify K{Θ) in a simple manner with a subspace of Ls we choose
Θ to be the causal closure of a subset ^ of a Cauchy surface £fv Thus
Θ = D(%) = D + (<g)vD-(W), where D + {%) and D~(«) are the set of points xeJί
such that each past or each future inextendible causal curve respectively intersects
(€. We shall further assume that # is an open bounded subset of Sft with smooth
boundary since we shall need these properties in Sect. 5.

We next need to establish the relationship between K(Θ\ Θ = D(#), and
):= {(/,/ι)eL:supp/c:^,supp/ιci^} and we show that the closure L s(^) of

in Ls is just the image of the closure KS(Θ) of K(Θ) in Ks under the extension
of pt to Ks, a unitary operator which we continue to denote by pt.

Lemma 4.2. Let Θ = /)(#), tften

Proof. The propagation properties of solutions of the Klein-Gordon equation [3]
show that ptK(G) c= U<g) Hence pf JKs(0) c L s(^) and it suffices to show that pf JK(0)
is dense in Ls(^). To this end, given F = (f,h)eL(^)9 we consider a sequence /„ of
elements of 2(J(), where

and deCo(lR), \d(t)dt = 1, dH(t) = nd(nί). By writing E in the form given in (2.44)
we show that ptfn -> F as n -> oo in Ls(^). With the help of the Fourier inversion
formula (A.8) we get

- U?EfH)(k) = J^°G k (ί,/)K(y° - 0(#7)W - dB(y0 - t)a\t)h(k)}

(#j*#dΈfn)(k)= -

where dj denotes differentiation with respect to the ; t h variable. Since Gk(x°, y°) is
polynomially bounded in k uniformly for x°, y° in a compact interval (cf. Appendix
C) and hence in particular bounded in y° on the support of d for fixed x° and /c,
the dominated converges theorem together with (2.43) and (2.41) show that ptfn

tends to (/, h) in Ls(^) as required. Furthermore, /„ has support in 0 for n sufficiently
large, completing the proof.

Lemma 4.2 could also be deduced from Lemma A.3 of [3]. We are now in a
position to investigate local quasiequivalence using the phase space of initial data.
As in Lemma 4.1, one may can show that continuous functions q9p and q\p' with
p(k) = O(kll2% q(k) = O(k~1/2), p'(k) = O(k1/2), q'(k) = O(k~1/2) yield polarizations S
and S' satisfy (Al). To demonstrate the quasiequivalence of the restrictions of ωs

and ωs> to the Weyl algebra over L(^) we must consider the operators ESE, and
ESΈ, where E denotes the projection in Ls onto the closed subspace Ls(%>) and
verify that

(ESE)112 - {ESΈ)ll2e&2(Ls). (4.6)
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Since the square roots cannot now be computed explicitly, we fall back on a
sufficient condition for (4.6) to hold given in [15]. To this end, we pick χeCo{£?)
with χ ̂  0 and χ \ Ή = 1. As we shall show in Sect. 5, there is a bounded operator
χ on Ls such that χF = (χf, χh) and obviously χE = E. We now have

Lemma 4.3 [15]. If χ*(S-Sf)χe&ι{Ls) then (U) holds.

Here ^?1(LS) denotes the set of trace class operators on Ls.
We shall actually show that T:= Uχ*(S -S')χU* is trace class, where U is the

unitary operator Ό\LS-+L2{&)®L2{&) defined by (4.2). Now using | α | 2 - \β\2 = 1
we get

(cf. (4.3) and (4.4)). UχU* is given by an integral kernel of the form

where

χ(k, V) = Jέ/μ(x)«^(3c)xQc)^'(x)> (4.9)

and μ is the invariant measure derived from the Riemannian metric. We show that
the integral operator T has trace class by writing it as the product of two
Hilbert-Schmidt operators T=TfT2,

Since I - I is a bounded operator for β bounded and continuous, we
\otp/\p\ 1 /

have only to show that Tλ is Hilbert-Schmidt. This is the case when the integral
operators given by

I + (kΛΊ = \β(k)\1/2q(k)χ(k,k')p(k'\ l-(k,k') - \β{k)\Ί2p{k)χ(k,k')q{k'\ (4.11)

are Hilbert-Schmidt, i.e. when I±eL2(& x &). In order to estimate J ± , we use

|<j(/c)|2^c_(l + /cΓ\ |p(/c)|2gc + (l + fc). (4.12)

In the case ε = 0, we have

χ(k,k') = (2π)-V2χ(k-k'l χe^(R3), (4.13)

(1 + l l - l ' l ) 1 1 g ( l + | l Ί ) ( l + l^l)*1. (4.14)
We may therefore estimate

I l ^ ^
β{k)\\χ(kf)\2{\^\k'\). (4.15)

It now follows that I± is Hilbert-Schmidt if k\-*β(k) is continuous and

3 - δ , <5>0. (4.16)
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It could well be that the extra powers of k as compared with (4.5) are a result of
using Lemma 4.3.

