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Abstract We compute the entropy hίύA(oίu) in the sense of Connes, Narnhofer and
Thirring of Bogoliubov automorphisms av of the CAR-algebra with respect to
invariant quasifree states ωA with 0 ̂  A ̂  1 having pure point spectrum.

1. Introduction

In their recent paper [3] Connes, Narnhofer, and Thirring extended the definition
of entropy for automorphisms of finite von Neumann algebras studied in [4] to
the case of automorphisms of C*-algebras invariant with respect to a given state.
In the present paper we shall compute this for Bogoliubov automorphisms of the
CAR-algebra with respect to invariant quasifree states. Recall, for more details see
Sect. 4, that if H is a complex Hubert space and / -> a(f) is a representation of H
in the CAR-algebra <$#(H) satisfying the canonical anticommutation relations then
each unitary operator U on H defines a Bogoliubov automorphism α^ of <stf(H)
by ociM/)) = <*(Vf). If AεB(H) satisfies O ^ Λ ^ l and AU=UA, then <xv is
invariant with respect to the (gauge invariant) quasifree state ωA defined by A. In
the case A=%1, i.e. ωA is the unique tracial state τ on stf(H\ then the entropy
hτ(oιv) is the same as that of the extension of α^/ to the GNS-representation of τ
as defined in [4]. A. Connes suggested to us that the formula for the entropy
should be

(1)

where m(U) is the multiplicity function of the absolutely continuous part Ua of I/,
a conjecture which initiated the present work. More generally, if Ua acts on the
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subspace Ha of H we can write Ha as a direct integral

with dθ the Lebesgue measure on the unit circle T. Correspondingly, the operator
A commuting with U decomposes on Ha by the formula

Let η denote the real function on [0, 1] defined by η(Q) = 0, η(t) = — t logί, ίe(0, 1].
Then if A has pure point spectrum we shall prove the formula

Λ»>ι;) = 2- T Tr (η(A(θ)) + η(l- A(θ)))dθ, (2)
Z7Γ o

where Tr denotes the usual trace on B(HΘ).
For general A we leave it as an open problem whether (2) is true. It is implicit

in (2) that the entropy is unaffected by the singular part of U. We shall in particular
show that if the spectral measure of 17 is singular with respect to Lebesgue measure
than hφfau) = 0 for all α^-invariant states φ.

In addition to giving a formula for the entropy of a large class of automorphisms
and invariant states (2) also yields an example of entropy in a more technically
complicated situation than in previous calculations [1,2,3,4,7]. Namely in those
cases the computation is based on the existence of a natural maximal abelian
subalgebra which is globally invariant under the automorphism. In the case of
Bogoliubov automorphisms we cannot in general expect this.

The proof of (2) is divided into five sections. The first, Sect. 2, contains a
characterization of the Lebesgue integral on the circle by its properties on a class
of functions which in our applications will be multiplicity functions of unitary
operators with Lebesgue spectral measures. In Sect. 3 we prove some basic general
results on entropy that will be needed in the sequel following closely the theory
developed in [3]. In Sect. 4 we study the canonical anticommutation relations in
more detail and develop the basic techniques on entropy in the case of quasifree
states and Bogoliubov automorphisms. In Sect. 5 we consider the case when the
spectral measure of U has nonzero singular part. In particular we show (2) in the
simple case when the multiplicity function of the Lebesgue part of U is constant
on a finite number of arcs of rational length. Then the proof is completed in Sect. 6,
first for the case when A is a scalar operator, in which case the characterization
in Sect. 2 is used, and then in the general case.

2. Lebesgue Measure on the Circle

In this section we show a result on the Lebesgue measure on the circle, which will
be used to give the formula for the entropy of Bogoliubov automorphisms with
respect to quasifree states defined by scalar operators.

Let ^ be the additive semigroup of functions /:T-»{0}uN which are
measurable with respect to Lebesgue measure dθ onΎ = {zeC:\z\ = \}. For further
use we denote by 1 the constant function equal to 1 to T and by T^-^tf (nεN)
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the map

Z" = p

Let μ:^->IR+ - the nonnegative reals - which satisfies the following conditions:
(i) μ(nt) = n,nε{Q}uN.

(ii) f^g=*μ(f)^μ(g).
(iii) fj^f=>μ(fj)^μ(f)Je^.
(iv) μ(TJ) = nμ(f).
(v) μ(/) = μ(g) if / and 9 are equal a.e. (with respect to Lebesgue measure).

In our applications # will consist of multiplicity functions of unitaries and μ
will be a scalar multiple of the entropy of the corresponding Bogoliubov
automorphism

Theorem 2.1. Let μ:^-»]R* be a map satisfying conditions (i)-(v) above. Then we
have

n o

The proof of this fact will be divided onto a few lemmas. We use the notation

dλ = ̂ -dθ.
2π

Lemma 2.2. Given ε > 0 there is δ > 0 such that if /e^, / ^ 1, and z/

then μ(f) > 1 — ε.

