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Abstract. We consider a class of quantum spin systems defined on connected
graphs of which the following Heisenberg X Y-model with a variable magnetic field
gives an example:

We treat first the case in which hx = ± 1 for all sites x and we introduce a unitary
dressing transformation to control the spectrum for λ small. Then, we consider a
situation in which \hx\ can be less than one for x in a finite set Sf and prove
exponential decay away from 9 of dressed eigenfunctions with energy below the
one-quasiparticle threshold. If the ground state is separated by a finite gap from
the rest of the spectrum, this result can be strengthened and one can compute a
second unitary transformation that makes the ground state of compact support.
Finally, a case in which the singular set 9 is of finite density, is considered. The
main technical tools we use are decay estimates on dressed Green's functions and
variational inequalities.
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0. Introduction

In [1] and [2], a technique based on dressing transformations was introduced to
study some problems of spectral perturbation theory for quantum many body
systems. This enabled us to answer a few basic and quite elementary questions
concerning the ground state properties, the existence of a gap, the definition and
mutual interaction of quasiparticles and the decay of correlations. In the present
article, such a technique is improved and more sophisticated questions are
addressed. The improvement consists in the construction of a dressing trans-
formation which is unitary. As remarked in [1] already, unitarity does not seem
to be a property compatible with the commutativity of the algebra of the operators
used to express the dressing transformation. Hence, the problem is how to allow
a little noncommutativity to achieve unitarity without compromising the control
of the cluster expansions defining the dressing transformation. The property of
unitarity is essential in order to use variational methods to treat problems in which
analyticity is missing and for which perturbative methods alone are not powerful
enough. One such problem is considered in Part II, where we study the asymptotic
behavior of eigenfunctions with energy below threshold, far away from the support
of a local perturbation. "Below threshold" means, roughly speaking, that in such
eigenstates there cannot be any quasiparticle in a scattering state, i.e. able to travel
to infinity. In Part III, this is used to establish a result that represents one of the
building blocks for the construction of the ground state of the random field quantum
XY-model in dimension 2, [3]. Finally, in Part IV, we consider the ground state
problem in a situation where the singular set 9* is the union of a finite density of
small clusters separated by a large distance. Some of the physical literature on
related problems is given in [5].

The present paper is subdivided into four parts, each depending on the preceding
one. In each part, the first section is introductory and contains the description of
the problem considered and the statement of the main results. The details of the
proofs are deferred to the other sections. This paper has been split into two articles.
The present article contains Parts I and II.

Part I. Unitary Dressing Transformations

1. The Model and the Results

The quantum spin systems considered in the present article, are defined on
connected graphs A of finite but arbitrarily large size. The vertices of A will be
called "sites" and denoted with letters like x, y,... . If x is a site of Λ,we write xeA.
The model introduced in the abstract is defined on the cubic lattice Έd. In this
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particular case, ΊLd has to be seen as an infinite graph in which each site is joined
to its nearest neighbors and only to them by a line. In this case, A is an (arbitrarily
large) connected subgraph of TLd.

The choice to work in the general setting of models defined on an arbitrary
finite graph A, is motivated by our intention to apply the techniques developed
here to the random field quantum XY-model in dimension 2; see [3]. This model
is defined on Έ? but, since a multiscale analysis is required to construct the ground
state, one needs to know how to deal with graphs obtained from Έ? by contracting
to a point the singular sets. The quantum spin systems considered in [1] and [2]
enjoy translation invariance and this property is used there to control the
convergence of cluster expansions. One of the purposes of this paper is to show
how to avoid such an assumption.

If (Nx 4-1) ̂  2 is the number of levels on the site x, the Hubert space is

(1.1)

and the Hamiltonian operator has the form

nλ=Σ*χ+ Σ ^lyolΆo> (i 2)
xeΛ 70°--^

where λ is a small parameter. If y0 a A is any subset, |yo |c is the volume of the
smallest connected set containing y0. In order to avoid writing absolute values,
we suppose that λ ^ 0. sx and tyo are selfadjoint operators acting on the spins in
x and y0, respectively. We suppose that tyo = 0 if y0 consists of one single site. The
basis of <ENχ+1 in which sx is diagonal, is denoted by

| 0 > , , I iyx9...,\Nx>. (1.3)

In this first part, we assume that

sx\oyx = o (1.4)

and

< i | s j i > ^ l for all i = 1,...,ΛΓ,. (1.5)

In the second and third parts, this hypothesis is relaxed for x in a finite set. We
also assume that

M = sup | | s x | | (1.6)
X

is finite and fixed, so that any function depending only on \s\ can be called a
constant. The condition (1.6) simplifies some of the arguments but is not essential
and in the Appendix at the end of Sect. 2, we discuss how to remove it. Let

(1.7)
sΛ

denote the ground state of Hλ for λ = 0.
Finally, we impose a normalization condition on the operators tyo in (1.2). To

state it, let us define an excitation to be a map y defined on the sites of A and such
that y(x) takes values in the set {0,1,. . . ,Nj. Let |y> denote the state

\y> = (g)\y(χ)>x (1.8)
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and let the support s(y) of γ be defined as the following set:

. (1.9)

A state u of Jf can always be written in the form

u = £u y |y>, (1.10)
y

where the sum runs over all excitations. The iΛnorm of u is defined as follows:

