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Abstract. A formulation of the Nevanlinna-like theorem for a horn-shaped region
is given. Product of functions obeying the hypotheses of the theorem is also shown
to obey these hypotheses, i.e. the summability mechanism preserves nonlinear
perturbative conditions such as unitarity of the Feynman series.

1. Introduction

There is a notoriously known fact that perturbation series in quantum theory are
mostly divergent and can have at best the meaning of asymptotic series.

Unlike convergent power series the divergent asymptotic series do not
determine a function uniquely. More precisely given an arbitrary sequence {an}Q
of complex numbers and an arbitrary sector-like domain D, there exists for some
ε>0 a function /(z), which is regular in Dε: = Dn{z\ \z\<ε} and such that for
every n,

l im(/(z)-α o-...-α nz")/z»+ 1 = α n + 1
z->0
zeDε

exists, or equivalently

/(z)~ Σ anz
n
 (Z->0,ZGDJ, (1)

n = 0

00

i.e. X anz
n is an asymptotic series of f(z) in the region Dε [R, H]. In general there

n = 0

are infinitely many functions with the above properties. However, imposing some
additional conditions, the so-called strong asymptotic conditions (SAC) on the
rest term RN(z),

Y z), (2)
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the asymptotic series can determine the function /(z) uniquely. As it was shown in
[M 2] possible violation of SAC indicates presence of nonperturbative effects in a
theory and instability of its ground state. It was emphasized that the violation of
SAC is a more serious problem of a theory than the divergence itself, therefore, the
violation of SAC leads to ambiguity of perturbation theory (PT) predictions.
When SAC are fulfilled then the coefficients an of PT determine a f(z) uniquely. To
obtain this function an appropriate analytic regular summability method can be
used [H]. We say that a summability method 8 is regular if and only if

Σanz"=Σcιnz", (3)
! = 0 / n = 0

whenever the right-hand side of (3) converges. Analogously, we say that a
00

summability method S is analytical if for every power series £ anz
n with nonzero

radius of convergence " = 0

6( _
n = 0

whenever the left-hand side of (4) exists ί f(z) now being an analytic continuation
oo \ V

of Σ anz
n I. An example of the analytic regular summability method is the well-

n = 0 /

known Borel summability method, frequently used in physics (see [Ml] for a
recent review). Unfortunately, the use of the Borel summability method is
sometimes very limited:

A) The Borel method cannot cope with the horn-shaped singularity, exhibited in the
mass QCD ['tH 1], in the "massless" limit of the anharmonic oscillator [Wi], and in
some other models. (For recent status of the problem see [KR] and references
therein.)

This easily follows from the fact that whenever the Borel sum exists then it
defines a function regular in some sector-like neighbourhood of the origin (the
convergence of the Borel integral need not be absolute!) [W].

Another shortcoming of the Borel method is the following:

B) In the regular case, i.e. when the series on the right-hand side of (1) has a nonzero
radius of convergence, it can in general be analytically continued onto a region of the
complex plane which is larger than the region of z for which the Borel sum exists. If
the analytic continuation f(z) is not an entire function, the Borel sum may not exist
for all z from the Mittag-Leffler (principal) star of f(z) [H] [further, MLS(/)7,
because always some sector-like domain has to be discarded from the complex plane
[SG, M1].

To illustrate the point B note that the standard Borel method sums the series
00

£ zn only in the complex halfplane Rez < 1 but the analytic continuation 1/(1 — z)
n = 0

of the series exists in the whole complex plane except the point z = l.
The latter problem has been solved by a new moment constant summability

method proposed recently by the author [Ml] with the moment sequence

00

μ(ή): = j exp ( - exp t)fdt. (5)
o
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a) b)

Fig. la, b. The horn HR (a) and its image HR 1 (b) under the mapping z->l/z

Indeed, the main result of [M1] is that if f(z) is the principal branch of an analytic
00

function regular at the origin, where f(z) = £ anz
n, then the integral /(z0),

CO CO

I(zo)= Jexp(-expί) £ an(zot)
n/μ(ή)dt,

0 n = 0

converges if and only if z0 e MLS(/), and then

Thus, the method is analytic and regular. The convergence is absolute and uniform
in any bounded subset of MSL(/) with nonzero distance from the boundary of
MLS(/), and one can also differentiate inside the sign of integration.