In the case ε = —, we do not have the simple formula (4.13) at our disposal
and we need to apply some estimates on the Fourier transform obtained using the
method of stationary phase. Thus we use Theorem 7.7.1 of [16] to prove that, for
each ΛfeJN0, there is a cN > 0 such that

\χ(k,k')\ScN(l + \k-~k'\ΓN. (4.17)

The proof is relegated to Appendix D. The argument in the case ε = 0 is now easily
adapted to show that/ ± are Hilbert-Schmidt whenever \β(k)\ ^ c ( l + k)~3~δ,δ>0.

We may therefore summarize the results of this section as follows:

Theorem 4.5. Given two homogeneous isotropic Fock states ω and ω' characterized
by functions p,q and p\q' respectively, where q(k) = O(k~1/2) and p(k) = O(k1/2), let
β(k) be defined by (3.12) then
a) In a closed Robertson-Walker spacetίme ( ε = + ) πω and πω, are unitarily
equivalent if \β{k)\ ̂  c{\ + k)'i3/2)'δ9 <5 > 0.
b) In an open Robertson-Walker spacetime (ε = 0, —) the representations πωlΘ and
πω'\Θ a r e quasiequivalent for Θ = £>(#) provided p,q and p\q' are continuous and
\β(k)\(l k Γ 3 δ δ 0

This result, together with the factoriality of πω\Θ, to be proved in the next
section for adiabatic vacuum states, leads to Theorem 3.3.

5. Factoriality of the Local Algebras

In this section we complete the proof of local quasiequivalence for the adiabatic
vacuum states by showing that πω \Θ is factorial when Θ = D{%>) and # is an open
bounded subset of £ft with smooth boundary. Of course, we only need this result
for open Robertson-Walker spacetimes and our method of proof is to reduce to
the case of the Fock vacuum state in Minkowski space, where the result is well
known [17].

As in the last section, we work with the phase space of initial data (L, Γ, y) and
we let 9?s(#) denote the von Neumann algebra generated by the Weyl operators
W(F\ F = ΓFELS(^\ in the irreducible representation corresponding to the Fock
state ωs. We must show that 9ls(V) is a factor, i.e. that 9? s (#)n9ϊ s (^γ = C/, and
we use the following well known result, cf. [4; Theorem 3.12],

Theorem 5.1. ^Rs(^) is a factor if and only if

Ls(V)nLsW = 09 (5.1)

where Ls{^>)' denotes the symplectic complement of Ls(^\

LS(V)':= {FeLs:γ(F9F') = 09F'eLs(V)}9 (5.2)

and we have extended y by continuity to Ls.

Now Ls is, by Lemma 4.1, naturally isomorphic as a topological vector space
to the Hubert space H\=H^σ®Hσ,σ = j , where Hσ denotes the completion of
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CQ(^) with respect to the scalar product

(f,g)a = μkωl< J{k)g{k), f,geC%{!?). (5.3)

Furthermore, the closed subspace of H corresponding to Ls(^) will be denoted
H(^):=H.σ(^)®Hσ(^). The operators ωσ acting as multiplication operators in
momentum space will be considered as unitary operators from Hσ to L2(^). The
Hermitian form γ of (2.7) can now be written

γ(F, F) = i(ω'ιl2#f9ω
ιllW) - i(ω1/2K ω' 1 / 2#/'X F, FeL. (5.4)

Hence (5.1) is equivalent to

Hσ(%)'nH_σ(
(£) = 0 for σ = ± | , (5.5)

where

Hσ(V)' = {feH_σ:(ω-σLωσg) = O,geHσ(V)}. (5.6)

In the case ε = 0 the spaces Hσ(^) and their symplectic complements take the
same form as for the Minkowski vacuum ω 0 . Hence (5.5) for ε = 0 is equivalent
to the factoriality of π ω o \Θ, Θ — Ώ^€\ This property of the Minkowski vacuum
representation was shown by Araki [17]. As Araki defines the local algebras in
an a priori different manner and as his proof invokes duality, we present here a
proof whose basic idea goes back to an unpublished seminar of J. Bellissard in
1976. The elements of Hσ can be considered in the usual manner as distributions
from ^ ' ( R 3 ) and Hσ is continuously embedded in ^ ' ( R 3 ) . Thus the set of elements
of Hσ with support in a closed set is a closed subspace of Hσ. It follows that the
elements of Hσ(^) have support in the closure of c€. On the other hand, it follows
straight from the definition that the elements of Hσ(^)f have supports contained
in the complement of c€. Hence the support of a distribution in Hσ^€) n H _ J$)'
is contained in dΉ, the boundary of (€. By assumption ^ has a smooth boundary
and it is therefore locally diffeomorphic to a open subset of a hyperplane, for
example x3 = 0. Now the multiplication with C§-functions and the transformation
by local diffeomorphisms are continuous operations in Hσ [18; Theorems 2.2.5 and
2.6.1]. Thus, using a partition of the identity and local diffeomorphisms, an
heHJ$)nH-J$)' gives rise to a set hieHσ, i= l,2,...,fc, with support in the
hyperplane x3 = 0 such that h = 0 if and only if ht = 0 for all L Now a distribution
φ with support in x3 = 0 has the form φ(x) = ]Γ φjx1, x2)daδ(x3) [16; Theorem

2.3.5, Ex. 5.1.2]. The Fourier transforms of the ht are constant or of polynomial
growth in k3 and can therefore only be elements of Hσ for σ = ±\ if they are zero.