If ||ίyo |li denotes the L1-operator norm of tyo, the condition we assume to be
fulfilled is

sup Σ l U J I i ^ l (1.12)
x i?olc= w»yo 3 x

for all w=l,2,... .
In Sect. 2, we consider the ground state problem for the Hamiltonian Hλ. We

use a method based on dressing transformations that is a refinement of the one
used in [1]. As remarked in [1] already, it seems to be impossible to construct
unitary dressing transformations involving only operators belonging a commu-
tative algebra. On the other hand, the techniques developed in [1] to control the
analyticity of the dressing transformation for λ small, are based on such commu-
tativity properties. As a matter of fact, the construction of unitary dressing
transformations necessitates three ingredients that are not contained in [1]. First,
one can relax a little the condition of commutativity without losing control of the
convergence of the cluster expansions involved. Second, the dressing transformation
must not be written as the exponential of a skew-symmetric operator, but as the
product of an infinite number of operators of such a form. Since we are dealing
with a non-commutative operator, this makes a difference. The third new point to
understand, is how to solve a problem of an algebraic nature. In fact, in order to
control the convergence of cluster expansions, the operators entering into the
dressing transformation must belong to an algebra of skew-symmetric operators
satisfying a condition of weak non-commutativity. A simple minded comparison
of the number of free parameters and the number of constraints characterizing
such an algebra, gives a very discouraging result for systems with more than three
levels per site. However, thanks to a strike of luck, several algebras having the
right properties exist and, in Sect. 2, we construct one of them.

Unlike the (undressed) Green's function {Hλ — z)"1, the dressed Green's
functions have a remarkably simple behavior in that their kernel in the basis of
excitations decays exponentially fast with the separation among the supports of
the excitations in its two arguments. This feature of dressed Green's functions is
one of the basic properties of the dressed representation and it is independent of
the property of unitarity. However, it turns out to be of no use for applications if
it cannot be combined with estimates in the L2-operator norm for Green's functions.
Typically, one would like to derive such an estimate from information on the gap.
However, if the dressed Hamiltonian is not selfadjoint, i.e. if the dressing
transformation is not unitary, this cannot be done in any satisfactory way.

The second reason why unitarity is a property of crucial importance, is that
there are situations like the one considered in Part II, in which the lack of analyticity
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forces one to use non-perturbative (i.e. variational) arguments in the dressed
representation. However, the variational principle concerns only selfadjoint eigen-
value problems and selfadjointness, in general, is preserved only by unitary
transformations.

In the rest of this section, we introduce some notations and give a more precise
statement of the results proven in Part I.

We use the following ansatz for the unitary dressing transformation to be
constructed:

U(λ)=limeRHλ) 'eRviλ\ (1.13)

v-+ oo

U(λ) has to solve the following conjugacy problem:

U(λΓιHλU(λ)\0) = Eo(λ)\0} (1.14)

for all λ small enough, where E0(λ) is a constant. The operator Rv(λ) has the form

R«(λ)=fiλ'Rί (1.15)

with

K= Σ V r (U 6)
y:\s(γ)\ = v

τγ is a skew symmetric operator with support s(γ\ i.e. it acts only on the spins in
s(y) and it is such that

τy|O> = |y>. (1.17)

Notation. In this paper we denote with c or c0 all positive constants independent
of Λ. They may depend on |s[, though. Of course, c = 2c < c. The notation c 0 will
be used for constants defined in preceding sections, while c denotes any constant
arising in the current section.

The following is the first result proven in this part:

Theorem 1.1. // the operators τγ are chosen as indicated in Sect. 2, the dressing
transformation U(λ) solving the conjugacy problem (1.14) is uniquely determined and
it admits an analytic extension to a disc {λe(E\\λ\ < c). Moreover, we have

Σ A" sup X l l v J I ^ c . (1.18)
n = 1 xeΛ r.χes(γ)

To formulate the other results, let us write the dressed Hamiltonian as follows:

U(λ)-ιHλU{λ) = S+ V{λ) + E0(λ), (1.19)

where

S=ΣS~ (1-20)
xeΛ

E0(λ) is the constant appearing in (1.14) and V(λ) is the remainder. Due to (1.14),
we have

F(λ)|0> = 0. (1.21)

Equation (1.21) is one of the basic properties of the operator V(λ) and is at the
origin of several of the following results:



C. Albanese

Theorem 1.2. If λ^c, we have

(i) V(λ) has the form

where vyo is an operator with support y0 such that

sup X KWII x g ί c λ r 1 ; (1-23)

xey0

(ii) V(λ) satisfies the following relative form boundedness estimate with respect to S:

\(u\V(λ)\u>^cλ(u\S\u} (1.24)

for all ueJ^(Λ);

(in) V(λ) is relatively bounded in I)-norm with respect to S, in the following sense:

WS-^V^S-^W^cλ; (1.25)

(iv) V(λ) is relatively bounded in L2-norm with respect to S, in the following sense:

| |K(A)|ιι>||2g(a)||Siι||2, VweJf; (1.26)

(v) V(λ)\Q) is the ground state of Hλfor λ small and its energy is separated by a
gap (1 — 0(λ))from the rest of the spectrum of Jf Λ;

(vi) The kernel of the dressed Green's function

G( 7 ,y ' )^<yl(s+κμ)ΓΊ/> (1.27).

for s(y\ s(y')φ0, satisfies the following decay estimate

sup Σ \(Hy,yΊ\ύ(cλf9 (1.28)
y γ':de(s(λ),s(y'))*k

where, ί/yo»/o c Λ, we define

dc(y o,y'o) = min {\Γ\ for Γ c A such that for all xeγ\y'o (respectively yf

0\y0)

there is a path in Γ joining it to y'Q (respectively yQ)} (1-29)

The three relative boundedness estimates contained in Theorem 1.2 are all quite
important, because they permit us to control the convergence of random walk
expansions expressing dressed Green's functions in several different norms.
Moreover, they permit to establish the positivity of certain operators entering in
the variational inequalities contained in Parts II and III. Let us remark that in
this problem there are two different norms arising in a natural way: The L1 norm
defined in (1.11) and the L2-norm of Jf. The ίΛnorm is useful to control cluster
expansions, while the L2-norm is indispensable to bound the norm of Green's
functions and to express variational inequalities. This is the reason why we need
all the relative boundedness estimates in Theorem 1.2.