In the present paper we will show that this method can be used for the horn-
shaped singularity as well. We shall deal only with the horn HR (see Fig. 1), defined

as

where

R: = {z\Reω(l/z)>ω(l/R)},

F(z):= £ zn/μ(ή),
n = 0

(6a)

(6b)

i.e., roughly speaking, with the region of the asymptotic type (1,1) [M2].
Transition to more general horns of the type (ί,η) is simply done by mapping
z^z/η. The theorems could be modified also for a region of the asymptotic type
(k,η) with k> 1. The situation here is, however, more complicated. We shall give
also a further improvement of the SAC as discussed in [M 2], and show that a
product of functions obeying these SAC also obeys the same SAC.

2. Main Results

To deal with the singular case let us firstly recall the Nevanlinna theorem [N, So]:

Theorem 1. Let f(z) be analytic in the circle CR = {z\ Re 1/z > 1/1?}, continuous up to
the boundary, and satisfy there the estimates

k = 0
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with (7)

\RN(z)\SAσNN\\z\N,

uniformly in N and in zeCR. Then B(t),

B(t):= Σ anf/n\,
n = 0

converges for | ί |<l/σ and has an analytic continuation to the striplike region
Sσ: = {ί|dist(£,jR+)<l/σ}, satisfying the bound

\B(t)\£Kap(\t\/R) (8)

uniformly in every Sσ> with σ'>σ. Furthermore, f can be represented by the
absolutely convergent integral

/(z)=(l/z)Jexp(-t/Z)β(ί)Λ (9)
0

for any zeCR.
Conversely, if B(t) is a function analytic in Sσ» (σ" < σ) and satisfying there the

bound (8), the function f(z) defined by (9) is analytic in CR and satisfies (7) [with
an = Bin)(t)\t=0] uniformly in every CR, with R'<R.

In the next similar role which the exponential function plays in the Nevanlinna
theorem will be played by another entire function, F(t), as defined by (6 b),

00

F(t)= Σ t"/μ(n),
n = 0

and investigated in [M1]. Indeed, the Nevanlinna-like theorem for the horn HR is
as follows.

Theorem 2. Let f(z) be analytic in the horn-shaped region HR: = {Reω(l/z)
>ω(l/R)}, continuous up to the boundary, and satisfy there the estimates

f ( ) Y k
fc = O

with (10)

\RN(z)\<Λμ(N)\z\N

uniformly in N and zeHR.
Then

M(ή:= Σ ant
n/μ(n) (U)

n = 0

converges for \t\<l, and has an analytic continuation to the striplike region
S1 = {t\ dist(ί, R+) < 1}, satisfying the bound

|M(Ol^exp[exp(|ί|/£)] (12)

uniformly in every Sκ with κ> 1. The analytic continuation of M(t) for te{\, oo) is
given as follows,

M(t) = (l/2πi) § F(t/z)f(z)dz/z. (13)
dHR
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Furthermore, f can be represented by the absolutely convergent integral

f(x)= J exp(-Qxpt)M(tx)dt, (14)
o

for any x e (0, R).

The proof of the theorem is rather complicated. Therefore, it is divided into
several lemmas. However, the importance of F(t) is already seen from the following
argument. If a function /(z) is analytic in the horn HR and continuous in HR, then
for any xeHRnlSί,

= (l/2τπ) f f(z)/{z-x)dz
dHR

i) § f{z)dz/z] exp{-expt)F(tx/z)dt.
dHR 0

Note that such a representation of f(z) is impossible by the Borel method. Note
also that unlike the disc CR in the Nevanlinna theorem the horn HR is not a star-
like region. This is in general the main difference between the regions of the
asymptotic type (0, η) and (fc, η) with k*zί. This difference causes that by means of
moment constant summability methods one cannot recover /(z) from its
asymptotic series in the whole horn HR but only for zeHRnlfί. Physically this is
not, however, a problem, since we are expanding in real parameters (couplings).