Froo/. Assume to the contrary that there are /πe#, /„ rg H, such that

and μ(/n) ̂  1 — ε, neN. Let

We have

$(t-gn)dλ^ £ J(l-/ fc)dλ^2-10"π,

and gn ^ /„, gn / g with g equal to 1 almost everywhere. Hence μ(/π) ̂  ^
μ(gfπ) / μ(^f). Thus μ(g) = μ(l) = 1, contradicting μ(/J ̂  1 — ε. Π

Lemma 2.3. Gϊi βn ε > 0 there is δ > 0 swc/i ί/zαί the following holds. IffeΉ satisfies
Tqf = pi almost everywhere (/?, ̂ eN), and ^e^7 satisfies g ̂  /

depends only on ε).
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Proof. Since dλ is the Haar measure J Tqfdλ = g J fdλ, and by (iv) μ(Tnf) = nμ(f\
we may replace / and g by Tqf and Tqg respectively. So what must be proved is
that there is δ > 0 depending only on ε such that whenever g g pi for some peN and

then we have

Using (iv) this follows from Lemma 2.2 and the fact that there is g^e^7 such that
0t g land Tpg±=g. Π

Lemma 2.4. Let geΉ be upper semicontinuous. Then we have

Proof. Let gn = g Λ (rcl). Since gns g it will be sufficient to prove the lemma for
the 0w's, i.e. we may assume g is bounded, say g g nl. Let ε > 0. Let Xk = # ~ 1( [fe, oo)).
Then yffc is compact. It is easily seen that there are gfceN and an open set Yk => Xk

such that the boundary of Yk is contained in the set

and λ(Yk)(l — <5)g λ(Xk).,δ being as in Lemma 2.3. Let χfc be the characteristic
function χYk of yk, and let

/= Σ &> 4 = 4l><l2> '><ln
lίkίn

Then / ^ gf, T€/ = pi for some peN, and

so that by Lemma 2.3.

On the other hand

μ(g) ϊ μ(f) = -μ(Tqf) = ~q =

Since ε > 0 is arbitrary and we may choose δ < ε it follows that

Proof of Theorem. By general measure theory there is a sequence (/„) in #,
/i ^ /2 = * sucrι trιat the /π's are upper semicontinuous, and if g = limπ /„ then
g = f almost everywhere. Thus we have

\fdλ = \gάλ = Km J /^A = limμ(/J = μ(^) = μ(/). Π

3. Some General Entropy Results

We collect in this section entropy results which do not involve quasifree states,
and which are more or less direct consequences of the theory developed in [3],
To fix our notation we recall the definitions in [3].
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Let 2ί be a unital C*-algebra, C l 5...,Ck finite dimensional C*-algebras, and
yy. Cj -> 21 a unital completely positive map, j = 1, . . . , fc. Let φ be a state on 21 and
P:2Ϊ->B a unital positive map of 21 into a finite dimensional abelian C*-algebra
B such that there is a state μ on B for which μ°P = φ. If p1? . . . , pr are the minimal
projections in B then there are states φt, i = l,...,r, of 2ί such that

Since μ°P = φ,

(2)

is φ written as a convex combination of the φ f. In the notation of [3]

where S(φ|φz) is the relative entropy of the two states φ and φh see [3,6,9]. The
entropy defect sμ(P) is given by

sμ(P) = S(μ)-εμ(P)9

r

where S(μ) — — Σ MP/) 1°S μ(Pί) *s ^e entropy of μ.

Let BJ9 j= l , . . . ,/c, be a C*-subalgebra of B and Ej'.B-^Bj a μ-invariant
conditional expectation. Then the quadruple (#,£,, P,μ) is called an abelian model
for (21,φ,γ ί 9...,yk), and its entropy is defined to be

s(μ

where pj = Ej°P°yj:Cj-+Bj. The sup of the entropies of all such abelian models
is denoted by

If α is a φ-invariant automorphism of 21 let y:C->2ί be a unital completely positive
map of a finite dimensional C*-algebra C, and denote by

1

The entropy of α with respect to φ is

In the above discussion we have implicitly assumed that the state μ is faithful.
We shall use this assumption explicitly in the proof of our next lemma. But the
reader should have no great difficulties in extending the proof to the possible
situation of a nonfaithful μ.

Lemma 3.1. Let φ be a pure state on the unital C* -algebra 21, and suppose α is a
φ-invariant automorphism 0/21. Then /z^(α) = 0.

Proof. Let notation be as above with (B, £,-, P, μ) as the given abelian model. Since
μ is faithful and P is given by (1) it follows from (2) that φ( = φ for all i since φ is
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pure. Thus P(x) = φ(x)l and therefore Pj(y) = φ°γj(y)l9j=l,...9k. Consequently
εμ(pj) = 0, and so sμ(p, ) = S(μ\Bj). Thus the entropy for the abelian model is

v Λ J

whence

Hφ(y1,...,yk) = 0.

Since this holds for all choices of y's, hφ(u) = 0. Π

Lemma 3.2. Let *Ά be a C*-algebra, φ a state, and α a φ-invariant automorphism.
Suppose & is a C*-subalgebra of 21 such that there is an expectation E:2Ϊ—>&
satisfying φ°E = φ, and ocE = Eoc. Then a\& is an automorphism ofΊ% ana

Proof. If C is a finite dimensional C*-algebra and y:C->2ί is completely positive
then £απy = α"£y, so by [3, Proposition III.6(b)] and the assumption φE = φ,

Hφ(Ey, α£y,..., αfc ~1 Ey) = Hφ(Ey, Eay,..., Eak ~1 y) ̂  Hφ(y, αy,..., α* ~1 y).

