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Abstract. We study the affine semi-direct product, VectίS1)* CW(S1,1R)(5<)C[>M~1]
and show how the coadjoint action on its extended dual leads immediately to a
generalisation of the Miura map and also to the existence of several compatible
Hamiltonian structures.

Introduction

With a view to developing a clearer understanding of the underlying structures
responsible for the exemplary behaviour of integrable systems, it is worthwhile
trying to place results within the context of the now very familiar scenario of
coadjoint actions of Lie groups. In this paper we are interested in looking at the
so-called "energy-dependent" linear problem which is found to generate Miura
maps (i.e. noninvertible Poisson maps) rather like the original one relating the
MKdV and KdV equations, see [3].

We follow the approach explained in a paper of Reyman and Semenov-Tian-
Shansky [1]. They showed how a family of r-brackets could be defined on an affine
Lie algebra - these immediately giving rise to a family of compatible Poisson
brackets on the dual. These authors further showed in [2] how this approach
could be used to explain the existence of a family of Poisson structures associated
with the problem

with e and u polynomials in the spectral parameter. Their analysis essentially
amounts to the recognition that the relevant Lie algebra to look at is the Virasoro
Lie algebra. In our case we consider an enlargement of the Virasoro algebra by
means of the semidirect product.

Energy dependent Miura maps were investigated by a more direct method by
Antonowicz and Fordy [3]. It should be emphasized that the structures described
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in [3] incorporate all those of the present paper. Our aim has been to find a Lie
algebraic setting which can be said to explain them in terms of a coadjoint action.

To begin with we make some observations about coadjoint cocycles, see for
example [4, 5]. We then consider how to find coadjoint cocycles for - and so to
extend - the semidirect product £ = g ex ΊT with g = Vect^1) and *T = C^SSR).
The standard adκ* Hamiltonian structures on the spaces e^

>*(χ)C[A,/l~1] and
~1] are found to be related by a Miura map

Lastly we look at the connection with a spectral problem.

Remark. A nice explanation of the original Miura map comes from introducing
the idea of a Poisson Group [6,7]. The mapping

(d + υ,d + w)->(S + v)(d + w)

is a Poisson mapping from G x G to G, where G is the set of pseudo differential
operators on the line/circle, and the Poisson structure on G is the 2nd Gelfand-Dikii
bracket, or "Sklyanin bracket," given by

It can be shown that the map can be restricted to the subspace {(d + v,d — v)},
thus proving that υ-+(-v2 - v') is a Poisson map.

This construction cannot be reasonably extended to

1. Preliminaries Regarding Cocycles

Let G be a Lie group and g its Lie algebra, while g* is the dual space to g. A
coadjoint group cocycle is a mapping Σ: G-»g* satisfying

Σ(?4 = Σ(?) + M*fΣW. (1)

The corresponding coadjoint Lie algebra cocycle σ:g->g* must satisfy the
infinitesimal version of this condition,

= ad*xσ(Y) - ad*γσ(X). (2)

We also find, by differentiating (1) with respect to t at t = 0 for A = exp(AY), that

dΣ(p) dL, X = M*,'dΣ(*)'X. (3)

Thus (3) is the equation we must solve in case we are given σ = dΣ(#) and we wish
to find Σ.

Suppose that σ:g->g* and J£:G->g* are coadjoint cocycles with σ = dΣ(<e).
Define ω:g x g->R by

co(X,Y) = σ(Y)(X). (4)

If ω(X, Y) -f ω(F, X] = 0, then we define the corresponding extension of g to be the
Lie algebra g = g © R with bracket,

)). (5)
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We easily find that the ad*-action of g on g* = g* ©R is given by

ad *(Xβ(Λ *) = (adV + ArPO» 0). (6)

As a plays no role here we suppress it, and we regard (6) as defining the ad*-action
of g on g*. It follows that the corresponding Ad*-action of G on g* is given by

f) = (Ad*/ + tΣ(f\ f). (7)

2. The Semidirect Product & =

Set g = Vect (S 1 ) and r = C00^1,R). Then jgf is the semidirect product ̂  = Qixi^
with Lie bracket given by

[(φ, t>), (̂  w)] = (<W ~ <W, <K - ΨΌ*). (8)

Let us notice that <5? is isomorphic to the subalgebra {φd 4 v} of the algebra of
pseudo differential operators, and also - for future use - that & is isomorphic to
the set of matrix differential operators