Before we turn on to the proof of the Nevanlinna-like theorem for the horn HR,
we shall improve the asymptotic properties of F(t) as given in [M 1] and show that
for |Imί| > π/2 and t tending to infinity F(t) uniformly (in argί) approaches zero. To
prove this we shall need to show that the moment function μ(s) as defined by (5)
exhibits no zero for Res> — 1.

Lemma 1. The function

00

μ{s):= J exp(-expί)ίsdί (15)

1. has a meromorphic extension onto the whole complex plane with simple poles on
the negative real axis;
2. its asymptotic behaviour for s tending to infinity, |args|<π, is governed by the
saddle point only and

μ(s)~(2πlns/s)1/2[exp-(s/lns)] [ln(s/lns)]s (s->oo), (16)

where the saddle point is given by the equation

(expί)ί = s, (17 a)

with the approximate solution

t = ln(s/lns) + In Ins/Ins+O[(ln lns/lns)2] (s-> oo). (17b)

3. The function μ(s) exhibits no zero for Res> —1.

Proof For the proof of 1) and 2) see [M 1]. To prove 3) suppose that for some s0,

00

μ{so)= j exp[ —
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However, this implies that for any δ,

- o o

which means, on the other hand, that

oo

J exp[-exp(expί) + (so + 2)ί][-exp(exρί)]dί = O.
— oo

Repeating this procedure m-times one gets that
oo

I(m):= j exp[ —
o

where 4̂ = expί. Note that the term D(ί),

D{ή: = A ~ m[A{ - 1 + d/dA)]m ~ \ - A),

is bounded on t e (0, oo) and nonzero for sufficiently large t. On the other side, if m is
sufficiently large we may use an asymptotic formula to evaluate /(m). Thus,

I(m) ~ [2πu'u/(u + 1 ) ] 1 / 2 exp [ - exp u + mu + (s0 + m) In u]D(u) ή= 0,

since u(m) is the solution of the equation

and which behaves like

u(m) ~ In [m + (s0 + m)/lnm] (w-> oo). Q.E.D.

Throughout the paper we shall frequently use also the following expression of
the asymptotic behaviour of μ(s) for s tending to infinity and |args |<π,

μ(s) - [2π w(s)wr(5)]x / 2 exp [ - exp w(s) + nln w(s)], (18)

where w(s) denotes the exact solution to the equation (17 a), and w'(s) ~ί/s — ί/sw(s)
when s tends to infinity and |args |<π.

Lemma 2. Let {μ{ή)}^ be the Stieltjes moment sequence generated by the measure
exp(-exρί)dί (5). Then the function F{t%

F(t)= Σ t"/μ(n),
n = 0

is an entire function with the following asymptotic behaviour at infinity:

1) For | Imί |^π/2 the asymptotic behaviour is determined by the saddle point

s = (expί)ί,

and

F(ί)~(ί + l)exp(ί + expί) (t-+oo).

2) For\lmt\>π/2,

\F(t)\SO(\t\σ) ( ί - o o ) .

σ being some constant, — 1 < σ < 0 .
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Proof. The statement of the lemma is proved in [Ml] for σ sufficiently large. By
virtue of the improved Lemma 1 we can readily repeat the proof of the lemma with
modified integral representation of F(t) (Euler-Maclaurin sum formula) [F, J],

F(t)= f exp(slnί)/μ(s)rfs + O(|ί|σ) (t->oo),

where σ is now from the interval (—1,0). Q.E.D.

We are in the position to turn to the proof of Theorem 2 now. We shall follow
SokaΓs strategy of the proof of the Nevanlinna theorem [So]. Lemma 2 provides
us with an integral representation of the monomials tn/μ(n) for any positive n and

(l/2τri) $ F(t/z)zndz/z = tn/μ(n), (19)
dHR

where the integral is taken counterclockwise along the boundary of HR. The
formula will be used to express M(ή [an analogue of B(tJ] in terms of /(z). To find
the minimal domain of analyticity of M(ή we shall need a bound on F(m)(z0) for m
tending to infinity (Lemma 3). Finally, after the Lemma 4 we shall give all the
lemmas together and complete the proof of the theorem.