Section II contains also the proof of the following result concerning the decay
of correlations in the ground state:

Theorem 1.3. IfΘyo and Θy>o, are two operators of L1-operator norm one and with
supports y0 and y'o, respectively, we have

^ (1.30)
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where

0, /o) = min {d(x9 y), xey0, yey'o}.

2. Construction of a Unitary Dressing Transformation

The aim of this section is to define the operators τy in (1.16) and to give a proof of
Theorem 1.1.

To define the operators τγ in (4.16), let us look at C N + 1 as the subspace of the
linear space

CZ = © C (2.1)
keΈ

of the vectors {u(k))keZ with u(k) = u(k') if k ~ fc', where ~ is the following equivalence
relation:

k ~ k! iff 3neZ such that k = ± k! mod 2(N + 1). (2.2)

Let us introduce the following operators acting on <CZ,

(Tnu)(k) = i[u(k + n) + u(k - n)l (2.3)

The subspace <EN defined above is invariant under Tn. In fact, for all integers
if k~ k! then either k + n~k' + n or k + n~k' — n. Hence, if weCf, n = Έ and
k ~ k! we have

Λ) + M(/C - n)) = !(u(fc' + n) + u{k' - ή)\ (2.4)

The operators Tn in (2.3) are symmetric and we have

TJ0> = |π>, (2.5)

for all ne{0,l,...,iV} and

TnTm = UTn+m+Tn_ml (2.6)

T-n = Tn, (2.7)

for all n.meΈ. In particular, from (2.6) and (2.7) we see that the operators Tn are
mutually commuting, i.e.

[ Γ π , Γ m ] = 0 Vn,mG{0,l,...,N}. (2.8)

Let Tnx be the operator Tn defined in (2.3) and acting on the copy of <ENχ+1

attached to the site x of Λ. Moreover, let Tnx be the skew-symmetric operator
with support {x}, such that

5;., = l»>»<0|- |0> J B e <»| . (2.9)

If y is an excitation, let us define

'=πL Σ W o { Π τyix)λ
W)Uoes(y) \xeφ)\{x0} /yi) (no)

eφ)\{x0}

The operators τy in (2.10) are skew-symmetric as required, and their L1-operator
norm is one. Unlike the operators used in ,[1] and [2], they do not form a
commutative algebra, but since they contain only one center of non-commutativity
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"diluted" over all the support, the norm of the commutators is small enough to
control the cluster expansions defining R(λ), Such expansions are the next topic
to be discussed.

By expanding both members of (1.10) in powers of λ and equating the
coefficients, we find the following recurrence relations for the operators Rv

n:

t > = l

Σ ^
— £vk (V)\

where S is defined as in (1.20) and

(2.12)

Let us remark that if n = 1, rlγ = 0 unless \s(y)\c = 2, while at the nih order of
perturbation theory, in the operator JRJJ only clusters y of size

I s(y) I ̂  I s(y) \c :§ n -f 1 (2-13)

are present.
In order to control the convergence of the expansion defined by (2.11), let us

introduce the following numerical sequence

r* = sup 2,
x y:xes(y)

Σ
y:xes(y)

(2.14)

For n — 1, we have

x y:xes(y)

= S U P Σ IVollUyolOMIi ^ 2 . (2.15)

|y°olc=2

If xeΛ, let Px be the orthogonal projection onto the subspace of the states
with the spin in x excited. Let us estimate the following norm:

sup

|s(yi)l=t>i

g2(sup £ HtJIibΌlYsup Σ Kyι:

2(sup Σ hm
\ x \s(γi)\=vι

(2.16)
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where

x \s(γ)\=v
xes(γ)

r i y | .

Let <Fψ be the operator with support yaΛ such that

(2.17)

(2.18)

ψ contains only clusters of size ^vo + vv The number of centers of non-
commutativity that Fψ contains is ^ v0 + 1 and, due to (2.16), we have

, ^ 2(ϋ0 (2.19)
x xey

Hence, one can bound as follows the double commutator in (2.11):

sup

| s ( y i ) | = i > i , | s ( y 2 ) | = t > 2

= sup
x

^ sup

4-sup (2.20)

The first sum in (2.20) can be split into a sum over γ2 such that s{y2) intersects the
centers of noncommutativity of 3Γψ^ plus the remaining terms for which γ
intersects the center of non-commutativity diluted in τV2. The first term is

^2(i7o + l)fsup
xey

sup X |r i 2 V 2
yes(γ2)

\s(y2)\=V2

(2.21)

The remaining terms are bounded from above by

s u p

\s(γ2)\=v2

^ > o + ^ ) 2

a 4 \ΓiιΌι ι?jr i 2 l,2. (2.22)

Finally, the second term in (2.20) is

( Σ
\ x xes(y2)

y yey-

(2.23)
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Adding up (2.21), (2.22) and (2.23), we find

(2.20) ^ 4(v0 + υM v0 + 1 + — + 1 yrt^v1){rf2V2v2). (2.24)