Thus we have

hφ.Λ}Λ(Ey) ^ Vα(y),

proving the lemma, as it is obvious that α(^) = $. Π

Lemma 3.3. Let 2ί be a C*-algebra, φ a state, and α a φ-inυariant automorphism
0/21. For eachjeN let 2l; be a C*-subalgebra 0/2ί and ̂  Sl-^SΪj- an expectation
such that O.EJ = Eμ. Suppose <Άl c 212 <= ••• is increasing such that

/ oo s:-
(i) 21 = I (J SI; 1 , norm closure.

\ i = l /

(ii) Ej+1Ej = EjEj+1=EjJeN.
(iii) Ej-+id pointwise-norm.
Then α|Sίj is an automorphism 0/Slj for jeN and

If moreover φ°Ej = φ for all j then

Proo/. Since aEj = Ejθc, al^eAut^ ) for all 7. Let C be a finite dimensional
C*-algebra, d = dimC, and suppose y:C->2X is a completely positive map. Since
EJ -> id, the identity map on Sί, positive in norm and C is finite dimensional, E^ -> y
in norm. Furthermore we have

so that α is φ£7 -invariant for all j. Let

βy=ll^y-yl|.
Then εj-»0 as 7-^ oo. By [3, Proposition IV.3] we have
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whence, letting /c-> oo,

\hφ^(Ejy) - V.(y)l £ 6*j& + log(l + dεj x)). (3)

Let δ > 0 and choose C and y such that if hφ(ot) < oo

iM°o-v«ωι<<5,
and if hφ(a) = oo, ft^ιβ(y) ̂  n. By (3) we have for this choice of γ

when Λφ(α) < α, whence

/t>|2ί,.) £ Λφ,β|a/£,)0 > /ι» - 6ε,4 + log(l

If Λ^(α)=oo we similarly obtain Λ^αl^ )^ n — 6ε7 (̂  + log(l +dε]'1)). Since
6εj(^ -f log (1 + £fe;~

 1 )) -> 0 as 7 -> oo, we have

Since δ is arbitrary the first conclusion of the lemma follows.

If φEj = φ for all j then the converse inequality ^(α)^lim ^(αl^ίl,-) is a
consequence of Lemma 3.2. Π

One of the challenging open problems concerning noncommutative entropy is
whether it is additive on tensor product, i.e. is

We next show the easy half of this problem.

Lemma 3.4. Let 21' and 21" be ίwo C* -algebras with states φ' and φ" respectively.
Let ct! and a" be φ' and φ" -invariant automorphisms of 2Γ and 21". Then

f. Let (2Γ, φ', y') be given with an abelian model (#', E'J9 F9 μ') and subalgebras
B'j with Ej the μ'-invariant expectation of Bf onto Bj. Assume we have a similar
setup for (2Γ, φ",y"). Since relative entropy and entropy of states are additive on

tensor products we have additivity of εμ,S(μ),s We may assume B' = V B'h
k k i=ί

B" = V B", and so B'®B" = V B^B . Thus
i = 1 ι = l

k

V ,

It follows easily that the entropy of the tensor product of the abelian model for
(2Γ ® 21", φ' ® φ", (α')7'0/ ® (a//)y°y//

J J = 0,..., fc - 1) is the sum of the entropies of
the two abelian models for 2Γ and 21" respectively. Taking sup over all tensor
product abelian models as above we get

Hφ,(γ'9 a'/,..., (α')*- V) + Hφ»(y\ α"y",..., (α")fc- y). (4)

However, to get

'"M/®/')) (5)
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we take the sup over a larger family of abelian models. Thus the expression in (5)
is greater than that in (4). Similarly, taking the sup of all possible y's the conclusion
of the lemma follows. Π

4. Bogoliubov Automorphisms and Quasifree States

Let H be a complex Hubert space. The CAR-algebra jtf(H) over H is a C*-algebra
with the property that there is a linear map /->«(/) of H into j/(H) whose range
generates s/(H) as a C*-algebra and satisfying the canonical anticommutation
relations

"(f)a(g)* + a(g)*a(f) = (f9g)l, f,geH9

where ( , •) is the inner product on H, and 1 is the unit of j/(//). If 0 ̂  A ^ 1 is an
operator on H then the quasifree state ωA on 9ί(//) is defined by its values on
products of the form tf(/j* α(/ι)M0ι) %m) given by

(1)

If U is a unitary operator on H then U defines an automorphism av

called a Bogoliubov automorphism (or quasifree or one-particle automorphism)
determined by

If 17 and A commute it is an easy consequence of the above definition of ωA that
KU is ωA -in variant. More generally if T is a contraction on H commuting with A
then there is a unique unital completely positive map aτ:jtf(H)-+jtf(H) such that
ατM/)) = <*(Tf\ and ω^ατ = ωA, see [5]. If P is a projection commuting with A
then αp is an expectation of s& (H) onto j/(P/ί).