Remark. Since Ls and H = H _ 1 / 2 @ H 1 / 2 are naturally isomorphic as topological
vector spaces and multiplication by a Cξ-function is continuous in Hσ, the operator
χ defined in connection with Lemma 4.3 is bounded in the case ε = 0.

In the case ε = —, we again regard an element h of Hσ as the distribution
f\->(ω~σf,ωσh\ fsC^{^) and as in the case ε = 0 it follows that if heHσ(^)n
H^σ(^)f its support is in d%>. The proof of (5.5) will be reduced to the case ε = 0
and to this end we regard 6f0 and Sf~ as R 3 using the coordinates x\i= 1,2,3
and show that H~{^)c:Ho

σ with a continuous inclusion mapping. As we have
already shown that H° has no non-zero elements with support in d^7, (5.5) for
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ε = - will follow. To show that H~{^) a H°σ for σ = ± \ we first compare H~(<g)
and H£(#) for σ = 0 and σ = 1 using direct estimates, then derive a result for σ = ^
by interpolation and finally dualize to obtain a result for σ = — \.

Lemma 5.2. There are positive constants Aσ,Bσ,σ = 0,1, such that

Aσ\\h\\o

σ^\\h\\;SBJh\\°σ9 heCSW. (5.7)

Proof. The determinant of the metric on £f~ is g(x) = (l + ~x2)~x in these
coordinates and is strictly positive on each compact subset of IRA The inequalities
for σ = 0 are a direct consequence. We have

and it follows that || h ||f ^ ^ || /ι ||?, heC${Ή\ since the coefficients of the metric
g' 7 are continuous. Now the other estimate is a special case of the Garding inequality
[19; Theorem 36.1]. The differential operator P(3c,"δ) = 3^1/2(3c)flfϋ(3c)3j is uniformly
strongly elliptic in #, that is its principal part P2(x,Ί)):= gll2(x)gij^x)didj satisfies
for some α > 0,

thus

^ ^ α| Vh\2,
This together with the first part of the proof shows that A11| /i || J g || /i || ̂  as required.

To be able to prove the boundedness of the operator χ of Lemma 4.3 using
interpolation theory, we need the following lemma.

Lemma 5.3. Let χGC^(R3), then the mapping h\-^χh, Λ G C ^ ( R 3 ) , extends to a
continuous operator χσ:H~ -+H~ for σ = 0,1.

Proof The proof for σ = 0 is trivial. Now

+ dfidjh\χ\2 + (hd,χ)(χBjh)

and using

we get

(χfc,χfc)Γ -m2(χKχh)o ^

Since (χ/i,χΛ)o ^ co(Λ,h)ό we get (χΛ,χΛ)Γ ^Ci(/i,/i)r, / I G C J ( R 3 ) , as required.
As a corollary to these two lemmas we have

Corollary 5.4. Let χeCo(%>), then the mapping h\-+χh extends to give continuous
operators ~χσ:H~ -+H°σ and *χσ:H°->H;, σ = 0,1.

The operator ω2 = m2 — a~2(t)Δ is essentially self-adjoint on CQ(^~) [9] and
since ω2 ^ m2/, ω 2 σ will also be essentially self-adjoint on CQ(6^~) for σ ^ 1. Thus
the spaces /ί^ defined by completing CQ(^) with respect to the scalar product (5.3)
for σe[0,1] are just the spaces defined by quadratic interpolation (cf. [20; Ch.
VIII]) and we have

Corollary 5.5. The mappings χσ,J.σ and *χσ extend uniquely from # Γ or //?
respectively to continuous operators for each σe[— 1,1].



Local Quasiequivalence and Adiabatic Vacuum States 53

Proof. For σe[0,1] the result follows by the functoriality of quadratic interpola-
tion. If we identify the dual space of H~ and H® with HZσ and H°_σ respectively,
then we have χ'σ = χ_σ, ψσ = J,-σ and ψσ = "χ _σ, where ψ = gυ2χ and η = g~ 1/2χ
and the result follows.

Remark. We have now shown in particular that the operator χ defined in
connection with Lemma 4.3 is bounded in the case ε = —.

With the help of these lemmas we can deduce the factoriality of πω \ D(^) in
the case ε = — by proving

Lemma 5.6. IfheH;((#)nHZσ(
($)\σ= ± i , thenh = 0.