By iterating the arguments above, one arrives at the following estimate holding

sup

...\s(yu)\=vk

(2.25)

Since the volumes are ordered by construction, i.e. vί ^ •• ̂  υk, we have

(2.29) ^ 4k(v0 + l)(ι;0 + 2) . (ι?0 + k)'

.Π ̂ ^ ) ̂ Σ̂ (2.26)

A similar estimate can be derived for the first term in (2.11). Namely, we have

k

sup ^Sk\s\kl (2.27)

where |s | = sup Hs,||. On the other hand, the ίΛnorm of the left-hand side of (2.11)

can be bounded from below as follows:

π+i

PxΣSRl\0>\\ = Σ
l | | (

Σ \ \ Σ ^ ^ X
Thus, for all π ^ 2 the following recurrence inequalities hold:

1 ^ X \rny\\s(y)\ = rϊ. (2.28)

Σ 8k2»°ff1 r?fc +
ί ii + ••• +iic = »-»o+ 1 »

r£. (2.29)

If r*(/l) is the formal power series

(2.30)
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we have

r*(λ)< Σλ" + ( Σ A"°-
n = l \ vo = 2

11

* - 1 -8r*(A)l
1 — or (Xj j

( 2 3 1 )

Since the equation

has a solution a*(λ) analytic in a neighborhood of λ = 0, and since α*(/l) majorates
the series (2.30), we conclude that (2.30) converges for λ small. In particular, the series

g l ' s u p X \rπy\\s(y)\
n = l x y:xes(y)

(2-33)

converges for λ small. This implies that U(λ) is analytic in λ for λ in a disc around
A = 0 independent of Λ. This completes the proof of Theorem 1.1.

Appendix - Removing the Condition \s\ < oo. The condition |s | < oo is not satisfied
in certain models of interest like the one considered in [1] with Hamiltonian

< cx).

The Hubert space is

(2.34)

(2.35)

nx is the number operator in x and c*,cx are the Bose creation and annihilation
operators in x. In this case the spectrum of sx = j(nx + \)nx is unbounded. However,
if as in [1] we restrict ourselves to the subspace with one particle per site, we can
still find a unitary dressing transformation for Hλ. We have to modify as follows
the definition of Γ π

2 2

( 2 3 6 )

( 2 3 7 )

that is true because at the n t h order of perturbation theory there can be at most
n + 1 particles in one site. This forces to change (2.31) as follows:

The bound (2.31) can be replaced by

41

~ 8 r * ( A ) Γ ' + F ( r * { λ ) ) ' ( 2 3 8 )

where

(2.39)
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However, the analyticity of (2.38) follows from an application of the implicit function
theorem as above.

3. Relative Boundedness Results and Decay of Dressed Green's Functions

This section is dedicated to the study of the dressed Hamiltonian

S + V(λ) = U(λ)~ ̂ HiUiλ) - E0{λ) (3.1)

defined in Sect. 1 after (1.19), and contains the proof of Theorem 1.2 and
Theorem 1.3.

Proof of Theorem 1.2.
(i) We have

V(λ)= Σ W Σ T ^ C - K ^ 1 ] - * ! ? ]
m = l (̂  vi£~ £vk \V)l

ii + +ik = m

Σ Σ ^ Γ Γ Σ tΛ.«?.'] ] } (3-2)+

Hence, if we express V(λ) as a sum

of operators vyo(λ) with support y0, we see that the first non-vanishing term in the
expansion for vyo(λ) in powers of λ is of order at least |yo |c - 1. Hence, due to the
bounds in Sect. 2, we have

sup Σ KoWUi^ Σ
x y o : | y o | c ^ n m = n-l m = n-l

(3.4)

where

α (A)= Σ <*•"> (3-5)
m = l

is the function analytic at λ = 0, implicitly defined by Eq. (2.35). Q.E.D.

(ii) If

u = Σuyτy\0)eJf(Λ) (3.6)
y

is a wave function, we have

Σ \uyur\KY\V(λ)\y)\

(3.7)
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It is enough to prove that the bound

(3.8)

y '

holds for all excitations γ. Since by construction we have

V(λ)\0>=0, (3.9)

one can estimate as follows the left-hand side of (3.8):

ύ\s(γ)\snp X Wυjλ)^ ίΞ(c0λ)\s{y)\. Q.E.D. (3.10)
x yo' xeyo

(iii) We have

2 2 1 f 2 ^ \ \ 0 } \ \ 1 (3.11)

< s u p

where we used the inequality

/ l.dVil V/2

^ + 1 (3.12)
\\s(y)\-i

that holds for all j = l,2,...,(|s(y)| - 1). Q.E.D.

(iv) We have

Σuyu'y(y'\V(λ)2\y)\{V(λ)u\V(λ)u-)\ =

l«yl^l«y'l

X X y > (3.13)
7 y'

Moreover, we have

ΣK/I W h > > ^ Σ \<y'\V(λ)\y"y\Ky"\V(λ)\y)\
y ' y'y"

^Σ(cA)|s(y")| |<yΊ^)l7>, (3-14)
y "

where we used again (3.8). To conclude the proof, it suffices to verify the bound

Σl^")ll<7Ίκμ)|y>l^(a)|s(7)|2. (3.15)
y "

We have

Σ (\s(y)\+j)\<γ"\ίV(λ),τy-]\o>\
| | l l
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j = 0 x yo'.xeyo

Ivol^j

S Σ IΦ)KIΦ)I +JKcoλγ9 (3.16)

where 7 = max ( l j ) . Hence, we have

(3.15) ^ |s(y)|2(coy)(l + (1 - coλ)~') + \s(y)\(coλ)(l - c0A)"2 ^ (cλ)\s(γ)\2 (3.17)

if /I is small enough. Q.E.D.