Lemma 3. For any z0 such that Rezo>0 and n>0,

\F{n\z0)\ < const exp lxo(nβn n + n/ln2 ή) + 2 In w(ή) + O(l/iφ))]

x|F(zo)|n!/μ(n),

where xo = Rezo.

Proof. Firstly,

I*"Xzo)/n! = (l/2π/) § F(z0 + z)/zn + Hz

= (l/2πί) § exp [ω(z + zo)-n lnz]rfz/z, (20)
c

where C is a simple contour enclosing the origin. The saddle point of the integral is
a solution to the equation (using Lemma 2)

n. (21)

Denote the solution v(n). By virtue of the Appendix we have,

v(n) = w(n) - z0 - zo/lw{n) +1] + w(φv'(n) + Olw'{ή)] (n-> oo).

Note that z0 + v(ή) approaches the real positive axis when n-+ oo, and a part of the
contour of the steepest descent nearby the saddle point is approximately a segment
of the circle centered at z0. After the saddle point evaluation of the integral one
finds that

F{n\z0)/n! ~ [t;(φ'(n)/2π] ̂  exp [ω(z0 + v(n)) - n lnι (n)],

or

F^(zo)μ(n)/n! - const exp {zo[n/(w(n) +1) + n/iφ)(φ) +1)]

+ 21n w(n) + 0(l/w(n))} (n^ oo), (22)
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respectively. On the other hand, if we consider the integral on the right-hand side
of (20) for n fixed and z0 tending to infinity then we have,

|FW(zo)/π!|^expRe(zo + l). (23)

Giving (18), (22), and (23) together and using the approximate expression (17 b) for
w(ή) one finally gets the statement of the lemma. Q.E.D.

Lemma 4. Let Jx(z) be the integral

Jx(z): = f exp[-exp(0c)]jF(ίz)A
o

= Σ (xtf/Kn) J%xp(-expί)Λ/t.
Λ = 0 0

Then we have

f(l/2πθ $ Jx(l/z)zndz/z = xn/μ(n) f
dHR 0

where the integral is taken counterclockwise along the boundary of HR.

l/jc

Proof. Note that xn J" exρ( —exρt)fMdί behaves like exp[ —exp(l/x)]/(nx) when n
o

tends to infinity so that one expects that x will only produce an overall factor to the
asymptotic behaviour of Jx(z) when z tends to infinity. This can be confirmed as in
Lemma 2. One uses the Euler-Maclaurin sum formula and finds that for |Imz|
^π/2 the asymptotic behaviour is governed by a saddle point, which is here
determined by the equation

Thus, the contribution Vs of the saddle point is

Vs = (z+ί) exp{expz[exp( — exp( — z)jz)\ +1 }/x (z-> oo).

By analogy with Lemma 2 one can easily prove that for z tending to infinity and
|Imz| > π/2 function Jx(z) tends to zero in the same manner as F(z). The proof of the
statement of the lemma is then trivial. Note that the integral from Jx{z)/z along a
segment of dH^x which starts at infinity and terminates at some z0 on the contour
converges even absolutely.

Proof of the Theorem.

i) Under the hypotheses of the theorem one easily proves that the series (11)
converges for | ί |< l . Let us consider the integral d(t).

d(t): = (l/2πί) j F(t/z)f(z)dz/z, (24)
dHR

where t ̂  1. Two remarks are in order. In contrast to the Nevanlinna theorem one
cannot use the integral on the right-hand side of (24) for 0 < ί < l , as it is not
possible to satisfy both conditions that the contour of integration in (19) be the
contour which tends to zero on the boundary of a tHr for some r, and at the same
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time lie in HR. Whenever ί<£R the integral is identically zero (by virtue of
Lemma 2). Hence, it cannot yield an analytic continuation of d(t) for tφΈL

From the properties of F(z) it is immediately seen that the integral on the right-
hand side of (24) converges for t > 1 absolutely and uniformly on any closed subset
of (1, oo). For t = 1 the integral converges by virtue of the Abel-Dirichlet lemma.
Hence, d(t) is a C00 function on the interval (1, oo) and possesses the right
derivatives at the point ί = l.