Proof, h is the limit of a sequence hn with hneC%1<g). Pick χeC$(R3) with χ(x) = 1
for 3cEΉ then, by Corollary 5.5, χhn converges in the || ||£-topology to a keH°σ{^).
Nowif/eQXR 3 )

(ω~σf ωσh)~ = lim (ω" σ /, ωσχhnΓ = lim ( ω " V ' 2 / , ωσχhn)° = ( α Γ y 2 /, ωσkf.

Since h has support in δ#, k also has support in d%>. Thus k = 0 and hence h — 0.
We can therefore sum up the results of this section up to now as follows:

Theorem 5.7. // ω is an adiabatic vacuum state on an open Robertson-Walker
spacetime then nω\Θ is a factor when Θ = D^€) and <$ is an open bounded subset of
some Sft with smooth boundary.

We conclude this section with some remarks on further properties of the nets
of von Neumann algebras associated with adiabatic vacuum states. If Θ is an open
subset of Jί, we define 9ίs(0) to be the von Neumann algebra generated by the
Weyl operators W(f) with / = ΓfeK(Θ) in the irreducible representation cor-
responding to the adiabatic vacuum state ω s . It is notationally convenient to
interpret 9ίs(X) for a general subset X of Jί to be 9Ϊ5(0), where Θ is the interior
of X. The net 0i->$Ks(0) is trivially additive:

W H V W s ί f l λ Θ = \jΘi9 (5.8)
i i

where V denotes the least upper bound in the lattice of von Neumann algebras.
This follows from the fact that 9)(Jt) has partitions of the identity.

We adopt the analogous conventions for the net ̂ t->9ΐs(^) defined over the
open subsets of some fixed £fx. This net is again additive:

We have also seen in Lemma 5.2 that

(5.10)

Now the phase space (L,Γ,y) and its local structure depend only on the
differentiable manifold Sft and we have seen that, in the case ε = 0, the topology
corresponding to the scalar product ( , ) s is the same for all adiabatic vacuum
states and all Robertson-Walker spacetimes with flat spatial sections. There are
several properties of the net ̂ h->9ίs(^) which are determined by (L9Γ9γ) and this
topology and are hence common to all adiabatic vacuum states including, of course,
the Minkowski vacuum. A case in point is the factoriality of 9ts(^) discussed above.
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Another such property is duality: 9is is said to satisfy duality for # if

(5.H)

where ^c denotes the complement of (€. Again this property of the vacuum
representation in Minkowski space was first proved by Araki [17] and we comment
here on what is involved.

Duality is equivalent, cf. [4; Theorem 3.12], to

(5.12)

and is thus, as claimed above, determined by (L, Γ, y) and the topology derived
from (v)s Now Ls(^c)' consists of the elements of Ls which have support in # ~ ,
the closure of (€. Next note that an element F of Ls with support in # is in Ls(#)
for the following reasons: we regard yt as R 3 and pick keΦ^TR3) with k(0) = 1
and set fcε(3c) = k{εx\ then k*F-+F in Ls as ε->0, cf. [18; Theorem 2.2.11]. Hence
we may assume that F has compact support. Now pick /te^(]R 3 ) with §dx*h = 1
and set hε(x) = ε~*h(ε~ί~x) then the convolution hε*F converges to F in Ls as
ε -> 0, cf. [18; Theorem 2.2.10], and is C00 with compact support in V for ε sufficiently
small thus FeLs(^) as claimed. As a consequence we have

v)9 (5.13)

where Jf runs over the open neighbourhoods of the origin since an element of the
right-hand side obviously has support in (€~. Thus duality holds for # if and only
if the net is outer regular at #, i.e. if

). (5.14)

The discussion so far makes it clear that any remaining problem in proving duality
for <€ can only concern the nature of the boundary of #.

To prove duality for #, the following assumption suffices: for each 3c ed%> there
is an open neighbourhood U of 3c and a continuously differentiate function
φ:U-+Έi so that %~ n U = {x€U:φ(x)^0} and Vψ(x)φO for all xet/. To see
this let FeLs have support in (€~. As shown above, it suffices to suppose that F
has compact support and following Araki [17] we first prove

Lemma 5.8. Under the above assumptions on <&, there is for each ~xe%>~ an open
ball B(x,ε-) centred on 3c with radius εΓ and a vector H~ so that (€~ nB(3c, ε7) + λn~
has a positive distance from d<£ for all sufficiently small λ>0.