(v) As a Corollary of any of the estimates (ii),(iii) and (iv), we have that U(λ)\0}
is the ground state of Hλ and its energy is separated by a gap (1 — 0(λ)) from the
rest of the spectrum of Hλ. This is a consequence of quite standard analyticity
arguments; see [1] and references therein.

(vi) Let us prove the bound

Σ \G(γ,γf)\^(cλ)\ (3.18)

where G = (S+V{λ))~\ s(y),s(γ f)Φ0 and dc{s(y\s{y')) is the distance defined in
(1.29). We have

(3.19)

where we use (3.12). By expanding the resolvent in geometric series

(S + Viλ))'1 = Σ S-ι/2[S-ll2V(λ)S~ll2γS-112, (3.20)

we find

Σ K/KS + ̂ r(λ))~1|y>|
dc(s(y'),s(y)) = fc

1 °°

ύt Σ (cXfi + "+*'£fiW
i> ( 3 2 1 )

n = l kι+ +kn^k j = k

where the sequence bj is such that

f ftμ^MJCl+ίl-cAΓ^Cl-MMl+α-cAΓ1)]-1. (3.22)
7 = 1

Q.E.D.

Proof of Theorem 1.2. If ^ y o is an operator with support Vo^^^ i*s vacuum
expectation value can be expressed through the following cluster expansion that
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converges for λ < c:

<ι/(λ)θ|0ji7(λ)o> = (o\u(λyι&you(λ)\oy

w=l Vi^- ^Vk |s(yi)|=t;i,...,

i, + - + ik = n \s(yk)\=vk

(J.ZJ)

The expectation values appearing here vanish unless

s(yi)πyo

:?L0,..-,s{γk)nlyov 'Vs(yk-1)~]Φ0. (3.24)

In the case in which we have a product of two operators Θγo and Θγ>Q, with supports
yo,y'o respectively, separated by a distance d(yo,y'o) = n, the expansions in powers
of λ for the two functions

y o ^ (3.25)

and

(3.26)

coincide up to order n. In fact, only at orders ^ n there are clustering touching
both y0 and y'o. Since the ^-operator norm of Θγo and Θy>o is assumed to be
normalized to one, the sum of the terms of order g; n can be estimated to be less
than (cλ)n. Q.E.D.

Part II. Exponential Decay of Dressed Eigenfunctions Below Threshold

4. Introduction, Notations and Results

In this part of the paper, we consider a model with Hamiltonian operator of the form

Σ Σ V
xeΛ jgc/i

Here, the notations have the same meaning as in Part I, except that sx is no longer
assumed to have a g a p ^ 1 for x in a finite set ̂ c A We study the asymptotic
behavior away from Sf of eigenfunctions of low energy and we are interested in
finding bounds that hold for all λ smaller than a constant independent of both Sf
and A. The estimates we establish are valid starting from a distance from 5? that
depends on \£f \ and on the energy of the eigenfunction, but not on the size of A.

Since for xeϊf the gap of sx can be arbitrarily small, the attempt to look for
a dressing transformation solving the ground state problem, is bound to fail due
to small divisor problems. This is not a mere technical obstruction, but it signs a
possible lack of analyticity of the ground state as a function of the perturbation
parameter λ. Nonetheless, it is still possible to use perturbative methods to
study the asymptotic behavior of the eigenfunction "below threshold", i.e. the
eigenfunctions with energy less than the ground state energy plus one. Since an
excitonic quasiparticle away from Sf has potential energy at least one, in an
eigenstate below threshold there cannot be quasiparticles in a scattering state free
to move to infinity. Since on Sf the potential energy for excitations is every low,
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one expects the existence of several eigenfunctions below threshold. They are
mutually orthogonal and ought to be quite different one from each other, close
to £f. However, their asymptotic behavior far away from 9* is very similar because
they are locally very close to the ground state. To state this property more precisely,
it is convenient to pass to a unitarily equivalent dressed representation and a few
definitions are needed.

Let us introduce the regularized Hamiltonian H™g as follows:

H\cg= Y 5 χ + y (1-P.ON ) + Σ λ^~ιty . (4.2)

Let us compute as in Part I a unitary dressing transformation U(λ) for Hrχg and
let ETQg

λ be the ground state energy of Hx£g. We propose to work with the dressed
Hamiltonian

S + V(λ) + W(λ) = U(λ)~ιHλU{λ) - £Γo% (4.3)

where

S=ΣS~ (4-4)
xeΛ

V(λ)=U(λΓίH\*gU(λ)-E'0**λ- Σ sx-Σ(ι-p\o>J (4.5)

and W(λ) is the remainder

W(λ) = U(λy'Γ Σ (sx - 1 + P|o>jlU{λ) - Σ (sx - 1 + Pl0>x) (4.6)

We still have

K(A)|0> = 0. (4.7)

Moreover, if we represent W(λ) in the form

W(λ)= Σ MVoλ (4-8)

where W^Q) is an operator with support y0, we have

Σ \Myo)\\i^\y\(coλf, (4.9)

where fe = max(l,/c). If >1 cz 4 is a set, ^(yo^Ό) denotes the distance between the
two sets yo,γ'o c /i defined as follows:

dA(yo,y'o) = inf { |F|, where Γ c y l i s such that for each
point of yo\y'o (respectively 7Ό\y0) there exists a path in
Γ connecting it to γ'o (respectively γ0) and/or to A}. (4.10)

Equation (4.9) is a consequence of the estimates in Sect. 2 on the coefficients rny

entering in the dressing transformation U(λ).