To prove that the series (11) converges at t = 1, we make use of Lemma 3, and
we rewrite d{\) as follows,

d(l)=Y ak/μ(k) + (l/2πί) § F(ί/z)RN(z)dz/z. (25)
k=0 dHR

As the integration on the right-hand side of (25) runs along the boundary of HR

on which Reω(l/z) = const ( = ω(l/R)) the integral can be bounded from above as
follows:

) J F(ί/z)RN(z)dφ

^(A/π)exp(ω{l/R))μ(N) f exp(NInr)dr/r

= (A/π) exp(ω(l/R))μ(JV) exp(-N ln(l/R))/N,

where dHR means that we integrate along dHR in the first quadrant. After
distorting the contour of integration up dHr with r = l/w(N) we have,

(l/2πϊ) § F(l/z)RN(z)dz/z) §
dHR

(JV->oo)

Thus, M(l) = d(l). The same is true also for derivatives, i.e. M(n)(l _) = d(w)(l +) for
any neJί. Indeed, if f(z) satisfies SAC then the same SAC will satisfy also its
derivatives f{n\z) (may be in a horn HR with different R). So

S»\\ +) = V ck/μ(k) + (l/2πΐ) § F(l/z)Rtf(z)dz/z,
k=0 dHR

where ck = (k + n)(/c + n — 1)... (k + l)αfc+n, and the integral can be estimated in the
same manner as above.

To determine the minimal region of analyticity we express d{n\t) as follows:

dHR

Now, using Lemma 3 one easily finds that

\d{n)(t)\^ const F{t/R)n\

x exp[(ί/Λ)(«/lnn + n/\n2 n) + 2 Inlφ) + 0(l/w(n))] . (26)

One may justify, that

Σ d^\t,){t-txγin\= Σ d'KtiWi-tr/ni,
n=0 n=0

whenever l<tί^t^t2, and |ί — ίt | < l , where i = l,2.
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Fig. 2. Minimal region of analyticity of M(ί)

Thus M(t),

M(ί) =
Σant

n/μ(n), - K ί ^ l ;
0

{ d(t),

(27)

is shown to be analytic at least in the striplike region S1 (see Fig. 2).
Bound (12) on M(ί) follows immediately from the relation (26).

ii) To prove the relation (14), let us consider the integral
00

1/x J exp[-exp(0c)]M(£)Λ,

for any xe(0,R). The integral,

Jexp[-exp(ί/x)](l/2πO § f(z)F(t/z)dz/zdt,
1 dHR

is absolutely convergent. Therefore, the right-hand side of (14) [the integral (27)]
can be recasted into the form,

ix) § Jx(l/z)f(z)dz/z
dHR

Σ
n = 0

Using the Lemma 4 one finds that the last two terms cancel each other. Indeed,

l/(2πθ § Jx(Vz)f(z)dz/z
dHR

= Σ αΠ/μ(n)ίexp[-exp(ί/x)]ίMdί

+ l/(2πi) j Jx{\lz)R^z)dzlz.
dHR

To optimize the bound on the integral on the right-hand side we choose the
contour of integration to be dHllMNy Then, in virtue of (17a, b, 18),

l/(2πθ § Jx(ί/z)RN(z)dz/
dHR

(ΛΓ->oo).
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Corollary. Let

00

1. M(ί):= £ ant
n/μ(n) has nonzero radius of convergence and can be analytically

n = 0

extended on the real positive axis;
2. |M(ί)|< const exp(exp(ί/#)) on the axis.

Then

f(x): = 1/x J exp(-exp(t/x))M(ί)&

converges absolutely for x e (0, JR) and

Proof Use the Laplace method to evaluate the integral.

Now, after the proof of the Theorem 2 we want to show an important property
of the class ί) of function which obey the hypotheses of the theorem.

Lemma 5. The class of function f) is closed under product, i.e. if fγ(z) and f2(z) are
two functions from I), then g(z): = fι(z)'f2(z)eί).