Proof If 3c e^, we can take T?7 = 0 and ε7 so small that £(3c, ε7) c (β. If 3?G3^, we
choose a B(3c^x) and a continuously differentiable function ψ defined in a
neighbourhood of BCx.ε^ such that 5(3c,ε 1)~n (^" = {3ceB(x,ε1)".Ί^(3c)^O} and
V^(x)^0for ^ceB(x,εx)~. If we now pick 0 < ε < | ε 1 and translate B(x,ε)~ nW
by less than ε, the distance from the translated region to points of d%> which lie
outside B(x9εx)~ is greater than ^εί so we have only to control the distance to
dΉnBCx^εx)'. We translate in the direction of the inward pointing normal at
3c:~n~:= —Vψ(x)/\Vφ(x)\. Since Vψ is continuous the Mean Value Theorem gives

φ(y + λn~) = ψ(J) + λn^VφCy + 9λn^)

for some 5 G [ 0 , 1] depending on ~y. Furthermore since Vφ(x) Φ 0, there is an ε > 0
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such that

\Vψ(x)-Vψ(y + 3λn~)\Sί\Vψ(x)\

for all 0 < λ ^ ε and all ~y with | ~y — 3c | ^ ε. Hence

φ{y + ATΓy) £ *A(?) -A|V^(x)| + λ\Vφ(x) - Vφ(y + 3λnJ\ ^ — iA|V^(3c)l < 0

for 0 < λ < ε and all j / e ^ " n#(3c,ε)~. The compact sets %?~ nB(x,ε)~ + Λ,Ĥ  and
d^nB(x, ε j " = {yel^α, ε ^ i/^y) = 0} therefore have no common point and
hence are separated by a strictly positive distance.

We now pick a finite open covering of supp F using the balls B(x, ε-) and a
partition of the identity φv9 v=l ,2 , . . . ,n , subordinate to this covering then
F = YjφvF, with φvFeLs. Hence it suffices to suppose that F has support in

V

c€~ π 5 ( ΐ , 4 If we now translate F through λn~ then FλJΪ_,eLs and has support
in # for 0 < Λ. < ε. Hence FA l f 5 f eL s(#). Hence letting A tend to zero and using the
continuity of translations in L s, we conclude that FeLs(^). Hence we have proved
duality (5.12) for all open sets # with ^-boundary.

We now pass to the case of the hyperbolic Robertson-Walker spacetime. Ls(^c)f

again coincides with the distributions in Ls with support in (€~. To establish (5.12),
we first show how distributions in Ls can be approximated by distributions in Ls

with compact support.

Lemma 5.9. Regarding £f~ asΈί3 as before, let χeC^(!R3), 0 g χ ^ 1, with χ(x) = 1
for | J C | ^ 1 and χ(x) = 0 for |jJc|^2 and set χε(x)'.= χ(εx) for εe(0,1] then the
multiplication operators χε on Ls are uniformly bounded, i.e. | | χ ε | | s :gc, εe(0,1]. //
FeLs then χεFeLs has compact support and converges in Ls to F as ε—•&

Proof We have to show that || χε \\σ ̂  c for εe(0,1] and σ = ± \. However, if we
prove this inequality for σ = 0,1 it follows for σ = \ by interpolation theory [20;
Chap. VIII] and for σ = — \ by dualizing. For σ = 0 and σ = 1, the estimates in
Lemma 5.3 show that it suffices to prove that

sup |χ £ (x) |^c 0 , εe(0,l], (5.15)
xeR 3

ε(x)ύcu εe(0,l]. (5.16)

Now (5.15) follows at once from the definition of χε. To prove (5.16), we note that
in our coordinate system gij(x) = xιxj for i Φj and gu(x) = 1 -f (x1)2- Hence,
we get

sup g^drfWdj f(x)
3

sup

^9ίmaxsup|3 I χ(x)|2 jί sup ε2(l -f x2) J ̂  c'ε\l+4/ε2)^cί.

N o w , g iven F G L S , p i c k F'eL = &(&-) x C ^ ( ^ ~ ) w i t h \\F'-F\\s^δ a n d ε s o
smal l t h a t χεF' = F. T h e n \\F - fF\\s ^ \\F - F | | s + l l z Ί l s l l F ~F\\S^ δ(l + c),
c o m p l e t i n g t h e proof.
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To complete the proof of duality for ε = —, we must show that distributions with
compact support in (€~ can be approximated by elements of Ls(^). Corollary 5.5.
shows that the sets of distributions in Ls with compact support for ε = 0 and ε = —
agree. Let F be a distribution with compact support in c€~. Now we have already
seen that there is a sequence of smooth functions Fn with supports in a (bounded)
subset of ^ which converge to F in the || ||s-topology. Now by Corollary 5.5, Fn

converges to F in the \\-\\s-topology and we have proved duality for ε = — for
regions ^ with C1-boundary.

Appendix A

In this appendix we summarize the relevant facts on the decomposition of the
quasiregular representation U of the groups Gε defined in Sect. 2 into a direct sum
or direct integral of irreducible representations. In particular, we determine the
commutant of U(G~).

The spherical harmonics <S ,̂ X = (/c, Z, m) {k = 0,1,... / = 0,1,.. ., k; m = — /, — / +
1,...,/), on the 3-sphere form an orthonormal basis of eigenfunctions of the Laplace
operator on L2(^+).