We shall mostly be concerned with the case when A has pure point spectrum,
say (/π)MelN is an orthonormal basis for H such that Afn = AM/n,neN. Define

recursively K 0 = l , K π = Π (l

4"ι = K,-ι <*(/„)*> 41 = a(fn)*a(fn). Then the (β^ii = 1,2) form a complete set of
2 x 2 matrix units generating a factor M2(C)M of type /2, and for distinct n,me(™}

00

and 4l} commute. It follows in particular that <$#(H) ^ (X) M2(C)n and that ωA is
oo n= 1

a product state, ωA = (X) ωλn with respect to this tensor product factorization,
n = l

where ωλ is the state on M2(C) given by

ω * c

The Bcgoliubov automorphism α _ t is ω^-invariant for all quasifree states ωA.
Its fixed point algebra is denoted by ^(H)e and is the even CAR-algebra. It is
generated by even products of α(/)'s and a(g)*'s. <$tf(H} is the direct sum
and the spectral subspace of — 1 for α_ t. If H = H1®H2 then
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because operators a ( f f , f e H l 9 and a(gf,geH2, anticommute, where a* denotes
α* or a. Thus even products of the a(gf's will commute with a(ff. Thus for each
finite even dimensional subspace Kn of H± the C*-algebra generated by <s#(Kn)
and 3/(H2)e *s isomorphic to £/(Kn)®j/(H2)e. Since ^/(//i) is the norm closure
of the union of such «s/(Kn)'s it follows from the uniqueness of the tensor product
norm that the C*-algebra generated by ^(H^) and jtf(H2)e is isomorphic to

Let A = A! ®A2, A^B^ά O^A^L Then

ωA\s/(Hl)®^f(H2)e = ωAί\s/(H1)®ωA2\s/(H2)e. (2)

Indeed, in (1) let m = n and use the anticommutation relations to rearrange the
factors in the defining equation (1) so that fl9...9fkeHί9 /k + 1,...,/πe//2,
gl9...,gleHl, gl+l9...9gnεH2. Since (Agi9 /,-) = 0 if one of gt and fj is in Hγ and
the other in H2, the matrix ((Agi9fj)) is a block matrix

j)} 0 \

0 ( ( A 2 g h f j ) ) f

where ((Λ^ , fj)) is a k x / matrix and ((Λ20i> //)) and (n - k) x (n - 1) matrix. The
determinant of this matrix is zero unless k = i, a fact easily verified by induction.
If k = / the determinant equals the product

ω^flίΛΓ fl^^

from which (2) follows.
Suppose next L^ is a unitary operator on H f, i = 1,2. If/eH^ L^® U2f= U1f

with obvious identification o f / and /®0. Thus αl/lθl;2(α(/)) = αl;1(α(/)) and
similarly for geH2. If fί9...,fnεHl9gl9...9gmeH2 we have, with # as before,

( n m \

Π «(/.-)* Π "to/ = Π β(^ι// Π β
ί = l 7=1 / i 7

It follows that

Lemma 4.1. Let H = Hl®H2,^^Ai^\ be an operator on Hh and Ut be a unitary
operator on Hi9 i = 1, 2. Suppose AiUi = UiAh i = 1, 2. T/iβn we have

Proof. LQt

1 denoting the identity on both H± and H2. Since 1®-1 commutes with
A1 ®A2,al@_1 is ω^1@yl2-invariant, as is E. Thus by Lemmas 3.2 and 3.4 we have

!)). D
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Remark 4.2. We remark for later use that it follows from the discussion preceding
the lemma that if H = @Ht,J finite, then <$t(H)e n> (X) ̂ (H^ and if U = 0 C7£

ieJ ieJ ieJ

is unitary and A = @At satisfies 0 ̂  A :g 1, then
ieJ

and

Furthermore, if G is the group of unitaries U = 0 C/f with t/f = ±1, then
ieJ

£ = 2 -card j £ Ad t/ is an ω^-invariant expectation of Λ?(H) onto (X) j/(//ί)e.
UeG teJ

Each unitary operator £/ is a direct sum U =Ua@Us with l/α acting on a
Hubert space Ha and t/s on Hs; Ua has spectral measure absolutely continuous
with respect to Lebesgue measure dθ on the circle T while Us has spectral measure
singular with respect to dθ. Ua is called the absolutely continuous part of U and
Us the singular part. We shall in the sequel use the notation m(U) to denote the
multiplicity function of Ua9 i.e. m(U) = m(Ua) in our notation.

Lemma 4.3. Let U and V be unitary operators and Λ,e[0, 1]. Then we have, identifying
λ and λl9

(i) If there is a unitary operator W such that V= WUW~l then hωλ(ocv) = hωλ(av).
(ii) IfU and V have the same singular parts and m(U)^m(V\ then hωλ(av) ^ hωλ(ocv).

Proof, (i) is obvious, cf. [3, VII.5].
(ii) The assumption on U and V means that up to unitary equivalence we may

assume V is the restriction of U to a reducing subspace, so that (ii) follows from
Lemma 4.1. Π

Lemma 4.4. Let (Un) be a sequence of unitary operators and U a unitary operator,
all with Lebesgue spectrum. Suppose (m(Un)) is an increasing sequence with pointwise
limit m(U). Then (hωχ(ot,Un)) is an increasing sequence and

Proof. Since the singular part of each unitary n question is zero the assumption
on the multiplicity functions implies that we may assume U lives on a Hubert
space H and Un = U\Hn, where Hn c Hn + ^ c H are reducing subspaces for U for

00

all πeN, and H = (J Hn. Thus the lemma follows from Lemmas 3.2 and 3.4 and

the fact that the projections onto the Hn define expectations on jtf(H) satisfying
the conditions in the lemmas. Π

We conclude this section with the computation of hωA(u.υ) in some simple cases.