'-\/2φ' + φd 0

— v' \/2φ' •}

- in both cases with the ordinary commutation of operators as Lie bracket.
We will need the group ($ = Gκir corresponding to <g, given by G = Diff (S1) =

diffeomorphisms: S1-^1, with the action of G on ^ given by # v = v°^
where ° denotes composition of mappings. Thus the group multiplication in ̂  is
given by

/ \ / Λ \ / Λ \ / -j rv\

Next we identify ^* ~ 1^ x V by means of the pairing <v> '<^* x J^->R,

We can derive all the various actions:

Ad* ^,}(w, ξ) = (/2w°^ 4- v'?'ξ°#, ?'ξ°#). (12c)

One often finds in the literature the statement "Let us identify g and g* by means
of the (ad-invariant) inner product...", rather as in (11). It may be objected in the
case dim g = oo that this is not possible and that g* is actually the much bigger
space of distributions on g. The important thing to observe is that the coadjoint
orbit in g* through any point αeg* of the form α = <ά,*> with άeg contains only
points of the same form, and so we are effectively restricting our attention to
reasonable Poisson subspaces.

We would like to find coadjoint cocycles for J5? and .̂ It is known that the
cohomology space H2(G,R) is one-dimensional, i.e. there is only one non-trivial
coadjoint cocycle on G. We find that #2(^,R) is three-dimensional. The following
are coadjoint cocycles α^JS?->«£?*, i.e. satisfy σ f(
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(13a)

(13b)

(13c)

(The cocycles σl9σ2 also appear in a pager of Kupershmidt [8].)
We define the extended bracket onJ

>, I?,

σ3 gives rise to the Schwartzian derivative cocycle Σ3:&-+£'* as is well known.
The other two give rise to new ones.

We want to find the group cocycles ΣΪ9 Σ2 with the property σt = dΣ^e). Using
Eq. (3), we must solve:

, w),

.e.

We obtain

-
at t=Q

ι/y\ 2

= r -- ,0 .

(15)

(16a)

(16b)

(16c)

As in Eqs. (6) and (7) we extend the ad* and Ad* actions to J^*, giving

^ (17)

^2 + ̂ (^_^^^^
l,e29e3). (18)

Now introduce a spectral parameter everywhere by setting

& = &®<£[λ9λ-1~] and j?* = J?*®C[A,/l"1] (19)

and define Jhe pairing <,>:(ι^ x TΓJOCC^A"1] x J?', in the usual way by

<(w,ξ),(0,t;)> = ((u,ξ),(φ9v)y\λ-ί; we drop the ~s on <,> from now on.

Let Rk = R°λk, where R is the standard r-matrix R = P+—P_, where P± are
the projections relative to the splitting Cfyl^/Γ1] = C[/ί] + CCA""1] and λk is the

operator of multiplication by λk, i.e. /lfc X = λkX. Then {Rk} is a family of r-matrices
on &. Adjusting ad, ad* appropriately we get the Hamiltonian actions of 3? on
C°°(J^*) defined by the ad%k-action for each k. These Hamiltonian actions are
all compatible. This follows from the fact that R(q) = R°q is an r-matrix for any
polynomial q in λ, and is explained in detail in [1].
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Integrable systems for the ad%k-Hamiltonian systems are given by Hamiltonian
functions which are invariants of the ordinary Ad*-action. Such functions then we
need to find. To do this we simply observe that the combination

w = eιu-±ξ2-e2ξ' (20)

is mapped by (u9ξ9eί9e29e3)->λd*M(u9ξ9eι9e29e3) to

(21)

Hence invariants of the Ad*-action are eigenvalues of the monodromy matrix of
the Sturm-Liouville equation,

Q9 (22)

with w = e1u-^ξ2-e2ξ
r, cf. [2].

To find these invariants we look for an asymptotic series jtf = ΣA(λ
l satisfying

2 + w = 0. (23)

For some choices of eί9e2,e3 (which are themselves elements of C[/L,/l *]) this
equation can be solved recursively, giving the integrable Hamiltonians

I*. (24)

The family of functions found in this way is of course well known in the literature.
Going back to (20) now we regard the mapping (u, ξ) -> w as a generalised Miura
map for which the functions of w found above are pulled back to integrable
Hamiltonian functions in C00^*).

To be precise the mapping w, given by

(u, ξ, el9e29 e3) = (e^u-^ξ2 - e2ξ'9 e±e2 + e2

2) (25)m

is a Poisson mapping from J?7* to §*, where § = g® C[Λ, λ~l~\ and g = gΘR is
the extension of g by means of the Schwartzian derivative cocycle. That is

= {^*/,̂ *^ (26)

for any /, ι
In some cases the mapping will be invertible, but in others it will not be.