Φύψ, 9, φ) = AkιΠ+{ψ)YUm{d, φ), (A.I)

where the YUm are the usual spherical harmonics on the 2-sphere, Πkl(φ) are real
polynomials in sin ψ and cos ψ related to the Gegenbauer polynomials and Akl are
real normalization constants. Since Yj,m= Yιf-m, we have

We let J f k denote the span of ^(fc,ί,m) as / and m vary then the J f k are invariant
subspaces and the restriction of U(G ) to the J^k are pairwise equivalent irreducible
representations. Our direct sum decomposition therefore takes the form

CO

k = 0

In the case ε = 0, we get a direct integral decomposition with the aid of a
Fourier transform. To each heC^(^°) we associate a function k\-+hk on R + , taking
values in L2(S2,dΩ):

hk(ξ):=μμ(x)^kl{x)h(xl (A3)

where <ĝ  is given by (2.17). Since # £ = ̂ _χ, we have

\(ξ) = \{-~ϊ\ (A.4)

The map h\-+h extends to express L2(5f°) as a direct integral of the constant field
L2(S2,dΩ)o\eτΈL+:

L 2 ( y ° ) = J L2(S2

9 dΩ)k2dk. (A.5)

There is an irreducible unitary representation Uk of G° on L2(S2

9dΩ) defined by

<?% (A.6)
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and we get a decomposition of U into a direct integral of equivalent irreducible
representations.

If we replace ^ ° by Sf~ and define <Ŝ  by (2.19) then (A.3), (A.5) and (A.6) yield
us a direct integral decomposition of the representation U of G~ into inequivalent
irreducible unitary representations [10; Chap. VI, Sect. 3.3]. We will now show that

ldΩ(ξ)Jk(ξ)hk(ξ) = μΩ(ξ)fA(ξl f,heCS(Sη. (A.7)

When ε = 0 this equation follows from (A.4) and when ε = + it follows from (A.2)
provided we interpret the integration as a sum over the discrete variables / and
m. When ε — —, we consider a Lorentz trasformation Lxy which interchanges two
points x,ye^~:Lxy(x) = y, Lxy(y) = x. Given f,heC%(£f~~) we have

7

The third equality here rests on the fact that Uk(Lxy) is a unitary operator (cf.
[11; Chap. X, Sect. 2, Sect. 4]).

We shall also have occasion to use the inverse Fourier transform given by

h(x) = $dTc&ux)h(k)9 (A.8)

(cf. [10; Chap. VI, Sect. 3.3]),
The main result of this appendix is the following:

Lemma A.I. The commutant ofU(G~) consists of the diagonalizable operators, i.e.
of the operators T of the form

where k\-*t(k)e(E is an essentially bounded, measurable function.

Proof We use [12; Proposition 8.6.4] and refer to [21] for statements about the
spectrum of the group SL(2, C). The above direct integral decomposition gives us
a measurable field k ι-> Uk of continuous unitary representation of 5£\ (4), and hence
of SL(2,C), on the standard Borel space R + . Let π and πk be the representations
of C*(SL(2, (C)), the C*-algebra of the group, associated with U and Uk respectively,
then

π = f πkk
2dK U(SL(2, C)X = π(C*(SL(2, C)))'.

C*(SL(2, (C)) is a liminal C*-algebra [22] and is separable since 5L(2, C) is separable.
The spectrum of C*(SL(2, <C)) is therefore a standard Borel space [12; 8.6.1]. It can
be considered as a subset of R 2 which carries the induced topology with the
exception of two points [21]. In particular, the mapping j/:/ceR+ι-»[πfc], the
equivalence class of πfc, is a continuous injection and a Borel isomorphism of R +

and f/(R+). Now let ξ\-+πξ be the canonical field of representations on the spectrum
Θ

of C*(SL(2,C)) as in [12; Proposition 8.6.4] and π:= j πξdv(ξ), where v is the image
of k2dk under η. Then πη{k) is unitarily equivalent to πk and, by [12; Proposition
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8.2.3], there is a unitary operator F: JTπ->JfΛ with π{A)= Vπ(A)V*, AeC*(SL{2, C))
and Z = KZK*, where Z and Z denote the algebra of diagonalizable operators of
Jfn and jfΛ respectively. Since by [12; Proposition 8.6.4] π(C*(SL(2,C)))/= Z,
π(C*(SL(2,C)))' = Z, as required.

Appendix B

In this appendix we deduce using standard arguments the results quoted in Sect. 3
on the solution of the coupled integral equations (3.15) and (3.16).