If n is an integer ^ 1, let us define the neighborhood £fn of £f as follows:

<?n = {xeΛ such that d(x, Sf) g n) (4.11)

and its boundary

dPn = {xeΛ such that n^d(x,S?)£n- 1}. (4.12)
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The following is the main result of this part:

Theorem 4.1. Let 0e[O,1). There are constants independent of θ such that if

• o g ^ , , * ) ) (4,3)
\logc0λ\

and

λ^c{l-θ)2 (4.14)
then the following is true: If we represent an eigenfunction u of S + V(λ) + W(λ) in
the form

« = Σ Φy<S>τy\0^n} (4.15)
s{y)<z~9>n

with φyeJf(ά^n\ and if the energy E of u is such that

E£Eθ9λ + θ9 (4.16)

EOίλ being the ground state energy of Ho λ, we have

Σ WΦyh^lS&nW-ΘΓ'-^C^fλf (4.17)

for al\k=\χ... .

Notations. Let us introduce the L24-norm || ||2,i
 a s follows: if ueJf(Λ) and we

write it in the form

u= Σ 0y®T y |O^>, (4.18)

then

Il«ll2.i= Σ llΦylU (4.19)

Here n is the integer in Theorem 4.1.
For the applications in Part III, we do not need this result in full generality,

but only the following Corollary:

Corollary 4.2. //

w = Σ w Λ l ° > (4 2°)
y

is an eigenfunction of S + V -f W with energy
ESEoλ + i (4.21)

then there are constants such that if λ^c and

" * 2

we have

\ 1 / 2

Σ Kl2 ύ\dyn\{cjλ)k. (4.23)
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This Corollary follows from Theorem 4.1 with θ= 1/2 because the bound (4.17)
in L2 1-norm is stronger than the bound (4.23) in L2-norm.

As remarked above, the proof of such results is based on a combination of
perturbative and variational arguments. The latter are necessary in order to get
some information about the behavior of the eigenfunctions near ίf. From them
one can see that if we go far enough from Sf9 we can control the decay of u with
a convergent random walk expansion. In the rest of this introductory section, let us
introduce some other notations and state the intermediate result to be proven with
a variational method in Sect. 5. The random walk expansion that permits us to
conclude the proof of Theorem 4.1, is discussed in Sect. 6.

lϊAczΛ, let us define VA9 VdA and V^A as follows. If UA(λ) is the unitary dressing
transformation computed as in Part I for the Hamiltonian HT£* restricted to A,
i.e. for

l> Σ Σ \o (4-24)
xeS?nA xeA\Sf ϊo^Λ

then

VA(λ)=UA(λΓ1H^(A)UA(λ)- £ ( 1 - P , O > J - Σ sx-E%t{A)9 (4.25)
xeSfnA xeA\Sf

where E%${A) is the ground state energy of H™g(A). Analogously I define V^A(λ).
The boundary term VdA(λ) is the remainder

VδA(λ) ΞE V(λ) - VA(λ) - V^λ). (4.26)

Let us notice the following basic property of VδA(λ):

VdA(λ)\θy = O. (4.27)

One can treat the W term in a similar way and define

WA(λ) = UA(λΓ'Γ Σ fcc" 1 + P|o>jl UΛ(λ) ~ Σ (sχ - 1 + P\o>x) (4-28)
LxeynΛ J χey

and

WdA{λ)=W(λ)-WA(λ). (4.29)

The S term requires a special treatment. In the following, if n ̂  0 is an integer,
we decompose S into the sum of three parts

S = {SPn - S%n) + Sdyn 4- (S^n - S$n). (4.30)

Here,

syn= Σ_ 5χ» s~yn= Σ s*> ( 4 3 1 )

and

S^n= Σ (coλf/mx^)+ι/2sx, (4.32)

(4.33)

(4.34)
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The constant cQ appearing in (4.32) and (4.33) is fixed in Sect. 5 so that Ve^n

turns out to be relatively form bounded with respect to Sd&n in the following sense:

| < u | K ^ » ^ < u | S ^ » + ( c o λ y + M ^ l (4.35)

for all UEJ^(Λ) and all integers n ^ 1.

The main result in Sect. 5 is an estimate on the asymptotic behavior for large
n of the ground state energy En of the operator

Theorem 4.3. // EOλ is the ground state energy ofS+ V(λ) + W(λ\ we have

\E —E I < (cλ)i+^1t2)n\<??\ (4 37)

for some constant c (independent of £f and A).

5. Preliminary Decay Estimates for the Ground State

In this section, we fix the constant c0 appearing in the definition (4.32) of the
operators Sd^n and we prove Theorem 4.3.

Let us start with the following lemma.

Lemma 5.1. If we expand Vd^n(λ) as follows:

where vd(y0) is an operator with support yθ9 we have

/ j II Vdyn\jo) II l = iΛ'O'v ly ^/

for all n = 0,1,2,... and all xeA.