Note:
In [1] it is remarked that the subspace

ie algebra*
)

is a Poisson subspace for the Poisson bracket corresponding to Rk = R°λk if
— m g fc ̂  n + 1, and that if —m^k^n,un can be fixed for all t. In our case
inspection of (17) makes it clear that ξ can be restricted further, for example:

+ λre2r,λ~m£3 mH— + λne3n)\ — m^~s^r^n} (27)

is a Poisson subspace for the kth Poisson bracket provided that — m^~s^
:^nun can be fixed for all ί, and if k^r ξr can be fixed for all ί.
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3. Examples

Example L

eι = -λ, έ?2 = l, £?3 = 0, u = u0 = a say, ξ = ξ0 = η say. (28)

,(^-ί)/-Aι;_/-0_",0,0,0)] + . (29)

If /c = 0, the right-hand side is

(0,tV, 0,0,0), where ϋ_=λ" 1 t ; 1 +λ- 2 ϋ 2 + - . - . (30)

That is we get the Hamiltonian structure given by

.
Also we can, for k = 0, restrict a = 1, as α is a Casimir of the ad ̂ -Hamiltonian
structure. We compute

w = eίu-^ξ2-e2ξ'

= -*-$12-l', (32)

giving the original Miura map

η -> - i/y2 - '̂.

Example 2.

= — /I4 -f A3 w3 -f /I2w2 + λwj + w0 say.

There are three compatible Poisson brackets for the "modified" (u9ξ) side,
corresponding to k = 0, 1, 2:

(δg rl

I "c Λ

\<5"θ

0

~* δg ->

We can write down the Poisson structures - acting on (δuQ.δξQ.δu^δξ^) as

" " 1 ° °«- — J2
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-2d 0

0 dl9

515

(35)

so that

-,-£- }Bl

ξ0d

o

{/,«}* = ί

There are five compatible Poisson brackets on the w side corresponding to
= 0,l,2,3,4:

(36)

δg/δul

where [,] here is the Virasoro Lie bracket, [φψ~] = (φψ' — φ'ψ, §φψf"). δF is

δw>>

and δG is

/ι ^r r

The five Poisson structures can be

(Jl ^2 J* Jλ

J2 J3 J4 0
0 ~ ~ J3 J4 0 0

V J 4 0 0 O/

*,-

K.-

I " I /t 1 /U

(5vVι ^WT (yW^i

written - acting on (δw0,δw1,δw2,5vι

>

/ 0 J0 0 0 \
J0 Ji 0 0
0 0 -J3 -J4

V o o -J4 o )
( 0 0 0 J0\

o o j0 j Λ
0 J0 Jl ^2 '

\ J0 Ji J2 Jl/

*,-
, K3 =

f J0 0 0 0 λ
ft 7 r r
v/ t/ 2 «^ 3 J 4

0 -J3 -J4 0
V O -J4 0 0 /

^0 0 J0 0 \

0 J0 Ji 0
J0 Ji J2 0 '

V o o o -jj

- as

(37)

with

J2 = w25 4- ^vv2, J3 = w3d 4-dw3, J4= — 2d.

It is straightforward to show that the push-forward map, ^B,, of Bt induced
by m(u9ξ,eί9e2) — (e^u — ̂ ξ2 — e2ξ',e2

2) is Ki + 2 for i — 0,1,2, i.e.
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for any /,0eC°°(g*), where ^*/ is given by

W/(ιι, ξ,el9e2) = f(e,u -±ξ2 - e2ξ',e2

2). (39)

One might like to see some flows:
Solving (23) recursively, we obtain the first two non-trivial Hamiltonians and

their pull-backs,

H0(w) = j2w3 and //!(w) = J(2w2-f ^w3

2);

With respect to the Hamiltonian structures given by K4 and B2, H0 and F0 give
the translational flows, wίo = w' and (M, 0fo = (M, 0'; H1 and F1 give the flows

>3'" 4- 2WQW3 7 4- W0'w3 \

w0' 4- 2™^! 4- w/w

w9 2w/ 4- 2w2w3' 4- w2'w

w2' 4- 3w1wλ

/

\ -/ -" \
and

4. Corfespondence with a Spectral Problem

Consider the spectral problem

/ (7
Lι/^=

\εd — η K

This spectral problem has the following origin:
The spectral problem (see [3])

(ε2δ2 + ( - v2 - v') + K! λ + - - + UN _ l λ
N

is equivalent to

- λN)φ = 0

If we set ψι = φ, λφ2 = (εd — f)φ we can write this as

(40)

.e.

(εd -v)ι//1- λι//2

εd — v

= 0.