Lemma 4.5. For ie{\9...9r}letHi be an infinite dimensional separable Hilbert space
with identity lt and let t/,- be a unitary operator on Hi such that for each i there are

and a common geN for all /, such that [/? is unitarily equivalent to Vp\ where

V is a bilateral shift operator of multiplicity 1. Let U = 0 l/£ and let A = 0 c^



Bogoliubov Automorphisms of CAR-algebra 531

with Cj e[0, 1]. Then we have the formula

Furthermore, the same formula holds for the restrictions of ωA and ocv to

Proof. Let (fίk)keZ be an orthonormal basis for Ht such that Vfik = fi(k+ υ, and let

where [/ι, ,/m] denotes the subspace spanned by the vectors / l5...,/m. Since
Afik — Cj/jfc we can write N as a tensor product

i= 1
r

where p = Σ Pί> anc* ̂ rom OUΓ previous discussion

PI

The subspaces

for fceZ are mutually orthogonal since F is a bilateral shift and the spaces /f f are
r

left invariant. Furthermore the subspaces span H = @ #£. Thus the algebras
i = l

(ocUq)
k(N) generate <s#(H\ and their even parts are pairwise commuting. The

diagonals in the algebras M2((Ci) appearing in the definition of N lie in the
centralizer of the corresponding ωcj, hence in the centralizer of ωA. Furthermore,
they lie in $tf(H)e as follows from the construction of the M2(C)ί. If Nk is the
algebra generated by N,a.uq(N),...,(<y.uq)

k~1(N) it thus follows from [3, Corollary
VIII.8] that

~ HωA(N, uϋq(N), . . . , (α^)* - 1 (N)) = l- S(ωA \ Nk)

k i=o

= S(ωA\N)

= Σ ΛS(ωCf).
i = l

Hence we have

^WV)=ΣP. SK).
i— 1

To complete the argument let for each πeN,
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Then (Mn) is an increasing sequence of finite dimensional subalgebras of stf(H)
with dense union. Then by [3, Theorem VII.4]

fcau(«i/«) = lim hωA,*v,(Mn). (3)
/J-* 00

Now the C*-algebra generated by M/J,α(/9(M/J),...,(αc/g)
k~1(Mw) equals the one

generated by (auq)
j(N), —n ζj^n + k—l. Our previous argument with N and

the diagonals in the M2(C)/ shows that [3, Corollary VIII.8] implies

HmΛ(MΛ9 *υq(Mn\ . . . , (α^Γ '(MJ) = (2n + k)S(ωA \ N),

and this holds also for Hω ^(H] and Mnn<z/(H)e. We conclude that

and hence from (3) hωΛ(κυq) = S(ωA\N). Thus it follows from [3, VIII.5] that

1 1 r

hωA(*u) = - hωA(*u*) = - Σ PiS(™Ci)' (4)
q q i = ι

Finally, since the diagonals in the M2(C)ί lie in ^(H)e we get the inequality

tf i= 1

The opposite inequality follows from (4) and Lemma 3.2. Π

Lemma 4.6. Let U be a unitary operator on H with Lebesgue spectrum consisting of

disjoint arcs exp(2τri[α/,&.•]) such that fe. —α. = -^,p;,0EN, with /eJciN. Letj j q j

Hj = L2(exp (2πi[aj9 b; ])) considered as a subspace o/L2(T, dθ\ and write U = (J) Uj

with Uj= U\Hj. Suppose U} has constant finite multiplicity nj9 and let 0^ Aj ^ 1
act on Hj and commute with Uj. Writing U j = V j ® -@ V} (n7 times) we assume

Aj = (J) Cjfcl j , where lj is the identity on the space on which Vj acts. Let Bj denote

the diagonal n7 x ny matrix

cn 0

0

Then Aj = Bj® 1;> and we have the formula

ωA*U L J aj *nj

where Ύrnj is the usual trace on Mn.((C). Furthermore, the same formula holds for the
restrictions of ωA and ccv to <$tf(H)e.

Proof. We first assume J is finite, say J = {1,..., r}. We may write

= (c1 1l1® φc1 Π ll1)φ Θ(c r ll rθ Θcrnrlr).
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Now V] is a bilateral shift of multiplicity pj. Thus by Lemma 4.5

If J is infinite we may assume J = N. Let Wr = (J) I/,-. Then Wr,4 = AWr, so if

βr is the orthogonal projection of H onto (J) /f 7 then the expectations Er
/ r \ 7=1

onto j/ ©#/ defined by Qr satisfying the conditions of Lemma 3.3, cf. [5].
\ j = ι /

Thus by Lemma 3.3 the proof is complete. Π

5. The Case of Singular Spectrum

In this section we study the case when the unitary operator U has a nontrivial
singular part Us. The main result shows that if U=Ua@Us with Ua as in
Lemma 4.6 then ftω Jα^) = hωA(uUa) with A as in that lemma. We first prove an
operator theoretic lemma.