Proof Although explicit formulas are too long to be worth writing here, it is not
difficult to see that Vd^n can be expressed as the sum of clusters of operators that
can have one of the following two forms: Either they can be written as

with yon&nΦ0 and y o n ( ~ ^ ) # 0 and the coefficients rijtyj,j=l,...,k9 are
those appearing in the total dressing transformation U(λ). Or the clusters in Vd&n

can have the form (5.3), but with γ0 cz <fn or y0 c (~ Pn) and the coefficients ri</y"
come from U{λ\ U^n(λ) or U^pn(λ). In this case, the sequence (ίi,...,ik) must be
such that

ii + -+ 1*^1+^0,^). (5.4)

In fact, the difference among the operators U(λ\ U^n(λ) and U^pn(λ) are due to
those clusters, which among the clusters appearing at lower orders of perturbation
theory that generate them, have at least one cluster intersecting both Pn and ~ Pn.

If we decompose Vd^n as in (5.1) and if x is a site of A, then the minimum
order in λ at which in the expansion (5.3) there appear clusters containing x,
is ^ d(x,dSfn) + 1. Hence, (5.2) follows from the estimates in Part I. Q.E.D.
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Let us define

S^n= Σ (coλrmx'^)+ι/2sx, (5-5)
•xe~Sf

where c0 is the minimum constant such that (5.2) is true Vrc and V X E Λ Let us
suppose that λ ̂  l/64c0, so that

n (5.6)

I also suppose that λ is so small that

ΪSA>\VA\ (5.7)

for all regions A a A such that Ar\Sf = 0.

Lemma 5.2. We have

\(u\VdPn\uy^(u\Sdyn\u)+(coλ)n + 1\<?\ (5.8)

for all ueπ{A) and all n = 0,1,2,... .

Proo/. By expanding u in the excitation basis

w = Σu y τ y | 0>, (5.9)
y

we find

^2Σ«? Σ Σ KyΊC^>o),τy]|o>ι^2Σ«y

2 Σ (coxΐ+"*
y xes(γ) γo:xeγo y xes(y)

from which (5.8) follows. Q.E.D.

It is now possible to pass to the proof of Theorem 4.3. I prove by induction
on n the following result, from which Theorem 4.3 follows:

Theorem 5.3. For all n= 1,2,... and all integers m with 0 ̂  m < n, we have

(i) | £ n - £ m | ^ ( l + 3rfm)(c oλ) 1 + m ' 2 |^ | , (5.11)

(ii) ζun\S^Jun}ί3(dm+l)(coλ)1+m>2\y\, (5.12)

(iii) <un\SίPn\um>£dH(coλ)1+"i2\Sr\, (5.13)

where

4 I = 9 4 " - 1 - 1 . (5.14)

Proof. For n = 1 and m = 0, we have

(5.15)
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where the boundary operators Vδy and Wδy are the ones giving the decompositions

^ = V+^+*W> ( 5 1 6 )
W^Wy+Ww (5.17)

On the other hand, we have

_ / , . c \_y _L

> E — 2(c λ) 1 ^

Hence

1 _ι ^(u \£f - Iii N

1 17 J7 1 ^ 0 /'/̂  2
1 1 Ol ^^ ^>ytnΛ

C i 1/ O

(5.18)

(5.19)

and

<«xIS^.^IUi > ̂  2 [ £ t - £ 0 + 2 ( c o λ ) | ^ | ] g 8(c 0A)|^|. (5.20)

Let now n > 1 and let us suppose that (i),(ii) and (iii) have been proven up to n — 1.
We have

En ^ <umn ^

VPm + W?m - S?J + (Se^ + V^m - SiPn

(5.21)

On the other hand, we have

ΛyJun>. (5.22)

Hence, we find

| £ n - £ J ^ ( 3 r f m + l ) ( c o l ) 1 + m / 2 | ^ | (5.23)

and

<u,\SyAym\u.> g 3(dm + l ) (c 0 A) 1 + - ' 2 | ^ | . (5.24)

Finally, we have

(c0

(5.25)
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Hence (5.13) holds if

dn = "Σ 3 ( * + dj) = 3 + 4dn-1 = 9 4W" x - 1. (5.26)

Q.E.D.

6. Decay Estimates in L2 '-Norm Below Threshold

This section contains the proof of Theorem 4.1.
Let n be an integer to be fixed later on and let P be the orthogonal projection

onto the space spanned by the states of the form φ®|0^^ n > with φeJί? {£?„).
Let

7 7 = 1 - P . (6.1)

Let u be a dressed eigenstate with energy E<EO + Θ. We have

(S+V+W-E)u = 0. (6.2)

Hence,

(S + K+ W-E)Πu = (S+ V+ W-E)Pu, (6.3)

i.e.

( o + tΣ *fλ + Kk + F~k)tf« = «o (6-4)

Here we use the notations

uo = Π(S+V+W- E)Pu = Π{VdPn + WdPn)Pu (6.5)

and

Do = Π(S + K n̂ + W?n - E)Π. (6.6)

The operator Vfl has the following matrix elements:

\ M ^ni^/ I o otherwise,

and K(*}

n̂ and Wf£n are defined in a similar way.
The proof is based on decay estimates for u0 and on the following representation

for 77M:

= Σ Do-
1/2Γl>o-1/af Σ ^ i + W% + ̂ k ) ^ o 1 / 2 T D 0 - 1 / 2"O (6.8)

7 = 0 L \* = 0 " " / J
The geometric series expansion (6.8) provides us with a random walk expansion
for 77M. TO control it, one needs the relative boundedness estimates that are
contained in the following three lemmas.
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In the following we assume that n satisfies a bound of the form (4.13) so that

\\Wtlj2Λϊ(c0λΓl\y\ϊ(c0λf (6.9)

and

\Eoλ~En\ ^2(27-4"-* -2)(coλY+^\^\ ^ i( l -θ\ (6.10)

where En is the ground state energy of

in J f (<9*π). S™y and S&& are defined as in Sect. 5. Under such hypothesis, the
following three lemmas are true:

Lemma 6.1. We have

and

ιιr)-i/2w(fc) rj —1/2II < 4(co/i) /y iri
II ^ 0 ^dPn

U0 Il2,l=^7j ή\ \pΛ5)

Proof. This is an immediate consequence of (6.9) and (6.10). Q.E.D.