/α\
We use matrix notation writing x = 1 I so that our equations have the general

Wform W

x = y+Tx, (B.I)

Λ\ '
where y = , (Tx){t) = J T{t')x{t')dt' and T(t') is the 2 x 2 - matrix derived from

(3.15) and (3.16) with S being given by (3.18). We work over a fixed compact interval
of time /. There is also an implicit /c-dependence, x = xk and T =Tk and by
Lemma 3.2, there is a C > 0 such that

\TH(t)\^C(i+ky2n'\ tel. (B.2)

For each fixed fe, we look for solutions of (B.I) where the components of x are
supposed to be continuous functions of tel and we work in the Banach space
obtained by using a norm adapted to the problem:

| |x | |w:=maxsup
w(t)

(B.3)
i = l , 2 tel

where

{ (B.4)

We check using (B.2) that Γ is contractive:

The unique solution to (B.I) is therefore given by

x=ΣoT
ny (B.6)

We now investigate the dependence of the solution on the parameter k. For two
solutions xk,xk> we have

oo oo n

II Y, v, || < V \\(Ύn Ύn\v\\ < V V \\Tv~ίίT T \Tn~v\\ It it II

l l Λ f c Λ / c Ί l w ^ Za \ \ \ i k * k ' ) y \ \ w ^ : L l a W * k \ 1 k ~ 1 k ' ) ί k' II w II J 7 IIW
» = 1 « = l v = l

00 ϊl
< 9 V II T T II II Λ) II <? Γ* II T T II /"D Π\
= z 2L ~^W ιk~~~ ιw l lwll^l lw = ^ II 1 k ~ *k' \\w \B'')
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and

II Ά -Tk.\\w^γmax {sup|Tftt)- Tjί(ί)| j . (B.8)
L ιJ I tel J

Since by Lemmas 3.2 and (3.18), (k, t)ι—• 7γ(ί) is uniformly continuous on compacta,
we deduce that k\-^xk(t) is continuous uniformly in tel.

To deduce that βk = O(k~2n~1) uniformly in tel, we proceed as follows:

sup β M

re/ w(t)
- II II ^y V""1

where we have made use of (B.5). Thus

|ft(ί)|^(l+kΓ2w-Ml)>Lsupvv(ί) (B.9)
tel

as required.

Appendix C

In showing that the distribution G(x, y) defined by (2.42) yields the operator E via
(2.44), we were forced to interchange differentiation and integration in a few places.
This step will be justified in this appendix and we shall need some properties of
the function Gk(x°,y°) defined by (2.43) using solutions Tk of the differential
equation (2.40) which satisfy the subsidiary condition (2.41). These properties are
more easily derived if, as in Sect. 3, we replace the differential equation (2.40) by
two equivalent first order differential equations, which can then be studied using
the methods of Appendix B.

As we remarked preceding Lemma 2.4, Gk is independent of the choice of
solutions Tk. Thus, we can, for example, use the solution with initial conditions

Tk(t1)=Wk(t1\ tk(t1)=Wk(t1), (C.I)

where Wk(t):= Wk

0){t) is given by (3.5). If we write

(C2)

where αfc and βk are solutions of the integral equations (3.15) and (3.16) with
Qk = β(.°) then we see after differentiating and some manipulation that Tk satisfies
the differential equation (2.40) with initial conditions given by (C.I) and we have

Tk = *kWk + βkWk. (C.3)

Conversely, given a solution of (2.40) of the form (C.2) satisfying (C.I) and (C.3),
we get, using (3.14), a solution of the integral equations (3.15) and (3.16).

Now the methods of Appendix B yield, for each compact interval / c R, a
unique continuous solution t\-^((xk(t),βk(t)) of (3.15) and (3.16) and ock = 0(l) and
j?Λ = O(fc~1) each uniformly for tel and k\-+(ak(t\βk(ή) is uniformly continuous
for tel. In particular (k, t)\-+(ak(t), βk{t)) is continuous. Furthermore, being solutions
of (3.15) and (3.16), ock and βk will actually be continuously differentiable in t. It
now follows from (C.2) and (C.3) that the mapping (k, ί)ι—•(Γk(ί), fk(ή) is continuous
and Tk = O(k~1/2l fk = O(k1/2) uniformly in tel. Using the differential equation
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(2.40) one can prove by induction that (/c, ί)ι—• T"£v)(ί) is continuous and

1 / 2) (C.4)

uniformly in tel, where 7^v) denotes the vth derivative of Tk.
In addition to these properties of solutions of (2.40) we need estimates on the

derivatives of the <3 .̂ Since on any compact set K of £f~ we have

(x ξ) = (l + x2)1/2-~ξ x^(l + x2)ί/2-\x\^c>0,

we see immediately that

sup \Όv®Jτ\ ^ C(v; K)(l + fc)|v|. (C.5)

In the case ε = + , there is a similar inequality in [23]. £f+ is regarded as in (2.2)
as being imbedded in JR4 and <8̂  is regarded as a function of x = (x 0 , * 1 , * 2 , * 3 ) .
Pχ(x):= \x\h^(x) is then a harmonic polynomial and using this fact it is proved
in Appendix C of [23] that

sup |Z)v<3^|^C(v)fc2 + | v | , kφO. (C.6)
||

Now given fe9{Jί\ choose an / c R such that x° and {/: f(y°9 J) φ 0} are in
the interior of /. Let Tk be the solution of (2.40) with (C.I) as initial conditions.
To show that the order of differentiation and integration can be exchanged in the
expression for G(x, /) from (2.44) we must show that

γ(x,y°, fc):= ̂ (x)Gk(xo

9y
o)f{y°9k) (C.7)

and each of its derivatives with respect to x can be majorized by integrable functions.
The continuity of the derivatives of γ with respect to x follows from the same

property of tyj and Gk(',y°). From (C.4)-(G6) we get

sup \(Dly)(x,yo,k)\ ^ CV(
xelxK

and

2\l/2

Mίdk

for meN, w > ^ ( | + |v|). The Dominated Convergence Theorem now shows that
we can interchange differentiation and integration.