Lemma 5.1. Let U be a unitary operator on H with spectral measure singular with
respect to Lebesgue measure. Let P be a finite rank orthogonal projection onto a
subspace ofH, and let ε > 0 be given. Then there is /c0eN such that for each integer
k^.k0 there is a finite rank projection Qk with the properties
(i) \\(l-

(ii)

Proof. Since the spectral measure of U is a singular and P has finite rank there
is a set σ c= T such that the following hold for given δ > 0:

(a) σ = #! u σ2 u u σN, where σ,. (1 g j ^ N) are arcs, σ7 = {exp (iθ):otj ^θ^βj}
such that 0 S «ι < /^ ^ α 2 < 02 ̂  ••• ^ aN < &v g 2π.

(b) Nma.x(βj-<*j)<δ.
(c) If E(σ) is the spectral projection of U for the set σ then ||(1 - E(σ))P\\ < δ.

Indeed, since the spectral measure of U is singular it is immediate that (a), (c),
and the condition Σ(βj ~ αj) < ̂  can ^e satisfied. To get (b) it suffices to substitute
the σ; by arcs of almost the same length.

For a number M>0 consider the MN arcs 0" l f l,...,aN A f > A f obtained by
subdividing each σy into M arcs of equal length. Let E(OJ M ) be the corresponding
spectral projections of U, which are pairwise orthogonal. Let then *3CM be the
subspace

MN



534 E. St^rmer and D. Voiculescu

We have dim %M ̂  MN dim P. If feP(H) and || /1| = 1, then we have with θjeσjtM9

that the distance

MN

MN

^2

= 2

^2

On the other hand

21| UΈ(σ)f - Usf \\2

MN

<)E(σjtM)\\2 + 2δ2.

?g sup \eiθjs — zs\

^ (length σjtM)-s

s
^ — max (βj — otj)

sδ

This gives

δ l/2

Since this estimate is uniform in fePH, \\f\\ = 1, we have actually proved that for
Q the orthogonal projection onto %M we have

and
dim Q ̂  MN dim P.

Given fc let us take Qk to be the orthogonal projection onto $ΓM, and with ε
as in the statement of the lemma, let

Then dim Qk ̂  εk. On the other hand

s
max J2 £fe

NdimPj

-+1
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if
εk

. Γ » pJVdimP

Γ sk Ί
^ 1, so that ———- ^ 1, and

|_AΓdιmPJ

ko = \ 1 +

Thus choosing δ sufficiently small and then

AT dim Pi

~^~~J'

it follows that Qk chosen as above satisfies the conditions of the lemma. Π

Before we show that the singular part does not affect the entropy, we digress
for a moment to show that if U has singular spectrum the entropy of ocv taken
with respect to any state φ such that φ°<xu = φ, is zero. In addition to being a
result of more general type its proof will make the proof of the lemma following
it more transparent.

Theorem 5.2. Let U be a unitary operator on H with spectral measure singular with
respect to the Lebesgue measure. Let φbea state on <stf(H) such that % is φ-invariant.
Then hφ(ocv) = 0.

Proof. Let P be an orthogonal projection in B(H) of finite rank. Let j:P(H)-+H
be the inclusion map. Then there are, see [5] unital completely positive maps

*j:s/(P(H)) with = a(jf\

*p:s/(H)-+s/(P(H)) with αp(α(/)) = α(p/).

If Pn / 1 is a sequence of such projections then with jn:Pn(H)-^H the inclusion,

in the pointwise-norm topology. By [3, Theorem V.2]

hφ(av) = lim Λφ,βϋ(αι/n),
n

where

Whence it suffices to show
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Let P be as above. Since dimP < oo, given δ > 0 there is η > 0 such that if
W19 W2:P(H)-+H are isometrics with || W1 -W2\\< η, then, see [5]

where α^(α(/)) = α(VF/). Let Qk be as in Lemma 5.1. Denote by pol(QkU
s\P(H))

the partial isometry W2 appearing in the polar decomposition

QkU
s\P(H)=W2\(QkU

s\P(H))\.

Let Wί = Us\P(H). Since

\\U*P-QkU
sP\\<ε if O^s^/c,

we can easily infer

if ε ̂  j, which we shall assume. Thus, choosing ε < - we have for k ̂  /c0,

II α^pd,) - αpol(Qkl/.,p(H)) || < δ for 0 ̂  s g fc.

By [3, Proposition IV.3] there is for given χ > 0 and ε > 0, /c0eN such that if k *t fc0

and Qk are as in Lemma 5.1 then

#φ(α,., α^α,., . . . , α{f ^J ̂  kχ + #φ(αpol(Qkj), . . . , αpol(Qkl/k- ιj}). (1)

If we let v:Qk(H)-+H be the inclusion map then

αpol«2kj) = αy°αpoi((2kj)'

whence by [3, Proposition III.6(a) and 6(c)]

^φ(αpol (Qkj)> - > αpol (βkt/k ~ υ')) = Hφ(av> ' ' » αt;) = HφM' (2)

On the other hand by [3,111.4]

where φ°αϋ is a state on $0(Qk(H)\ a C*-algebra of dimension less than 2kε. Thus

H>y)^log2fcε = fcεlog2.

Hence by (1) and (2)

- Hφ(<Zj, oiuUj, . . . , α£Γ 1 oίj) ^ χ + ε log 2.