Lemma 6.2. We have

Doll2\\2Λ^m(coλf. (6.14)

Proof. In fact

II Γ>-l/2y(k)_ n- l/2i | _ S U Ό S U Ό ιι / )- 1/2 τ̂ W_ p - :
II 0 />* & 0 II2 1 — oii^y o U | j ii -LSQ v ΰ> u0

(6.15)

and if φe Jf (.9 )̂ is such that || φ \\2 = 1 and γ is an excitation with 0 Φ S(y) a
we have

IΦ)l(c0A)E

Q.E.D. (6.16)

Lemma 6.3. We have

fβ (6.17)
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Proof. If

tk= Σ Λ ) (6 18)

gives the expansion of Vf^ in operators vf](y0) with support y0, let us rewrite
K^ as follows:

K%n= Σ adif>(α (6.19)

where ad 4fc)(?o) *s ^ e operator such that

# y y (6.20)

Let us remark that the support of the operators advf\γQ) is the entire set A.
We have

2 ^ ^ 1 / 2 l l 2 , i = sup sup ||D

\\Φ\\ = \

(6.21)
Let us fix an excitation γ with 0 = ŝ(y)c= ^ ^ and let φe <&(&„) be a state

such that || φ \\ 2 = 1. We have

+ Σ \\Doll2^vf\γo)Doll2φ®(τy\0^y)\\2Λ. (6.22)

The first term can be estimated as in (6.16) and is

^ ϊ i r i ( c o t f (6 23)

To bound the second term, let us introduce the operators v^k)(γ0) with γ0 cz Pn such
that

S?}(?o)= Σ ^ i a d ι ; ^ ) F 2 : ^ ( ^ π ) ^ J f ( ^ ) , (6.24)

where F 2 is the injection: Jf{Pn)-^Jf{Λ) such that

F2φ = φ®\0^yn) (6.25)

for all φeJ^(^n), and F t is its left inverse such that

φ (6.26)

for all φeJ^(^n) and φeJ^i^^). Due to the bounds in Sect. 2 on the operators
entering into the dressing transformation, we have

Σ ll^afc)(yo)lli^(co^)m(x) (6 2 7 )

for all xeΛ, where

m(x) = max (fe, d(x9 dPn) + 1). (6.28)
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The second term in (6.22) is

'(Sym + VPn +W?n-E+ I)1'2II2 g{coλf\ (6.29)

To prove this, it suffices to establish the following relative boundedness estimate:

Σ \<Φ\vT{yo)\Φ>\ύ{coλfXΦ\{Syn + v?n-E + \)\φy (6.30)

By expanding φ in the basis of excitations

φ = Σ Φyh\°>>

we find

Σ \<Φ\vf\7o)\Φ>^2 Σ Σ Φy Σ K/

^ Σ Φ'Σ Σ Σ \<Y\sfKyo)\y>\
s(γ) c Sfn χes{γ) γQ:xeγ0 s(γ') c ^ π

xes(γ)

Σ Φ2r Σ

^ J (6.32)

Since

(6.33)

we have

(6.32) g (co2f2<(/>|(S^ + Vyn + H > B - £ + 1 - Sf^) + S^Λ\Φ>9 (6.34)

which proves (6.30). Q.E.D.

As a consequence of the three Lemmas above, we find the bound

\\Do1/2Z^Do1/2\\2Λ ύ(1 - θy\cλf2 (6.35)

for some constant c and all integers k ̂  0, where

Z<*> EE K ^ + V%n + W ^ B . (6.36)

From (6.35) follows that the geometric series expansion

(D + V Z(fe) I - Y V D~ 1 / 2 Π Γ D ~ i / 2 7 ( f c i ) D " 1 / 2 Ί D " 1 / 2 (6 37)
\ fc = 0 / j = Ofci fcj = O i = l

converges in L2α operator norm if

^ ( l - f l ) " 1 ^ , (6.38)
k = 0
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i.e. if

C. Albanese

λ^c(\-θ)2 (6.39)

for some constant c. Let us remark that the operator Do1 / 2Z ( f c ι )Do 1 / 2 has
nonvanishing matrix elements only between states |y>, | / > with

dg, (s(y), s(y')) = kt. (6.40)

This is due to the fact that DQ 1 / 2 does not induce transitions outside S?n. We have

Lemma 6.4. Let n be an integer ^ 0 and let Pfn be the orthogonal projection onto
the space spanned by the states \ y > with

Then, we have

where n = max (ft, 1)..

Proof. We have

^( l- ι
2,1 l - i

\y>
2,1

Σ
j = 0

( C /

ύΣ Σ cv-θrι

The proof of Theorem 4.1 is now easy to conclude.
The operator

can be decomposed

τ =

in the same way as is done for Vdy in (6.7) and we have

Thus, the same expansion used in the proof of Lemma 6.5 now gives

ίc ίλχk

k^O I 7 1 \l—(

forallfc^l. Q.E.D.

P$k{ Do Zk ) TPu
2,1

(6.41)

(6.42)

(6.43)

Q.E.D.

(6.44)

(6.45)

(6.46)

(6.47)
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