Appendix D

In this appendix we use the method of stationary phase to prove (4.17). Since the
continuous function (fc, fc')ι->#(fc, kf) is bounded, it suffices to show that for each
JVeN0 there is a cN > 0 such that

\χ(k,k')\^cN\'k-k'\-N, hφkf. (D.I)
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To this end, we write χ in the form

t(k9 V) = $dxu(x; Z ^ y I*-*'!/(*; MΊ ( α 2 )

where

r1gί/2(x) <P.3)
and

(D.4)

To prove (D.I) using [16; Theorem 7.7.1], we must show that for all multi-indices α,

\(D*u){χ X?)\ ^ ca9 tA'eS\ xeR3, (D.5)

\(D«xf)(x'XV)\^C fc,fc'eR3, xesuppχ, (D.6)

l(V*/)(x;I,"fc')l^>0, 1,1'eR3, xesuppχ. (D.7)

The following lemma yields (D.7) only if supp χ c j c ^ , where 0H\— {xe<$f: |3c | <^}.
To prove (D.I) for a general χeCo(Sf), we make use of the fact that £f is a
homogeneous space under Lorentz transformations.

Lemma D.I. Let χeC^(β\ then (D.5\ (D.6) and (D.7) hold and hence (D.I) holds, too.

Proof. Since χeC§($) and (x-ξ) is strictly positive on each compact set, (D.5)
follows immediately. Now we have

Xl (k'(χ-ξ)-k(χ-ξ')) + kξi(x-ξ')-k'ξ'i(x-ξ)},
(I+ x2)112

h is a smooth function in Ίx. The term in curly brackets and its derivatives with
respect to 3c are sums of terms of the form k' — /c, kξt — k!ξ{, k'ξj — kξ) or kξiξ'j — kξ\ζj
times a smooth function of 3c. These terms are bounded by an expression of the
form A\ k — k'\, for example

Ifc^-fcΈ&l ^ \k^-kf^\ + \ξ\k)- Zkj\ + mξj-k'ξ'iξjl ^3\k-V\. (D.8)

This yields (D.6) for α φ 0. One gets (D.6) for α = 0 from the estimate for V/ using

f(x; fc, k') = } (x-V/)(ί3c; k, k')dt.
0

To prove (D.7), we note that using \~k(x ξ')-~k\x ξ)\ ^ \k(x ξ')-k'(x ξ)\ we have

However



62 C. Lϋders and J. E. Roberts

where the second inequality is proved similarly to (D.8). We therefore have | V/| ^ c
for 13c I ̂  j and we have proved (D.7) completing the proof of the lemma.

We now want to prove (D.I) for an arbitrary φeC^(^). In fact, it suffices to
show that if χeCξ(β) and A is a Lorentz transformation then χΛ satisfies (D.I),
where χΛ(x):= χ(Λ~ι(x)) and 3c coordinatizes the point x = ((1 + Λ;2)1 / 2,3C) on the
hyperboloid (f~ in Minkowski space. To see this, note that suppi/^ c (J Λ^? and

picking a finite subcovering and a smooth partition of the identity subordinate
to this subcovering φ is just a finite sum of functions of the form χΛ with χ e C J ( ^ ) .
Furthermore, it suffices to prove (D.I) for the case that A is a boost in the
x1-direction since every Lorentz transformation is a product of rotations and such
a boost and it follows from the form of the eigenfunctions <&-% of (2.19) that if χ
satisfies (D.I) then so does the rotated χ. For such a boost, we have

Λ'1^) = φ , " ? ) " 1 ^ 1 chα - shoe, ξ2, ξ3)eS2, n(α,"ξ) = chα - ξ1 shoe.

Hence, as \ξx\ <£ \~ξ\ = 1, c h α - ξ1 shoo δ >0, and we must show

Iχί/cΛ-Hα/c'Λ-Hnίl^^lfc-I'Γ^ (D.9)

or, equivalently that

Since χ itself satisfies (D.I), it suffices to show that

\kA(ξ)-kΆ(ξ')\ύc\k-k'

Now

and have

l

where π' = n( - α, ξ ')• The first term in this expression may be estimated as follows:

\n\Έ-V)^sha^'(kfξfl-kξ1)^ξ

The second term can be estimated by

and arguing as above we have

\{ή-ή)k'\ ^

From these estimates we deduce (D.10) and hence (D.I) for all
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