= 0. (41)
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Generalise this to

L = (Y £d + η\ (42)
\εd-η K J

where ε, κ;, are constants.
The fact that any candidate compatible φt flow has the form

φt = (-±a' + ad)φ (43)

leads us to the ansatz

with

where & and ^ are first order differential operators. We very easily find that ^
and y must have the form

& = — /, y, = \d -f ad. (45)

The condition φxt = φtx leads to (L, — [K,L])^ = 0. If we evaluate [K,L] we find
that we cannot have L, — [F, L] = 0, but that 3 a matrix X - A depends on V - such
that

Li-[V,L] = AL, (46)

and this of course is enough for (Lt — [V,L])φ to vanish.
We next recognise that the set of matrix operators of the form

-iα' + αδ 0

forms a Lie algebra under ordinary commutation of operators bracket. It seems
reasonable therefore to postulate that the action of K on L given by

is an ad*-action for some appropriate pairing of (σ, η, ε, K:) with (α, γ). The condition
to be satisfied by this pairing is

(48)

If we go through these calculations we find that

-(/' -Ό)
and

ad*(fl>y)(s, η, ε, K) = (2a'σ + aσ' + εy" + 2ηγ\ (aη)' - ^εa" - κy'\ (50)

We also find that [(fl,y)(M)] = (ab' - a'b.aδ' - by'), and the pairing we require
turns out to be

< (σ, η, ε, κ\ (α, 7, μ, v) > = j σa + 2 J ηy + εμ + KV. (51)
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(μ, v are just components put into account for a 2-dimensional extension which
we realise is present in the process of doing this calculation) and

[(α, γ)(b, δ)-] = (ab' - a'b, aδ' - by', - J (a"δ - b"y\ - 2 f δy'). (52)

This is remarkably like JS?,JS?*, etc.!
In fact the only modification needed to transpose the analysis of the spectral

problem in the coordinates given here to a suitable analysis in 5£ and <£* is to
adopt the inner product

(53)

in place of that given in Eq. (11), which will affect the computation of δf. This
also changes the Miura map so that we set w = e±u — ζ2 — e2ζ'\ a slightly more
standard form.

On the other hand we can easily adapt the spectral problem instead:
We use

, .54,
2e2d-ξ -έ

and use the same inner product used in the text.
We observe one further fact; we can adjust L to

* 2e2d
L-(2e2d-ξ -β

and (with the same A)

«x+.,/-.^ (56)

which is to be compared with Eq. (17). We thereby get a spectral problem
representation of the integrable systems on J£f*.

There is a general remark to be made here: We often find that a linear problem

(57)

leads not to Lt - [V, L] = 0, but to Lt = [F, L] + AL= V°L say for some A = A(V).
The idea of looking for a pairing between L and V to make the action of V on L
an ad*-action, i.e. such that ad*KL= K°L, is always worth trying.

Note: Although V — { } seems a more obvious way to represent 5P, this
V υ ad)

does not give us a nice representation of &*.

5. Comments

There are some comments to be made about the cocycles σ1,σ2,σ3. It seems that
we have found a kind of factorisation of the Schwartzian derivative cocycle:

Notice that ^ can be written as the product of two subgroups
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The Lie algebra decomposition corresponding to ̂  = ̂  x ̂ 2 is & = ̂ ^ + J^2 with

jί?! - {(φ, </>')} and J^2 = {(0,ι?)}. We find 2* z> J^1 = {(£', £)} and J*f* => JS?/ =

{(0, i;)}. Hence ̂  is a Lie group with Lie algebra ££ \ and dual ^2

1» while ̂ 2 is a

Lie group with Lie algebra J$?2 and dual J^1.

Let Pι,P2 be projections onto J^ and JS?2 respectively parallel to JSf2

 and -Sf i
respectively, and Πί9Π2 be projections with respect to JS?^ and J^?

2

1 similarly.

Consider σ^, 0') = (0, φ") = (φ"f, </>') + (- φ'»9 0).

In the same way we find

and

/72σ3(φ, φ') = Π2(φm, 0) = (φ'»9 0), /I2^3(^, log /) = (S(̂ ), 0).

Another remark is that <S± ^ g/&2, while in

for all ϋe^. In particular, choosing e^v' = ~ ξ, we get

I believe that these remarks allude to properties of ^ which I have not yet

managed to uncover, but which may lead to a more through account of what is

going on, d. [7],

In conclusion I would like to remark that a complete Lie algebraic explanation

of all the structures described in [3] is still lacking. This paper clearly points the

way, and I hope eventually to do this job.
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