Since χ and ε are arbitrary, hφ ,αu(αj) = 0. Π

Lemma 5.3. Let U be a unitary operator on H with absolutely continuous part Ua

acting on Ha and singular part Us acting on Hs. Let A = Aa@As commute with
U=Ua@Us,Q^A^l. Assume Aa and Ua are as in Lemma 4.6. Then h(OA(ocu) =
hωAa(aUa) is given by the formula in Lemma 4.6. Furthermore the same hold for the
restrictions to

Proof. As in the proof of Lemma 4.6 we may restrict attention to the case when
the spectrum of Ua consists of a finite number of disjoint arcs. Furthermore if the
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multiplicity of Ua on one of the arcs is infinite then both sides of the formula are
infinite, hence we may assume each multiplicity is finite.

If we can prove the lemma for Ua and Aa as in Lemma 4.5 the general case
follows from that case just as Lemma 4.6 followed from Lemma 4.5. So we assume

r

Ua=φU. with Uq=Vpt, where V is bilateral shift of multiplicity 1, and
i = l

r

Aa= φc j l j , C;e[0, 1]. Let X be as in the proof of Lemma 4.5. Thus X has an
ι = 1

orthonormal basis

i J l l > ? J l p ι » >Jr !>•••? J rpr J >

where fikeHi9 Vfik = fi(k + ιy To simplify notation let W = Uq, so that

W = Wa 0 WB, Wa = C7 J = 0 Vpi, Ws=Uq.
i = l

For neN let

Xn= V

Then (J Jf,, is dense in Ha. Choose an increasing sequence (Yn) of finite dimensional
« = o

subspaces of Hs with union dense in Hs. Then \JXnφYn is dense in H, so by

[3, Theorem VII.4]

Aω>ιr) = lim hωΛ^(s/(Xn ® YH)).
n

We use notation similar to that used in the proof of Theorem 5.2. Let

jXn:Xn^Ha, jYn:Yn^Ha, jn=Jxn®Jγn'Xn®Yn^H

be the inclusion maps, and let

etc. be the inclusion maps of the corresponding algebras. Fix rceN and let P be
the orthogonal projection onto Yn. Let ε > 0 and /c0eN, and Qk for k ̂  fc0 be as
in Lemma 5.1. Then

jγn ~ WΐJXn 0 pol (βk W^ J L 1 ^ m ̂  fc,

is small, so we can by [3, Proposition IV.3] assume

Let v:Qk(Hs) ->• Hs be the inclusion, and let iΛ: Xn -» Xn be the identity map. Then we
have

It follows from [3, Proposition ΠI.6(a)] that
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where ls is the identity on Hs. We may as in [3] identity α θϋ with Mn — jtf(Xn®

Qk(Hs)). Then the last expression in the above inequality becomes

HωA(Mn9 <%αθ ls(MJ, . . . , 4Γ® ιs(MM)).

k-i
Let Z = (f) WJ

aXn. We may assume Z has even dimension, so <$#(Z) is a factor.
;=ι

Then Z has an orthonormal basis of eigenvectors for A, so ωA factors between
j/(Z) and its relative commutant j/(Z)c in <tf(H\ Let M = ^(Z®Qk(Hs)}. Then
j/(Z)cnM ̂  jtf(Qk(Hs)). Since also «s/(Z) is the tensor product with ωA a product
state o f 2 n + k copies of j2/(X) we have, since dim ̂ (Qk(Hs)) ^ 2kε,

S(ωA I M) = (In + fc)S(ωx | j*(X)) H- S(ω^ | ̂ (Z)c n M)

^ (2n + k)S(ωA \ s/(X)) -f fcε log 2.

Since M contains the algebra generated by MM,αWrβθlg(M l l),...,α^φ lβ(ΛίII), it
follows from [3, Lemma VIII. 1] that

HωA(MH9 aWa θ JMJ, . . . , o^i ι.(M J) ̂  (2n + Λ)S(ωx | ̂ W) + kε log 2.

We thus have, going back in the proof

. . . , α*Γ 1 αjn) ̂  ε + j S(ωA \ j/(X)) + ε log 2.

We therefore conclude that

hω

whence

h

and therefore

h«A(«u) = - Λ» J« F) ̂  -
t/ ^

Now from the proof of Lemma 4.5 we have

By Lemma 4.1 hωA (aUa) ^ hωΛ(y.υ\ hence they are equal, completing the proof of
the lemma for hωA(av).

To see that the entropy is the same for the restriction to the even algebra
we know by Lemmas 3.1 and 4.1 and the first part that

But by Lemma 4.6 hωA ^{H)e(oίUa\^(H)e) = hω (α^J, completing the proof for the
restrictions to the even algebra. Π
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6. The Entropy Formula

We prove two formulas. When the quasifree state is of the form ωλ we first express
the entropy by the multiplicity function of 17. Then we prove the general formula
when A has pure point spectrum. Recall that we use the notation m(U) to denote
the multiplicity function of the absolutely continuous part Ua of U. To express
the formulas we use direct integral theory as described in the introduction based
on Ua.

Theorem 6.1. With U a unitary operator on the Hilbert space H and 0 ̂  λ ̂  1, we
have

Proof. If λ = 0 or 1 then ωλ is a pure state, see e.g. [8], so hωλ(θLv) = 0 by Lemma 3.1.
Since η(λ) + η(l — λ) = Q when λe{0, 1} the formula holds in this case. Assume
0 < λ < 1. Since by [3, VII.5] AωA(α£) = | n \ A^α^), it follows from Lemmas 4.3, 4.4
and 4.5 that all the conditions of Theorem 2.1 are satisfied. Thus the formula holds
when U has Lebesgue spectrum.