Proof To prove the lemma it is sufficient to prove that

lim Σ KN - k)μ(k)/μ(N) < oo . (26)
JV->oo fc = 0

From the Lemma 1 one can derive that if N is sufficiently large then for q < N/2,

μ(N-q)/μ(N)~Qxp[-q\n\nN-q/N-(q + q2

Thus, if j is such that the asymptotic formula to estimate μ(s) for s^j can be used,
then

[H
Σ μ(N-k)μ(k)/μ(N)^2 £ μ(N-k)μ(k)/μ(N)

fc=0 fc=0

^ const
fc ]

where the series on the right-hand side converges in the limit N->oo, since its last
term behaves like l/[Nexρ(ΛΠn2/lniV)]. Q.E.D.

3. Conclusion

We have just shown that the summability method recently proposed in [M1],
where it was studied in the regular case, can deal with the horn-shaped singularity
as well. To our knowledge it is the first one with this property. In [M1,2] the
advantages and shortcomings of the method have been discussed, and also
applications to the Rayleigh-Schrodinger perturbation theory [K, RS 78] and the
derivative analyticity relations [FK] have been shown.
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Like any analytic regular summability method also our method may have a
wide domain of applications. We will not give a list of them because the reader can
easily judge whether it is interesting for him or not.

If additional information is available, the method, like the Borel one, can be
made more powerful when combined with conformal mapping. It is also obvious
that the use of the method is not confined to perturbation expansion in coupling
but it works as well for any kind of power expansion, like the 1/JV expansion etc.

We note that Theorem 2 gives a generalization of SAC as proved in [M 2].
Indeed, by the theorem a function cannot exist which

i) is analytic in the horn HR and continuous up to the boundary;
ii) possesses there the asymptotic expansion (10) which has equal sign coefficients
an for n^n0.

We would like to point out that assertions of the type that a quantity Qx equals
another quantity Q2 to all orders of perturbation theory are very vague till the
SAC are shown to be valid. The SAC can also be used as a criterion to look for the
true ground state of a theory [M2].

Finally, our method gives a generalization of [S] since Theorem 2 together
with Lemma 5 provide a summability mechanism which apart from invariance
conditions and linear covariances preserves also nonlinear perturbative con-
ditions such as unitarity of the Feynman series.

An open question still remains how the summability properties (both BoreΓs
and ours) are transported in equations such as the Dyson-Schwinger equations for
Green's functions ['tH2]. Another important question is whether one could
encounter a situation that the perturbative series has slower than the factorial
growth and its coefficients obey the bound (10). The answer to the last question
seems to be affirmative at least for the theory for which the maximal region of
analyticity in an expansion parameter is a horn, as an adequate perturbation
scheme should obey SAC and give unambiguous results. It is worth remembering
that the factorial growth of perturbation theory was proved especially for bosonic
theories while inclusion of fermions seems to slow the divergence down (see e.g.
[P]). Moreover, sometimes the factorial growth is an artefact of approximation
used and a more careful analysis may give even a convergent result [C]. A
convergent perturbation expansion can also be obtained when instead of the
expansion in renormalized coupling constant one uses the expansion in powers of
the running coupling constant (see e.g. [Po, T] and references therein). In
many cases the method can be successfully applied to the regularized theory by
setting it on the lattice, etc. [Fe, S1, Se].

Fig. 3. The image HR

1 of the horn HR under the mapping z-»l/z
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One could get also analogous results by other slightly modified Stieltjes
moments like

00

μ(n):= j exp(ί — expt)tndt,
o

etc. In this case one only needs to replace ω(z) by ώ(z) = expz + ln(z +1) and HR by
ίίR: = {Reώ(l/z)>ώ(ί/R)}. Note that in contrast to the previous case the
boundary dHR

γ of HR

ι approaches the straight line Imz = π/2 from below (see
Fig. 3).

Appendix

In this appendix we express the solution v(ή) to Eq. (21),

v(ή) exp(z0 + v(n)) + v(n) + v(ή)/(v(ή) + z 0 +1) = n,

in terms of w = w(ri), the solution to Eq. (17 a),

w(ή)expw(ri) = n.

We take first logarithms of these equations. Upon the substitution v(ή)
= w(ή) — zo — δ and some manipulations we have,

Thus,

δ + zo/{w +1) = ww' + [1/w - zo/(w +1)] ww' + 0[(ww')2] (n-> oo),

i.e. ^ = 0(l/lnn) when n tends to infinity.
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