Let now U = Ua © Us be the decomposition of U into absolutely continuous
and singular parts acting on Ha and Hs respectively. Let ε > 0 be given. By measure
theory there is a unitary V with Lebesgue spectrum on Ha such that its multiplicity
function satisfies

m(V)=£djXXj^m(U), (1)
7=1

where Xj is an arc of the form exp(2π/[α ί,fej) with b{ — at rational, and

f m(U(θ))dθ + ε > f m(V(θ))dθ. (2)
o o

We then have, by the first paragraph of the proof and Lemmas 4.1, 4.3, 5.3 in that
order

foW + η(l - λ)) m(U(θ))dθ = hωλ(*Ua)

Since ε is arbitrary the formula follows. Π

We use direct integral as described in the introduction. If A commutes with
17 = ί/αφ Us then A = Aa® A,. We have
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with A(θ)εB(Hθ\ where Hθ = 0 if m(U(θ)) = 0. Suppose A has pure point spectrum,
so that

with J finite or countably infinite, and (βj) as an orthogonal family of projections
with sum 1, and 0 ̂  λj ^ 1. Denote by

V j = U \ e j ( H ) .

We denote by Tr the usual trace on B(HΘ). Writing ej = J Θ ej(θ)dθ, and c(λ) = η(λ) +
77(1 — λ) we have

Ύr(c(A(θ))) = Σc(λj)Ύr(ej(θ)) = ΣC( λj )m(U j(θ)).

Thus the following lemma is immediate from Theorem 6.1.

Lemma 6.2. With the above notation and assumptions we have

Σ V («c/,) = τ- T Tr fo(Λ(β)) + ιy(l - A(θ)))dθ.
jej

 λ> 2π o

Theorem 6.3. Lei 0^/1^1 be an operator with pure point spectrum acting on H.
Let U be a unitary operator on H commuting with A. Then we have

2 - A(θ)))dθ.

Proof. If A — Σ λ^i the projections pn = Σ eι define expectations on <$/(H)
i=l i = 1

satisfying the conditions of Lemma 3.3. Hence to show the formula we may assume
A has finite spectrum.

By Lemma 6.2 it suffices to show

where A = Σ ^ej9J finite. Let ^(H)e be the even algebra. An inspection of the
jeJ

proof of Theorem 6.1 shows that the results used in the proof all hold for
and oLv\^(H)e. We thus have

We therefore have, using Lemma 3.2 and Remark 4.2 together with Lemma 3.4,

jeJ

= Σ^K).

It therefore remains to show the converse inequality. For this we may assume
the absolutely continuous part Ua of U acts as a multiplication operator on a
subset X of the circle T, and that Ha = L2(X, dθ) considered as a subspace of
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L2(Ύ,dθ). We first consider the case when m(U) is bounded. Thus

N

m(U)= Σ nχXn,
71=1

where Xn = m(U)~l(n). Since A has finite spectrum we can subdivide each Xn into
a disjoint union of Borel sets Xnr on which A(θ) is constant, i.e. has same finite
spectrum counted with multiplicity. Thus we have

where lnr is the identity on L2(Xnr,dθ).
Let ε > 0 be given. Choose Ynr c Xnr a closed set, and choose open sets Onr n> Ynr

which are disjoint and with each Onr a finite union of arcs of the form exp(2πi[αf, bj)
with bj — cij rational and the size of Onr to be determined below.

Let Pnr be the orthogonal projection of L2(Ύ,dθ) onto L2(Ύnr,dθ\ and let

Let Va be the unitary multiplication operator on H1=L2{ (Jθnr,dθ 1 with
\n,r /

multiplicity function

and let

Define A by A = Aa © AS9 where

where \0nr is the identity on L2(0nr,dθ). Then we have Ae = Ae and Ve = Ue, and
furthermore by Theorem 6.1 and Lemma 6.2

where Vj = V\βj(H), since V and A satisfy the assumptions of Lemma 4.6.
We now make our choice of the size of the 0ΠΓ's, namely we choose them so

close to the 7nr's that

where (Ue)j= Ue\ej(H). This can be done since A has finite spectrum, Ue= Ve,
and the theorem is true for V. We thus have

Λωί («κβ Θ us) (by Lemma 4. 1 )

hωλ(otVa) (by Lemma 5.3)

Σ hωλ(*v) (by Lemma 6.2)
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^ Σ ho>λ(*υ) + e (by Lemma 4. 1).

This holds for all ε > 0, so we conclude

Mα^®^ =

The projections e can be constructed to form an increasing sequence when ε \ 0.
Since each e commutes with A it defines an ωA invariant expectation on <$tf(H\ so
by Lemma 3.3 we have

ha>A(<*u) = Jim hωA(θLVeφUβ),

hence we have hω (α^^Σ^ω (αι/.,)> as we wanted to show, proving the theorem
j J

when Ua has bounded spectrum.
In the general case let PN be the projection of Ha onto the spectral subspace

where m(U) ^ N. Then PN ? 1 as N -> oo. Since the theorem holds for (JPN by the
first part of the proof it follows again from Lemma 3.3 that it holds for U. Π
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